
Contents

1 Welcome to Comprehensive Rust � 11

2 Running the Course 13
2.1 Course Structure . 14
2.2 Keyboard Shortcuts . 16
2.3 Translations . 16

3 Using Cargo 18
3.1 The Rust Ecosystem . 18
3.2 Code Samples in This Training 20
3.3 Running Code Locally with Cargo 20

I Day 1: Morning 22

4 Welcome to Day 1 23

5 Hello, World 25
5.1 What is Rust? . 25
5.2 Hello, World . 26
5.3 Benefits of Rust . 26
5.4 Playground . 27

6 Types and Values 29
6.1 Variables . 29
6.2 Values . 30
6.3 Arithmetic . 30
6.4 Strings . 31
6.5 Type Inference . 32
6.6 Exercise: Fibonacci . 32

6.6.1 Solution . 33

7 Control Flow Basics 34
7.1 Conditionals . 34

1

7.2 Loops . 35
7.3 break and continue . 36
7.4 Blocks and Scopes . 37
7.5 Functions . 38
7.6 Macros . 39
7.7 Exercise: Collatz Sequence . 40

7.7.1 Solution . 40

II Day 1: Afternoon 42

8 Welcome Back 43

9 Tuples and Arrays 44
9.1 Tuples and Arrays . 44
9.2 Array Iteration . 45
9.3 Pattern Matching . 46
9.4 Destructuring . 47
9.5 Exercise: Nested Arrays . 48

9.5.1 Solution . 49

10 References 50
10.1 Shared References . 50
10.2 Exclusive References . 51
10.3 Exercise: Geometry . 52

10.3.1 Solution . 52

11 User-Defined Types 54
11.1 Named Structs . 54
11.2 Tuple Structs . 55
11.3 Enums . 56
11.4 Static and Const . 59
11.5 More to Explore . 61
11.6 Type Aliases . 61
11.7 Exercise: Elevator Events . 61

11.7.1 Solution . 63

III Day 2: Morning 65

12 Welcome to Day 2 66

13 Pattern Matching 67
13.1 Destructuring . 67
13.2 Structs . 68
13.3 Enums . 68
13.4 Let Control Flow . 69

2

13.5 if let expressions . 69
13.6 while-let . 71
13.7 Exercise: Expression Evaluation 71

13.7.1 Solution . 74

14 Methods and Traits 77
14.1 Methods . 77
14.2 Traits . 79
14.3 Deriving . 80
14.4 Trait Objects . 80
14.5 Exercise: GUI Library . 82

14.5.1 Solution . 85

15 Generics 88
15.1 Generic Functions . 88
15.2 Generic Data Types . 89
15.3 Trait Bounds . 90
15.4 impl Trait . 90
15.5 Exercise: Generic min . 91

15.5.1 Solution . 92

IV Day 2: Afternoon 94

16 Welcome Back 95

17 Standard Library Types 96
17.1 Standard Library . 96
17.2 Language Docs . 97
17.3 Option . 97
17.4 Result . 98
17.5 String . 99
17.6 Vec . 100
17.7 HashMap . 100
17.8 Exercise: Counter . 102

17.8.1 Solution . 103

18 Standard Library Traits 105
18.1 Comparisons . 105
18.2 Operators . 106
18.3 From and Into . 107
18.4 Casting . 108
18.5 Read and Write . 108
18.6 The Default Trait . 109
18.7 Closures . 110
18.8 Exercise: ROT13 . 111

3

18.8.1 Solution . 112

V Day 3: Morning 115

19 Welcome to Day 3 116

20 Memory Management 117
20.1 Review of Program Memory . 117
20.2 Approaches to Memory Management 119
20.3 Ownership . 119
20.4 Move Semantics . 120
20.5 More to Explore . 122
20.6 Clone . 123
20.7 Copy Types . 124
20.8 The Drop Trait . 124
20.9 Exercise: Builder Type . 126

20.9.1 Solution . 127

21 Smart Pointers 130
21.1 Box<T> . 130
21.2 More to Explore . 132
21.3 Rc . 132
21.4 Exercise: Binary Tree . 133

21.4.1 Solution . 134

VI Day 3: Afternoon 138

22 Welcome Back 139

23 Borrowing 140
23.1 Borrowing a Value . 140
23.2 More to Explore . 141
23.3 Borrow Checking . 141
23.4 Interior Mutability . 142
23.5 Exercise: Health Statistics . 143

23.5.1 Solution . 145

24 Slices and Lifetimes 148
24.1 Slices . 148
24.2 String References . 149
24.3 Lifetimes . 150
24.4 Lifetimes in Function Calls . 151
24.5 Lifetimes in Data Structures . 152
24.6 Exercise: Protobuf Parsing . 153

24.6.1 Solution . 157

4

VII Day 4: Morning 163

25 Welcome to Day 4 164

26 Iterators 165
26.1 Iterator . 165
26.2 IntoIterator . 166
26.3 FromIterator . 168
26.4 Exercise: Iterator Method Chaining 168

26.4.1 Solution . 169

27 Modules 171
27.1 Modules . 171
27.2 Filesystem Hierarchy . 172
27.3 Visibility . 173
27.4 use, super, self . 174
27.5 Exercise: Modules for the GUI Library 175

27.5.1 Solution . 175

28 Testing 179
28.1 Unit Tests . 179
28.2 Other Types of Tests . 180
28.3 Useful Crates . 181
28.4 GoogleTest . 181
28.5 Mocking . 183
28.6 Compiler Lints and Clippy . 184
28.7 Exercise: Luhn Algorithm . 185
28.8 Luhn Algorithm . 185

28.8.1 Solution . 186

VIII Day 4: Afternoon 189

29 Welcome Back 190

30 Error Handling 191
30.1 Panics . 191
30.2 Try Operator . 192
30.3 Try Conversions . 193
30.4 Dynamic Error Types . 195
30.5 thiserror and anyhow . 196
30.6 Exercise: Rewriting with Result 197

30.6.1 Solution . 199

31 Unsafe Rust 202
31.1 Unsafe Rust . 202
31.2 Dereferencing Raw Pointers . 203

5

31.3 Mutable Static Variables . 204
31.4 Unions . 204
31.5 Unsafe Functions . 205
31.6 Implementing Unsafe Traits . 207
31.7 Safe FFI Wrapper . 207

31.7.1 Solution . 210

IX Android 215

32 Welcome to Rust in Android 216

33 Setup 217

34 Build Rules 218
34.1 Rust Binaries . 219
34.2 Rust Libraries . 219

35 AIDL 221
35.1 AIDL Interfaces . 221
35.2 Service Implementation . 222
35.3 AIDL Server . 222
35.4 Deploy . 223
35.5 AIDL Client . 224
35.6 Changing API . 225

36 Logging 226

37 Interoperability 228
37.1 Interoperability with C . 228

37.1.1 Using Bindgen . 229
37.1.2 Calling Rust . 231

37.2 With C++ . 232
37.2.1 The Bridge Module . 232
37.2.2 Rust Bridge Declarations 233
37.2.3 Generated C++ . 234
37.2.4 C++ Bridge Declarations 234
37.2.5 Shared Types . 235
37.2.6 Shared Enums . 236
37.2.7 Rust Error Handling . 237
37.2.8 C++ Error Handling . 237
37.2.9 Additional Types . 238
37.2.10Building in Android . 238
37.2.11Building in Android . 239
37.2.12Building in Android . 240

37.3 Interoperability with Java . 240

6

38 Exercises 242

X Chromium 243

39 Welcome to Rust in Chromium 244

40 Setup 245

41 About the exercises 246

42 Comparing Chromium and Cargo ecosystems 247

43 Chromium Rust policy 250

44 Build rules 251
44.1 Including unsafe Rust code . 252
44.2 Depending on Rust code from Chromium C++ 252
44.3 Visual Studio code . 252
44.4 Build rules exercise . 253

45 Interoperability with C++ 255
45.1 Example bindings . 256
45.2 CXX error handling . 257
45.3 Exercise: Interoperability with C++ 258

46 Adding third party crates 261
46.1 Configuring the Cargo.toml file to add crates 261
46.2 Configuring gnrt_config.toml 262
46.3 Downloading crates . 262
46.4 Generating gn build rules . 263
46.5 Resolving problems . 263

46.5.1 Build scripts which generate code 264
46.5.2 Build scripts which build C++ or take arbitrary actions . 264

46.6 Depending on a crate . 264
46.7 Auditing third party crates . 265
46.8 Checking crates into Chromium source code 265
46.9 Keeping crates up to date . 266
46.10Exercise . 266

47 Bringing it together --- Exercise 267

XI Bare Metal: Morning 269

48 Welcome to Bare Metal Rust 270

7

49 no_std 272
49.1 A minimal no_std program . 273
49.2 alloc . 273

50 Microcontrollers 275
50.1 Raw MMIO . 275
50.2 Peripheral Access Crates . 277
50.3 HAL crates . 278
50.4 Board support crates . 279
50.5 The type state pattern . 280
50.6 embedded-hal . 281
50.7 probe-rs and cargo-embed . 281

50.7.1 Debugging . 282
50.8 Other projects . 282

51 Exercises 284
51.1 Compass . 284
51.2 Bare Metal Rust Morning Exercise 286

XII Bare Metal: Afternoon 290

52 Application processors 291
52.1 Getting Ready to Rust . 291
52.2 Inline assembly . 293
52.3 Volatile memory access for MMIO 295
52.4 Let's write a UART driver . 295

52.4.1 More traits . 296
52.5 A better UART driver . 297

52.5.1 Bitflags . 298
52.5.2 Multiple registers . 298
52.5.3 Driver . 299
52.5.4 Using it . 301

52.6 Logging . 302
52.6.1 Using it . 303

52.7 Exceptions . 304
52.8 Other projects . 305

53 Useful crates 307
53.1 zerocopy . 307
53.2 aarch64-paging . 308
53.3 buddy_system_allocator . 309
53.4 tinyvec . 309
53.5 spin . 310

54 Android 311

8

54.1 vmbase . 312

55 Exercises 313
55.1 RTC driver . 313
55.2 Bare Metal Rust Afternoon . 333

XIII Concurrency: Morning 339

56 Welcome to Concurrency in Rust 340

57 Threads 341
57.1 Scoped Threads . 342

58 Channels 343
58.1 Unbounded Channels . 343
58.2 Bounded Channels . 344

59 Send and Sync 346
59.1 Send . 346
59.2 Sync . 346
59.3 Examples . 347

60 Shared State 349
60.1 Arc . 349
60.2 Mutex . 350
60.3 Example . 351

61 Exercises 353
61.1 Dining Philosophers . 353
61.2 Multi-threaded Link Checker . 354
61.3 Concurrency Morning Exercise 357

XIV Concurrency: Afternoon 363

62 Async Rust 364
62.1 async/await . 364
62.2 Futures . 365
62.3 Runtimes . 366

62.3.1 Tokio . 367
62.4 Tasks . 367
62.5 Async Channels . 369

63 Futures Control Flow 371
63.1 Join . 371
63.2 Select . 372

9

64 Pitfalls of async/await 374
64.1 Blocking the executor . 374
64.2 Pin . 375
64.3 Async Traits . 377
64.4 Cancellation . 379

65 Exercises 382
65.1 Dining Philosophers --- Async . 382
65.2 Broadcast Chat Application . 384
65.3 Concurrency Afternoon Exercise 386

XV Final Words 392

66 Thanks! 393

67 Glossary 394

68 Other Rust Resources 399

69 Credits 401

10

Chapter 1

Welcome to Comprehensive
Rust �

This is a free Rust course developed by the Android team at Google. The course
covers the full spectrum of Rust, from basic syntax to advanced topics like
generics and error handling.

The latest version of the course can be found at https://google.githu
b.io/comprehensive-rust/. If you are reading somewhere else, please
check there for updates.

The goal of the course is to teach you Rust. We assume you don't know anything
about Rust and hope to:

• Give you a comprehensive understanding of the Rust syntax and language.
• Enable you to modify existing programs and write new programs in Rust.
• Show you common Rust idioms.

We call the first four course days Rust Fundamentals.

Building on this, you're invited to dive into one or more specialized topics:

• Android: a half-day course on using Rust for Android platform development
(AOSP). This includes interoperability with C, C++, and Java.

• Chromium: a half-day course on using Rust within Chromium based
browsers. This includes interoperability with C++ and how to include
third-party crates in Chromium.

• Bare-metal: a whole-day class on using Rust for bare-metal (embedded)
development. Both microcontrollers and application processors are covered.

• Concurrency: a whole-day class on concurrency in Rust. We cover both
classical concurrency (preemptively scheduling using threads and mutexes)
and async/await concurrency (cooperative multitasking using futures).

11

https://google.github.io/comprehensive-rust/
https://google.github.io/comprehensive-rust/

Non-Goals
Rust is a large language and we won't be able to cover all of it in a few days.
Some non-goals of this course are:

• Learning how to develop macros: please see Chapter 19.5 in the Rust Book
and Rust by Example instead.

Assumptions
The course assumes that you already know how to program. Rust is a statically-
typed language and we will sometimes make comparisons with C and C++ to
better explain or contrast the Rust approach.

If you know how to program in a dynamically-typed language such as Python or
JavaScript, then you will be able to follow along just fine too.

This is an example of a speaker note. We will use these to add additional
information to the slides. This could be key points which the instructor should
cover as well as answers to typical questions which come up in class.

12

https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/rust-by-example/macros.html

Chapter 2

Running the Course

This page is for the course instructor.

Here is a bit of background information about how we've been running the course
internally at Google.

We typically run classes from 9:00 am to 4:00 pm, with a 1 hour lunch break
in the middle. This leaves 3 hours for the morning class and 3 hours for the
afternoon class. Both sessions contain multiple breaks and time for students to
work on exercises.

Before you run the course, you will want to:

1. Make yourself familiar with the course material. We've included speaker
notes to help highlight the key points (please help us by contributing
more speaker notes!). When presenting, you should make sure to open
the speaker notes in a popup (click the link with a little arrow next to
”Speaker Notes”). This way you have a clean screen to present to the class.

2. Decide on the dates. Since the course takes at least three full days, we
recommend that you schedule the days over two weeks. Course participants
have said that they find it helpful to have a gap in the course since it helps
them process all the information we give them.

3. Find a room large enough for your in-person participants. We recommend a
class size of 15-25 people. That's small enough that people are comfortable
asking questions --- it's also small enough that one instructor will have
time to answer the questions. Make sure the room has desks for yourself
and for the students: you will all need to be able to sit and work with
your laptops. In particular, you will be doing a lot of live-coding as an
instructor, so a lectern won't be very helpful for you.

4. On the day of your course, show up to the room a little early to set things up.
We recommend presenting directly using mdbook serve running on your

13

laptop (see the installation instructions). This ensures optimal performance
with no lag as you change pages. Using your laptop will also allow you to
fix typos as you or the course participants spot them.

5. Let people solve the exercises by themselves or in small groups. We
typically spend 30-45 minutes on exercises in the morning and in the
afternoon (including time to review the solutions). Make sure to ask people
if they're stuck or if there is anything you can help with. When you see
that several people have the same problem, call it out to the class and offer
a solution, e.g., by showing people where to find the relevant information
in the standard library.

That is all, good luck running the course! We hope it will be as much fun for
you as it has been for us!

Please provide feedback afterwards so that we can keep improving the course.
We would love to hear what worked well for you and what can be made better.
Your students are also very welcome to send us feedback!

2.1 Course Structure
This page is for the course instructor.

Rust Fundamentals
The first three days make up Rust Fundaments. The days are fast paced and we
cover a lot of ground!

Course schedule:

• Day 1 Morning (3 hours, including breaks)
– Welcome (5 minutes)
– Hello, World (20 minutes)
– Types and Values (1 hour and 5 minutes)
– Control Flow Basics (1 hour)

• Day 1 Afternoon (2 hours and 55 minutes, including breaks)
– Tuples and Arrays (1 hour)
– References (50 minutes)
– User-Defined Types (50 minutes)

• Day 2 Morning (3 hours and 15 minutes, including breaks)
– Welcome (3 minutes)
– Pattern Matching (50 minutes)
– Methods and Traits (1 hour and 5 minutes)
– Generics (45 minutes)

• Day 2 Afternoon (3 hours, including breaks)
– Standard Library Types (1 hour and 10 minutes)
– Standard Library Traits (1 hour and 40 minutes)

• Day 3 Morning (2 hours and 15 minutes, including breaks)

14

https://github.com/google/comprehensive-rust#building
https://github.com/google/comprehensive-rust/discussions/86
https://github.com/google/comprehensive-rust/discussions/100

– Welcome (3 minutes)
– Memory Management (1 hour and 10 minutes)
– Smart Pointers (45 minutes)

• Day 3 Afternoon (2 hours and 20 minutes, including breaks)
– Borrowing (1 hour)
– Slices and Lifetimes (1 hour and 10 minutes)

• Day 4 Morning (3 hours and 10 minutes, including breaks)
– Welcome (3 minutes)
– Iterators (45 minutes)
– Modules (45 minutes)
– Testing (1 hour and 5 minutes)

• Day 4 Afternoon (2 hours, including breaks)
– Error Handling (45 minutes)
– Unsafe Rust (1 hour and 5 minutes)

Deep Dives
In addition to the 3-day class on Rust Fundamentals, we cover some more
specialized topics:

Rust in Android

The Rust in Android deep dive is a half-day course on using Rust for Android
platform development. This includes interoperability with C, C++, and Java.

