The table below presents the receptive field parameters and cost (in terms of floating point operations — FLOPs) for several popular convolutional neural networks and their end-points. These are computed using the models from the TF-Slim repository, by using the rf_benchmark script.
Questions? See the FAQ.
CNN | resolution | end-point | FLOPs (Billion) | RF | effective stride | effective padding |
---|---|---|---|---|---|---|
alexnet_v2 | None | alexnet_v2/conv1 | None | 11 | 4 | 0 |
alexnet_v2 | None | alexnet_v2/pool1 | None | 19 | 8 | 0 |
alexnet_v2 | None | alexnet_v2/conv2 | None | 51 | 8 | 16 |
alexnet_v2 | None | alexnet_v2/conv3 | None | 99 | 16 | 32 |
alexnet_v2 | None | alexnet_v2/conv4 | None | 131 | 16 | 48 |
alexnet_v2 | None | alexnet_v2/conv5 | None | 163 | 16 | 64 |
alexnet_v2 | None | alexnet_v2/pool5 | None | 195 | 32 | 64 |
alexnet_v2 | 224 | alexnet_v2/conv1 | 0.136 | 11 | 4 | 0 |
alexnet_v2 | 224 | alexnet_v2/pool1 | 0.136 | 19 | 8 | 0 |
alexnet_v2 | 224 | alexnet_v2/conv2 | 0.552 | 51 | 8 | 16 |
alexnet_v2 | 224 | alexnet_v2/conv3 | 0.743 | 99 | 16 | 32 |
alexnet_v2 | 224 | alexnet_v2/conv4 | 1.125 | 131 | 16 | 48 |
alexnet_v2 | 224 | alexnet_v2/conv5 | 1.380 | 163 | 16 | 64 |
alexnet_v2 | 224 | alexnet_v2/pool5 | 1.380 | 195 | 32 | 64 |
alexnet_v2 | 321 | alexnet_v2/conv1 | 0.283 | 11 | 4 | 0 |
alexnet_v2 | 321 | alexnet_v2/pool1 | 0.284 | 19 | 8 | 0 |
alexnet_v2 | 321 | alexnet_v2/conv2 | 1.171 | 51 | 8 | 16 |
alexnet_v2 | 321 | alexnet_v2/conv3 | 1.602 | 99 | 16 | 32 |
alexnet_v2 | 321 | alexnet_v2/conv4 | 2.462 | 131 | 16 | 48 |
alexnet_v2 | 321 | alexnet_v2/conv5 | 3.036 | 163 | 16 | 64 |
alexnet_v2 | 321 | alexnet_v2/pool5 | 3.036 | 195 | 32 | 64 |
vgg_a | None | vgg_a/conv1/conv1_1 | None | 3 | 1 | 1 |
vgg_a | None | vgg_a/pool1 | None | 4 | 2 | 1 |
vgg_a | None | vgg_a/conv2/conv2_1 | None | 8 | 2 | 3 |
vgg_a | None | vgg_a/pool2 | None | 10 | 4 | 3 |
vgg_a | None | vgg_a/conv3/conv3_1 | None | 18 | 4 | 7 |
vgg_a | None | vgg_a/conv3/conv3_2 | None | 26 | 4 | 11 |
vgg_a | None | vgg_a/pool3 | None | 30 | 8 | 11 |
vgg_a | None | vgg_a/conv4/conv4_1 | None | 46 | 8 | 19 |
vgg_a | None | vgg_a/conv4/conv4_2 | None | 62 | 8 | 27 |
vgg_a | None | vgg_a/pool4 | None | 70 | 16 | 27 |
vgg_a | None | vgg_a/conv5/conv5_1 | None | 102 | 16 | 43 |
vgg_a | None | vgg_a/conv5/conv5_2 | None | 134 | 16 | 59 |
vgg_a | None | vgg_a/pool5 | None | 150 | 32 | 59 |
vgg_a | 224 | vgg_a/conv1/conv1_1 | 0.177 | 3 | 1 | 1 |
vgg_a | 224 | vgg_a/pool1 | 0.180 | 4 | 2 | 1 |
vgg_a | 224 | vgg_a/conv2/conv2_1 | 2.031 | 8 | 2 | 3 |
vgg_a | 224 | vgg_a/pool2 | 2.033 | 10 | 4 | 3 |
vgg_a | 224 | vgg_a/conv3/conv3_1 | 3.883 | 18 | 4 | 7 |
vgg_a | 224 | vgg_a/conv3/conv3_2 | 7.583 | 26 | 4 | 11 |
vgg_a | 224 | vgg_a/pool3 | 7.584 | 30 | 8 | 11 |
vgg_a | 224 | vgg_a/conv4/conv4_1 | 9.434 | 46 | 8 | 19 |
vgg_a | 224 | vgg_a/conv4/conv4_2 | 13.134 | 62 | 8 | 27 |
vgg_a | 224 | vgg_a/pool4 | 13.134 | 70 | 16 | 27 |
vgg_a | 224 | vgg_a/conv5/conv5_1 | 14.059 | 102 | 16 | 43 |
vgg_a | 224 | vgg_a/conv5/conv5_2 | 14.984 | 134 | 16 | 59 |
vgg_a | 224 | vgg_a/pool5 | 14.984 | 150 | 32 | 59 |
vgg_a | 321 | vgg_a/conv1/conv1_1 | 0.363 | 3 | 1 | 1 |
vgg_a | 321 | vgg_a/pool1 | 0.369 | 4 | 2 | 1 |
vgg_a | 321 | vgg_a/conv2/conv2_1 | 4.147 | 8 | 2 | 3 |
vgg_a | 321 | vgg_a/pool2 | 4.151 | 10 | 4 | 3 |
vgg_a | 321 | vgg_a/conv3/conv3_1 | 7.927 | 18 | 4 | 7 |
vgg_a | 321 | vgg_a/conv3/conv3_2 | 15.479 | 26 | 4 | 11 |
vgg_a | 321 | vgg_a/pool3 | 15.480 | 30 | 8 | 11 |
vgg_a | 321 | vgg_a/conv4/conv4_1 | 19.256 | 46 | 8 | 19 |
vgg_a | 321 | vgg_a/conv4/conv4_2 | 26.806 | 62 | 8 | 27 |
vgg_a | 321 | vgg_a/pool4 | 26.807 | 70 | 16 | 27 |
vgg_a | 321 | vgg_a/conv5/conv5_1 | 28.695 | 102 | 16 | 43 |
vgg_a | 321 | vgg_a/conv5/conv5_2 | 30.583 | 134 | 16 | 59 |
vgg_a | 321 | vgg_a/pool5 | 30.583 | 150 | 32 | 59 |
vgg_16 | None | vgg_16/conv1/conv1_1 | None | 3 | 1 | 1 |
vgg_16 | None | vgg_16/pool1 | None | 6 | 2 | 2 |
vgg_16 | None | vgg_16/conv2/conv2_1 | None | 10 | 2 | 4 |
vgg_16 | None | vgg_16/pool2 | None | 16 | 4 | 6 |
vgg_16 | None | vgg_16/conv3/conv3_1 | None | 24 | 4 | 10 |
vgg_16 | None | vgg_16/conv3/conv3_2 | None | 32 | 4 | 14 |
vgg_16 | None | vgg_16/pool3 | None | 44 | 8 | 18 |
vgg_16 | None | vgg_16/conv4/conv4_1 | None | 60 | 8 | 26 |
vgg_16 | None | vgg_16/conv4/conv4_2 | None | 76 | 8 | 34 |
vgg_16 | None | vgg_16/pool4 | None | 100 | 16 | 42 |
vgg_16 | None | vgg_16/conv5/conv5_1 | None | 132 | 16 | 58 |
vgg_16 | None | vgg_16/conv5/conv5_2 | None | 164 | 16 | 74 |
vgg_16 | None | vgg_16/pool5 | None | 212 | 32 | 90 |
vgg_16 | 224 | vgg_16/conv1/conv1_1 | 0.177 | 3 | 1 | 1 |
vgg_16 | 224 | vgg_16/pool1 | 3.882 | 6 | 2 | 2 |
vgg_16 | 224 | vgg_16/conv2/conv2_1 | 5.734 | 10 | 2 | 4 |
vgg_16 | 224 | vgg_16/pool2 | 9.436 | 16 | 4 | 6 |
vgg_16 | 224 | vgg_16/conv3/conv3_1 | 11.287 | 24 | 4 | 10 |
vgg_16 | 224 | vgg_16/conv3/conv3_2 | 14.987 | 32 | 4 | 14 |
