Skip to content
This repository has been archived by the owner on Sep 7, 2022. It is now read-only.
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
# Legilimency - Memory Analysis Framework for iOS
# --------------------------------------
#
# Written and maintained by Gal Beniamini <laginimaineb@google.com>
#
# Copyright 2017 Google Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from MemClient import MemClient, qword_at
from defs import *
from symbols import *
from kalloc import *
from AppleBCMWLANPCIeSubmissionRing import AppleBCMWLANPCIeSubmissionRing
from AppleBCMWLANPCIeCompletionRing import AppleBCMWLANPCIeCompletionRing
from DART import DART
import time, struct
#The size of the allocation for the PCIe object
PCIE_OBJECT_ALLOCATION_SIZE = 3824
#The offset of the internal object representing SoC memory access within the PCIe object
CHIP_INTERNAL_OBJECT_OFFSET = 896
#The offset of the TCM field within the internal object
TCM_OFFSET = 144
#The offset of the RAM offset field in the internal object
RAM_OFFSET_OFFSET = 132
#The offset of the RAM size field in the internal object
RAM_SIZE_OFFSET = 136
#The size of the embedded firmware log array
LOG_ARRAY_SIZE = 80
#The offset of the IOMapper instance in the PCIe object
IO_MAPPER_OFFSET = 808
#The offset of the IOVMAllocator instance in the IOMapper instance
IO_VM_ALLOCATOR_OFFSET = 240
#The offset of the AppleS5L8960XDART instance in the IOVMAllocator instance
SL_DART_OFFSET = 24
#The offset of the resource map field in the PCIe object
RESOURCE_MAP_OFFSET = 696
#The offset of the resource array field in the resource map instance
RESOURCE_ARRAY_OFFSET = 24
#The offset of the max resource ID field in the resource map instance
MAX_RESOURCE_ID_OFFSET = 20
#The offset of the resource mapping object within the resource instance
MAPPING_OBJ_OFFSET = 32
#The offset of the resource data offset field in the resource instance
RESOURCE_DATA_OFFSET_OFFSET = 40
#The offset of the resource data array field in the resource instance
RESOURCE_DATA_ARRAY_OFFSET = 72
#The size of an entry in the resource data array
RESOURCE_ENTRY_SIZE = 16
#The offset of the resource offset field in the resource instance
RESOURCE_OFFSET_OFFSET = 64
#The offset of the resource length field in the resource instance
RESOURCE_LENGTH_OFFSET = 68
#The offset of the mbuf field in the resource instance
RESOURCE_MBUF_OFFSET = 56
#The time, in seconds, to wait when polling for a code chunk's hook on wl_hc to complete
HOOK_POLL_DELAY = 0.5
#The time, in seconds, to wait when polling the firmware for a crash
REBOOT_POLL_DELAY = 0.1
class BCMClient(object):
"""
This client is used to control the BCM Wi-Fi SoC by manipulating it's TCM.
"""
def __init__(self, client):
"""
Creates a new client, using the underlying MemShell client. Automatically
locates the PCIe object in the kalloc zones and extracts the TCM's location.
"""
self.client = client
self.pcie_obj = find_object_by_vtable(self.client, PCIE_OBJECT_VTABLE + self.client.slide(), PCIE_OBJECT_ALLOCATION_SIZE)
internal_object = self.client.read64(self.pcie_obj + CHIP_INTERNAL_OBJECT_OFFSET)
self.tcm = self.client.read64(internal_object + TCM_OFFSET)
self.ram_offset = self.client.read32(internal_object + RAM_OFFSET_OFFSET)
self.ram_size = self.client.read32(internal_object + RAM_SIZE_OFFSET)
def get_pcie_obj(self):
"""
Returns the address of the PCIe object.
"""
return self.pcie_obj
def fw_check_range(self, fw_addr, size):
"""
Checks that the given address range falls within the firmware's TCM, and raises
an exception otherwise.
"""
if not (self.ram_offset <= fw_addr <= (self.ram_offset + self.ram_size)) or \
not (self.ram_offset <= (fw_addr + size) <= (self.ram_offset + self.ram_size)):
raise Exception("Illegal FW read range: [%08X,%08X]" % (fw_addr, fw_addr + size))
def fw_read(self, fw_addr, size):
"""
Reads an arbitrarily large block from the firmware's TCM.