You will need an AOSP checkout. Make a checkout of the course repository
on the same machine and move the src/android/ directory into the root of
your AOSP checkout. This will ensure that the Android build system sees the
Android.bp files in src/android/.

Ensure that adb sync works with your emulator or real device and pre-build all
Android examples using src/android/build_all.sh. Read the script to see
the commands it runs and make sure they work when you run them by hand.

Rust in Chromium

The Rust in Chromium deep dive is a half-day course on using Rust as part of
the Chromium browser. It includes using Rust in Chromium's gn build system,
bringing in third-party libraries (”crates”) and C++ interoperability.

You will need to be able to build Chromium --- a debug, component build is
recommended for speed but any build will work. Ensure that you can run the
Chromium browser that you've built.

Bare-Metal Rust

The Bare-Metal Rust deep dive is a full day class on using Rust for bare-metal
(embedded) development. Both microcontrollers and application processors are

15

https://source.android.com/docs/setup/download/downloading
https://github.com/google/comprehensive-rust

covered.

For the microcontroller part, you will need to buy the BBC micro:bit v2 develop-
ment board ahead of time. Everybody will need to install a number of packages
as described on the welcome page.

Concurrency in Rust

The Concurrency in Rust deep dive is a full day class on classical as well as
async/await concurrency.

You will need a fresh crate set up and the dependencies downloaded and ready
to go. You can then copy/paste the examples into src/main.rs to experiment
with them:

cargo init concurrency
cd concurrency
cargo add tokio --features full
cargo run

Format
The course is meant to be very interactive and we recommend letting the
questions drive the exploration of Rust!

2.2 Keyboard Shortcuts
There are several useful keyboard shortcuts in mdBook:

• Arrow-Left: Navigate to the previous page.
• Arrow-Right: Navigate to the next page.
• Ctrl + Enter: Execute the code sample that has focus.
• s: Activate the search bar.

2.3 Translations
The course has been translated into other languages by a set of wonderful
volunteers:

• Brazilian Portuguese by @rastringer, @hugojacob, @joaovicmendes, and
@henrif75.

• Chinese (Simplified) by @suetfei, @wnghl, @anlunx, @kongy, @noahdragon,
@superwhd, @SketchK, and @nodmp.

• Chinese (Traditional) by @hueich, @victorhsieh, @mingyc, @kuanhungchen,
and @johnathan79717.

• Korean by @keispace, @jiyongp, and @jooyunghan.
• Spanish by @deavid.

16

https://microbit.org/
https://google.github.io/comprehensive-rust/pt-BR/
https://github.com/rastringer
https://github.com/hugojacob
https://github.com/joaovicmendes
https://github.com/henrif75
https://google.github.io/comprehensive-rust/zh-CN/
https://github.com/suetfei
https://github.com/wnghl
https://github.com/anlunx
https://github.com/kongy
https://github.com/noahdragon
https://github.com/superwhd
https://github.com/SketchK
https://github.com/nodmp
https://google.github.io/comprehensive-rust/zh-TW/
https://github.com/hueich
https://github.com/victorhsieh
https://github.com/mingyc
https://github.com/kuanhungchen
https://github.com/johnathan79717
https://google.github.io/comprehensive-rust/ko/
https://github.com/keispace
https://github.com/jiyongp
https://github.com/jooyunghan
https://google.github.io/comprehensive-rust/es/
https://github.com/deavid

Use the language picker in the top-right corner to switch between languages.

Incomplete Translations
There is a large number of in-progress translations. We link to the most recently
updated translations:

• Bengali by @raselmandol.
• French by @KookaS and @vcaen.
• German by @Throvn and @ronaldfw.
• Japanese by @CoinEZ-JPN and @momotaro1105.

If you want to help with this effort, please see our instructions for how to get
going. Translations are coordinated on the issue tracker.

17

https://google.github.io/comprehensive-rust/bn/
https://github.com/raselmandol
https://google.github.io/comprehensive-rust/fr/
https://github.com/KookaS
https://github.com/vcaen
https://google.github.io/comprehensive-rust/de/
https://github.com/Throvn
https://github.com/ronaldfw
https://google.github.io/comprehensive-rust/ja/
https://github.com/CoinEZ
https://github.com/momotaro1105
https://github.com/google/comprehensive-rust/blob/main/TRANSLATIONS.md
https://github.com/google/comprehensive-rust/issues/282

Chapter 3

Using Cargo

When you start reading about Rust, you will soon meet Cargo, the standard
tool used in the Rust ecosystem to build and run Rust applications. Here we
want to give a brief overview of what Cargo is and how it fits into the wider
ecosystem and how it fits into this training.

Installation
Please follow the instructions on https://rustup.rs/.

This will give you the Cargo build tool (cargo) and the Rust compiler (rustc).
You will also get rustup, a command line utility that you can use to install to
different compiler versions.

After installing Rust, you should configure your editor or IDE to work with Rust.
Most editors do this by talking to rust-analyzer, which provides auto-completion
and jump-to-definition functionality for VS Code, Emacs, Vim/Neovim, and
many others. There is also a different IDE available called RustRover.

• On Debian/Ubuntu, you can also install Cargo, the Rust source and the
Rust formatter via apt. However, this gets you an outdated rust version
and may lead to unexpected behavior. The command would be:

sudo apt install cargo rust-src rustfmt

3.1 The Rust Ecosystem
The Rust ecosystem consists of a number of tools, of which the main ones are:

• rustc: the Rust compiler which turns .rs files into binaries and other
intermediate formats.

18

https://doc.rust-lang.org/cargo/
https://rustup.rs/
https://rust-analyzer.github.io/
https://code.visualstudio.com/
https://rust-analyzer.github.io/manual.html#emacs
https://rust-analyzer.github.io/manual.html#vimneovim
https://www.jetbrains.com/rust/
https://github.com/rust-lang/rustfmt

• cargo: the Rust dependency manager and build tool. Cargo knows how
to download dependencies, usually hosted on https://crates.io, and it will
pass them to rustc when building your project. Cargo also comes with a
built-in test runner which is used to execute unit tests.

• rustup: the Rust toolchain installer and updater. This tool is used to
install and update rustc and cargo when new versions of Rust are released.
In addition, rustup can also download documentation for the standard
library. You can have multiple versions of Rust installed at once and
rustup will let you switch between them as needed.

Key points:

• Rust has a rapid release schedule with a new release coming out every six
weeks. New releases maintain backwards compatibility with old releases ---
plus they enable new functionality.

• There are three release channels: ”stable”, ”beta”, and ”nightly”.

• New features are being tested on ”nightly”, ”beta” is what becomes ”stable”
every six weeks.

• Dependencies can also be resolved from alternative registries, git, folders,
and more.

• Rust also has editions: the current edition is Rust 2021. Previous editions
were Rust 2015 and Rust 2018.

– The editions are allowed to make backwards incompatible changes to
the language.

– To prevent breaking code, editions are opt-in: you select the edition
for your crate via the Cargo.toml file.

– To avoid splitting the ecosystem, Rust compilers can mix code written
for different editions.

– Mention that it is quite rare to ever use the compiler directly not
through cargo (most users never do).

– It might be worth alluding that Cargo itself is an extremely powerful
and comprehensive tool. It is capable of many advanced features
including but not limited to:

∗ Project/package structure
∗ workspaces
∗ Dev Dependencies and Runtime Dependency manage-

ment/caching
∗ build scripting
∗ global installation
∗ It is also extensible with sub command plugins as well (such as

cargo clippy).

19

https://crates.io
https://doc.rust-lang.org/cargo/reference/registries.html
https://doc.rust-lang.org/edition-guide/
https://doc.rust-lang.org/cargo/reference/workspaces.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/commands/cargo-install.html
https://github.com/rust-lang/rust-clippy

– Read more from the official Cargo Book

3.2 Code Samples in This Training
For this training, we will mostly explore the Rust language through examples
which can be executed through your browser. This makes the setup much easier
and ensures a consistent experience for everyone.

Installing Cargo is still encouraged: it will make it easier for you to do the
exercises. On the last day, we will do a larger exercise which shows you how to
work with dependencies and for that you need Cargo.

The code blocks in this course are fully interactive:

fn main() {
println!("Edit me!");

}

You can use Ctrl + Enter to execute the code when focus is in the text box.

Most code samples are editable like shown above. A few code samples are not
editable for various reasons:

• The embedded playgrounds cannot execute unit tests. Copy-paste the code
and open it in the real Playground to demonstrate unit tests.

• The embedded playgrounds lose their state the moment you navigate away
from the page! This is the reason that the students should solve the
exercises using a local Rust installation or via the Playground.

3.3 Running Code Locally with Cargo
If you want to experiment with the code on your own system, then you will
need to first install Rust. Do this by following the instructions in the Rust Book.
This should give you a working rustc and cargo. At the time of writing, the
latest stable Rust release has these version numbers:

% rustc --version
rustc 1.69.0 (84c898d65 2023-04-16)
% cargo --version
cargo 1.69.0 (6e9a83356 2023-04-12)

You can use any later version too since Rust maintains backwards compatibility.

With this in place, follow these steps to build a Rust binary from one of the
examples in this training:

1. Click the ”Copy to clipboard” button on the example you want to copy.

20

https://doc.rust-lang.org/cargo/
https://doc.rust-lang.org/book/ch01-01-installation.html

2. Use cargo new exercise to create a new exercise/ directory for your
code:

$ cargo new exercise
Created binary (application) `exercise` package

3. Navigate into exercise/ and use cargo run to build and run your binary:

$ cd exercise
$ cargo run

Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
Finished dev [unoptimized + debuginfo] target(s) in 0.75s
Running `target/debug/exercise`

Hello, world!

4. Replace the boiler-plate code in src/main.rs with your own code. For
example, using the example on the previous page, make src/main.rs look
like

fn main() {
println!("Edit me!");

}

5. Use cargo run to build and run your updated binary:

$ cargo run
Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
Finished dev [unoptimized + debuginfo] target(s) in 0.24s
Running `target/debug/exercise`

Edit me!

6. Use cargo check to quickly check your project for errors, use cargo build
to compile it without running it. You will find the output in target/debug/
for a normal debug build. Use cargo build --release to produce an
optimized release build in target/release/.

7. You can add dependencies for your project by editing Cargo.toml. When
you run cargo commands, it will automatically download and compile
missing dependencies for you.

Try to encourage the class participants to install Cargo and use a local editor. It
will make their life easier since they will have a normal development environment.

21

Part I

Day 1: Morning

22

Chapter 4

Welcome to Day 1

This is the first day of Rust Fundamentals. We will cover a lot of ground today:

• Basic Rust syntax: variables, scalar and compound types, enums, structs,
references, functions, and methods.

• Types and type inference.
• Control flow constructs: loops, conditionals, and so on.
• User-defined types: structs and enums.
• Pattern matching: destructuring enums, structs, and arrays.

Schedule
In this session:

• Welcome (5 minutes)
• Hello, World (20 minutes)
• Types and Values (1 hour and 5 minutes)
• Control Flow Basics (1 hour)

Including 10 minute breaks, this session should take about 3 hours

Please remind the students that:

• They should ask questions when they get them, don't save them to the
end.

• The class is meant to be interactive and discussions are very much encour-
aged!

– As an instructor, you should try to keep the discussions relevant, i.e.,
keep the discussions related to how Rust does things vs some other
language. It can be hard to find the right balance, but err on the
side of allowing discussions since they engage people much more than
one-way communication.

23

• The questions will likely mean that we talk about things ahead of the
slides.

– This is perfectly okay! Repetition is an important part of learning.
Remember that the slides are just a support and you are free to skip
them as you like.

The idea for the first day is to show the ”basic” things in Rust that should have
immediate parallels in other languages. The more advanced parts of Rust come
on the subsequent days.

If you're teaching this in a classroom, this is a good place to go over the schedule.
Note that there is an exercise at the end of each segment, followed by a break.
Plan to cover the exercise solution after the break. The times listed here are a
suggestion in order to keep the course on schedule. Feel free to be flexible and
adjust as necessary!

24

Chapter 5

Hello, World

In this segment:

• What is Rust? (10 minutes)
• Hello, World (5 minutes)
• Benefits of Rust (3 minutes)
• Playground (2 minutes)

This segment should take about 20 minutes

5.1 What is Rust?
Rust is a new programming language which had its 1.0 release in 2015:

• Rust is a statically compiled language in a similar role as C++
– rustc uses LLVM as its backend.

• Rust supports many platforms and architectures:
– x86, ARM, WebAssembly, ...
– Linux, Mac, Windows, ...

• Rust is used for a wide range of devices:
– firmware and boot loaders,
– smart displays,
– mobile phones,
– desktops,
– servers.

Rust fits in the same area as C++:

• High flexibility.
• High level of control.
• Can be scaled down to very constrained devices such as microcontrollers.
• Has no runtime or garbage collection.

25

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

• Focuses on reliability and safety without sacrificing performance.

5.2 Hello, World
Let us jump into the simplest possible Rust program, a classic Hello World
program:

fn main() {
println!("Hello �!");

}

What you see:

• Functions are introduced with fn.
• Blocks are delimited by curly braces like in C and C++.
• The main function is the entry point of the program.
• Rust has hygienic macros, println! is an example of this.
• Rust strings are UTF-8 encoded and can contain any Unicode character.

This slide tries to make the students comfortable with Rust code. They will see
a ton of it over the next three days so we start small with something familiar.

Key points:

• Rust is very much like other languages in the C/C++/Java tradition. It is
imperative and it doesn't try to reinvent things unless absolutely necessary.

• Rust is modern with full support for things like Unicode.

• Rust uses macros for situations where you want to have a variable number
of arguments (no function overloading).

• Macros being 'hygienic' means they don't accidentally capture identifiers
from the scope they are used in. Rust macros are actually only partially
hygienic.

• Rust is multi-paradigm. For example, it has powerful object-oriented
programming features, and, while it is not a functional language, it includes
a range of functional concepts.

5.3 Benefits of Rust
Some unique selling points of Rust:

• Compile time memory safety - whole classes of memory bugs are prevented
at compile time

– No uninitialized variables.
– No double-frees.
– No use-after-free.

26

basic-syntax/functions-interlude.md
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html

– No NULL pointers.
– No forgotten locked mutexes.
– No data races between threads.
– No iterator invalidation.

• No undefined runtime behavior - what a Rust statement does is never left
unspecified

– Array access is bounds checked.
– Integer overflow is defined (panic or wrap-around).

• Modern language features - as expressive and ergonomic as higher-level
languages

– Enums and pattern matching.
– Generics.
– No overhead FFI.
– Zero-cost abstractions.
– Great compiler errors.
– Built-in dependency manager.
– Built-in support for testing.
– Excellent Language Server Protocol support.

Do not spend much time here. All of these points will be covered in more depth
later.

Make sure to ask the class which languages they have experience with. Depending
on the answer you can highlight different features of Rust:

• Experience with C or C++: Rust eliminates a whole class of runtime errors
via the borrow checker. You get performance like in C and C++, but you
don't have the memory unsafety issues. In addition, you get a modern
language with constructs like pattern matching and built-in dependency
management.

• Experience with Java, Go, Python, JavaScript...: You get the same memory
safety as in those languages, plus a similar high-level language feeling. In
addition you get fast and predictable performance like C and C++ (no
garbage collector) as well as access to low-level hardware (should you need
it)

5.4 Playground
The Rust Playground provides an easy way to run short Rust programs, and
is the basis for the examples and exercises in this course. Try running the
”hello-world” program it starts with. It comes with a few handy features:

• Under ”Tools”, use the rustfmt option to format your code in the ”stan-
dard” way.

27

https://play.rust-lang.org/

• Rust has two main ”profiles” for generating code: Debug (extra runtime
checks, less optimization) and Release (fewer runtime checks, lots of opti-
mization). These are accessible under ”Debug” at the top.

• If you're interested, use ”ASM” under ”...” to see the generated assembly
code.

As students head into the break, encourage them to open up the playground and
experiment a little. Encourage them to keep the tab open and try things out
during the rest of the course. This is particularly helpful for advanced students
who want to know more about Rust's optimzations or generated assembly.