vgg_16 | 224 | vgg_16/pool3 | 18.688 | 44 | 8 | 18 |
vgg_16 | 224 | vgg_16/conv4/conv4_1 | 20.538 | 60 | 8 | 26 |
vgg_16 | 224 | vgg_16/conv4/conv4_2 | 24.238 | 76 | 8 | 34 |
vgg_16 | 224 | vgg_16/pool4 | 27.938 | 100 | 16 | 42 |
vgg_16 | 224 | vgg_16/conv5/conv5_1 | 28.863 | 132 | 16 | 58 |
vgg_16 | 224 | vgg_16/conv5/conv5_2 | 29.788 | 164 | 16 | 74 |
vgg_16 | 224 | vgg_16/pool5 | 30.713 | 212 | 32 | 90 |
vgg_16 | 321 | vgg_16/conv1/conv1_1 | 0.363 | 3 | 1 | 1 |
vgg_16 | 321 | vgg_16/pool1 | 7.973 | 6 | 2 | 2 |
vgg_16 | 321 | vgg_16/conv2/conv2_1 | 11.751 | 10 | 2 | 4 |
vgg_16 | 321 | vgg_16/pool2 | 19.307 | 16 | 4 | 6 |
vgg_16 | 321 | vgg_16/conv3/conv3_1 | 23.084 | 24 | 4 | 10 |
vgg_16 | 321 | vgg_16/conv3/conv3_2 | 30.635 | 32 | 4 | 14 |
vgg_16 | 321 | vgg_16/pool3 | 38.188 | 44 | 8 | 18 |
vgg_16 | 321 | vgg_16/conv4/conv4_1 | 41.964 | 60 | 8 | 26 |
vgg_16 | 321 | vgg_16/conv4/conv4_2 | 49.514 | 76 | 8 | 34 |
vgg_16 | 321 | vgg_16/pool4 | 57.066 | 100 | 16 | 42 |
vgg_16 | 321 | vgg_16/conv5/conv5_1 | 58.954 | 132 | 16 | 58 |
vgg_16 | 321 | vgg_16/conv5/conv5_2 | 60.841 | 164 | 16 | 74 |
vgg_16 | 321 | vgg_16/pool5 | 62.729 | 212 | 32 | 90 |
inception_v2 | None | Conv2d_1a_7x7 | None | 7 | 2 | None |
inception_v2 | None | MaxPool_2a_3x3 | None | 11 | 4 | None |
inception_v2 | None | Conv2d_2b_1x1 | None | 11 | 4 | None |
inception_v2 | None | Conv2d_2c_3x3 | None | 19 | 4 | None |
inception_v2 | None | MaxPool_3a_3x3 | None | 27 | 8 | None |
inception_v2 | None | Mixed_3b | None | 59 | 8 | None |
inception_v2 | None | Mixed_3c | None | 91 | 8 | None |
inception_v2 | None | Mixed_4a | None | 123 | 16 | None |
inception_v2 | None | Mixed_4b | None | 187 | 16 | None |
inception_v2 | None | Mixed_4c | None | 251 | 16 | None |
inception_v2 | None | Mixed_4d | None | 315 | 16 | None |
inception_v2 | None | Mixed_4e | None | 379 | 16 | None |
inception_v2 | None | Mixed_5a | None | 443 | 32 | None |
inception_v2 | None | Mixed_5b | None | 571 | 32 | None |
inception_v2 | None | Mixed_5c | None | 699 | 32 | None |
inception_v2 | 224 | Conv2d_1a_7x7 | 0.069 | 7 | 2 | 2 |
inception_v2 | 224 | MaxPool_2a_3x3 | 0.071 | 11 | 4 | 2 |
inception_v2 | 224 | Conv2d_2b_1x1 | 0.097 | 11 | 4 | 2 |
inception_v2 | 224 | Conv2d_2c_3x3 | 0.791 | 19 | 4 | 6 |
inception_v2 | 224 | MaxPool_3a_3x3 | 0.792 | 27 | 8 | 6 |
inception_v2 | 224 | Mixed_3b | 1.136 | 59 | 8 | 22 |
inception_v2 | 224 | Mixed_3c | 1.544 | 91 | 8 | 38 |
inception_v2 | 224 | Mixed_4a | 1.833 | 123 | 16 | 46 |
inception_v2 | 224 | Mixed_4b | 2.073 | 187 | 16 | 78 |
inception_v2 | 224 | Mixed_4c | 2.334 | 251 | 16 | 110 |
inception_v2 | 224 | Mixed_4d | 2.686 | 315 | 16 | 142 |
inception_v2 | 224 | Mixed_4e | 3.120 | 379 | 16 | 174 |
inception_v2 | 224 | Mixed_5a | 3.446 | 443 | 32 | 190 |
inception_v2 | 224 | Mixed_5b | 3.660 | 571 | 32 | 254 |
inception_v2 | 224 | Mixed_5c | 3.883 | 699 | 32 | 318 |
inception_v2 | 321 | Conv2d_1a_7x7 | 0.142 | 7 | 2 | 3 |
inception_v2 | 321 | MaxPool_2a_3x3 | 0.146 | 11 | 4 | 5 |
inception_v2 | 321 | Conv2d_2b_1x1 | 0.200 | 11 | 4 | 5 |
inception_v2 | 321 | Conv2d_2c_3x3 | 1.653 | 19 | 4 | 9 |
inception_v2 | 321 | MaxPool_3a_3x3 | 1.656 | 27 | 8 | 13 |
inception_v2 | 321 | Mixed_3b | 2.393 | 59 | 8 | 29 |
inception_v2 | 321 | Mixed_3c | 3.268 | 91 | 8 | 45 |
inception_v2 | 321 | Mixed_4a | 3.898 | 123 | 16 | 61 |
inception_v2 | 321 | Mixed_4b | 4.438 | 187 | 16 | 93 |
inception_v2 | 321 | Mixed_4c | 5.025 | 251 | 16 | 125 |
inception_v2 | 321 | Mixed_4d | 5.817 | 315 | 16 | 157 |
inception_v2 | 321 | Mixed_4e | 6.795 | 379 | 16 | 189 |
inception_v2 | 321 | Mixed_5a | 7.545 | 443 | 32 | 221 |
inception_v2 | 321 | Mixed_5b | 8.073 | 571 | 32 | 285 |
inception_v2 | 321 | Mixed_5c | 8.626 | 699 | 32 | 349 |
inception_v2-no-separable-conv | None | Conv2d_1a_7x7 | None | 7 | 2 | None |
inception_v2-no-separable-conv | None | MaxPool_2a_3x3 | None | 11 | 4 | None |
inception_v2-no-separable-conv | None | Conv2d_2b_1x1 | None | 11 | 4 | None |
inception_v2-no-separable-conv | None | Conv2d_2c_3x3 | None | 19 | 4 | None |
inception_v2-no-separable-conv | None | MaxPool_3a_3x3 | None | 27 | 8 | None |
inception_v2-no-separable-conv | None | Mixed_3b | None | 59 | 8 | None |
inception_v2-no-separable-conv | None | Mixed_3c | None | 91 | 8 | None |
inception_v2-no-separable-conv | None | Mixed_4a | None | 123 | 16 | None |
inception_v2-no-separable-conv | None | Mixed_4b | None | 187 | 16 | None |
inception_v2-no-separable-conv | None | Mixed_4c | None | 251 | 16 | None |
inception_v2-no-separable-conv | None | Mixed_4d | None | 315 | 16 | None |
inception_v2-no-separable-conv | None | Mixed_4e | None | 379 | 16 | None |
inception_v2-no-separable-conv | None | Mixed_5a | None | 443 | 32 | None |
inception_v2-no-separable-conv | None | Mixed_5b | None | 571 | 32 | None |
inception_v2-no-separable-conv | None | Mixed_5c | None | 699 | 32 | None |
inception_v2-no-separable-conv | 224 | Conv2d_1a_7x7 | 0.237 | 7 | 2 | 2 |