"""
self.fw_check_range(fw_addr, size)
return self.client.read(self.tcm + fw_addr - self.ram_offset, size)
def fw_read128(self, fw_addr):
"""
Reads a 128-bit value from the firmware's TCM.
"""
self.fw_check_range(fw_addr, struct.calcsize("QQ"))
return self.client.read128(self.tcm + fw_addr - self.ram_offset)
def fw_read64(self, fw_addr):
"""
Reads a 64-bit value from the firmware's TCM.
"""
self.fw_check_range(fw_addr, QWORD_SIZE)
return self.client.read64(self.tcm + fw_addr - self.ram_offset)
def fw_read32(self, fw_addr):
"""
Reads a 32-bit value from the firmware's TCM.
"""
self.fw_check_range(fw_addr, DWORD_SIZE)
return self.client.read32(self.tcm + fw_addr - self.ram_offset)
def fw_write64(self, fw_addr, val):
"""
Writes a 64-bit value to the firmware's TCM.
"""
self.fw_check_range(fw_addr, QWORD_SIZE)
self.client.write64(self.tcm + fw_addr - self.ram_offset, val)
def fw_write32(self, fw_addr, val):
"""
Writes a 32-bit value to the firmware's TCM.
"""
self.fw_check_range(fw_addr, DWORD_SIZE)
self.client.write32(self.tcm + fw_addr - self.ram_offset, val)
def fw_write8(self, fw_addr, val):
"""
Writes an 8-bit value to the firmware's TCM.
"""
#Ensuring this is a valid range (including trailing bits after the last byte read)
dword_off = fw_addr % DWORD_SIZE
aligned_addr = fw_addr - dword_off
self.fw_check_range(aligned_addr, DWORD_SIZE)
#Switching the previous byte to the target one
prev_val = self.fw_read32(aligned_addr)
val_bytes = [b for b in struct.pack("<I", prev_val)]
val_bytes[dword_off] = chr(val)
#Updating the 32-bit word at the aligned address
new_val = struct.unpack("<I", "".join(val_bytes))[0]
self.fw_write32(aligned_addr, new_val)
def read_ram(self):
"""
Reads the firmware's entire RAM.
"""
return self.fw_read(self.ram_offset, self.ram_size)
def execute_chunk(self, code_chunk, is_thumb=True):
"""
Executes the given code chunk on the Wi-Fi firmare.
"""
#Writing the chunk's contents to some unused memory in the heap's head
code_chunk += "\x00" * (QWORD_SIZE - (len(code_chunk) % QWORD_SIZE)) #Pad to QWORD
hook_ptr = HOOK_ADDRESS + (1 if is_thumb else 0)
for i in range(0, len(code_chunk), QWORD_SIZE):
self.fw_write64(HOOK_ADDRESS + i, struct.unpack("<Q", code_chunk[i:i+QWORD_SIZE])[0])
#Hook the WL_HC pointer
self.fw_write32(WL_HC_PTR, hook_ptr)
#Wait for the chunk to unhook the pointer (signaling completion)
while self.fw_read32(WL_HC_PTR) == hook_ptr:
time.sleep(HOOK_POLL_DELAY)
def reboot_firmware(self):
"""
Reboots the firmware by corrupting a periodically executed function pointer
"""
self.fw_write32(WL_HC_PTR, GARBAGE_VALUE)
while self.fw_read32(WL_HC_PTR) == GARBAGE_VALUE:
time.sleep(REBOOT_POLL_DELAY)
def get_allowed_heap_ranges(self):
"""
Returns the list of allowed heap ranges
"""
num_descs = self.fw_read32(ALLOWED_HEAP_RANGES_COUNT_PTR)
ranges = []
for i in range(0, num_descs):
range_base = self.fw_read32(ALLOWED_HEAP_RANGES_ARRAY_ADDR + i*(2*DWORD_SIZE) + DWORD_SIZE)
range_size = self.fw_read32(ALLOWED_HEAP_RANGES_ARRAY_ADDR + i*(2*DWORD_SIZE))
ranges.append((range_base, range_base+range_size))
return ranges
def get_disallowed_heap_ranges(self):
"""
Returns the list of disallowed heap ranges
"""
curr = DISALLOWED_HEAP_RANGES_PTR
ranges = []
while curr != 0:
next_addr = self.fw_read32(curr + DWORD_SIZE)
if next_addr == 0:
break
size = self.fw_read32(next_addr)
ranges.append((next_addr, next_addr + size))
curr = next_addr
return ranges
def get_enabled_log_tags(self):
"""
Returns the list of enabled log tags
"""