28

Chapter 6

Types and Values

In this segment:

• Variables (5 minutes)
• Values (10 minutes)
• Arithmetic (5 minutes)
• Strings (10 minutes)
• Type Inference (5 minutes)
• Exercise: Fibonacci (30 minutes)

This segment should take about 1 hour and 5 minutes

6.1 Variables
Rust provides type safety via static typing. Variable bindings are made with
let:

fn main() {
let x: i32 = 10;
println!("x: {x}");
// x = 20;
// println!("x: {x}");

}

• Uncomment the x = 20 to demonstrate that variables are immutable by
default. Add the mut keyword to allow changes.

• The i32 here is the type of the variable. This must be known at compile
time, but type inference (covered later) allows the programmer to omit it
in many cases.

29

6.2 Values
Here are some basic built-in types, and the syntax for literal values of each type.

Types Literals
Signed integers i8, i16, i32, i64, i128, isize -10, 0, 1_000, 123_i64
Unsigned integers u8, u16, u32, u64, u128, usize 0, 123, 10_u16
Floating point numbers f32, f64 3.14, -10.0e20, 2_f32
Unicode scalar values char 'a', '�', '∞'
Booleans bool true, false

The types have widths as follows:

• iN, uN, and fN are N bits wide,
• isize and usize are the width of a pointer,
• char is 32 bits wide,
• bool is 8 bits wide.

There are a few syntaxes which are not shown above:

• All underscores in numbers can be left out, they are for legibility only. So
1_000 can be written as 1000 (or 10_00), and 123_i64 can be written as
123i64.

6.3 Arithmetic
fn interproduct(a: i32, b: i32, c: i32) -> i32 {

return a * b + b * c + c * a;
}

fn main() {
println!("result: {}", interproduct(120, 100, 248));

}

This is the first time we've seen a function other than main, but the meaning
should be clear: it takes three integers, and returns an integer. Functions will
be covered in more detail later.

Arithmetic is very similar to other languages, with similar precedence.

What about integer overflow? In C and C++ overflow of signed integers is
actually undefined, and might do different things on different platforms or
compilers. In Rust, it's defined.

Change the i32's to i16 to see an integer overflow, which panics (checked) in
a debug build and wraps in a release build. There are other options, such as

30

overflowing, saturating, and carrying. These are accessed with method syntax,
e.g., (a * b).saturating_add(b * c).saturating_add(c * a).

In fact, the compiler will detect overflow of constant expressions, which is why
the example requires a separate function.

6.4 Strings
Rust has two types to represent strings, both of which will be covered in more
depth later. Both always store UTF-8 encoded strings.

• String - a modifiable, owned string.
• &str - a read-only string. String literals have this type.

fn main() {
let greeting: &str = "Greetings";
let planet: &str = "�";
let mut sentence = String::new();
sentence.push_str(greeting);
sentence.push_str(", ");
sentence.push_str(planet);
println!("final sentence: {}", sentence);
println!("{:?}", &sentence[0..5]);
//println!("{:?}", &sentence[12..13]);

}

This slide introduces strings. Everything here will be covered in more depth
later, but this is enough for subsequent slides and exercises to use strings.

• Invalid UTF-8 in a string is UB, and this not allowed in safe Rust.

• String is a user-defined type with a constructor (::new()) and methods
like s.push_str(..).

• The & in &str indicates that this is a reference. We will cover references
later, so for now just think of &str as a unit meaning ”a read-only string”.

• The commented-out line is indexing into the string by byte position. 12..13
does not end on a character boundary, so the program panics. Adjust it to
a range that does, based on the error message.

• Raw strings allow you to create a &str value with escapes disabled: r"\n"
== "\\n". You can embed double-quotes by using an equal amount of #
on either side of the quotes:

fn main() {
println!(r#"link"#);
println!("link");

}

31

6.5 Type Inference
Rust will look at how the variable is used to determine the type:

fn takes_u32(x: u32) {
println!("u32: {x}");

}

fn takes_i8(y: i8) {
println!("i8: {y}");

}

fn main() {
let x = 10;
let y = 20;

takes_u32(x);
takes_i8(y);
// takes_u32(y);

}

This slide demonstrates how the Rust compiler infers types based on constraints
given by variable declarations and usages.

It is very important to emphasize that variables declared like this are not of
some sort of dynamic ”any type” that can hold any data. The machine code
generated by such declaration is identical to the explicit declaration of a type.
The compiler does the job for us and helps us write more concise code.

When nothing constrains the type of an integer literal, Rust defaults to i32. This
sometimes appears as {integer} in error messages. Similarly, floating-point
literals default to f64.

fn main() {
let x = 3.14;
let y = 20;
assert_eq!(x, y);
// ERROR: no implementation for `{float} == {integer}`

}

6.6 Exercise: Fibonacci
The first and second Fibonacci numbers are both 1. For n>2, he n'th Fibonacci
number is calculated recursively as the sum of the n-1'th and n-2'th Fibonacci
numbers.

Write a function fib(n) that calculates the n'th Fibonacci number. When will
this function panic?

32

fn fib(n: u32) -> u32 {
if n <= 2 {

// The base case.
todo!("Implement this")

} else {
// The recursive case.
todo!("Implement this")

}
}

fn main() {
let n = 20;
println!("fib(n) = {}", fib(n));

}

6.6.1 Solution
fn fib(n: u32) -> u32 {

if n <= 2 {
return 1;

} else {
return fib(n - 1) + fib(n - 2);

}
}

fn main() {
let n = 20;
println!("fib(n) = {}", fib(n));

}

33

Chapter 7

Control Flow Basics

In this segment:

• Conditionals (5 minutes)
• Loops (5 minutes)
• break and continue (5 minutes)
• Blocks and Scopes (10 minutes)
• Functions (3 minutes)
• Macros (2 minutes)
• Exercise: Collatz conjecture (30 minutes)

This segment should take about 1 hour

7.1 Conditionals
Much of the Rust syntax will be familiar to you from C, C++ or Java:

• Blocks are delimited by curly braces.
• Line comments are started with //, block comments are delimited by /*

... */.
• Keywords like if and while work the same.
• Variable assignment is done with =, comparison is done with ==.

if expressions
You use if expressions exactly like if statements in other languages:

fn main() {
let x = 10;
if x < 20 {

println!("small");
} else if x < 100 {

34

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-expressions

println!("biggish");
} else {

println!("huge");
}

}

In addition, you can use if as an expression. The last expression of each block
becomes the value of the if expression:

fn main() {
let x = 10;
let size = if x < 20 {

"small"
} else {

"large"
};
println!("number size: {}", size);

}

Because if is an expression and must have a particular type, both of its branch
blocks must have the same type. Show what happens if you add ; after "small"
in the second example.

When if is used in an expression, the expression must have a ; to separate it
from the next statement. Remove the ; before println! to see the compiler
error.

7.2 Loops
There are three looping keywords in Rust: while, loop, and for:

while

The while keyword works much like in other languages, executing the loop body
as long as the condition is true.

fn main() {
let mut x = 200;
while x >= 10 {

x = x / 2;
}
println!("Final x: {x}");

}

for

The for loop iterates over ranges of values:

35

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/std/keyword.for.html

fn main() {
for x in 1..5 {

println!("x: {x}");
}

}

loop

The loop statement just loops forever, until a break.

fn main() {
let mut i = 0;
loop {

i += 1;
println!("{i}");
if i > 100 {

break;
}

}
}

• We will discuss iteration later; for now, just stick to range expressions.
• Note that the for loop only iterates to 4. Show the 1..=5 syntax for an

inclusive range.

7.3 break and continue
If you want to exit any kind of loop early, use break. For loop, this can take an
optional expression that becomes the value of the loop expression.

If you want to immediately start the next iteration use continue.

fn main() {
let (mut a, mut b) = (100, 52);
let result = loop {

if a == b {
break a;

}
if a < b {

b -= a;
} else {

a -= b;
}

};
println!("{result}");

}

36

https://doc.rust-lang.org/std/keyword.loop.html
https://doc.rust-lang.org/reference/expressions/loop-expr.html#break-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#continue-expressions

Both continue and break can optionally take a label argument which is used
to break out of nested loops:

fn main() {
'outer: for x in 1..5 {

println!("x: {x}");
let mut i = 0;
while i < x {

println!("x: {x}, i: {i}");
i += 1;
if i == 3 {

break 'outer;
}

}
}

}

In this case we break the outer loop after 3 iterations of the inner loop.

• Note that loop is the only looping construct which returns a non-trivial
value. This is because it's guaranteed to be entered at least once (unlike
while and for loops).

7.4 Blocks and Scopes
Blocks
A block in Rust contains a sequence of expressions. Each block has a value and
a type, which are those of the last expression of the block:

fn main() {
let z = 13;
let x = {

let y = 10;
println!("y: {y}");
z - y

};
println!("x: {x}");

}

If the last expression ends with ;, then the resulting value and type is ().

Scopes and Shadowing
A variable's scope is limited to the enclosing block.

You can shadow variables, both those from outer scopes and variables from the
same scope:

37

fn main() {
let a = 10;
println!("before: {a}");
{

let a = "hello";
println!("inner scope: {a}");

let a = true;
println!("shadowed in inner scope: {a}");

}

println!("after: {a}");
}

• You can show how the value of the block changes by changing the last
line in the block. For instance, adding/removing a semicolon or using a
return.

• Show that a variable's scope is limited by adding a b‘ in the inner block in
the last example, and then trying to access it outside that block.

• Shadowing is different from mutation, because after shadowing both
variable's memory locations exist at the same time. Both are available
under the same name, depending where you use it in the code.

• A shadowing variable can have a different type.
• Shadowing looks obscure at first, but is convenient for holding on to values

after .unwrap().

7.5 Functions
fn gcd(a: u32, b: u32) -> u32 {

if b > 0 {
gcd(b, a % b)

} else {
a

}
}

fn main() {
println!("gcd: {}", gcd(143, 52));

}

• Declaration parameters are followed by a type (the reverse of some pro-
gramming languages), then a return type.

• The last expression in a function body (or any block) becomes the return
value. Simply omit the ; at the end of the expression. The return keyword
can be used for early return, but the ”bare value” form is idiomatic at the
end of a function (refactor gcd to use a return).

38

• Some functions have no return value, and return the 'unit type', (). The
compiler will infer this if the -> () return type is omitted.

• Overloading is not supported -- each function has a single implementation.
– Always takes a fixed number of parameters. Default arguments are

not supported. Macros can be used to support variadic functions.
– Always takes a single set of parameter types. These types can be

generic, which will be covered later.

7.6 Macros
Macros are expanded into Rust code during compilation, and can take a variable
number of arguments. They are distinguished by a ! at the end. The Rust
standard library includes an assortment of useful macros.

• println!(format, ..) prints a line to standard output, applying format-
ting described in std::fmt.

• format!(format, ..) works just like println! but returns the result as
a string.

• dbg!(expression) logs the value of the expression and returns it.
• todo!() marks a bit of code as not-yet-implemented. If executed, it will

panic.
• unreachable!() marks a bit of code as unreachable. If executed, it will

panic.

fn factorial(n: u32) -> u32 {
let mut product = 1;
for i in 1..=n {

product *= dbg!(i);
}
product

}

fn fizzbuzz(n: u32) -> u32 {
todo!()

}

fn main() {
let n = 13;
println!("{n}! = {}", factorial(4));

}

The takeaway from this section is that these common conveniences exist, and
how to use them. Why they are defined as macros, and what they expand to, is
not especially critical.

The course does not cover defining macros, but a later section will describe use
of derive macros.

39

https://doc.rust-lang.org/std/fmt/index.html

7.7 Exercise: Collatz Sequence
The Collatz Sequence is defined as follows, for an arbitrary n1 greater than zero:

• If ni is 1, then the sequence terminates at ni.
• If ni is even, then ni+1 = ni / 2.
• If ni is odd, then ni+1 = 3 * ni + 1.

For example, beginning with n1 = 3:

• 3 is odd, so n2 = 3 * 3 + 1 = 10;
• 10 is even, so n3 = 10 / 2 = 5;
• 5 is odd, so n4 = 3 * 15 + 1 = 16;
• 16 is even, so n5 = 16 / 2 = 8;
• 8 is even, so n6 = 8 / 2 = 4;
• 4 is even, so n7 = 4 / 2 = 2;
• 2 is even, so n8 = 1; and
• the sequence terminates.

Write a function to calculate the length of the collatz sequence for a given initial
n.

/// Determine the length of the collatz sequence beginning at `n`.
fn collatz_length(mut n: i32) -> u32 {
todo!("Implement this")

}

fn main() {
todo!("Implement this")

}

7.7.1 Solution
/// Determine the length of the collatz sequence beginning at `n`.
fn collatz_length(mut n: i32) -> u32 {

let mut len = 1;
while n > 1 {

n = if n % 2 == 0 { n / 2 } else { 3 * n + 1 };
len += 1;

}
len

}

#[test]
fn test_collatz_length() {

assert_eq!(collatz_length(11), 15);
}

40

https://en.wikipedia.org/wiki/Collatz_conjecture

fn main() {
println!("Length: {}", collatz_length(11));

}

41

Part II

Day 1: Afternoon

42

Chapter 8

Welcome Back

In this session:

• Tuples and Arrays (1 hour)
• References (50 minutes)
• User-Defined Types (50 minutes)

Including 10 minute breaks, this session should take about 2 hours and 55
minutes

43

Chapter 9

Tuples and Arrays

In this segment:

• Tuples and Arrays (10 minutes)
• Array Iteration (3 minutes)
• Pattern Matching (10 minutes)
• Destructuring (5 minutes)
• Exercise: Nested Arrays (30 minutes)

This segment should take about 1 hour

9.1 Tuples and Arrays
Tuples and arrays are the first ”compound” types we have seen. All elements
of an array have the same type, while tuples can accommodate different types.
Both types have a size fixed at compile time.

Types Literals
Arrays [T; N] [20, 30, 40], [0; 3]
Tuples (), (T,), (T1, T2), ... (), ('x',), ('x', 1.2), ...

Array assignment and access:

fn main() {
let mut a: [i8; 10] = [42; 10];
a[5] = 0;
println!("a: {a:?}");

}

Tuple assignment and access:

44

fn main() {
let t: (i8, bool) = (7, true);
println!("t.0: {}", t.0);
println!("t.1: {}", t.1);

}

Key points:

Arrays:

• A value of the array type [T; N] holds N (a compile-time constant) elements
of the same type T. Note that the length of the array is part of its type,
which means that [u8; 3] and [u8; 4] are considered two different types.
Slices, which have a size determined at runtime, are covered later.

• Try accessing an out-of-bounds array element. Array accesses are checked
at runtime. Rust can usually optimize these checks away, and they can be
avoided using unsafe Rust.

• We can use literals to assign values to arrays.

• The println! macro asks for the debug implementation with the ? format
parameter: {} gives the default output, {:?} gives the debug output.
Types such as integers and strings implement the default output, but
arrays only implement the debug output. This means that we must use
debug output here.

• Adding #, eg {a:#?}, invokes a ”pretty printing” format, which can be
easier to read.

Tuples:

• Like arrays, tuples have a fixed length.

• Tuples group together values of different types into a compound type.

• Fields of a tuple can be accessed by the period and the index of the value,
e.g. t.0, t.1.

• The empty tuple () is also known as the ”unit type”. It is both a type,
and the only valid value of that type --- that is to say both the type and
its value are expressed as (). It is used to indicate, for example, that a
function or expression has no return value, as we'll see in a future slide.

– You can think of it as void that can be familiar to you from other
programming languages.

9.2 Array Iteration
The for statement supports iterating over arrays (but not tuples).

45

fn main() {
let primes = [2, 3, 5, 7, 11, 13, 17, 19];
for prime in primes {

for i in 2..prime {
assert_ne!(prime % i, 0);

}
}

}

This functionality uses the IntoIterator trait, but we haven't covered that yet.

The assert_ne! macro is new here. There are also assert_eq! and assert!
macros. These are always checked while, debug-only variants like debug_assert!
compile to nothing in release builds.

9.3 Pattern Matching
The match keyword lets you match a value against one or more patterns. The
comparisons are done from top to bottom and the first match wins.

The patterns can be simple values, similarly to switch in C and C++:

fn main() {
let input = 'x';
match input {

'q' => println!("Quitting"),
'a' | 's' | 'w' | 'd' => println!("Moving around"),
'0'..='9' => println!("Number input"),
key if key.is_lowercase() => println!("Lowercase: {key}"),
_ => println!("Something else"),

}
}

The _ pattern is a wildcard pattern which matches any value. The expressions
must be irrefutable, meaning that it covers every possibility, so _ is often used
as the final catch-all case.

Match can be used as an expression. Just like like if, each match arm must
have the same type. The type is the last expression of the block, if any. In the
example above, the type is ().

A variable in the pattern (key in this example) will create a binding that can be
used within the match arm.

A match guard causes the arm to match only if the condition is true.