inception_v2-no-separable-conv | 224 | MaxPool_2a_3x3 | 0.239 | 11 | 4 | 2 |
inception_v2-no-separable-conv | 224 | Conv2d_2b_1x1 | 0.265 | 11 | 4 | 2 |
inception_v2-no-separable-conv | 224 | Conv2d_2c_3x3 | 0.959 | 19 | 4 | 6 |
inception_v2-no-separable-conv | 224 | MaxPool_3a_3x3 | 0.960 | 27 | 8 | 6 |
inception_v2-no-separable-conv | 224 | Mixed_3b | 1.304 | 59 | 8 | 22 |
inception_v2-no-separable-conv | 224 | Mixed_3c | 1.712 | 91 | 8 | 38 |
inception_v2-no-separable-conv | 224 | Mixed_4a | 2.001 | 123 | 16 | 46 |
inception_v2-no-separable-conv | 224 | Mixed_4b | 2.241 | 187 | 16 | 78 |
inception_v2-no-separable-conv | 224 | Mixed_4c | 2.502 | 251 | 16 | 110 |
inception_v2-no-separable-conv | 224 | Mixed_4d | 2.854 | 315 | 16 | 142 |
inception_v2-no-separable-conv | 224 | Mixed_4e | 3.288 | 379 | 16 | 174 |
inception_v2-no-separable-conv | 224 | Mixed_5a | 3.614 | 443 | 32 | 190 |
inception_v2-no-separable-conv | 224 | Mixed_5b | 3.828 | 571 | 32 | 254 |
inception_v2-no-separable-conv | 224 | Mixed_5c | 4.051 | 699 | 32 | 318 |
inception_v2-no-separable-conv | 321 | Conv2d_1a_7x7 | 0.489 | 7 | 2 | 3 |
inception_v2-no-separable-conv | 321 | MaxPool_2a_3x3 | 0.493 | 11 | 4 | 5 |
inception_v2-no-separable-conv | 321 | Conv2d_2b_1x1 | 0.547 | 11 | 4 | 5 |
inception_v2-no-separable-conv | 321 | Conv2d_2c_3x3 | 2.000 | 19 | 4 | 9 |
inception_v2-no-separable-conv | 321 | MaxPool_3a_3x3 | 2.003 | 27 | 8 | 13 |
inception_v2-no-separable-conv | 321 | Mixed_3b | 2.740 | 59 | 8 | 29 |
inception_v2-no-separable-conv | 321 | Mixed_3c | 3.615 | 91 | 8 | 45 |
inception_v2-no-separable-conv | 321 | Mixed_4a | 4.246 | 123 | 16 | 61 |
inception_v2-no-separable-conv | 321 | Mixed_4b | 4.785 | 187 | 16 | 93 |
inception_v2-no-separable-conv | 321 | Mixed_4c | 5.373 | 251 | 16 | 125 |
inception_v2-no-separable-conv | 321 | Mixed_4d | 6.164 | 315 | 16 | 157 |
inception_v2-no-separable-conv | 321 | Mixed_4e | 7.142 | 379 | 16 | 189 |
inception_v2-no-separable-conv | 321 | Mixed_5a | 7.892 | 443 | 32 | 221 |
inception_v2-no-separable-conv | 321 | Mixed_5b | 8.421 | 571 | 32 | 285 |
inception_v2-no-separable-conv | 321 | Mixed_5c | 8.973 | 699 | 32 | 349 |
inception_v3 | None | Conv2d_1a_3x3 | None | 3 | 2 | 0 |
inception_v3 | None | Conv2d_2a_3x3 | None | 7 | 2 | 0 |
inception_v3 | None | Conv2d_2b_3x3 | None | 11 | 2 | 2 |
inception_v3 | None | MaxPool_3a_3x3 | None | 15 | 4 | 2 |
inception_v3 | None | Conv2d_3b_1x1 | None | 15 | 4 | 2 |
inception_v3 | None | Conv2d_4a_3x3 | None | 23 | 4 | 2 |
inception_v3 | None | MaxPool_5a_3x3 | None | 31 | 8 | 2 |
inception_v3 | None | Mixed_5b | None | 63 | 8 | 18 |
inception_v3 | None | Mixed_5c | None | 95 | 8 | 34 |
inception_v3 | None | Mixed_5d | None | 127 | 8 | 50 |
inception_v3 | None | Mixed_6a | None | 159 | 16 | 58 |
inception_v3 | None | Mixed_6b | None | 351 | 16 | 154 |
inception_v3 | None | Mixed_6c | None | 543 | 16 | 250 |
inception_v3 | None | Mixed_6d | None | 735 | 16 | 346 |
inception_v3 | None | Mixed_6e | None | 927 | 16 | 442 |
inception_v3 | None | Mixed_7a | None | 1055 | 32 | 490 |
inception_v3 | None | Mixed_7b | None | 1183 | 32 | 554 |
inception_v3 | None | Mixed_7c | None | 1311 | 32 | 618 |
inception_v3 | 224 | Conv2d_1a_3x3 | 0.022 | 3 | 2 | 0 |
inception_v3 | 224 | Conv2d_2a_3x3 | 0.241 | 7 | 2 | 0 |
inception_v3 | 224 | Conv2d_2b_3x3 | 0.680 | 11 | 2 | 2 |
inception_v3 | 224 | MaxPool_3a_3x3 | 0.681 | 15 | 4 | 2 |
inception_v3 | 224 | Conv2d_3b_1x1 | 0.712 | 15 | 4 | 2 |
inception_v3 | 224 | Conv2d_4a_3x3 | 1.460 | 23 | 4 | 2 |
inception_v3 | 224 | MaxPool_5a_3x3 | 1.461 | 31 | 8 | 2 |
inception_v3 | 224 | Mixed_5b | 1.781 | 63 | 8 | 18 |
inception_v3 | 224 | Mixed_5c | 2.128 | 95 | 8 | 34 |
inception_v3 | 224 | Mixed_5d | 2.485 | 127 | 8 | 50 |
inception_v3 | 224 | Mixed_6a | 2.889 | 159 | 16 | 58 |
inception_v3 | 224 | Mixed_6b | 3.263 | 351 | 16 | 154 |
inception_v3 | 224 | Mixed_6c | 3.750 | 543 | 16 | 250 |
inception_v3 | 224 | Mixed_6d | 4.237 | 735 | 16 | 346 |
inception_v3 | 224 | Mixed_6e | 4.854 | 927 | 16 | 442 |
inception_v3 | 224 | Mixed_7a | 5.132 | 1055 | 32 | 490 |
inception_v3 | 224 | Mixed_7b | 5.385 | 1183 | 32 | 554 |
inception_v3 | 224 | Mixed_7c | 5.689 | 1311 | 32 | 618 |
inception_v3 | 321 | Conv2d_1a_3x3 | 0.045 | 3 | 2 | 0 |
inception_v3 | 321 | Conv2d_2a_3x3 | 0.506 | 7 | 2 | 0 |
inception_v3 | 321 | Conv2d_2b_3x3 | 1.428 | 11 | 2 | 2 |
inception_v3 | 321 | MaxPool_3a_3x3 | 1.431 | 15 | 4 | 2 |
inception_v3 | 321 | Conv2d_3b_1x1 | 1.494 | 15 | 4 | 2 |
inception_v3 | 321 | Conv2d_4a_3x3 | 3.092 | 23 | 4 | 2 |
inception_v3 | 321 | MaxPool_5a_3x3 | 3.095 | 31 | 8 | 2 |
inception_v3 | 321 | Mixed_5b | 3.796 | 63 | 8 | 18 |
inception_v3 | 321 | Mixed_5c | 4.557 | 95 | 8 | 34 |
inception_v3 | 321 | Mixed_5d | 5.339 | 127 | 8 | 50 |
inception_v3 | 321 | Mixed_6a | 6.241 | 159 | 16 | 58 |
inception_v3 | 321 | Mixed_6b | 7.082 | 351 | 16 | 154 |
inception_v3 | 321 | Mixed_6c | 8.178 | 543 | 16 | 250 |
