Skip to content
Switch branches/tags


Failed to load latest commit information.
Latest commit message
Commit time

MorphNet: Fast & Simple Resource-Constrained Learning of Deep Network Structure


New: FiGS: Fine-Grained Stochastic Architecture Search

FiGS, is a probabilistic approach to channel regularization that we introduced in Fine-Grained Stochastic Architecture Search. It outperforms our previous regularizers and can be used as either a pruning algorithm or a full fledged Differentiable Architecture Search method. This is the recommended way to apply MorphNet. In the below documentation it is referred to as the LogisticSigmoid regularizer.

What is MorphNet?

MorphNet is a method for learning deep network structure during training. The key principle is continuous relaxation of the network-structure learning problem. In short, the MorphNet regularizer pushes the influence of filters down, and once they are small enough, the corresponding output channels are marked for removal from the network.

Specifically, activation sparsity is induced by adding regularizers that target the consumption of specific resources such as FLOPs or model size. When the regularizer loss is added to the training loss and their sum is minimized via stochastic gradient descent or a similar optimizer, the learning problem becomes a constrained optimization of the structure of the network, under the constraint represented by the regularizer. The method was first introduced in our CVPR 2018, paper "MorphNet: Fast & Simple Resource-Constrained Learning of Deep Network Structure". A overview of the approach as well as device-specific latency regularizers were prestend in GTC 2019. [slides, recording: YouTube, GTC on-demand]. Our new, probabilistic, approach to pruning is called FiGS, and is detailed in Fine-Grained Stochastic Architecture Search.


Suppose you have a working convolutional neural network for image classification but want to shrink the model to satisfy some constraints (e.g., memory, latency). Given an existing model (the “seed network”) and a target criterion, MorphNet will propose a new model by adjusting the number of output channels in each convolution layer.

Note that MorphNet does not change the topology of the network -- the proposed model will have the same number of layers and connectivity pattern as the seed network.

To use MorphNet, you must:

  1. Choose a regularizer from morphnet.network_regularizers. The choice is based on

    • your target cost (e.g., FLOPs, latency)
    • Your ability to add new layers to your model:
      • Add our probabilistic gating operation after any layer you wish to prune, and use the LogisticSigmoid regularizers. [recommended]
      • If you are unable to add new layers, select regularizer type based on your network architecture: use Gamma regularizer if the seed network has BatchNorm; use GroupLasso otherwise [deprecated].

    Note: If you use BatchNorm, you must enable the scale parameters (“gamma variables”), i.e., by setting scale=True if you are using tf.keras.layers.BatchNormalization.

    Note: If you are using LogisticSigmoid don't forget to add the probabilistic gating op! See below for example.

  2. Initialize the regularizer with a threshold and the output boundary ops and (optionally) the input boundary ops of your model.

    MorphNet regularizer crawls your graph starting from the output boundary, and applies regularization to some of the ops it encounters. When it encounters any of the input boundary ops, it does not crawl past them (the ops in the input boundary are not regularized). The threshold determines which output channels can be eliminated.

  3. Add the regularization term to your loss.

    As always, regularization loss must be scaled. We recommend to search for the scaling hyperparameter (regularization strength) along a logarithmic scale spanning a few orders of magnitude around 1/(initial cost). For example, if the seed network starts with 1e9 FLOPs, explore regularization strength around 1e-9.

    Note: MorphNet does not currently add the regularization loss to the tf.GraphKeys.REGULARIZATION_LOSSES collection; this choice is subject to revision.

    Note: Do not confuse get_regularization_term() (the loss you should add to your training) with get_cost() (the estimated cost of the network if the proposed structure is applied).

  4. Train the model.

    Note: We recommend using a fixed learning rate (no decay) for this step, though this is not strictly necessary.

  5. Save the proposed model structure with the StructureExporter.

    The exported files are in JSON format. Note that as the training progresses, the proposed model structure will change. There are no specific guidelines on the stopping time, although you would likely want to wait for the regularization loss (reported via summaries) to stabilize.

  6. (Optional) Create summary ops to monitor the training progress through TensorBoard.