log_status_array = self.fw_read32(LOG_STATUS_ARRAY_PTR)
log_status_bytes = self.fw_read(log_status_array, LOG_ARRAY_SIZE)
return [i for i in range(0, LOG_ARRAY_SIZE) if ord(log_status_bytes[i]) & 0x40]
def enable_log(self, tag):
"""
Enables the given log tag in the logging configuration array
"""
log_status_array = self.fw_read32(LOG_STATUS_ARRAY_PTR)
self.fw_write8(log_status_array + tag, 0xC0)
def disable_log(self, tag):
"""
Disables the given log tag in the logging configuration array
"""
log_status_array = self.fw_read32(LOG_STATUS_ARRAY_PTR)
self.fw_write8(log_status_array + tag, 0x00)
def get_resource(self, resource_array_data, resource_id):
"""
Returns a tuple containing the resource information for the resource with the given ID,
or None if no such resource exists. The tuple contains the following information:
(resource_addr, data_addr, offset, length, mbuf, addr_ptr_offset)
"""
#Getting the resource object
resource = qword_at(resource_array_data, resource_id)
if resource == 0:
return None
#Retrieving the data address by following the mappings
data_addr = 0
mapping_obj = self.client.read64(resource + MAPPING_OBJ_OFFSET)
data_off = self.client.read32(resource + RESOURCE_DATA_OFFSET_OFFSET)
if mapping_obj != 0:
data_array_base = self.client.read64(mapping_obj + RESOURCE_DATA_ARRAY_OFFSET)
if data_array_base != 0:
data_addr = self.client.read64(data_array_base + RESOURCE_ENTRY_SIZE * data_off)
return (resource,
data_addr,
self.client.read32(resource + RESOURCE_OFFSET_OFFSET),
self.client.read32(resource + RESOURCE_LENGTH_OFFSET),
self.client.read64(resource + RESOURCE_MBUF_OFFSET),
data_off)
def get_resources(self, verbose=False):
"""
Returns the information for each of the "resource IDs" currently in the resource array
"""
#Finding the resource array and size
pcie_obj = self.get_pcie_obj()
res_map = self.client.read64(pcie_obj + RESOURCE_MAP_OFFSET)
resource_array = self.client.read64(res_map + RESOURCE_ARRAY_OFFSET)
max_resource_id = (self.client.read32(res_map + MAX_RESOURCE_ID_OFFSET) & 0xFFFF)
if verbose:
print "Resource Array: %16X, Max Resource ID: %d" % (resource_array, max_resource_id)
#Dumping all resources
resource_array_data = self.client.read(resource_array, max_resource_id * QWORD_SIZE)
resources = [self.get_resource(resource_array_data, res_id) for res_id in range(0, max_resource_id)]
return filter(lambda x: x is not None, resources)
def get_dart(self, verbose=True):
"""
Finds the DART instance associated with the Broadcom Wi-Fi chip
"""
pcie_obj = self.get_pcie_obj()
iomapper_ptr = self.client.read64(pcie_obj + IO_MAPPER_OFFSET)
io_vm_allocator = self.client.read64(iomapper_ptr + IO_VM_ALLOCATOR_OFFSET)
sl_dart = self.client.read64(io_vm_allocator + SL_DART_OFFSET)
return DART(self.client, sl_dart, verbose)
def read_console(self):
"""
Reads the firmware's console.
"""
#Getting the firmware-resident log address
pciedev_shared_t_addr = self.fw_read32(self.ram_offset + self.ram_size - DWORD_SIZE)
console_addr = self.fw_read32(pciedev_shared_t_addr + 5*DWORD_SIZE)
log_addr = self.fw_read32(console_addr + 2*DWORD_SIZE)
log_size = self.fw_read32(console_addr + 3*DWORD_SIZE)
#Reading unaligned slack
log = ""
while log_addr % 16 != 0:
log_addr += DWORD_SIZE
log_size -= DWORD_SIZE
log += struct.pack("<I", self.fw_read32(log_addr))
#Reading the rest
log_size -= log_size % 16
log += self.fw_read(log_addr, log_size)
return log
def read_freelist(self):
"""
Reads the heap's freelist, returns a list of the form: [(chunk_addr, chunk_size),...]