inception_v3 | 321 | Mixed_6d | 9.275 | 735 | 16 | 346 |
inception_v3 | 321 | Mixed_6e | 10.663 | 927 | 16 | 442 |
inception_v3 | 321 | Mixed_7a | 11.303 | 1055 | 32 | 490 |
inception_v3 | 321 | Mixed_7b | 11.948 | 1183 | 32 | 554 |
inception_v3 | 321 | Mixed_7c | 12.727 | 1311 | 32 | 618 |
inception_v4 | None | Conv2d_1a_3x3 | None | 3 | 2 | 0 |
inception_v4 | None | Conv2d_2a_3x3 | None | 7 | 2 | 0 |
inception_v4 | None | Conv2d_2b_3x3 | None | 11 | 2 | 2 |
inception_v4 | None | Mixed_3a | None | 15 | 4 | 2 |
inception_v4 | None | Mixed_4a | None | 47 | 4 | 14 |
inception_v4 | None | Mixed_5a | None | 55 | 8 | 14 |
inception_v4 | None | Mixed_5b | None | 87 | 8 | 30 |
inception_v4 | None | Mixed_5c | None | 119 | 8 | 46 |
inception_v4 | None | Mixed_5d | None | 151 | 8 | 62 |
inception_v4 | None | Mixed_5e | None | 183 | 8 | 78 |
inception_v4 | None | Mixed_6a | None | 215 | 16 | 86 |
inception_v4 | None | Mixed_6b | None | 407 | 16 | 182 |
inception_v4 | None | Mixed_6c | None | 599 | 16 | 278 |
inception_v4 | None | Mixed_6d | None | 791 | 16 | 374 |
inception_v4 | None | Mixed_6e | None | 983 | 16 | 470 |
inception_v4 | None | Mixed_6f | None | 1175 | 16 | 566 |
inception_v4 | None | Mixed_6g | None | 1367 | 16 | 662 |
inception_v4 | None | Mixed_6h | None | 1559 | 16 | 758 |
inception_v4 | None | Mixed_7a | None | 1687 | 32 | 806 |
inception_v4 | None | Mixed_7b | None | 1815 | 32 | 870 |
inception_v4 | None | Mixed_7c | None | 1943 | 32 | 934 |
inception_v4 | None | Mixed_7d | None | 2071 | 32 | 998 |
inception_v4 | 224 | Conv2d_1a_3x3 | 0.022 | 3 | 2 | 0 |
inception_v4 | 224 | Conv2d_2a_3x3 | 0.241 | 7 | 2 | 0 |
inception_v4 | 224 | Conv2d_2b_3x3 | 0.680 | 11 | 2 | 2 |
inception_v4 | 224 | Mixed_3a | 1.004 | 15 | 4 | 2 |
inception_v4 | 224 | Mixed_4a | 2.057 | 47 | 4 | 14 |
inception_v4 | 224 | Mixed_5a | 2.473 | 55 | 8 | 14 |
inception_v4 | 224 | Mixed_5b | 2.871 | 87 | 8 | 30 |
inception_v4 | 224 | Mixed_5c | 3.269 | 119 | 8 | 46 |
inception_v4 | 224 | Mixed_5d | 3.668 | 151 | 8 | 62 |
inception_v4 | 224 | Mixed_5e | 4.066 | 183 | 8 | 78 |
inception_v4 | 224 | Mixed_6a | 5.173 | 215 | 16 | 86 |
inception_v4 | 224 | Mixed_6b | 6.019 | 407 | 16 | 182 |
inception_v4 | 224 | Mixed_6c | 6.865 | 599 | 16 | 278 |
inception_v4 | 224 | Mixed_6d | 7.711 | 791 | 16 | 374 |
inception_v4 | 224 | Mixed_6e | 8.557 | 983 | 16 | 470 |
inception_v4 | 224 | Mixed_6f | 9.403 | 1175 | 16 | 566 |
inception_v4 | 224 | Mixed_6g | 10.249 | 1367 | 16 | 662 |
inception_v4 | 224 | Mixed_6h | 11.095 | 1559 | 16 | 758 |
inception_v4 | 224 | Mixed_7a | 11.588 | 1687 | 32 | 806 |
inception_v4 | 224 | Mixed_7b | 11.815 | 1815 | 32 | 870 |
inception_v4 | 224 | Mixed_7c | 12.043 | 1943 | 32 | 934 |
inception_v4 | 224 | Mixed_7d | 12.271 | 2071 | 32 | 998 |
inception_v4 | 321 | Conv2d_1a_3x3 | 0.045 | 3 | 2 | 0 |
inception_v4 | 321 | Conv2d_2a_3x3 | 0.506 | 7 | 2 | 0 |
inception_v4 | 321 | Conv2d_2b_3x3 | 1.428 | 11 | 2 | 2 |
inception_v4 | 321 | Mixed_3a | 2.105 | 15 | 4 | 2 |
inception_v4 | 321 | Mixed_4a | 4.332 | 47 | 4 | 14 |
inception_v4 | 321 | Mixed_5a | 5.243 | 55 | 8 | 14 |
inception_v4 | 321 | Mixed_5b | 6.115 | 87 | 8 | 30 |
inception_v4 | 321 | Mixed_5c | 6.987 | 119 | 8 | 46 |
inception_v4 | 321 | Mixed_5d | 7.859 | 151 | 8 | 62 |
inception_v4 | 321 | Mixed_5e | 8.731 | 183 | 8 | 78 |
inception_v4 | 321 | Mixed_6a | 11.189 | 215 | 16 | 86 |
inception_v4 | 321 | Mixed_6b | 13.092 | 407 | 16 | 182 |
inception_v4 | 321 | Mixed_6c | 14.996 | 599 | 16 | 278 |
inception_v4 | 321 | Mixed_6d | 16.899 | 791 | 16 | 374 |
inception_v4 | 321 | Mixed_6e | 18.802 | 983 | 16 | 470 |
inception_v4 | 321 | Mixed_6f | 20.706 | 1175 | 16 | 566 |
inception_v4 | 321 | Mixed_6g | 22.609 | 1367 | 16 | 662 |
inception_v4 | 321 | Mixed_6h | 24.513 | 1559 | 16 | 758 |
inception_v4 | 321 | Mixed_7a | 25.640 | 1687 | 32 | 806 |
inception_v4 | 321 | Mixed_7b | 26.223 | 1815 | 32 | 870 |
inception_v4 | 321 | Mixed_7c | 26.807 | 1943 | 32 | 934 |
inception_v4 | 321 | Mixed_7d | 27.390 | 2071 | 32 | 998 |
inception_resnet_v2 | None | Conv2d_1a_3x3 | None | 3 | 2 | 0 |
inception_resnet_v2 | None | Conv2d_2a_3x3 | None | 7 | 2 | 0 |
inception_resnet_v2 | None | Conv2d_2b_3x3 | None | 11 | 2 | 2 |
inception_resnet_v2 | None | MaxPool_3a_3x3 | None | 15 | 4 | 2 |
inception_resnet_v2 | None | Conv2d_3b_1x1 | None | 15 | 4 | 2 |
inception_resnet_v2 | None | Conv2d_4a_3x3 | None | 23 | 4 | 2 |
inception_resnet_v2 | None | MaxPool_5a_3x3 | None | 31 | 8 | 2 |
inception_resnet_v2 | None | Mixed_5b | None | 63 | 8 | 18 |
inception_resnet_v2 | None | Mixed_6a | None | 415 | 16 | 186 |
inception_resnet_v2 | None | PreAuxLogits | None | 2335 | 16 | 1146 |
inception_resnet_v2 | None | Mixed_7a | None | 2399 | 32 | 1162 |
inception_resnet_v2 | None | Conv2d_7b_1x1 | None | 3039 | 32 | 1482 |
inception_resnet_v2 | 224 | Conv2d_1a_3x3 | 0.022 | 3 | 2 | 0 |
inception_resnet_v2 | 224 | Conv2d_2a_3x3 | 0.241 | 7 | 2 | 0 |