Key Points:

• You might point out how some specific characters are being used when in
a pattern

46

– | as an or
– .. can expand as much as it needs to be
– 1..=5 represents an inclusive range
– _ is a wild card

• Match guards as a separate syntax feature are important and necessary
when we wish to concisely express more complex ideas than patterns alone
would allow.

• They are not the same as separate if expression inside of the match arm.
An if expression inside of the branch block (after =>) happens after the
match arm is selected. Failing the if condition inside of that block won't
result in other arms of the original match expression being considered.

• The condition defined in the guard applies to every expression in a pattern
with an |.

9.4 Destructuring
Destructuring is a way of extracting data from a data structure by writing a pat-
tern that is matched up to the data structure, binding variables to subcomponents
of the data structure.

You can destructure tuples and arrays by matching on their elements:

Tuples
fn main() {

describe_point((1, 0));
}

fn describe_point(point: (i32, i32)) {
match point {

(0, _) => println!("on Y axis"),
(_, 0) => println!("on X axis"),
(x, _) if x < 0 => println!("left of Y axis"),
(_, y) if y < 0 => println!("below X axis"),
_ => println!("first quadrant"),

}
}

Arrays
#[rustfmt::skip]
fn main() {

let triple = [0, -2, 3];
println!("Tell me about {triple:?}");

47

match triple {
[0, y, z] => println!("First is 0, y = {y}, and z = {z}"),
[1, ..] => println!("First is 1 and the rest were ignored"),
_ => println!("All elements were ignored"),

}
}

• Create a new array pattern using _ to represent an element.
• Add more values to the array.
• Point out that how .. will expand to account for different number of

elements.
• Show matching against the tail with patterns [.., b] and [a@..,b]

9.5 Exercise: Nested Arrays
Arrays can contain other arrays:

let array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];

What is the type of this variable?

Use an array such as the above to write a function transpose which will transpose
a matrix (turn rows into columns):

��1 2 3�� �1 4 7�
"transpose"��4 5 6�� "=="�2 5 8�

��7 8 9�� �3 6 9�

Hard-code both functions to operate on 3 × 3 matrices.

Copy the code below to https://play.rust-lang.org/ and implement the functions:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
unimplemented!()

}

fn main() {
let matrix = [

[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],

];

println!("matrix: {:#?}", matrix);
let transposed = transpose(matrix);

48

https://play.rust-lang.org/

println!("transposed: {:#?}", transposed);
}

9.5.1 Solution
fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {

let mut result = [[0; 3]; 3];
for i in 0..3 {

for j in 0..3 {
result[j][i] = matrix[i][j];

}
}
result

}

#[test]
fn test_transpose() {

let matrix = [
[101, 102, 103], //
[201, 202, 203],
[301, 302, 303],

];
let transposed = transpose(matrix);
assert_eq!(

transposed,
[

[101, 201, 301], //
[102, 202, 302],
[103, 203, 303],

]
);

}

fn main() {
let matrix = [

[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],

];

println!("matrix: {:#?}", matrix);
let transposed = transpose(matrix);
println!("transposed: {:#?}", transposed);

}

49

Chapter 10

References

In this segment:

• Shared References (10 minutes)
• Exclusive References (10 minutes)
• Exercise: Geometry (30 minutes)

This segment should take about 50 minutes

10.1 Shared References
A reference provides a way to access another value without taking responsibility
for the value, and is also called ”borrowing”. Shared references are read-only,
and the referenced data cannot change.

fn main() {
let a = 'A';
let b = 'B';
let mut r: &char = &a;
println!("r: {}", *r);
r = &b;
println!("r: {}", *r);

}

A shared reference to a type T has type &T. A reference value is made with the &
operator. The * operator ”dereferences” a reference, yielding its value.

Rust will statically forbid dangling references:

fn x_axis(x: i32) -> &(i32, i32) {
let point = (x, 0);
return &point;

}

50

• A reference is said to ”borrow” the value it refers to, and this is a good
model for students not familiar with pointers: code can use the reference to
access the value, but is still ”owned” by the original variable. The course
will get into more detail on ownership in day 3.

• References are implemented as pointers, and a key advantage is that they
can be much smaller than the thing they point to. Students familiar with
C or C++ will recognize references as pointers. Later parts of the course
will cover how Rust prevents the memory-safety bugs that come from using
raw pointers.

• Rust does not automatically create references for you - the & is always
required.

• Rust will auto-dereference in some cases, in particular when invoking
methods (try r.count_ones()). There is no need for an -> operator like
in C++.

• In this example, r is mutable so that it can be reassigned (r = &b). Note
that this re-binds r, so that it refers to something else. This is different
from C++, where assignment to a reference changes the referenced value.

• A shared reference does not allow modifying the value it refers to, even if
that value was mutable. Try *r = 'X'.

• Rust is tracking the lifetimes of all references to ensure they live long
enough. Dangling references cannot occur in safe Rust. x_axis would
return a reference to point, but point will be deallocated when the
function returns, so this will not compile.

• We will talk more about borrowing when we get to ownership.

10.2 Exclusive References
Exclusive references, also known as mutable references, allow changing the value
they refer to. They have type &mut T.

fn main() {
let mut point = (1, 2);
let x_coord = &mut point.0;
*x_coord = 20;
println!("point: {point:?}");

}

Key points:

• ”Exclusive” means that only this reference can be used to access the value.
No other references (shared or exclusive) can exist at the same time, and
the referenced value cannot be accessed while the exclusive reference exists.
Try making an &point.0 or changing point.0 while x_coord is alive.

51

• Be sure to note the difference between let mut x_coord: &i32 and let
x_coord: &mut i32. The first one represents a shared reference which
can be bound to different values, while the second represents an exclusive
reference to a mutable value.

10.3 Exercise: Geometry
We will create a few utility functions for 3-dimensional geometry, representing a
point as [f64;3]. It is up to you to determine the function signatures.

// Calculate the magnitude of a vector by summing the squares of its coordinates
// and taking the square root. Use the `sqrt()` method to calculate the square
// root, like `v.sqrt()`.

fn magnitude(...) -> f64 {
todo!()

}

// Normalize a vector by calculating its magnitude and dividing all of its
// coordinates by that magnitude.

fn normalize(...) {
todo!()

}

// Use the following `main` to test your work.

fn main() {
println!(

"Magnitude of a unit vector: {}",
magnitude(&[0.0, 1.0, 0.0])

);

let mut v = [1.0, 2.0, 9.0];
println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);
println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));

}

10.3.1 Solution
/// Calculate the magnitude of the given vector.
fn magnitude(vector: &[f64; 3]) -> f64 {

let mut mag_squared = 0.0;

52

for coord in vector {
mag_squared += coord * coord;

}
mag_squared.sqrt()

}

/// Change the magnitude of the vector to 1.0 without changing its direction.
fn normalize(vector: &mut [f64; 3]) {

let mag = magnitude(vector);
vector[0] /= mag;
vector[1] /= mag;
vector[2] /= mag;

}

fn main() {
println!(

"Magnitude of a unit vector: {}",
magnitude(&[0.0, 1.0, 0.0])

);

let mut v = [1.0, 2.0, 9.0];
println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);
println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));

}

53

Chapter 11

User-Defined Types

In this segment:

• Named Structs (10 minutes)
• Tuple Structs (10 minutes)
• Enums (5 minutes)
• Static and Const (5 minutes)
• Type Aliases (2 minutes)
• Exercise: Elevator Events (15 minutes)

This segment should take about 50 minutes

11.1 Named Structs
Like C and C++, Rust has support for custom structs:

struct Person {
name: String,
age: u8,

}

fn describe(person: &Person) {
println!("{} is {} years old", person.name, person.age);

}

fn main() {
let mut peter = Person {

name: String::from("Peter"),
age: 27,

};
describe(&peter);

54

peter.age = 28;
describe(&peter);

let name = String::from("Avery");
let age = 39;
let avery = Person { name, age };
describe(&avery);

let jackie = Person {
name: String::from("Jackie"),
..avery

};
describe(&jackie);

}

Key Points:

• Structs work like in C or C++.
– Like in C++, and unlike in C, no typedef is needed to define a type.
– Unlike in C++, there is no inheritance between structs.

• This may be a good time to let people know there are different types of
structs.

– Zero-sized structs (e.g. struct Foo;) might be used when imple-
menting a trait on some type but don’t have any data that you want
to store in the value itself.

– The next slide will introduce Tuple structs, used when the field names
are not important.

• If you already have variables with the right names, then you can create
the struct using a shorthand.

• The syntax ..peter allows us to copy the majority of the fields from the
old struct without having to explicitly type it all out. It must always be
the last element.

11.2 Tuple Structs
If the field names are unimportant, you can use a tuple struct:

struct Point(i32, i32);

fn main() {
let p = Point(17, 23);
println!("({}, {})", p.0, p.1);

}

This is often used for single-field wrappers (called newtypes):

55

struct PoundsOfForce(f64);
struct Newtons(f64);

fn compute_thruster_force() -> PoundsOfForce {
todo!("Ask a rocket scientist at NASA")

}

fn set_thruster_force(force: Newtons) {
// ...

}

fn main() {
let force = compute_thruster_force();
set_thruster_force(force);

}

• Newtypes are a great way to encode additional information about the value
in a primitive type, for example:

– The number is measured in some units: Newtons in the example
above.

– The value passed some validation when it was created, so you no
longer have to validate it again at every use: PhoneNumber(String)
or OddNumber(u32).

• Demonstrate how to add a f64 value to a Newtons type by accessing the
single field in the newtype.

– Rust generally doesn’t like inexplicit things, like automatic unwrap-
ping or for instance using booleans as integers.

– Operator overloading is discussed on Day 3 (generics).
• The example is a subtle reference to the Mars Climate Orbiter failure.

11.3 Enums
The enum keyword allows the creation of a type which has a few different variants:

#[derive(Debug)]
enum Direction {

Left,
Right,

}

#[derive(Debug)]
enum PlayerMove {

Pass, // Simple variant
Run(Direction), // Tuple variant
Teleport { x: u32, y: u32 }, // Struct variant

}

56

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

fn main() {
let m = PlayerMove::Run(Direction::Left);
println!("On this turn: {:?}", m);

}

Key Points:

• Enumerations allow you to collect a set of values under one type
• Direction has two variants, Left and Right. These are referred to with

the Direction::.. namespace.
• PlayerMove shows the three types of variants. Rust will also store a

discriminant so that it can determine at runtime which variant is in a
value.

• This might be a good time to compare Structs and Enums:
– In both, you can have a simple version without fields (unit struct) or

one with different types of fields (variant payloads).
– You could even implement the different variants of an enum with

separate structs but then they wouldn’t be the same type as they
would if they were all defined in an enum.

• Rust uses minimal space to store the discriminant.
– If necessary, it stores an integer of the smallest required size
– If the allowed variant values do not cover all bit patterns, it will

use invalid bit patterns to encode the discriminant (the ”niche opti-
mization”). For example, Option<&u8> stores either a pointer to an
integer or NULL for the None variant.

– You can control the discriminant if needed (e.g., for compatibility
with C):
#[repr(u32)]
enum Bar {

A, // 0
B = 10000,
C, // 10001

}

fn main() {
println!("A: {}", Bar::A as u32);
println!("B: {}", Bar::B as u32);
println!("C: {}", Bar::C as u32);

}
Without repr, the discriminant type takes 2 bytes, because 10001 fits
2 bytes.

More to Explore
Rust has several optimizations it can employ to make enums take up less space.

57

• Niche optimization: Rust will merge unused bit patterns for the enum
discriminant.

• Null pointer optimization: For some types, Rust guarantees that
size_of::<T>() equals size_of::<Option<T>>().

Example code if you want to show how the bitwise representation may
look like in practice. It's important to note that the compiler provides no
guarantees regarding this representation, therefore this is totally unsafe.

use std::mem::transmute;

macro_rules! dbg_bits {
($e:expr, $bit_type:ty) => {

println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>($e));
};

}

fn main() {
unsafe {

println!("bool:");
dbg_bits!(false, u8);
dbg_bits!(true, u8);

println!("Option<bool>:");
dbg_bits!(None::<bool>, u8);
dbg_bits!(Some(false), u8);
dbg_bits!(Some(true), u8);

println!("Option<Option<bool>>:");
dbg_bits!(Some(Some(false)), u8);
dbg_bits!(Some(Some(true)), u8);
dbg_bits!(Some(None::<bool>), u8);
dbg_bits!(None::<Option<bool>>, u8);

println!("Option<&i32>:");
dbg_bits!(None::<&i32>, usize);
dbg_bits!(Some(&0i32), usize);

}
}

More complex example if you want to discuss what happens when we chain
more than 256 Options together.

#![recursion_limit = "1000"]

use std::mem::transmute;

58

https://doc.rust-lang.org/std/option/#representation

macro_rules! dbg_bits {
($e:expr, $bit_type:ty) => {

println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>($e));
};

}

// Macro to wrap a value in 2^n Some() where n is the number of "@" signs.
// Increasing the recursion limit is required to evaluate this macro.
macro_rules! many_options {

($value:expr) => { Some($value) };
($value:expr, @) => {

Some(Some($value))
};
($value:expr, @ $($more:tt)+) => {

many_options!(many_options!($value, $($more)+), $($more)+)
};

}

fn main() {
// TOTALLY UNSAFE. Rust provides no guarantees about the bitwise
// representation of types.
unsafe {

assert_eq!(many_options!(false), Some(false));
assert_eq!(many_options!(false, @), Some(Some(false)));
assert_eq!(many_options!(false, @@), Some(Some(Some(Some(false)))));

println!("Bitwise representation of a chain of 128 Option's.");
dbg_bits!(many_options!(false, @@@@@@@), u8);
dbg_bits!(many_options!(true, @@@@@@@), u8);

println!("Bitwise representation of a chain of 256 Option's.");
dbg_bits!(many_options!(false, @@@@@@@@), u16);
dbg_bits!(many_options!(true, @@@@@@@@), u16);

println!("Bitwise representation of a chain of 257 Option's.");
dbg_bits!(many_options!(Some(false), @@@@@@@@), u16);
dbg_bits!(many_options!(Some(true), @@@@@@@@), u16);
dbg_bits!(many_options!(None::<bool>, @@@@@@@@), u16);

}
}

11.4 Static and Const
Static and constant variables are two different ways to create globally-scoped
values that cannot be moved or reallocated during the execution of the program.

59

const

Constant variables are evaluated at compile time and their values are inlined
wherever they are used:

const DIGEST_SIZE: usize = 3;
const ZERO: Option<u8> = Some(42);

fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {
let mut digest = [ZERO.unwrap_or(0); DIGEST_SIZE];
for (idx, &b) in text.as_bytes().iter().enumerate() {

digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE].wrapping_add(b);
}
digest

}

fn main() {
let digest = compute_digest("Hello");
println!("digest: {digest:?}");

}

According to the Rust RFC Book these are inlined upon use.

Only functions marked const can be called at compile time to generate const
values. const functions can however be called at runtime.

static

Static variables will live during the whole execution of the program, and therefore
will not move:

static BANNER: &str = "Welcome to RustOS 3.14";

fn main() {
println!("{BANNER}");

}

As noted in the Rust RFC Book, these are not inlined upon use and have an
actual associated memory location. This is useful for unsafe and embedded code,
and the variable lives through the entirety of the program execution. When a
globally-scoped value does not have a reason to need object identity, const is
generally preferred.

• Mention that const behaves semantically similar to C++'s constexpr.
• static, on the other hand, is much more similar to a const or mutable

global variable in C++.
• static provides object identity: an address in memory and state as

required by types with interior mutability such as Mutex<T>.

60

https://rust-lang.github.io/rfcs/0246-const-vs-static.html
https://rust-lang.github.io/rfcs/0246-const-vs-static.html

• It isn't super common that one would need a runtime evaluated constant,
but it is helpful and safer than using a static.

Properties table:

Property Static Constant
Has an address in memory Yes No (inlined)
Lives for the entire duration of the program Yes No
Can be mutable Yes (unsafe) No
Evaluated at compile time Yes (initialised at compile time) Yes
Inlined wherever it is used No Yes

11.5 More to Explore
Because static variables are accessible from any thread, they must be Sync.
Interior mutability is possible through a Mutex, atomic or similar.

Thread-local data can be created with the macro std::thread_local.

11.6 Type Aliases
A type alias creates a name for another type. The two types can be used
interchangeably.

enum CarryableConcreteItem {
Left,
Right,

}

type Item = CarryableConcreteItem;

// Aliases are more useful with long, complex types:
use std::{sync::{Arc, RwLock}, cell::RefCell};
type PlayerInventory = RwLock<Vec<Arc<RefCell<Item>>>>;

C programmers will recognize this as similar to a typedef.

11.7 Exercise: Elevator Events
We will create a data structure to represent an event in an elevator control
system. It is up to you to define the types and functions to construct various
events. Use #[derive(Debug)] to allow the types to be formatted with {:?}.