"""
freelist_head = self.fw_read32(FREELIST_ADDR)
curr = freelist_head
freelist = []
while curr != 0:
freelist.append((curr, self.fw_read32(curr)))
curr = self.fw_read32(curr + DWORD_SIZE)
if curr > (self.ram_offset + self.ram_size):
freelist.append((curr, GARBAGE_VALUE))
break
return freelist
def dump_freelist(self):
"""
Prints each freechunk in the heap.
"""
freelist = self.read_freelist()
print "->".join(["(A %06X | S %05X)" % (addr, size) for (addr, size) in freelist])
def hook(self, function_address, hook_content, hook_address):
"""
Inserts a hook onto the given function. The hook is placed at the given
address (so please make sure that it isn't occupied - e.g., near the top
of the heap).
"""
#Writing a THUMB2 wide branch to our hook
preamble = self.fw_read32(function_address)
next_word = self.fw_read32(function_address + DWORD_SIZE)
branch_to_hook = self.encode_thumb2_wide_branch(function_address, hook_address)
branch_back = self.encode_thumb2_wide_branch(hook_address + len(hook_content) + DWORD_SIZE, function_address + DWORD_SIZE)
#Writing the hook's contents
for i in range(0, len(hook_content), QWORD_SIZE):
self.fw_write64(hook_address + i, struct.unpack("<Q", hook_content[i:i+QWORD_SIZE])[0])
#Writing the opcode + branch to the end of the hook
self.fw_write64(hook_address + len(hook_content),
struct.unpack("<Q", struct.pack("<I", preamble) + branch_back)[0])
#Finally, inserting the hook itself
self.fw_write64(function_address, struct.unpack("<Q", branch_to_hook + struct.pack("<I", next_word))[0])
def inject_frame(self, frame, num_injections=1):
"""
Injects the given frame directly from the firmware into the host,
repeating the given number of times.
"""
injection_chunk = open("code_chunks/send_frame/chunk.bin", "rb").read()
injection_chunk = injection_chunk.replace(struct.pack("<I", 0xF12A515E), struct.pack("<I", len(frame)))
injection_chunk = injection_chunk.replace(struct.pack("<I", 0xBEEFBEEF), struct.pack("<I", num_injections))
injection_chunk = injection_chunk.replace(1024*"\xAB", frame + ("\xAB" * (1024 - len(frame))))
self.execute_chunk(injection_chunk)
def dma_d2h(self, host_addr, dma_contents):
"""
Performs a DMA operation from the firmware to IO-Space (D2H).
"""
code_chunk = open("code_chunks/dma_d2h/chunk.bin", "rb").read()
code_chunk = code_chunk.replace(struct.pack("<I", 0xBEEF0101), struct.pack("<I", len(dma_contents)))
code_chunk = code_chunk.replace(struct.pack("<I", 0xBEEF0202), struct.pack("<I", host_addr & 0xFFFFFFFF))
code_chunk = code_chunk.replace(struct.pack("<I", 0xBEEF0303), struct.pack("<I", (host_addr >> 32) & 0xFFFFFFFF))
code_chunk = code_chunk.replace(128*"\xAB", dma_contents + ("\xAB" * (128 - len(dma_contents))))
self.execute_chunk(code_chunk)
def encode_thumb2_wide_branch(self, from_addr, to_addr):
"""
Encodes an unconditional THUMB2 wide branch from the given address to the given address.
"""
if from_addr < to_addr:
s_bit = 0
offset = to_addr - from_addr - THUMB2_INST_WIDTH
else:
s_bit = 1
offset = 2**25 - (from_addr + THUMB2_INST_WIDTH - to_addr)
i1 = (offset >> 24) & 1
i2 = (offset >> 23) & 1
j1 = (0 if i1 else 1) ^ s_bit
j2 = (0 if i2 else 1) ^ s_bit
b2 = 0b11110000 | (s_bit << 2) | ((offset >> 20) & 0b11)
b1 = (offset >> 12) & 0xff
b4 = 0b10010000 | (j1 << 5) | (j2 << 3) | ((offset >> 9) & 0b111)
b3 = (offset >> 1) & 0xff
return chr(b1) + chr(b2) + chr(b3) + chr(b4)