inception_resnet_v2 | 224 | Conv2d_2b_3x3 | 0.680 | 11 | 2 | 2 |
inception_resnet_v2 | 224 | MaxPool_3a_3x3 | 0.681 | 15 | 4 | 2 |
inception_resnet_v2 | 224 | Conv2d_3b_1x1 | 0.712 | 15 | 4 | 2 |
inception_resnet_v2 | 224 | Conv2d_4a_3x3 | 1.460 | 23 | 4 | 2 |
inception_resnet_v2 | 224 | MaxPool_5a_3x3 | 1.461 | 31 | 8 | 2 |
inception_resnet_v2 | 224 | Mixed_5b | 1.796 | 63 | 8 | 18 |
inception_resnet_v2 | 224 | Mixed_6a | 4.745 | 415 | 16 | 186 |
inception_resnet_v2 | 224 | PreAuxLogits | 11.230 | 2335 | 16 | 1146 |
inception_resnet_v2 | 224 | Mixed_7a | 11.781 | 2399 | 32 | 1162 |
inception_resnet_v2 | 224 | Conv2d_7b_1x1 | 12.958 | 3039 | 32 | 1482 |
inception_resnet_v2 | 321 | Conv2d_1a_3x3 | 0.045 | 3 | 2 | 0 |
inception_resnet_v2 | 321 | Conv2d_2a_3x3 | 0.506 | 7 | 2 | 0 |
inception_resnet_v2 | 321 | Conv2d_2b_3x3 | 1.428 | 11 | 2 | 2 |
inception_resnet_v2 | 321 | MaxPool_3a_3x3 | 1.431 | 15 | 4 | 2 |
inception_resnet_v2 | 321 | Conv2d_3b_1x1 | 1.494 | 15 | 4 | 2 |
inception_resnet_v2 | 321 | Conv2d_4a_3x3 | 3.092 | 23 | 4 | 2 |
inception_resnet_v2 | 321 | MaxPool_5a_3x3 | 3.095 | 31 | 8 | 2 |
inception_resnet_v2 | 321 | Mixed_5b | 3.829 | 63 | 8 | 18 |
inception_resnet_v2 | 321 | Mixed_6a | 10.323 | 415 | 16 | 186 |
inception_resnet_v2 | 321 | PreAuxLogits | 24.913 | 2335 | 16 | 1146 |
inception_resnet_v2 | 321 | Mixed_7a | 26.190 | 2399 | 32 | 1162 |
inception_resnet_v2 | 321 | Conv2d_7b_1x1 | 29.203 | 3039 | 32 | 1482 |
inception_resnet_v2-same | None | Conv2d_1a_3x3 | None | 3 | 2 | None |
inception_resnet_v2-same | None | Conv2d_2a_3x3 | None | 7 | 2 | None |
inception_resnet_v2-same | None | Conv2d_2b_3x3 | None | 11 | 2 | None |
inception_resnet_v2-same | None | MaxPool_3a_3x3 | None | 15 | 4 | None |
inception_resnet_v2-same | None | Conv2d_3b_1x1 | None | 15 | 4 | None |
inception_resnet_v2-same | None | Conv2d_4a_3x3 | None | 23 | 4 | None |
inception_resnet_v2-same | None | MaxPool_5a_3x3 | None | 31 | 8 | None |
inception_resnet_v2-same | None | Mixed_5b | None | 63 | 8 | None |
inception_resnet_v2-same | None | Mixed_6a | None | 415 | 16 | None |
inception_resnet_v2-same | None | PreAuxLogits | None | 2335 | 16 | None |
inception_resnet_v2-same | None | Mixed_7a | None | 2399 | 32 | None |
inception_resnet_v2-same | None | Conv2d_7b_1x1 | None | 3039 | 32 | None |
inception_resnet_v2-same | 224 | Conv2d_1a_3x3 | 0.022 | 3 | 2 | 0 |
inception_resnet_v2-same | 224 | Conv2d_2a_3x3 | 0.254 | 7 | 2 | 2 |
inception_resnet_v2-same | 224 | Conv2d_2b_3x3 | 0.717 | 11 | 2 | 4 |
inception_resnet_v2-same | 224 | MaxPool_3a_3x3 | 0.719 | 15 | 4 | 4 |
inception_resnet_v2-same | 224 | Conv2d_3b_1x1 | 0.751 | 15 | 4 | 4 |
inception_resnet_v2-same | 224 | Conv2d_4a_3x3 | 1.619 | 23 | 4 | 8 |
inception_resnet_v2-same | 224 | MaxPool_5a_3x3 | 1.620 | 31 | 8 | 8 |
inception_resnet_v2-same | 224 | Mixed_5b | 2.041 | 63 | 8 | 24 |
inception_resnet_v2-same | 224 | Mixed_6a | 5.801 | 415 | 16 | 192 |
inception_resnet_v2-same | 224 | PreAuxLogits | 14.627 | 2335 | 16 | 1152 |
inception_resnet_v2-same | 224 | Mixed_7a | 15.449 | 2399 | 32 | 1168 |
inception_resnet_v2-same | 224 | Conv2d_7b_1x1 | 17.755 | 3039 | 32 | 1488 |
inception_resnet_v2-same | 321 | Conv2d_1a_3x3 | 0.046 | 3 | 2 | 1 |
inception_resnet_v2-same | 321 | Conv2d_2a_3x3 | 0.524 | 7 | 2 | 3 |
inception_resnet_v2-same | 321 | Conv2d_2b_3x3 | 1.481 | 11 | 2 | 5 |
inception_resnet_v2-same | 321 | MaxPool_3a_3x3 | 1.485 | 15 | 4 | 7 |
inception_resnet_v2-same | 321 | Conv2d_3b_1x1 | 1.553 | 15 | 4 | 7 |
inception_resnet_v2-same | 321 | Conv2d_4a_3x3 | 3.368 | 23 | 4 | 11 |
inception_resnet_v2-same | 321 | MaxPool_5a_3x3 | 3.371 | 31 | 8 | 15 |
inception_resnet_v2-same | 321 | Mixed_5b | 4.273 | 63 | 8 | 31 |
inception_resnet_v2-same | 321 | Mixed_6a | 12.419 | 415 | 16 | 207 |
inception_resnet_v2-same | 321 | PreAuxLogits | 32.278 | 2335 | 16 | 1167 |
inception_resnet_v2-same | 321 | Mixed_7a | 34.177 | 2399 | 32 | 1199 |
inception_resnet_v2-same | 321 | Conv2d_7b_1x1 | 39.873 | 3039 | 32 | 1519 |
mobilenet_v1 | None | Conv2d_0 | None | 3 | 2 | None |
mobilenet_v1 | None | Conv2d_1_pointwise | None | 7 | 2 | None |
mobilenet_v1 | None | Conv2d_2_pointwise | None | 11 | 4 | None |
mobilenet_v1 | None | Conv2d_3_pointwise | None | 19 | 4 | None |
mobilenet_v1 | None | Conv2d_4_pointwise | None | 27 | 8 | None |
mobilenet_v1 | None | Conv2d_5_pointwise | None | 43 | 8 | None |
mobilenet_v1 | None | Conv2d_6_pointwise | None | 59 | 16 | None |
mobilenet_v1 | None | Conv2d_7_pointwise | None | 91 | 16 | None |
mobilenet_v1 | None | Conv2d_8_pointwise | None | 123 | 16 | None |
mobilenet_v1 | None | Conv2d_9_pointwise | None | 155 | 16 | None |
mobilenet_v1 | None | Conv2d_10_pointwise | None | 187 | 16 | None |
mobilenet_v1 | None | Conv2d_11_pointwise | None | 219 | 16 | None |
mobilenet_v1 | None | Conv2d_12_pointwise | None | 251 | 32 | None |
mobilenet_v1 | None | Conv2d_13_pointwise | None | 315 | 32 | None |