/// The car has arrived on the given floor.
fn car_arrived(floor: i32) -> Event {

61

https://doc.rust-lang.org/std/sync/struct.Mutex.html

todo!()
}

/// The car doors have opened.
fn car_door_opened() -> Event {

todo!()
}

/// The car doors have closed.
fn car_door_closed() -> Event {

todo!()
}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {

todo!()
}

/// A floor button was pressed in the elevator car.
fn car_floor_button_pressed(floor: i32) -> Event {

todo!()
}

fn main() {
println!(

"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

);
println!(

"The car has arrived on the ground floor: {:?}",
car_arrived(0)

);
println!("The car door opened: {:?}", car_door_opened());
println!(

"A passenger has pressed the 3rd floor button: {:?}",
car_floor_button_pressed(3)

);
println!("The car door closed: {:?}", car_door_closed());
println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

}

This exercise only requires creating data structures. The next part of the course
will cover getting data out of these structures.

62

11.7.1 Solution
#[derive(Debug)]
/// An event in the elevator system that the controller must react to.
enum Event {

/// A button was pressed.
ButtonPressed(Button),

/// The car has arrived at the given floor.
CarArrived(Floor),

/// The car's doors have opened.
CarDoorOpened,

/// The car's doors have closed.
CarDoorClosed,

}

/// A floor is represented as an integer.
type Floor = i32;

/// A direction of travel.
#[derive(Debug)]
enum Direction {

Up,
Down,

}

/// A user-accessible button.
#[derive(Debug)]
enum Button {

/// A button in the elevator lobby on the given floor.
LobbyCall(Direction, Floor),

/// A floor button within the car.
CarFloor(Floor),

}

/// The car has arrived on the given floor.
fn car_arrived(floor: i32) -> Event {

Event::CarArrived(floor)
}

/// The car doors have opened.
fn car_door_opened() -> Event {

Event::CarDoorOpened

63

}

/// The car doors have closed.
fn car_door_closed() -> Event {

Event::CarDoorClosed
}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {

Event::ButtonPressed(Button::LobbyCall(dir, floor))
}

/// A floor button was pressed in the elevator car.
fn car_floor_button_pressed(floor: i32) -> Event {

Event::ButtonPressed(Button::CarFloor(floor))
}

fn main() {
println!(

"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

);
println!(

"The car has arrived on the ground floor: {:?}",
car_arrived(0)

);
println!("The car door opened: {:?}", car_door_opened());
println!(

"A passenger has pressed the 3rd floor button: {:?}",
car_floor_button_pressed(3)

);
println!("The car door closed: {:?}", car_door_closed());
println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

}

64

Part III

Day 2: Morning

65

Chapter 12

Welcome to Day 2

Now that we have seen a fair amount of Rust, today will focus on Rust's type
system:

• Pattern matching: extracting data from structures.
• Methods: associating functions with types.
• Traits: behaviors shared by multiple types.
• Generics: parameterizing types on other types.
• Standard library types and traits: a tour of Rust's rich standard library.

Schedule
In this session:

• Welcome (3 minutes)
• Pattern Matching (50 minutes)
• Methods and Traits (1 hour and 5 minutes)
• Generics (45 minutes)

Including 10 minute breaks, this session should take about 3 hours and 15
minutes

66

Chapter 13

Pattern Matching

In this segment:

• Destructuring (10 minutes)
• Let Control Flow (10 minutes)
• Exercise: Expression Evaluation (30 minutes)

This segment should take about 50 minutes

13.1 Destructuring
Like tuples, structs and enums can also be destructured by matching:

Structs
struct Foo {

x: (u32, u32),
y: u32,

}

#[rustfmt::skip]
fn main() {

let foo = Foo { x: (1, 2), y: 3 };
match foo {

Foo { x: (1, b), y } => println!("x.0 = 1, b = {b}, y = {y}"),
Foo { y: 2, x: i } => println!("y = 2, x = {i:?}"),
Foo { y, .. } => println!("y = {y}, other fields were ignored"),

}
}

67

Enums
Patterns can also be used to bind variables to parts of your values. This is how
you inspect the structure of your types. Let us start with a simple enum type:

enum Result {
Ok(i32),
Err(String),

}

fn divide_in_two(n: i32) -> Result {
if n % 2 == 0 {

Result::Ok(n / 2)
} else {

Result::Err(format!("cannot divide {n} into two equal parts"))
}

}

fn main() {
let n = 100;
match divide_in_two(n) {

Result::Ok(half) => println!("{n} divided in two is {half}"),
Result::Err(msg) => println!("sorry, an error happened: {msg}"),

}
}

Here we have used the arms to destructure the Result value. In the first arm,
half is bound to the value inside the Ok variant. In the second arm, msg is
bound to the error message.

13.2 Structs
• Change the literal values in foo to match with the other patterns.
• Add a new field to Foo and make changes to the pattern as needed.
• The distinction between a capture and a constant expression can be hard

to spot. Try changing the 2 in the second arm to a variable, and see that
it subtly doesn't work. Change it to a const and see it working again.

13.3 Enums
Key points:

• The if/else expression is returning an enum that is later unpacked with
a match.

• You can try adding a third variant to the enum definition and displaying
the errors when running the code. Point out the places where your code is

68

now inexhaustive and how the compiler tries to give you hints.
• The values in the enum variants can only be accessed after being pattern

matched. The pattern binds references to the fields in the ”match arm”
after the =>.

• Demonstrate what happens when the search is inexhaustive. Note the
advantage the Rust compiler provides by confirming when all cases are
handled.

13.4 Let Control Flow
Rust has a few control flow constructs which differ from other languages. They
are used for pattern matching:

• if let expressions
• while let expressions
• match expressions

13.5 if let expressions
The if let expression lets you execute different code depending on whether a
value matches a pattern:

fn sleep_for(secs: f32) {
let dur = if let Ok(dur) = std::time::Duration::try_from_secs_f32(secs) {

dur
} else {

std::time::Duration::from_millis(500)
};
std::thread::sleep(dur);
println!("slept for {:?}", dur);

}

fn main() {
sleep_for(-10.0);
sleep_for(0.8);

}

For the common case of matching a pattern and returning from the function, use
let else. The ”else” case must diverge (return, break, or panic - anything
but falling off the end of the block).

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let s = if let Some(s) = maybe_string {

s
} else {

return Err(String::from("got None"));

69

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
https://doc.rust-lang.org/rust-by-example/flow_control/let_else.html

};

let first_byte_char = if let Some(first_byte_char) = s.chars().next() {
first_byte_char

} else {
return Err(String::from("got empty string"));

};

if let Some(digit) = first_byte_char.to_digit(16) {
Ok(digit)

} else {
Err(String::from("not a hex digit"))

}
}

fn main() {
println!("result: {:?}", hex_or_die_trying(Some(String::from("foo"))));

}

Like with if let, there is a while let variant which repeatedly tests a value
against a pattern:

fn main() {
let mut name = String::from("Comprehensive Rust �");
while let Some(c) = name.pop() {

println!("character: {c}");
}
// (There are more efficient ways to reverse a string!)

}

Here String::pop returns Some(c) until the string is empty, after which it will
return None. The while let lets us keep iterating through all items.

if-let
• Unlike match, if let does not have to cover all branches. This can make

it more concise than match.
• A common usage is handling Some values when working with Option.
• Unlike match, if let does not support guard clauses for pattern matching.

let-else
if-lets can pile up, as shown. The let-else construct supports flattening this
nested code. Rewrite the awkward version for students, so they can see the
transformation.

The rewritten version is:

70

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.pop

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let Some(s) = maybe_string else {

return Err(String::from("got None"));
};

let Some(first_byte_char) = s.chars().next() else {
return Err(String::from("got empty string"));

};

let Some(digit) = first_byte_char.to_digit(16) else {
return Err(String::from("not a hex digit"));

};

return Ok(digit);
}

13.6 while-let
• Point out that the while let loop will keep going as long as the value

matches the pattern.
• You could rewrite the while let loop as an infinite loop with an if state-

ment that breaks when there is no value to unwrap for name.pop(). The
while let provides syntactic sugar for the above scenario.

13.7 Exercise: Expression Evaluation
Let's write a simple recursive evaluator for arithmetic expressions. Start with
an enum defining the binary operations:

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op {

op: Operation,
left: Box<Expression>,

71

right: Box<Expression>,
},

/// A literal value
Value(i64),

}

/// The result of evaluating an expression.
#[derive(Debug, PartialEq, Eq)]
enum Res {

/// Evaluation was successful, with the given result.
Ok(i64),
/// Evaluation failed, with the given error message.
Err(String),

}
// Allow `Ok` and `Err` as shorthands for `Res::Ok` and `Res::Err`.
use Res::{Err, Ok};

fn eval(e: Expression) -> Res {
todo!()

}

#[test]
fn test_value() {

assert_eq!(eval(Expression::Value(19)), Ok(19));
}

#[test]
fn test_sum() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),

}),
Ok(30)

);
}

#[test]
fn test_recursion() {

let term1 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),

};

72

let term2 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Op {

op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),

}),
right: Box::new(Expression::Value(5)),

};
assert_eq!(

eval(Expression::Op {
op: Operation::Add,
left: Box::new(term1),
right: Box::new(term2),

}),
Ok(85)

);
}

#[test]
fn test_error() {

assert_eq!(
eval(Expression::Op {

op: Operation::Div,
left: Box::new(Expression::Value(99)),
right: Box::new(Expression::Value(0)),

}),
Err(String::from("division by zero"))

);
}

The Box type here is a smart pointer, and will be covered in detail later
in the course. An expression can be ”boxed” with Box::new as seen in the
tests. To evaluate a boxed expression, use the deref operator to ”unbox” it:
eval(*boxed_expr).

Some expressions cannot be evaluated and will return an error. The Res type
represents either a successful value or an error with a message. This is very
similar to the standard-library Result which we will see later.

Copy and paste the code into the Rust playground, and begin implementing
eval. The final product should pass the tests. It may be helpful to use todo!()
and get the tests to pass one-by-one. You can also skip a test temporarily with
#[ignore]:

#[test]
#[ignore]
fn test_value() { .. }

73

If you finish early, try writing a test that results in an integer overflow. How
could you handle this with Res::Err instead of a panic?

13.7.1 Solution
/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,
Sub,
Mul,
Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.
Op {

op: Operation,
left: Box<Expression>,
right: Box<Expression>,

},

/// A literal value
Value(i64),

}

/// The result of evaluating an expression.
#[derive(Debug, PartialEq, Eq)]
enum Res {

/// Evaluation was successful, with the given result.
Ok(i64),
/// Evaluation failed, with the given error message.
Err(String),

}
// Allow `Ok` and `Err` as shorthands for `Res::Ok` and `Res::Err`.
use Res::{Err, Ok};

fn eval(e: Expression) -> Res {
match e {

Expression::Op { op, left, right } => {
let left = match eval(*left) {

Ok(v) => v,
Err(msg) => return Err(msg),

};

74

let right = match eval(*right) {
Ok(v) => v,
Err(msg) => return Err(msg),

};
Ok(match op {

Operation::Add => left + right,
Operation::Sub => left - right,
Operation::Mul => left * right,
Operation::Div => {

if right == 0 {
return Err(String::from("division by zero"));

} else {
left / right

}
}

})
}
Expression::Value(v) => Ok(v),

}
}

#[test]
fn test_value() {

assert_eq!(eval(Expression::Value(19)), Ok(19));
}

#[test]
fn test_sum() {

assert_eq!(
eval(Expression::Op {

op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),

}),
Ok(30)

);
}

#[test]
fn test_recursion() {

let term1 = Expression::Op {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),

};
let term2 = Expression::Op {

75

op: Operation::Mul,
left: Box::new(Expression::Op {

op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),

}),
right: Box::new(Expression::Value(5)),

};
assert_eq!(

eval(Expression::Op {
op: Operation::Add,
left: Box::new(term1),
right: Box::new(term2),

}),
Ok(85)

);
}

#[test]
fn test_error() {

assert_eq!(
eval(Expression::Op {

op: Operation::Div,
left: Box::new(Expression::Value(99)),
right: Box::new(Expression::Value(0)),

}),
Err(String::from("division by zero"))

);
}

fn main() {
let expr = Expression::Op {

op: Operation::Sub,
left: Box::new(Expression::Value(20)),
right: Box::new(Expression::Value(10)),

};
println!("expr: {:?}", expr);
println!("result: {:?}", eval(expr));

}

76

Chapter 14

Methods and Traits

In this segment:

• Methods (10 minutes)
• Traits (10 minutes)
• Deriving (5 minutes)
• Trait Objects (10 minutes)
• Exercise: GUI Library (30 minutes)

This segment should take about 1 hour and 5 minutes

14.1 Methods
Rust allows you to associate functions with your new types. You do this with an
impl block:

#[derive(Debug)]
struct Race {

name: String,
laps: Vec<i32>,

}

impl Race {
fn new(name: &str) -> Self { // No receiver, a static method

Race { name: String::from(name), laps: Vec::new() }
}

fn add_lap(&mut self, lap: i32) { // Exclusive borrowed read-write access to self
self.laps.push(lap);

}

77

fn print_laps(&self) { // Shared and read-only borrowed access to self
println!("Recorded {} laps for {}:", self.laps.len(), self.name);
for (idx, lap) in self.laps.iter().enumerate() {

println!("Lap {idx}: {lap} sec");
}

}

fn finish(self) { // Exclusive ownership of self
let total = self.laps.iter().sum::<i32>();
println!("Race {} is finished, total lap time: {}", self.name, total);

}
}

fn main() {
let mut race = Race::new("Monaco Grand Prix");
race.add_lap(70);
race.add_lap(68);
race.print_laps();
race.add_lap(71);
race.print_laps();
race.finish();
// race.add_lap(42);

}

The self arguments specify the ”receiver” - the object the method acts on.
There are several common receivers for a method:

• &self: borrows the object from the caller using a shared and immutable
reference. The object can be used again afterwards.

• &mut self: borrows the object from the caller using a unique and mutable
reference. The object can be used again afterwards.

• self: takes ownership of the object and moves it away from the caller.
The method becomes the owner of the object. The object will be dropped
(deallocated) when the method returns, unless its ownership is explicitly
transmitted. Complete ownership does not automatically mean mutability.

• mut self: same as above, but the method can mutate the object.
• No receiver: this becomes a static method on the struct. Typically used to

create constructors which are called new by convention.

Key Points:

• It can be helpful to introduce methods by comparing them to functions.
– Methods are called on an instance of a type (such as a struct or enum),

the first parameter represents the instance as self.
– Developers may choose to use methods to take advantage of method

receiver syntax and to help keep them more organized. By using
methods we can keep all the implementation code in one predictable
place.

78

• Point out the use of the keyword self, a method receiver.
– Show that it is an abbreviated term for self: Self and perhaps

show how the struct name could also be used.
– Explain that Self is a type alias for the type the impl block is in

and can be used elsewhere in the block.
– Note how self is used like other structs and dot notation can be used

to refer to individual fields.
– This might be a good time to demonstrate how the &self differs from

self by trying to run finish twice.
– Beyond variants on self, there are also special wrapper types allowed

to be receiver types, such as Box<Self>.
• Note that references have not been covered yet. References in method

receivers are a particularly ”natural” form of reference, so there is no need
to go into a great level of detail.

14.2 Traits
Rust lets you abstract over types with traits. They're similar to interfaces:

struct Dog { name: String, age: i8 }
struct Cat { lives: i8 } // No name needed, cats won't respond anyway.

trait Pet {
fn talk(&self) -> String;

fn greet(&self) {
println!("Oh you're a cutie! What's your name? {}", self.talk());

}
}

impl Pet for Dog {
fn talk(&self) -> String { format!("Woof, my name is {}!", self.name) }

}

impl Pet for Cat {
fn talk(&self) -> String { String::from("Miau!") }

}

fn main() {
let captain_floof = Cat { lives: 9 };
let fido = Dog { name: String::from("Fido"), age: 5 };

captain_floof.greet();
fido.greet();

}

79

https://doc.rust-lang.org/reference/special-types-and-traits.html

• A trait defines a number of methods that types must have in order to
implement the trait.

• Traits are implemented in an impl <trait> for <type> { .. } block.

• Traits may specify pre-implemented (provided) methods and methods that
users are required to implement themselves. Provided methods can rely
on required methods. In this case, greet is provided, and relies on talk.

14.3 Deriving
Supported traits can be automatically implemented for your custom types, as
follows:

#[derive(Debug, Clone, Default)]
struct Player {

name: String,
strength: u8,
hit_points: u8,

}

fn main() {
let p1 = Player::default(); // Default trait adds `default` constructor.
let mut p2 = p1.clone(); // Clone trait adds `clone` method.
p2.name = String::from("EldurScrollz");
// Debug trait adds support for printing with `{:?}`.
println!("{:?} vs. {:?}", p1, p2);

}

Derivation is implemented with macros, and many crates provide useful derive
macros to add useful functionality. For example, serde can derive serialization
support for a struct using #[derive(Serialize)].