  7. Modify your model using the StructureExporter output.

  8. Retrain the model from scratch without the MorphNet regularizer.

    Note: Use the standard values for all hyperparameters (such as the learning rate schedule).

  9. (Optional) Uniformly expand the network to adjust the accuracy vs. cost trade-off as desired. Alternatively, this step can be performed before the structure learning step.

We refer to the first round of training as structure learning and the second round as retraining.

To summarize, the key hyperparameters for MorphNet are:

  • Regularization strength
  • Alive threshold

Note that the regularizer type is not a hyperparameter because it's uniquely determined by the metric of interest (FLOPs, latency) and the presence of BatchNorm.

Regularizer Types

Regularizer classes can be found under network_regularizers/ directory. They are named by the algorithm they use and the target cost they attempt to minimize. For example, LogisticSigmoidFlopsRegularizer uses a Logistic-Sigmoid probabilistic method to to regularize the FLOP cost and GammaModelSizeRegularizer uses the batch norm gamma in order to regularize the model size cost.

Regularizer Algorithms

  • [NEW] LogisticSigmoid is designed to control any model type, but requires adding simple gating layers to your model.
  • GroupLasso is designed for models without batch norm.
  • Gamma is designed for models with batch norm; it requires that batch norm scale is enabled.

Regularizer Target Costs

  • Flops targets the FLOP count of the inference network.
  • Model Size targets the number of weights of the network.
  • Latency optimizes for the estimated inference latency of the network, based on the specific hardware characteristics.


Adding a FLOPs Regularizer

The example below demonstrates how to use MorphNet to reduce the number of FLOPs in your model. In this example, the regularizer will traverse the graph starting with logits, and will not go past any op that is earlier in the graph than the inputs or labels; this allows to specify the subgraph for MorphNet to optimize.

from morph_net.network_regularizers import flop_regularizer
from import structure_exporter

def build_model(inputs, labels, is_training, ...):
  gated_relu = activation_gating.gated_relu_activation()

  net = tf.layers.conv2d(inputs, kernel=[5, 5], num_outputs=256)
  net = gated_relu(net, is_training=is_training)


  net = tf.layers.conv2d(net, kernel=[3, 3], num_outputs=1024)
  net = gated_relu(net, is_training=is_training)

  logits = tf.reduce_mean(net, [1, 2])
  logits = tf.layers.dense(logits, units=1024)
  return logits

inputs, labels = preprocessor()
logits = build_model(inputs, labels, is_training=True, ...)

network_regularizer = flop_regularizer.LogisticSigmoidFlopsRegularizer(
    input_boundary=[inputs.op, labels.op],
    alive_threshold=0.1  # Value in [0, 1]. This default works well for most cases.
regularization_strength = 1e-10
regularizer_loss = (network_regularizer.get_regularization_term() * regularization_strength)

model_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, logits)

optimizer = tf.train.MomentumOptimizer(learning_rate=0.01, momentum=0.9)

train_op = optimizer.minimize(model_loss + regularizer_loss)

You should monitor the progress of structure learning training via Tensorboard. In particular, you should consider adding a summary that computes the current MorphNet regularization loss and the cost if the currently proposed structure is adopted.

tf.summary.scalar('RegularizationLoss', regularizer_loss)
tf.summary.scalar(network_regularizer.cost_name, network_regularizer.get_cost())


Larger values of regularization_strength will converge to smaller effective FLOP count. If regularization_strength is large enough, the FLOP count will collapse to zero. Conversely, if it is small enough, the FLOP count will remain at its initial value and the network structure will not vary. The regularization_strength parameter is your knob to control where you want to be on the price-performance curve. The alive_threshold parameter is used for determining when an activation is alive.

Extracting the Architecture Learned by MorphNet

During training, you should save a JSON file that contains the learned structure of the network, that is the count of activations in a given layer kept alive (as opposed to removed) by MorphNet.

exporter = structure_exporter.StructureExporter(

with tf.Session() as sess:
  for step in range(max_steps):
    _, structure_exporter_tensors =[train_op, exporter.tensors])
    if (step % 1000 == 0):
      exporter.create_file_and_save_alive_counts(train_dir, step)






Fast & Simple Resource-Constrained Learning of Deep Network Structure





No releases published


No packages published