mobilenet_v1 | 224 | Conv2d_0 | 0.022 | 3 | 2 | 0 |
mobilenet_v1 | 224 | Conv2d_1_pointwise | 0.082 | 7 | 2 | 2 |
mobilenet_v1 | 224 | Conv2d_2_pointwise | 0.137 | 11 | 4 | 2 |
mobilenet_v1 | 224 | Conv2d_3_pointwise | 0.248 | 19 | 4 | 6 |
mobilenet_v1 | 224 | Conv2d_4_pointwise | 0.302 | 27 | 8 | 6 |
mobilenet_v1 | 224 | Conv2d_5_pointwise | 0.409 | 43 | 8 | 14 |
mobilenet_v1 | 224 | Conv2d_6_pointwise | 0.461 | 59 | 16 | 14 |
mobilenet_v1 | 224 | Conv2d_7_pointwise | 0.566 | 91 | 16 | 30 |
mobilenet_v1 | 224 | Conv2d_8_pointwise | 0.671 | 123 | 16 | 46 |
mobilenet_v1 | 224 | Conv2d_9_pointwise | 0.775 | 155 | 16 | 62 |
mobilenet_v1 | 224 | Conv2d_10_pointwise | 0.880 | 187 | 16 | 78 |
mobilenet_v1 | 224 | Conv2d_11_pointwise | 0.985 | 219 | 16 | 94 |
mobilenet_v1 | 224 | Conv2d_12_pointwise | 1.037 | 251 | 32 | 94 |
mobilenet_v1 | 224 | Conv2d_13_pointwise | 1.140 | 315 | 32 | 126 |
mobilenet_v1 | 321 | Conv2d_0 | 0.046 | 3 | 2 | 1 |
mobilenet_v1 | 321 | Conv2d_1_pointwise | 0.169 | 7 | 2 | 3 |
mobilenet_v1 | 321 | Conv2d_2_pointwise | 0.286 | 11 | 4 | 5 |
mobilenet_v1 | 321 | Conv2d_3_pointwise | 0.517 | 19 | 4 | 9 |
mobilenet_v1 | 321 | Conv2d_4_pointwise | 0.632 | 27 | 8 | 13 |
mobilenet_v1 | 321 | Conv2d_5_pointwise | 0.861 | 43 | 8 | 21 |
mobilenet_v1 | 321 | Conv2d_6_pointwise | 0.979 | 59 | 16 | 29 |
mobilenet_v1 | 321 | Conv2d_7_pointwise | 1.215 | 91 | 16 | 45 |
mobilenet_v1 | 321 | Conv2d_8_pointwise | 1.450 | 123 | 16 | 61 |
mobilenet_v1 | 321 | Conv2d_9_pointwise | 1.686 | 155 | 16 | 77 |
mobilenet_v1 | 321 | Conv2d_10_pointwise | 1.922 | 187 | 16 | 93 |
mobilenet_v1 | 321 | Conv2d_11_pointwise | 2.158 | 219 | 16 | 109 |
mobilenet_v1 | 321 | Conv2d_12_pointwise | 2.286 | 251 | 32 | 125 |
mobilenet_v1 | 321 | Conv2d_13_pointwise | 2.542 | 315 | 32 | 157 |
mobilenet_v1_075 | None | Conv2d_0 | None | 3 | 2 | None |
mobilenet_v1_075 | None | Conv2d_1_pointwise | None | 7 | 2 | None |
mobilenet_v1_075 | None | Conv2d_2_pointwise | None | 11 | 4 | None |
mobilenet_v1_075 | None | Conv2d_3_pointwise | None | 19 | 4 | None |
mobilenet_v1_075 | None | Conv2d_4_pointwise | None | 27 | 8 | None |
mobilenet_v1_075 | None | Conv2d_5_pointwise | None | 43 | 8 | None |
mobilenet_v1_075 | None | Conv2d_6_pointwise | None | 59 | 16 | None |
mobilenet_v1_075 | None | Conv2d_7_pointwise | None | 91 | 16 | None |
mobilenet_v1_075 | None | Conv2d_8_pointwise | None | 123 | 16 | None |
mobilenet_v1_075 | None | Conv2d_9_pointwise | None | 155 | 16 | None |
mobilenet_v1_075 | None | Conv2d_10_pointwise | None | 187 | 16 | None |
mobilenet_v1_075 | None | Conv2d_11_pointwise | None | 219 | 16 | None |
mobilenet_v1_075 | None | Conv2d_12_pointwise | None | 251 | 32 | None |
mobilenet_v1_075 | None | Conv2d_13_pointwise | None | 315 | 32 | None |
mobilenet_v1_075 | 224 | Conv2d_0 | 0.017 | 3 | 2 | 0 |
mobilenet_v1_075 | 224 | Conv2d_1_pointwise | 0.052 | 7 | 2 | 2 |
mobilenet_v1_075 | 224 | Conv2d_2_pointwise | 0.084 | 11 | 4 | 2 |
mobilenet_v1_075 | 224 | Conv2d_3_pointwise | 0.148 | 19 | 4 | 6 |
mobilenet_v1_075 | 224 | Conv2d_4_pointwise | 0.178 | 27 | 8 | 6 |
mobilenet_v1_075 | 224 | Conv2d_5_pointwise | 0.239 | 43 | 8 | 14 |
mobilenet_v1_075 | 224 | Conv2d_6_pointwise | 0.269 | 59 | 16 | 14 |
mobilenet_v1_075 | 224 | Conv2d_7_pointwise | 0.328 | 91 | 16 | 30 |
mobilenet_v1_075 | 224 | Conv2d_8_pointwise | 0.387 | 123 | 16 | 46 |
mobilenet_v1_075 | 224 | Conv2d_9_pointwise | 0.447 | 155 | 16 | 62 |
mobilenet_v1_075 | 224 | Conv2d_10_pointwise | 0.506 | 187 | 16 | 78 |
mobilenet_v1_075 | 224 | Conv2d_11_pointwise | 0.565 | 219 | 16 | 94 |
mobilenet_v1_075 | 224 | Conv2d_12_pointwise | 0.594 | 251 | 32 | 94 |
mobilenet_v1_075 | 224 | Conv2d_13_pointwise | 0.653 | 315 | 32 | 126 |
mobilenet_v1_075 | 321 | Conv2d_0 | 0.034 | 3 | 2 | 1 |
mobilenet_v1_075 | 321 | Conv2d_1_pointwise | 0.107 | 7 | 2 | 3 |
mobilenet_v1_075 | 321 | Conv2d_2_pointwise | 0.174 | 11 | 4 | 5 |
mobilenet_v1_075 | 321 | Conv2d_3_pointwise | 0.308 | 19 | 4 | 9 |
mobilenet_v1_075 | 321 | Conv2d_4_pointwise | 0.373 | 27 | 8 | 13 |
mobilenet_v1_075 | 321 | Conv2d_5_pointwise | 0.503 | 43 | 8 | 21 |
mobilenet_v1_075 | 321 | Conv2d_6_pointwise | 0.570 | 59 | 16 | 29 |
mobilenet_v1_075 | 321 | Conv2d_7_pointwise | 0.704 | 91 | 16 | 45 |
mobilenet_v1_075 | 321 | Conv2d_8_pointwise | 0.837 | 123 | 16 | 61 |
mobilenet_v1_075 | 321 | Conv2d_9_pointwise | 0.970 | 155 | 16 | 77 |
mobilenet_v1_075 | 321 | Conv2d_10_pointwise | 1.104 | 187 | 16 | 93 |
mobilenet_v1_075 | 321 | Conv2d_11_pointwise | 1.237 | 219 | 16 | 109 |
mobilenet_v1_075 | 321 | Conv2d_12_pointwise | 1.310 | 251 | 32 | 125 |
mobilenet_v1_075 | 321 | Conv2d_13_pointwise | 1.454 | 315 | 32 | 157 |
resnet_v1_50 | None | resnet_v1_50/block1 | None | 35 | 8 | None |
resnet_v1_50 | None | resnet_v1_50/block2 | None | 99 | 16 | None |
resnet_v1_50 | None | resnet_v1_50/block3 | None | 291 | 32 | None |