14.4 Trait Objects
Trait objects allow for values of different types, for instance in a collection:

struct Dog { name: String, age: i8 }
struct Cat { lives: i8 } // No name needed, cats won't respond anyway.

trait Pet {
fn talk(&self) -> String;

}

impl Pet for Dog {
fn talk(&self) -> String { format!("Woof, my name is {}!", self.name) }

}

80

impl Pet for Cat {
fn talk(&self) -> String { String::from("Miau!") }

}

fn main() {
let pets: Vec<Box<dyn Pet>> = vec![

Box::new(Cat { lives: 9 }),
Box::new(Dog { name: String::from("Fido"), age: 5 }),

];
for pet in pets {

println!("Hello, who are you? {}", pet.talk());
}

}

Memory layout after allocating pets:

Stack Heap
.- - - - - - - - - - - - - -. .- -.
: : : :
: pets : : +----+----+----+----+ :
: +-----------+-------+ : : +-----+-----+ .->| F | i | d | o | :
: | ptr | o---+---+-----+-->| o o | o o | | +----+----+----+----+ :
: | len | 2 | : : +-|-|-+-|-|-+ `---------. :
: | capacity | 2 | : : | | | | data | :
: +-----------+-------+ : : | | | | +-------+--|-------+ :
: : : | | | '-->| name | o, 4, 4 | :
: : : | | | | age | 5 | :
`- - - - - - - - - - - - - -' : | | | +-------+----------+ :

: | | | :
: | | | vtable :
: | | | +----------------------+ :
: | | '---->| "<Dog as Pet>::talk" | :
: | | +----------------------+ :
: | | :
: | | data :
: | | +-------+-------+ :
: | '-->| lives | 9 | :
: | +-------+-------+ :
: | :
: | vtable :
: | +----------------------+ :
: '---->| "<Cat as Pet>::talk" | :
: +----------------------+ :
: :
'- -'

81

• Types that implement a given trait may be of different sizes. This makes
it impossible to have things like Vec<dyn Pet> in the example above.

• dyn Pet is a way to tell the compiler about a dynamically sized type that
implements Pet.

• In the example, pets is allocated on the stack and the vector data is on
the heap. The two vector elements are fat pointers:

– A fat pointer is a double-width pointer. It has two components: a
pointer to the actual object and a pointer to the virtual method table
(vtable) for the Pet implementation of that particular object.

– The data for the Dog named Fido is the name and age fields. The Cat
has a lives field.

• Compare these outputs in the above example:
println!("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>());
println!("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>());
println!("{}", std::mem::size_of::<&dyn Pet>());
println!("{}", std::mem::size_of::<Box<dyn Pet>>());

14.5 Exercise: GUI Library
Let us design a classical GUI library using our new knowledge of traits and trait
objects. We'll only implement the drawing of it (as text) for simplicity.

We will have a number of widgets in our library:

• Window: has a title and contains other widgets.
• Button: has a label. In reality, it would also take a callback function

to allow the program to do something when the button is clicked but we
won't include that since we're only drawing the GUI.

• Label: has a label.

The widgets will implement a Widget trait, see below.

Copy the code below to https://play.rust-lang.org/, fill in the missing draw_into
methods so that you implement the Widget trait:

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

pub trait Widget {
/// Natural width of `self`.
fn width(&self) -> usize;

/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

/// Draw the widget on standard output.
fn draw(&self) {

82

https://en.wikipedia.org/wiki/Virtual_method_table
https://play.rust-lang.org/

let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");

}
}

pub struct Label {
label: String,

}

impl Label {
fn new(label: &str) -> Label {

Label {
label: label.to_owned(),

}
}

}

pub struct Button {
label: Label,

}

impl Button {
fn new(label: &str) -> Button {

Button {
label: Label::new(label),

}
}

}

pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,

}

impl Window {
fn new(title: &str) -> Window {

Window {
title: title.to_owned(),
widgets: Vec::new(),

}
}

fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);

}

83

fn inner_width(&self) -> usize {
std::cmp::max(

self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),

)
}

}

// TODO: Implement `Widget` for `Label`.

// TODO: Implement `Widget` for `Button`.

// TODO: Implement `Widget` for `Window`.

fn main() {
let mut window = Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(Button::new("Click me!")));
window.draw();

}

The output of the above program can be something simple like this:

========
Rust GUI Demo 1.23
========

This is a small text GUI demo.

| Click me! |

If you want to draw aligned text, you can use the fill/alignment formatting
operators. In particular, notice how you can pad with different characters (here
a '/') and how you can control alignment:

fn main() {
let width = 10;
println!("left aligned: |{:/<width$}|", "foo");
println!("centered: |{:/^width$}|", "foo");
println!("right aligned: |{:/>width$}|", "foo");

}

Using such alignment tricks, you can for example produce output like this:

+--------------------------------+
| Rust GUI Demo 1.23 |
+================================+
| This is a small text GUI demo. |

84

https://doc.rust-lang.org/std/fmt/index.html#fillalignment

| +-----------+ |
| | Click me! | |
| +-----------+ |
+--------------------------------+

14.5.1 Solution
pub trait Widget {

/// Natural width of `self`.
fn width(&self) -> usize;

/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

/// Draw the widget on standard output.
fn draw(&self) {

let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");

}
}

pub struct Label {
label: String,

}

impl Label {
fn new(label: &str) -> Label {

Label {
label: label.to_owned(),

}
}

}

pub struct Button {
label: Label,

}

impl Button {
fn new(label: &str) -> Button {

Button {
label: Label::new(label),

}
}

}

85

pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,

}

impl Window {
fn new(title: &str) -> Window {

Window {
title: title.to_owned(),
widgets: Vec::new(),

}
}

fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);

}

fn inner_width(&self) -> usize {
std::cmp::max(

self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),

)
}

}

impl Widget for Window {
fn width(&self) -> usize {

// Add 4 paddings for borders
self.inner_width() + 4

}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let mut inner = String::new();
for widget in &self.widgets {

widget.draw_into(&mut inner);
}

let inner_width = self.inner_width();

// TODO: after learning about error handling, you can change
// draw_into to return Result<(), std::fmt::Error>. Then use
// the ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {

86

writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();

}
}

impl Widget for Button {
fn width(&self) -> usize {

self.label.width() + 8 // add a bit of padding
}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);

writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {

writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();

}
}

impl Widget for Label {
fn width(&self) -> usize {

self.label
.lines()
.map(|line| line.chars().count())
.max()
.unwrap_or(0)

}

fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
writeln!(buffer, "{}", &self.label).unwrap();

}
}

fn main() {
let mut window = Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
window.add_widget(Box::new(Button::new("Click me!")));
window.draw();

}

87

Chapter 15

Generics

In this segment:

• Generic Functions (5 minutes)
• Generic Data types (15 minutes)
• Trait Bounds (10 minutes)
• impl Trait (5 minutes)
• Exercise: Generic min (10 minutes)

This segment should take about 45 minutes

15.1 Generic Functions
Rust supports generics, which lets you abstract algorithms or data structures
(such as sorting or a binary tree) over the types used or stored.

/// Pick `even` or `odd` depending on the value of `n`.
fn pick<T>(n: i32, even: T, odd: T) -> T {

if n % 2 == 0 {
even

} else {
odd

}
}

fn main() {
println!("picked a number: {:?}", pick(97, 222, 333));
println!("picked a tuple: {:?}", pick(28, ("dog", 1), ("cat", 2)));

}

• Rust infers a type for T based on the types of the arguments and return
value.

88

• This is similar to C++ templates, but Rust partially compiles the generic
function immediately, so that function must be valid for all types matching
the constraints. For example, try modifying pick to return even + odd
if n == 0. Even if only the pick instantiation with integers is used, Rust
still considers it invalid. C++ would let you do this.

• Generic code is turned into non-generic code based on the call sites. This
is a zero-cost abstraction: you get exactly the same result as if you had
hand-coded the data structures without the abstraction.

15.2 Generic Data Types
You can use generics to abstract over the concrete field type:

#[derive(Debug)]
struct Point<T> {

x: T,
y: T,

}

impl<T> Point<T> {
fn coords(&self) -> (&T, &T) {

(&self.x, &self.y)
}

// fn set_x(&mut self, x: T)
}

fn main() {
let integer = Point { x: 5, y: 10 };
let float = Point { x: 1.0, y: 4.0 };
println!("{integer:?} and {float:?}");
println!("coords: {:?}", integer.coords());

}

• Q: Why T is specified twice in impl<T> Point<T> {}? Isn't that redun-
dant?

– This is because it is a generic implementation section for generic type.
They are independently generic.

– It means these methods are defined for any T.
– It is possible to write impl Point<u32> { .. }.

∗ Point is still generic and you can use Point<f64>, but methods
in this block will only be available for Point<u32>.

• Try declaring a new variable let p = Point { x: 5, y: 10.0 };. Up-
date the code to allow points that have elements of different types, by

89

using two type variables, e.g., T and U.

15.3 Trait Bounds
When working with generics, you often want to require the types to implement
some trait, so that you can call this trait's methods.

You can do this with T: Trait or impl Trait:

fn duplicate<T: Clone>(a: T) -> (T, T) {
(a.clone(), a.clone())

}

// struct NotClonable;

fn main() {
let foo = String::from("foo");
let pair = duplicate(foo);
println!("{pair:?}");

}

• Try making a NonClonable and passing it to duplicate.

• When multiple traits are necessary, use + to join them.

• Show a where clause, students will encounter it when reading code.

fn duplicate<T>(a: T) -> (T, T)
where

T: Clone,
{

(a.clone(), a.clone())
}

– It declutters the function signature if you have many parameters.
– It has additional features making it more powerful.

∗ If someone asks, the extra feature is that the type on the left of
”:” can be arbitrary, like Option<T>.

• Note that Rust does not (yet) support specialization. For example, given
the original duplicate, it is invalid to add a specialized duplicate(a:
u32).

15.4 impl Trait
Similar to trait bounds, an impl Trait syntax can be used in function arguments
and return values:

90

// Syntactic sugar for:
// fn add_42_millions<T: Into<i32>>(x: T) -> i32 {
fn add_42_millions(x: impl Into<i32>) -> i32 {

x.into() + 42_000_000
}

fn pair_of(x: u32) -> impl std::fmt::Debug {
(x + 1, x - 1)

}

fn main() {
let many = add_42_millions(42_i8);
println!("{many}");
let many_more = add_42_millions(10_000_000);
println!("{many_more}");
let debuggable = pair_of(27);
println!("debuggable: {debuggable:?}");

}

impl Trait allows you to work with types which you cannot name. The meaning
of impl Trait is a bit different in the different positions.

• For a parameter, impl Trait is like an anonymous generic parameter with
a trait bound.

• For a return type, it means that the return type is some concrete type that
implements the trait, without naming the type. This can be useful when
you don't want to expose the concrete type in a public API.

Inference is hard in return position. A function returning impl Foo picks
the concrete type it returns, without writing it out in the source. A function
returning a generic type like collect() -> B can return any type satis-
fying B, and the caller may need to choose one, such as with let x: Vec<_>
= foo.collect() or with the turbofish, foo.collect::<Vec<_>>().

What is the type of debuggable? Try let debuggable: () = .. to see what
the error message shows.

15.5 Exercise: Generic min
In this short exercise, you will implement a generic min function that determines
the minimum of two values, using a LessThan trait.

trait LessThan {
/// Return true if self is less than other.
fn less_than(&self, other: &Self) -> bool;

}

91

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct Citation {

author: &'static str,
year: u32,

}

impl LessThan for Citation {
fn less_than(&self, other: &Self) -> bool {

if self.author < other.author {
true

} else if self.author > other.author {
false

} else {
self.year < other.year

}
}

}

// TODO: implement the `min` function used in `main`.

fn main() {
let cit1 = Citation {

author: "Shapiro",
year: 2011,

};
let cit2 = Citation {

author: "Baumann",
year: 2010,

};
let cit3 = Citation {

author: "Baumann",
year: 2019,

};
debug_assert_eq!(min(cit1, cit2), cit2);
debug_assert_eq!(min(cit2, cit3), cit2);
debug_assert_eq!(min(cit1, cit3), cit3);

}

15.5.1 Solution
trait LessThan {

/// Return true if self is less than other.
fn less_than(&self, other: &Self) -> bool;

}

#[derive(Debug, PartialEq, Eq, Clone, Copy)]

92

struct Citation {
author: &'static str,
year: u32,

}

impl LessThan for Citation {
fn less_than(&self, other: &Self) -> bool {

if self.author < other.author {
true

} else if self.author > other.author {
false

} else {
self.year < other.year

}
}

}

fn min<T: LessThan>(l: T, r: T) -> T {
if l.less_than(&r) {

l
} else {

r
}

}

fn main() {
let cit1 = Citation {

author: "Shapiro",
year: 2011,

};
let cit2 = Citation {

author: "Baumann",
year: 2010,

};
let cit3 = Citation {

author: "Baumann",
year: 2019,

};
debug_assert_eq!(min(cit1, cit2), cit2);
debug_assert_eq!(min(cit2, cit3), cit2);
debug_assert_eq!(min(cit1, cit3), cit3);

}

93

Part IV

Day 2: Afternoon

94

Chapter 16

Welcome Back

In this session:

• Standard Library Types (1 hour and 10 minutes)
• Standard Library Traits (1 hour and 40 minutes)

Including 10 minute breaks, this session should take about 3 hours

95

Chapter 17

Standard Library Types

In this segment:

• Standard Library (3 minutes)
• Language Docs (5 minutes)
• Option (10 minutes)
• Result (10 minutes)
• String (10 minutes)
• Vec (10 minutes)
• HashMap (10 minutes)
• Exercise: Counter (10 minutes)

This segment should take about 1 hour and 10 minutes

For each of the slides in this section, spend some time reviewing the documenta-
tion pages, highlighting some of the more common methods.

17.1 Standard Library
Rust comes with a standard library which helps establish a set of common types
used by Rust libraries and programs. This way, two libraries can work together
smoothly because they both use the same String type.

In fact, Rust contains several layers of the Standard Library: core, alloc and
std.

• core includes the most basic types and functions that don't depend on
libc, allocator or even the presence of an operating system.

• alloc includes types which require a global heap allocator, such as Vec,
Box and Arc.

• Embedded Rust applications often only use core, and sometimes alloc.

96

17.2 Language Docs
Rust comes with extensive documentation of the language and the standard
library.

For example:

• All of the details about loops.
• Primitive types like u8.
• Standard-library items like Option or BinaryHeap.

In fact, you can document your own code:

/// Determine whether the first argument is divisible by the second argument.
///
/// If the second argument is zero, the result is false.
fn is_divisible_by(lhs: u32, rhs: u32) -> bool {

if rhs == 0 {
return false;

}
lhs % rhs == 0

}

The contents are treated as Markdown. All published Rust library crates are
automatically documented at docs.rs using the rustdoc tool. It is idiomatic to
document all public items in an API using this pattern.

To document an item from inside the item (such as inside a module), use //! or
/*! .. */, called ”inner doc comments”:

//! This module contains functionality relating to divisibility of integers.

• Show students the generated docs for the rand crate at docs.rs/rand.

17.3 Option
We have already seen some use of Option<T>. It stores either a value of type T
or nothing. For example, String::find returns an Option<usize>.

fn main() {
let name = "Löwe �� Léopard Gepardi";
let mut position: Option<usize> = name.find('é');
println!("find returned {position:?}");
assert_eq!(position.unwrap(), 14);
position = name.find('Z');
println!("find returned {position:?}");
assert_eq!(position.expect("Character not found"), 0);

}

• Option is widely used, not just in the standard library.

97

https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html
https://doc.rust-lang.org/stable/std/primitive.u8.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html
https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html
https://docs.rs
https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html
https://docs.rs/rand
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.find

• unwrap will return the value in an Option, or panic. expect is similar but
takes an error message.

– You can panic on None, but you can't ”accidentally” forget to check
for None.

– It's common to unwrap/expect all over the place when hacking some-
thing together, but production code typically handles None in a nicer
fashion.

• The niche optimization means that Option<T> often has the same size in
memory as T.

17.4 Result
Result is similar to Option, but indicates the success or failure of an operation,
each with a different type. This is similar to the Res defined in the expression
exercise, but generic: Result<T, E> where T is used in the Ok variant and E
appears in the Err variant.

use std::fs::File;
use std::io::Read;

fn main() {
let file: Result<File, std::io::Error> = File::open("diary.txt");
match file {

Ok(mut file) => {
let mut contents = String::new();
if let Ok(bytes) = file.read_to_string(&mut contents) {

println!("Dear diary: {contents} ({bytes} bytes)");
} else {

println!("Could not read file content");
}

},
Err(err) => {

println!("The diary could not be opened: {err}");
}

}
}

• As with Option, the successful value sits inside of Result, forcing the
developer to explicitly extract it. This encourages error checking. In the
case where an error should never happen, unwrap() or expect() can be
called, and this is a signal of the developer intent too.

