
Issue: Two ways of doing reification with CONSTRUCT are not yielding equivalent results

Create a graph.

CREATE GRAPH ?family, ?grandparents;

Insert some data into the graph.

INSERT DATA INTO ?family {

 /u<joe> "parent_of"@[] /u<mary> .

 /u<joe> "parent_of"@[] /u<peter> .

 /u<peter> "parent_of"@[] /u<john> .

 /u<peter> "parent_of"@[] /u<eve>

};

Testing reification in two different ways below:

1) Using ";" in CONSTRUCT for reification (partial statements, following docs - "bql.md" file).

p.s.: it generates 2 new blank nodes (as expected) but no "grandparent"@[] triples.

CONSTRUCT {

 ?ancestor "grandparent"@[] ?grandchildren ; "both_live_in"@[] /city<NY>

}

INTO ?grandparents

FROM ?family

WHERE {

 ?ancestor "parent_of"@[] ?c .

 ?c "parent_of"@[] ?grandchildren

};

2) The following version for reification also works (explicit blank node notation).

p.s.: it is generating only 1 new blank node (in disagreement with the documentation).

CONSTRUCT {

?ancestor "grandparent"@[] ?grandchildren .

_:v "_subject"@[] ?ancestor .

_:v "_predicate"@[] "grandparent"@[] .

_:v "_object"@[] ?grandchildren .

_:v "both_live_in"@[] /city<NY>

}

INTO ?grandparents

FROM ?family

WHERE {

?ancestor "parent_of"@[] ?c .

?c "parent_of"@[] ?grandchildren

};

Verify reification in the ?grandparents graph.

SELECT ?s, ?p, ?o

FROM ?grandparents

WHERE {

 ?s ?p ?o

};

Drop the graphs.

DROP GRAPH ?family, ?grandparents;