resnet_v1_50 | None | resnet_v1_50/block4 | None | 483 | 32 | None |
resnet_v1_50 | 224 | resnet_v1_50/block1 | 1.323 | 35 | 8 | 15 |
resnet_v1_50 | 224 | resnet_v1_50/block2 | 2.974 | 99 | 16 | 47 |
resnet_v1_50 | 224 | resnet_v1_50/block3 | 5.498 | 291 | 32 | 143 |
resnet_v1_50 | 224 | resnet_v1_50/block4 | 6.963 | 483 | 32 | 239 |
resnet_v1_50 | 321 | resnet_v1_50/block1 | 2.767 | 35 | 8 | 17 |
resnet_v1_50 | 321 | resnet_v1_50/block2 | 6.315 | 99 | 16 | 49 |
resnet_v1_50 | 321 | resnet_v1_50/block3 | 12.013 | 291 | 32 | 145 |
resnet_v1_50 | 321 | resnet_v1_50/block4 | 15.629 | 483 | 32 | 241 |
resnet_v1_101 | None | resnet_v1_101/block1 | None | 35 | 8 | None |
resnet_v1_101 | None | resnet_v1_101/block2 | None | 99 | 16 | None |
resnet_v1_101 | None | resnet_v1_101/block3 | None | 835 | 32 | None |
resnet_v1_101 | None | resnet_v1_101/block4 | None | 1027 | 32 | None |
resnet_v1_101 | 224 | resnet_v1_101/block1 | 1.323 | 35 | 8 | 15 |
resnet_v1_101 | 224 | resnet_v1_101/block2 | 2.974 | 99 | 16 | 47 |
resnet_v1_101 | 224 | resnet_v1_101/block3 | 12.923 | 835 | 32 | 415 |
resnet_v1_101 | 224 | resnet_v1_101/block4 | 14.387 | 1027 | 32 | 511 |
resnet_v1_101 | 321 | resnet_v1_101/block1 | 2.767 | 35 | 8 | 17 |
resnet_v1_101 | 321 | resnet_v1_101/block2 | 6.315 | 99 | 16 | 49 |
resnet_v1_101 | 321 | resnet_v1_101/block3 | 28.718 | 835 | 32 | 417 |
resnet_v1_101 | 321 | resnet_v1_101/block4 | 32.334 | 1027 | 32 | 513 |
resnet_v1_152 | None | resnet_v1_152/block1 | None | 35 | 8 | None |
resnet_v1_152 | None | resnet_v1_152/block2 | None | 163 | 16 | None |
resnet_v1_152 | None | resnet_v1_152/block3 | None | 1315 | 32 | None |
resnet_v1_152 | None | resnet_v1_152/block4 | None | 1507 | 32 | None |
resnet_v1_152 | 224 | resnet_v1_152/block1 | 1.323 | 35 | 8 | 15 |
resnet_v1_152 | 224 | resnet_v1_152/block2 | 4.721 | 163 | 16 | 79 |
resnet_v1_152 | 224 | resnet_v1_152/block3 | 20.347 | 1315 | 32 | 655 |
resnet_v1_152 | 224 | resnet_v1_152/block4 | 21.811 | 1507 | 32 | 751 |
resnet_v1_152 | 321 | resnet_v1_152/block1 | 2.767 | 35 | 8 | 17 |
resnet_v1_152 | 321 | resnet_v1_152/block2 | 10.061 | 163 | 16 | 81 |
resnet_v1_152 | 321 | resnet_v1_152/block3 | 45.238 | 1315 | 32 | 657 |
resnet_v1_152 | 321 | resnet_v1_152/block4 | 48.854 | 1507 | 32 | 753 |
resnet_v1_200 | None | resnet_v1_200/block1 | None | 35 | 8 | None |
resnet_v1_200 | None | resnet_v1_200/block2 | None | 419 | 16 | None |
resnet_v1_200 | None | resnet_v1_200/block3 | None | 1571 | 32 | None |
resnet_v1_200 | None | resnet_v1_200/block4 | None | 1763 | 32 | None |
resnet_v1_200 | 224 | resnet_v1_200/block1 | 1.323 | 35 | 8 | 15 |
resnet_v1_200 | 224 | resnet_v1_200/block2 | 11.709 | 419 | 16 | 207 |
resnet_v1_200 | 224 | resnet_v1_200/block3 | 27.335 | 1571 | 32 | 783 |
resnet_v1_200 | 224 | resnet_v1_200/block4 | 28.799 | 1763 | 32 | 879 |
resnet_v1_200 | 321 | resnet_v1_200/block1 | 2.767 | 35 | 8 | 17 |
resnet_v1_200 | 321 | resnet_v1_200/block2 | 25.043 | 419 | 16 | 209 |
resnet_v1_200 | 321 | resnet_v1_200/block3 | 60.220 | 1571 | 32 | 785 |
resnet_v1_200 | 321 | resnet_v1_200/block4 | 63.836 | 1763 | 32 | 881 |
resnet_v2_50 | None | resnet_v2_50/block1 | None | 35 | 8 | None |
resnet_v2_50 | None | resnet_v2_50/block2 | None | 99 | 16 | None |
resnet_v2_50 | None | resnet_v2_50/block3 | None | 291 | 32 | None |
resnet_v2_50 | None | resnet_v2_50/block4 | None | 483 | 32 | None |
resnet_v2_50 | 224 | resnet_v2_50/block1 | 1.327 | 35 | 8 | 15 |
resnet_v2_50 | 224 | resnet_v2_50/block2 | 2.979 | 99 | 16 | 47 |
resnet_v2_50 | 224 | resnet_v2_50/block3 | 5.505 | 291 | 32 | 143 |
resnet_v2_50 | 224 | resnet_v2_50/block4 | 6.969 | 483 | 32 | 239 |
resnet_v2_50 | 321 | resnet_v2_50/block1 | 2.774 | 35 | 8 | 17 |
resnet_v2_50 | 321 | resnet_v2_50/block2 | 6.326 | 99 | 16 | 49 |
resnet_v2_50 | 321 | resnet_v2_50/block3 | 12.026 | 291 | 32 | 145 |
resnet_v2_50 | 321 | resnet_v2_50/block4 | 15.643 | 483 | 32 | 241 |
resnet_v2_101 | None | resnet_v2_101/block1 | None | 35 | 8 | None |
resnet_v2_101 | None | resnet_v2_101/block2 | None | 99 | 16 | None |
resnet_v2_101 | None | resnet_v2_101/block3 | None | 835 | 32 | None |
resnet_v2_101 | None | resnet_v2_101/block4 | None | 1027 | 32 | None |
resnet_v2_101 | 224 | resnet_v2_101/block1 | 1.327 | 35 | 8 | 15 |
resnet_v2_101 | 224 | resnet_v2_101/block2 | 2.979 | 99 | 16 | 47 |
resnet_v2_101 | 224 | resnet_v2_101/block3 | 12.932 | 835 | 32 | 415 |
resnet_v2_101 | 224 | resnet_v2_101/block4 | 14.397 | 1027 | 32 | 511 |
resnet_v2_101 | 321 | resnet_v2_101/block1 | 2.774 | 35 | 8 | 17 |
resnet_v2_101 | 321 | resnet_v2_101/block2 | 6.326 | 99 | 16 | 49 |
resnet_v2_101 | 321 | resnet_v2_101/block3 | 28.739 | 835 | 32 | 417 |
resnet_v2_101 | 321 | resnet_v2_101/block4 | 32.356 | 1027 | 32 | 513 |
resnet_v2_152 | None | resnet_v2_152/block1 | None | 35 | 8 | None |
resnet_v2_152 | None | resnet_v2_152/block2 | None | 163 | 16 | None |
resnet_v2_152 | None | resnet_v2_152/block3 | None | 1315 | 32 | None |