• Result documentation is a recommended read. Not during the course,
but it is worth mentioning. It contains a lot of convenience methods and
functions that help functional-style programming.

• Result is the standard type to implement error handling as we will see on
Day 3.

98

17.5 String
String is the standard heap-allocated growable UTF-8 string buffer:

fn main() {
let mut s1 = String::new();
s1.push_str("Hello");
println!("s1: len = {}, capacity = {}", s1.len(), s1.capacity());

let mut s2 = String::with_capacity(s1.len() + 1);
s2.push_str(&s1);
s2.push('!');
println!("s2: len = {}, capacity = {}", s2.len(), s2.capacity());

let s3 = String::from("��");
println!("s3: len = {}, number of chars = {}", s3.len(),

s3.chars().count());
}

String implements Deref<Target = str>, which means that you can call all
str methods on a String.

• String::new returns a new empty string, use String::with_capacity
when you know how much data you want to push to the string.

• String::len returns the size of the String in bytes (which can be different
from its length in characters).

• String::chars returns an iterator over the actual characters. Note that a
char can be different from what a human will consider a ”character” due
to grapheme clusters.

• When people refer to strings they could either be talking about &str or
String.

• When a type implements Deref<Target = T>, the compiler will let you
transparently call methods from T.

– We haven't discussed the Deref trait yet, so at this point this mostly
explains the structure of the sidebar in the documentation.

– String implements Deref<Target = str> which transparently gives
it access to str's methods.

– Write and compare let s3 = s1.deref(); and let s3 = &*s1;.
• String is implemented as a wrapper around a vector of bytes, many of

the operations you see supported on vectors are also supported on String,
but with some extra guarantees.

• Compare the different ways to index a String:
– To a character by using s3.chars().nth(i).unwrap() where i is

in-bound, out-of-bounds.
– To a substring by using s3[0..4], where that slice is on character

boundaries or not.

99

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html#deref-methods-str
https://docs.rs/unicode-segmentation/latest/unicode_segmentation/struct.Graphemes.html

17.6 Vec
Vec is the standard resizable heap-allocated buffer:

fn main() {
let mut v1 = Vec::new();
v1.push(42);
println!("v1: len = {}, capacity = {}", v1.len(), v1.capacity());

let mut v2 = Vec::with_capacity(v1.len() + 1);
v2.extend(v1.iter());
v2.push(9999);
println!("v2: len = {}, capacity = {}", v2.len(), v2.capacity());

// Canonical macro to initialize a vector with elements.
let mut v3 = vec![0, 0, 1, 2, 3, 4];

// Retain only the even elements.
v3.retain(|x| x % 2 == 0);
println!("{v3:?}");

// Remove consecutive duplicates.
v3.dedup();
println!("{v3:?}");

}

Vec implements Deref<Target = [T]>, which means that you can call slice
methods on a Vec.

• Vec is a type of collection, along with String and HashMap. The data it
contains is stored on the heap. This means the amount of data doesn't
need to be known at compile time. It can grow or shrink at runtime.

• Notice how Vec<T> is a generic type too, but you don't have to specify
T explicitly. As always with Rust type inference, the T was established
during the first push call.

• vec![...] is a canonical macro to use instead of Vec::new() and it
supports adding initial elements to the vector.

• To index the vector you use [], but they will panic if out of bounds.
Alternatively, using get will return an Option. The pop function will
remove the last element.

• Slices are covered on day 3. For now, students only need to know that
a value of type Vec gives access to all of the documented read-only slice
methods, too.

17.7 HashMap
Standard hash map with protection against HashDoS attacks:

100

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#deref-methods-%5BT%5D

use std::collections::HashMap;

fn main() {
let mut page_counts = HashMap::new();
page_counts.insert("Adventures of Huckleberry Finn".to_string(), 207);
page_counts.insert("Grimms' Fairy Tales".to_string(), 751);
page_counts.insert("Pride and Prejudice".to_string(), 303);

if !page_counts.contains_key("Les Misérables") {
println!("We know about {} books, but not Les Misérables.",

page_counts.len());
}

for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
match page_counts.get(book) {

Some(count) => println!("{book}: {count} pages"),
None => println!("{book} is unknown.")

}
}

// Use the .entry() method to insert a value if nothing is found.
for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {

let page_count: &mut i32 = page_counts.entry(book.to_string()).or_insert(0);
*page_count += 1;

}

println!("{page_counts:#?}");
}

• HashMap is not defined in the prelude and needs to be brought into scope.

• Try the following lines of code. The first line will see if a book is in the
hashmap and if not return an alternative value. The second line will insert
the alternative value in the hashmap if the book is not found.

let pc1 = page_counts
.get("Harry Potter and the Sorcerer's Stone")
.unwrap_or(&336);

let pc2 = page_counts
.entry("The Hunger Games".to_string())
.or_insert(374);

• Unlike vec!, there is unfortunately no standard hashmap! macro.

– Although, since Rust 1.56, HashMap implements From<[(K, V);
N]>, which allows us to easily initialize a hash map from a literal
array:

let page_counts = HashMap::from([

101

https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html#impl-From%3C%5B(K,+V);+N%5D%3E-for-HashMap%3CK,+V,+RandomState%3E
https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html#impl-From%3C%5B(K,+V);+N%5D%3E-for-HashMap%3CK,+V,+RandomState%3E

("Harry Potter and the Sorcerer's Stone".to_string(), 336),
("The Hunger Games".to_string(), 374),

]);

• Alternatively HashMap can be built from any Iterator which yields
key-value tuples.

• We are showing HashMap<String, i32>, and avoid using &str as key to
make examples easier. Using references in collections can, of course, be
done, but it can lead into complications with the borrow checker.

– Try removing to_string() from the example above and see if it still
compiles. Where do you think we might run into issues?

• This type has several ”method-specific” return types, such as
std::collections::hash_map::Keys. These types often appear
in searches of the Rust docs. Show students the docs for this type, and
the helpful link back to the keys method.

17.8 Exercise: Counter
In this exercise you will take a very simple data structure and make it generic.
It uses a std::collections::HashMap to keep track of which values have been
seen and how many times each one has appeared.

The initial version of Counter is hard coded to only work for u32 values. Make
the struct and its methods generic over the type of value being tracked, that
way Counter can track any type of value.

If you finish early, try using the entry method to halve the number of hash
lookups required to implement the count method.

use std::collections::HashMap;

/// Counter counts the number of times each value of type T has been seen.
struct Counter {

values: HashMap<u32, u64>,
}

impl Counter {
/// Create a new Counter.
fn new() -> Self {

Counter {
values: HashMap::new(),

}
}

/// Count an occurrence of the given value.

102

https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html
https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html#method.entry

fn count(&mut self, value: u32) {
if self.values.contains_key(&value) {

*self.values.get_mut(&value).unwrap() += 1;
} else {

self.values.insert(value, 1);
}

}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: u32) -> u64 {

self.values.get(&value).copied().unwrap_or_default()
}

}

fn main() {
let mut ctr = Counter::new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {
println!("saw {} values equal to {}", ctr.times_seen(i), i);

}

let mut strctr = Counter::new();
strctr.count("apple");
strctr.count("orange");
strctr.count("apple");
println!("got {} apples", strctr.times_seen("apple"));

}

17.8.1 Solution
use std::collections::HashMap;
use std::hash::Hash;

/// Counter counts the number of times each value of type T has been seen.
struct Counter<T: Eq + Hash> {

values: HashMap<T, u64>,
}

impl<T: Eq + Hash> Counter<T> {
/// Create a new Counter.

103

fn new() -> Self {
Counter {

values: HashMap::new(),
}

}

/// Count an occurrence of the given value.
fn count(&mut self, value: T) {

*self.values.entry(value).or_default() += 1;
}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: T) -> u64 {

self.values.get(&value).copied().unwrap_or_default()
}

}

fn main() {
let mut ctr = Counter::new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {
println!("saw {} values equal to {}", ctr.times_seen(i), i);

}

let mut strctr = Counter::new();
strctr.count("apple");
strctr.count("orange");
strctr.count("apple");
println!("got {} apples", strctr.times_seen("apple"));

}

104

Chapter 18

Standard Library Traits

In this segment:

• Comparisons (10 minutes)
• Operators (10 minutes)
• From and Into (10 minutes)
• Casting (5 minutes)
• Read and Write (10 minutes)
• Default, struct update syntax (5 minutes)
• Closures (20 minutes)
• Exercise: ROT13 (30 minutes)

This segment should take about 1 hour and 40 minutes

As with the standard-library types, spend time reviewing the documentation for
each trait.

This section is long. Take a break midway through.

18.1 Comparisons
These traits support comparisons between values. All traits can be derived for
types containing fields that implement these traits.

PartialEq and Eq

PartialEq is a partial equivalence relation, with required method eq and pro-
vided method ne. The == and != operators will call these methods.

struct Key { id: u32, metadata: Option<String> }
impl PartialEq for Key {

fn eq(&self, other: &Self) -> bool {

105

self.id == other.id
}

}

Eq is a full equivalence relation (reflexive, symmetric, and transitive) and implies
PartialEq. Functions that require full equivalence will use Eq as a trait bound.

PartialOrd and Ord

PartialOrd defines a partial ordering, with a partial_cmp method. It is used
to implement the <, <=, >=, and > operators.

use std::cmp::Ordering;
#[derive(Eq, PartialEq)]
struct Citation { author: String, year: u32 }
impl PartialOrd for Citation {

fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match self.author.partial_cmp(&other.author) {

Some(Ordering::Equal) => self.year.partial_cmp(&other.year),
author_ord => author_ord,

}
}

}

Ord is a total ordering, with cmp returning Ordering.

PartialEq can be implemented between different types, but Eq cannot, because
it is reflexive:

struct Key { id: u32, metadata: Option<String> }
impl PartialEq<u32> for Key {

fn eq(&self, other: &u32) -> bool {
self.id == *other

}
}

In practice, it's common to derive these traits, but uncommon to implement
them.

18.2 Operators
Operator overloading is implemented via traits in std::ops:

#[derive(Debug, Copy, Clone)]
struct Point { x: i32, y: i32 }

impl std::ops::Add for Point {
type Output = Self;

106

https://doc.rust-lang.org/std/ops/index.html

fn add(self, other: Self) -> Self {
Self {x: self.x + other.x, y: self.y + other.y}

}
}

fn main() {
let p1 = Point { x: 10, y: 20 };
let p2 = Point { x: 100, y: 200 };
println!("{:?} + {:?} = {:?}", p1, p2, p1 + p2);

}

Discussion points:

• You could implement Add for &Point. In which situations is that useful?
– Answer: Add:add consumes self. If type T for which you are over-

loading the operator is not Copy, you should consider overloading the
operator for &T as well. This avoids unnecessary cloning on the call
site.

• Why is Output an associated type? Could it be made a type parameter of
the method?

– Short answer: Function type parameters are controlled by the caller,
but associated types (like Output) are controlled by the implementor
of a trait.

• You could implement Add for two different types, e.g. impl Add<(i32,
i32)> for Point would add a tuple to a Point.

18.3 From and Into
Types implement From and Into to facilitate type conversions:

fn main() {
let s = String::from("hello");
let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);
let one = i16::from(true);
let bigger = i32::from(123i16);
println!("{s}, {addr}, {one}, {bigger}");

}

Into is automatically implemented when From is implemented:

fn main() {
let s: String = "hello".into();
let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();
let one: i16 = true.into();
let bigger: i32 = 123i16.into();
println!("{s}, {addr}, {one}, {bigger}");

}

107

https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.From.html

• That's why it is common to only implement From, as your type will get
Into implementation too.

• When declaring a function argument input type like ”anything that can
be converted into a String”, the rule is opposite, you should use Into.
Your function will accept types that implement From and those that only
implement Into.

18.4 Casting
Rust has no implicit type conversions, but does support explicit casts with as.
These generally follow C semantics where those are defined.

fn main() {
let value: i64 = 1000;
println!("as u16: {}", value as u16);
println!("as i16: {}", value as i16);
println!("as u8: {}", value as u8);

}

The results of as are always defined in Rust and consistent across platforms.
This might not match your intuition for changing sign or casting to a smaller
type -- check the docs, and comment for clarity.

Consider taking a break after this slide.

as is similar to a C++ static cast. Use of as in cases where data might be lost
is generally discouraged, or at least deserves an explanatory comment.

This is common in casting integers to usize for use as an index.

18.5 Read and Write
Using Read and BufRead, you can abstract over u8 sources:

use std::io::{BufRead, BufReader, Read, Result};

fn count_lines<R: Read>(reader: R) -> usize {
let buf_reader = BufReader::new(reader);
buf_reader.lines().count()

}

fn main() -> Result<()> {
let slice: &[u8] = b"foo\nbar\nbaz\n";
println!("lines in slice: {}", count_lines(slice));

let file = std::fs::File::open(std::env::current_exe()?)?;
println!("lines in file: {}", count_lines(file));

108

https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.BufRead.html

Ok(())
}

Similarly, Write lets you abstract over u8 sinks:

use std::io::{Result, Write};

fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {
writer.write_all(msg.as_bytes())?;
writer.write_all("\n".as_bytes())

}

fn main() -> Result<()> {
let mut buffer = Vec::new();
log(&mut buffer, "Hello")?;
log(&mut buffer, "World")?;
println!("Logged: {:?}", buffer);
Ok(())

}

18.6 The Default Trait
Default trait produces a default value for a type.

#[derive(Debug, Default)]
struct Derived {

x: u32,
y: String,
z: Implemented,

}

#[derive(Debug)]
struct Implemented(String);

impl Default for Implemented {
fn default() -> Self {

Self("John Smith".into())
}

}

fn main() {
let default_struct = Derived::default();
println!("{default_struct:#?}");

let almost_default_struct = Derived {
y: "Y is set!".into(),

109

https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/default/trait.Default.html

..Derived::default()
};
println!("{almost_default_struct:#?}");

let nothing: Option<Derived> = None;
println!("{:#?}", nothing.unwrap_or_default());

}

• It can be implemented directly or it can be derived via #[derive(Default)].
• A derived implementation will produce a value where all fields are set to

their default values.
– This means all types in the struct must implement Default too.

• Standard Rust types often implement Default with reasonable values (e.g.
0, "", etc).

• The partial struct copy works nicely with default.
• Rust standard library is aware that types can implement Default and

provides convenience methods that use it.
• the .. syntax is called struct update syntax

18.7 Closures
Closures or lambda expressions have types which cannot be named. However,
they implement special Fn, FnMut, and FnOnce traits:

fn apply_with_log(func: impl FnOnce(i32) -> i32, input: i32) -> i32 {
println!("Calling function on {input}");
func(input)

}

fn main() {
let add_3 = |x| x + 3;
println!("add_3: {}", apply_with_log(add_3, 10));
println!("add_3: {}", apply_with_log(add_3, 20));

let mut v = Vec::new();
let mut accumulate = |x: i32| {

v.push(x);
v.iter().sum::<i32>()

};
println!("accumulate: {}", apply_with_log(&mut accumulate, 4));
println!("accumulate: {}", apply_with_log(&mut accumulate, 5));

let multiply_sum = |x| x * v.into_iter().sum::<i32>();
println!("multiply_sum: {}", apply_with_log(multiply_sum, 3));

}

110

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#creating-instances-from-other-instances-with-struct-update-syntax
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html

An Fn (e.g. add_3) neither consumes nor mutates captured values, or perhaps
captures nothing at all. It can be called multiple times concurrently.

An FnMut (e.g. accumulate) might mutate captured values. You can call it
multiple times, but not concurrently.

If you have an FnOnce (e.g. multiply_sum), you may only call it once. It might
consume captured values.

FnMut is a subtype of FnOnce. Fn is a subtype of FnMut and FnOnce. I.e. you can
use an FnMut wherever an FnOnce is called for, and you can use an Fn wherever
an FnMut or FnOnce is called for.

The compiler also infers Copy (e.g. for add_3) and Clone (e.g. multiply_sum),
depending on what the closure captures.

By default, closures will capture by reference if they can. The move keyword
makes them capture by value.

fn make_greeter(prefix: String) -> impl Fn(&str) {
return move |name| println!("{} {}", prefix, name)

}

fn main() {
let hi = make_greeter("Hi".to_string());
hi("there");

}

18.8 Exercise: ROT13
In this example, you will implement the classic ”ROT13” cipher. Copy this
code to the playground, and implement the missing bits. Only rotate ASCII
alphabetic characters, to ensure the result is still valid UTF-8.

use std::io::Read;

struct RotDecoder<R: Read> {
input: R,
rot: u8,

}

// Implement the `Read` trait for `RotDecoder`.

fn main() {
let mut rot = RotDecoder {

input: "Gb trg gb gur bgure fvqr!".as_bytes(),
rot: 13,

};

111

https://en.wikipedia.org/wiki/ROT13

let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
println!("{}", result);

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn joke() {

let mut rot = RotDecoder {
input: "Gb trg gb gur bgure fvqr!".as_bytes(),
rot: 13,

};
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq!(&result, "To get to the other side!");

}

#[test]
fn binary() {

let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> {

input: input.as_ref(),
rot: 13,

};
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {

if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());

}
}

}
}

What happens if you chain two RotDecoder instances together, each rotating by
13 characters?

