-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsgd.py
67 lines (57 loc) · 2.33 KB
/
sgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2019 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Stochastic Gradient Descent module."""
from typing import Optional, Sequence, Union
from sonnet.src import base
from sonnet.src import types
from sonnet.src.optimizers import optimizer_utils
import tensorflow as tf
class SGD(base.Optimizer):
"""Stochastic Gradient Descent (SGD) module.
Attributes:
learning_rate: Learning rate.
"""
def __init__(self,
learning_rate: Union[types.FloatLike, tf.Variable],
name: Optional[str] = None):
"""Constructs an `SGD` module.
Args:
learning_rate: Learning rate.
name: Name of the module.
"""
super().__init__(name)
self.learning_rate = learning_rate
def apply(self, updates: Sequence[types.ParameterUpdate],
parameters: Sequence[tf.Variable]):
"""Applies updates to parameters.
Args:
updates: A list of updates to apply to parameters. Updates are often
gradients as returned by `tf.GradientTape.gradient`.
parameters: A list of parameters.
Raises:
ValueError: If `updates` and `parameters` are empty, have different
lengths, or have inconsistent types.
"""
optimizer_utils.check_distribution_strategy()
optimizer_utils.check_updates_parameters(updates, parameters)
for update, parameter in zip(updates, parameters):
if update is not None:
optimizer_utils.check_same_dtype(update, parameter)
learning_rate = tf.cast(self.learning_rate, update.dtype)
if isinstance(update, tf.IndexedSlices):
parameter.scatter_sub(
tf.IndexedSlices(update.values * learning_rate, update.indices))
else:
parameter.assign_sub(update * learning_rate)