resnet_v2_152 | None | resnet_v2_152/block4 | None | 1507 | 32 | None |
resnet_v2_152 | 224 | resnet_v2_152/block1 | 1.327 | 35 | 8 | 15 |
resnet_v2_152 | 224 | resnet_v2_152/block2 | 4.728 | 163 | 16 | 79 |
resnet_v2_152 | 224 | resnet_v2_152/block3 | 20.361 | 1315 | 32 | 655 |
resnet_v2_152 | 224 | resnet_v2_152/block4 | 21.826 | 1507 | 32 | 751 |
resnet_v2_152 | 321 | resnet_v2_152/block1 | 2.774 | 35 | 8 | 17 |
resnet_v2_152 | 321 | resnet_v2_152/block2 | 10.075 | 163 | 16 | 81 |
resnet_v2_152 | 321 | resnet_v2_152/block3 | 45.268 | 1315 | 32 | 657 |
resnet_v2_152 | 321 | resnet_v2_152/block4 | 48.886 | 1507 | 32 | 753 |
resnet_v2_200 | None | resnet_v2_200/block1 | None | 35 | 8 | None |
resnet_v2_200 | None | resnet_v2_200/block2 | None | 419 | 16 | None |
resnet_v2_200 | None | resnet_v2_200/block3 | None | 1571 | 32 | None |
resnet_v2_200 | None | resnet_v2_200/block4 | None | 1763 | 32 | None |
resnet_v2_200 | 224 | resnet_v2_200/block1 | 1.327 | 35 | 8 | 15 |
resnet_v2_200 | 224 | resnet_v2_200/block2 | 11.722 | 419 | 16 | 207 |
resnet_v2_200 | 224 | resnet_v2_200/block3 | 27.355 | 1571 | 32 | 783 |
resnet_v2_200 | 224 | resnet_v2_200/block4 | 28.820 | 1763 | 32 | 879 |
resnet_v2_200 | 321 | resnet_v2_200/block1 | 2.774 | 35 | 8 | 17 |
resnet_v2_200 | 321 | resnet_v2_200/block2 | 25.072 | 419 | 16 | 209 |
resnet_v2_200 | 321 | resnet_v2_200/block3 | 60.265 | 1571 | 32 | 785 |
resnet_v2_200 | 321 | resnet_v2_200/block4 | 63.882 | 1763 | 32 | 881 |
In this case, the input resolution is undefined. For most models, the receptive field parameters can be computed even without knowing the input resolution. The number of FLOPs cannot be computed in this case.
For some networks, effective_padding shows as 'None' (eg, for Inception_v2 or Mobilenet_v1 when input size is not specified). Why is that?
This means that the padding for these networks depends on the input size. So, unless we know exactly the input image dimensionality to be used, it is not possible to determine the padding applied at the different layers. Look at the other entries where the input size is fixed; for those cases, effective_padding is not None.
This happens due to Tensorflow's implementation of the 'SAME' padding mode, which may depend on the input feature map size to a given layer. For background on this, see these notes from the TF documentation.
Also, note that in this case the program is not able to check if the network is aligned (ie, it could be that the different paths from input to output have receptive fields which are not consistently centered at the same position in the input image).
So you should be aware that such networks might not be aligned -- the program has no way of checking it when the padding cannot be determined.
The receptive field parameters for network X seem different from what I expected... maybe your calculation is incorrect?
First, note that the results presented here are based on the tensorflow implementations from the TF-Slim model library. So, it is possible that due to some implementation details the RF parameters are different.
One common case of confusion is the TF-Slim Resnet implementation, which applies stride in the last residual unit of each block, instead of at the input activations in the first residual unit of each block (which is what is described in the Resnet paper) -- see this comment. This makes the stride with respect to each convolution block potentially different. In this case, though, note that a flag may be used to recover the original striding convention.
Second, it could be that we have a bug somewhere. While we include many tests in our library, it is always possible that we missed something. If you suspect this is the case, please file a GitHub issue here.
The number of FLOPs for network X seem different from what I expected... maybe your calculation is incorrect?
First, note that the results presented here are based on the tensorflow implementations from the TF-Slim model library. So, it is possible that due to some implementation details the number of FLOPs is different.
Second, one common confusion arises since some papers refer to FLOPs as the
number of Multiply-Add operations; in other words, some papers count a
Multiply-Add as one floating point operation while others count as two. Here, we
follow the tensorflow.profiler
convention and count a Multiply-Add as two
operations. One noticeable counter-example is the
ResNet paper, where the FLOPs mentioned in
Table 1 therein actually mean the number of Multiply-Add's (see Section 3.3 in
their paper). So there is roughly a factor of two between their paper and our
numbers.
Finally, we rely on tensorflow.profiler
for estimating the number of floating
point operations. It could be that they have a bug somewhere, or that we are
using their library incorrectly, or that we simply have a bug somewhere else. If
you suspect this is the case, please file a GitHub issue
here).