18.8.1 Solution
use std::io::Read;

struct RotDecoder<R: Read> {

112

input: R,
rot: u8,

}

impl<R: Read> Read for RotDecoder<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {

let size = self.input.read(buf)?;
for b in &mut buf[..size] {

if b.is_ascii_alphabetic() {
let base = if b.is_ascii_uppercase() { 'A' } else { 'a' } as u8;
*b = (*b - base + self.rot) % 26 + base;

}
}
Ok(size)

}
}

fn main() {
let mut rot = RotDecoder {

input: "Gb trg gb gur bgure fvqr!".as_bytes(),
rot: 13,

};
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
println!("{}", result);

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn joke() {

let mut rot = RotDecoder {
input: "Gb trg gb gur bgure fvqr!".as_bytes(),
rot: 13,

};
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq!(&result, "To get to the other side!");

}

#[test]
fn binary() {

let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> {

113

input: input.as_ref(),
rot: 13,

};
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {

if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());

}
}

}
}

114

Part V

Day 3: Morning

115

Chapter 19

Welcome to Day 3

Today, we will cover:

• Memory management, lifetimes, and the borrow checker: how Rust ensures
memory safety.

• Smart pointers: standard library pointer types.

Schedule
In this session:

• Welcome (3 minutes)
• Memory Management (1 hour and 10 minutes)
• Smart Pointers (45 minutes)

Including 10 minute breaks, this session should take about 2 hours and 15
minutes

116

Chapter 20

Memory Management

In this segment:

• Review of Program Memory (5 minutes)
• Approaches to Memory Management (10 minutes)
• Ownership (5 minutes)
• Move semantics (10 minutes)
• Clone (2 minutes)
• Copy Types (5 minutes)
• Drop (10 minutes)
• Exercise: Builder Type (20 minutes)

This segment should take about 1 hour and 10 minutes

20.1 Review of Program Memory
Programs allocate memory in two ways:

• Stack: Continuous area of memory for local variables.

– Values have fixed sizes known at compile time.
– Extremely fast: just move a stack pointer.
– Easy to manage: follows function calls.
– Great memory locality.

• Heap: Storage of values outside of function calls.

– Values have dynamic sizes determined at runtime.
– Slightly slower than the stack: some book-keeping needed.
– No guarantee of memory locality.

117

Example
Creating a String puts fixed-sized metadata on the stack and dynamically sized
data, the actual string, on the heap:

fn main() {
let s1 = String::from("Hello");

}

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+----+----+ :
: | ptr | o---+---+-----+-->| H | e | l | l | o | :
: | len | 5 | : : +----+----+----+----+----+ :
: | capacity | 5 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - - - - - -'
`- - - - - - - - - - - - - -'

• Mention that a String is backed by a Vec, so it has a capacity and length
and can grow if mutable via reallocation on the heap.

• If students ask about it, you can mention that the underlying memory is
heap allocated using the System Allocator and custom allocators can be
implemented using the Allocator API

More to Explore
We can inspect the memory layout with unsafe Rust. However, you should
point out that this is rightfully unsafe!

fn main() {
let mut s1 = String::from("Hello");
s1.push(' ');
s1.push_str("world");
// DON'T DO THIS AT HOME! For educational purposes only.
// String provides no guarantees about its layout, so this could lead to
// undefined behavior.
unsafe {

let (ptr, capacity, len): (usize, usize, usize) = std::mem::transmute(s1);
println!("ptr = {ptr:#x}, len = {len}, capacity = {capacity}");

}
}

118

https://doc.rust-lang.org/std/alloc/struct.System.html
https://doc.rust-lang.org/std/alloc/index.html

20.2 Approaches to Memory Management
Traditionally, languages have fallen into two broad categories:

• Full control via manual memory management: C, C++, Pascal, ...
– Programmer decides when to allocate or free heap memory.
– Programmer must determine whether a pointer still points to valid

memory.
– Studies show, programmers make mistakes.

• Full safety via automatic memory management at runtime: Java, Python,
Go, Haskell, ...

– A runtime system ensures that memory is not freed until it can no
longer be referenced.

– Typically implemented with reference counting, garbage collection, or
RAII.

Rust offers a new mix:

Full control and safety via compile time enforcement of correct
memory management.

It does this with an explicit ownership concept.

This slide is intended to help students coming from other languages to put Rust
in context.

• C must manage heap manually with malloc and free. Common errors
include forgetting to call free, calling it multiple times for the same pointer,
or dereferencing a pointer after the memory it points to has been freed.

• C++ has tools like smart pointers (unique_ptr, shared_ptr) that take
advantage of language guarantees about calling destructors to ensure
memory is freed when a function returns. It is still quite easy to mis-use
these tools and create similar bugs to C.

• Java, Go, and Python rely on the garbage collector to identify memory
that is no longer reachable and discard it. This guarantees that any pointer
can be dereferenced, eliminating use-after-free and other classes of bugs.
But, GC has a runtime cost and is difficult to tune properly.

Rust's ownership and borrowing model can, in many cases, get the performance
of C, with alloc and free operations precisely where they are required -- zero cost.
It also provides tools similar to C++'s smart pointers. When required, other
options such as reference counting are available, and there are even third-party
crates available to support runtime garbage collection (not covered in this class).

20.3 Ownership
All variable bindings have a scope where they are valid and it is an error to use
a variable outside its scope:

119

struct Point(i32, i32);

fn main() {
{

let p = Point(3, 4);
println!("x: {}", p.0);

}
println!("y: {}", p.1);

}

We say that the variable owns the value. Every Rust value has precisely one
owner at all times.

At the end of the scope, the variable is dropped and the data is freed. A destructor
can run here to free up resources.

Students familiar with garbage-collection implementations will know that a
garbage collector starts with a set of ”roots” to find all reachable memory. Rust's
”single owner” principle is a similar idea.

20.4 Move Semantics
An assignment will transfer ownership between variables:

fn main() {
let s1: String = String::from("Hello!");
let s2: String = s1;
println!("s2: {s2}");
// println!("s1: {s1}");

}

• The assignment of s1 to s2 transfers ownership.
• When s1 goes out of scope, nothing happens: it does not own anything.
• When s2 goes out of scope, the string data is freed.

Before move to s2:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+----+ :
: | ptr | o---+---+-----+-->| R | u | s | t | :
: | len | 4 | : : +----+----+----+----+ :
: | capacity | 4 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - - - -'
: :

120

`- - - - - - - - - - - - - -'

After move to s2:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -.
: : : :
: s1 "(inaccessible)" : : :
: +-----------+-------+ : : +----+----+----+----+ :
: | ptr | o---+---+--+--+-->| R | u | s | t | :
: | len | 4 | : | : +----+----+----+----+ :
: | capacity | 4 | : | : :
: +-----------+-------+ : | : :
: : | `- - - - - - - - - - - - - -'
: s2 : |
: +-----------+-------+ : |
: | ptr | o---+---+--'
: | len | 4 | :
: | capacity | 4 | :
: +-----------+-------+ :
: :
`- - - - - - - - - - - - - -'

When you pass a value to a function, the value is assigned to the function
parameter. This transfers ownership:

fn say_hello(name: String) {
println!("Hello {name}")

}

fn main() {
let name = String::from("Alice");
say_hello(name);
// say_hello(name);

}

• Mention that this is the opposite of the defaults in C++, which copies by
value unless you use std::move (and the move constructor is defined!).

• It is only the ownership that moves. Whether any machine code is generated
to manipulate the data itself is a matter of optimization, and such copies
are aggressively optimized away.

• Simple values (such as integers) can be marked Copy (see later slides).

• In Rust, clones are explicit (by using clone).

In the say_hello example:

• With the first call to say_hello, main gives up ownership of name. After-
wards, name cannot be used anymore within main.

121

• The heap memory allocated for name will be freed at the end of the
say_hello function.

• main can retain ownership if it passes name as a reference (&name) and if
say_hello accepts a reference as a parameter.

• Alternatively, main can pass a clone of name in the first call
(name.clone()).

• Rust makes it harder than C++ to inadvertently create copies by making
move semantics the default, and by forcing programmers to make clones
explicit.

20.5 More to Explore
Defensive Copies in Modern C++
Modern C++ solves this differently:

std::string s1 = "Cpp";
std::string s2 = s1; // Duplicate the data in s1.

• The heap data from s1 is duplicated and s2 gets its own independent copy.
• When s1 and s2 go out of scope, they each free their own memory.

Before copy-assignment:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+--+--+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - -'
`- - - - - - - - - - - - - -'

After copy-assignment:

Stack Heap
.- - - - - - - - - - - - - -. .- - - - - - - - - - - -.
: : : :
: s1 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+--+--+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : : :

122

: s2 : : :
: +-----------+-------+ : : +----+----+----+ :
: | ptr | o---+---+-----+-->| C | p | p | :
: | len | 3 | : : +----+----+----+ :
: | capacity | 3 | : : :
: +-----------+-------+ : : :
: : `- - - - - - - - - - - -'
`- - - - - - - - - - - - - -'

Key points:

• C++ has made a slightly different choice than Rust. Because = copies data,
the string data has to be cloned. Otherwise we would get a double-free
when either string goes out of scope.

• C++ also has std::move, which is used to indicate when a value may
be moved from. If the example had been s2 = std::move(s1), no heap
allocation would take place. After the move, s1 would be in a valid but
unspecified state. Unlike Rust, the programmer is allowed to keep using
s1.

• Unlike Rust, = in C++ can run arbitrary code as determined by the type
which is being copied or moved.

20.6 Clone
Sometimes you want to make a copy of a value. The Clone trait accomplishes
this.

#[derive(Default)]
struct Backends {

hostnames: Vec<String>,
weights: Vec<f64>,

}

impl Backends {
fn set_hostnames(&mut self, hostnames: &Vec<String>) {

self.hostnames = hostnames.clone();
self.weights = hostnames.iter().map(|_| 1.0).collect();

}
}

The idea of Clone is to make it easy to spot where heap allocations are occurring.
Look for .clone() and a few others like Vec::new or Box::new.

It's common to ”clone your way out” of problems with the borrow checker, and
return later to try to optimize those clones away.

123

https://en.cppreference.com/w/cpp/utility/move

20.7 Copy Types
While move semantics are the default, certain types are copied by default:

fn main() {
let x = 42;
let y = x;
println!("x: {x}"); // would not be accessible if not Copy
println!("y: {y}");

}

These types implement the Copy trait.

You can opt-in your own types to use copy semantics:

#[derive(Copy, Clone, Debug)]
struct Point(i32, i32);

fn main() {
let p1 = Point(3, 4);
let p2 = p1;
println!("p1: {p1:?}");
println!("p2: {p2:?}");

}

• After the assignment, both p1 and p2 own their own data.
• We can also use p1.clone() to explicitly copy the data.

Copying and cloning are not the same thing:

• Copying refers to bitwise copies of memory regions and does not work on
arbitrary objects.

• Copying does not allow for custom logic (unlike copy constructors in C++).
• Cloning is a more general operation and also allows for custom behavior

by implementing the Clone trait.
• Copying does not work on types that implement the Drop trait.

In the above example, try the following:

• Add a String field to struct Point. It will not compile because String
is not a Copy type.

• Remove Copy from the derive attribute. The compiler error is now in the
println! for p1.

• Show that it works if you clone p1 instead.

20.8 The Drop Trait
Values which implement Drop can specify code to run when they go out of scope:

124

https://doc.rust-lang.org/std/ops/trait.Drop.html

struct Droppable {
name: &'static str,

}

impl Drop for Droppable {
fn drop(&mut self) {

println!("Dropping {}", self.name);
}

}

fn main() {
let a = Droppable { name: "a" };
{

let b = Droppable { name: "b" };
{

let c = Droppable { name: "c" };
let d = Droppable { name: "d" };
println!("Exiting block B");

}
println!("Exiting block A");

}
drop(a);
println!("Exiting main");

}

• Note that std::mem::drop is not the same as std::ops::Drop::drop.
• Values are automatically dropped when they go out of scope.
• When a value is dropped, if it implements std::ops::Drop then its

Drop::drop implementation will be called.
• All its fields will then be dropped too, whether or not it implements Drop.
• std::mem::drop is just an empty function that takes any value. The

significance is that it takes ownership of the value, so at the end of its
scope it gets dropped. This makes it a convenient way to explicitly drop
values earlier than they would otherwise go out of scope.

– This can be useful for objects that do some work on drop: releasing
locks, closing files, etc.

Discussion points:

• Why doesn't Drop::drop take self?
– Short-answer: If it did, std::mem::drop would be called at the end

of the block, resulting in another call to Drop::drop, and a stack
overflow!

• Try replacing drop(a) with a.drop().

125

20.9 Exercise: Builder Type
In this example, we will implement a complex data type that owns all of its data.
We will use the ”builder pattern” to support building a new value piece-by-piece,
using convenience functions.

Fill in the missing pieces.

#[derive(Debug)]
enum Language {

Rust,
Java,
Perl,

}

#[derive(Clone, Debug)]
struct Dependency {

name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {

name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
fn as_dependency(&self) -> Dependency {

todo!("1")
}

}

/// A builder for a Package. Use `build()` to create the `Package` itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {

todo!("2")
}

/// Set the package version.
fn version(mut self, version: impl Into<String>) -> Self {

126

self.0.version = version.into();
self

}

/// Set the package authors.
fn authors(mut self, authors: Vec<String>) -> Self {

todo!("3")
}

/// Add an additional dependency.
fn dependency(mut self, dependency: Dependency) -> Self {

todo!("4")
}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {

todo!("5")
}

fn build(self) -> Package {
self.0

}
}

fn main() {
let base64 = PackageBuilder::new("base64").version("0.13").build();
println!("base64: {base64:?}");
let log = PackageBuilder::new("base64")

.version("0.4")

.language(Language::Rust)

.build();
println!("log: {log:?}");
let serde = PackageBuilder::new("hawk")

.authors(vec!["djmitche".into()])

.version(String::from("4.0"))

.dependency(base64.as_dependency())

.dependency(log.as_dependency())

.build();
println!("serde: {serde:?}");

}

20.9.1 Solution
#[derive(Debug)]
enum Language {

Rust,

127

Java,
Perl,

}

#[derive(Clone, Debug)]
struct Dependency {

name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {

name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
fn as_dependency(&self) -> Dependency {

Dependency {
name: self.name.clone(),
version_expression: self.version.clone(),

}
}

}

/// A builder for a Package. Use `build()` to create the `Package` itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {

Self(Package {
name: name.into(),
version: "0.1".into(),
authors: vec![],
dependencies: vec![],
language: None,

})
}

/// Set the package version.
fn version(mut self, version: impl Into<String>) -> Self {

self.0.version = version.into();

128

self
}

/// Set the package authors.
fn authors(mut self, authors: Vec<String>) -> Self {

self.0.authors = authors;
self

}

/// Add an additional dependency.
fn dependency(mut self, dependency: Dependency) -> Self {

self.0.dependencies.push(dependency);
self

}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {

self.0.language = Some(language);
self

}

fn build(self) -> Package {
self.0

}
}

fn main() {
let base64 = PackageBuilder::new("base64").version("0.13").build();
println!("base64: {base64:?}");
let log = PackageBuilder::new("base64")

.version("0.4")

.language(Language::Rust)

.build();
println!("log: {log:?}");
let serde = PackageBuilder::new("hawk")

.authors(vec!["djmitche".into()])

.version(String::from("4.0"))

.dependency(base64.as_dependency())

.dependency(log.as_dependency())

.build();
println!("serde: {serde:?}");

}

129

Chapter 21

Smart Pointers

In this segment:

• Box (10 minutes)
• Rc (5 minutes)
• Exercise: Binary Tree (30 minutes)

This segment should take about 45 minutes

21.1 Box<T>
Box is an owned pointer to data on the heap:

fn main() {
let five = Box::new(5);
println!("five: {}", *five);

}

Stack Heap
.- - - - - - -. .- - - - - - -.
: : : :
: five : : :
: +-----+ : : +-----+ :
: | o---|---+-----+-->| 5 | :
: +-----+ : : +-----+ :
: : : :
: : : :
`- - - - - - -' `- - - - - - -'

Box<T> implements Deref<Target = T>, which means that you can call methods
from T directly on a Box<T>.

Recursive data types or data types with dynamic sizes need to use a Box:

130

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion

#[derive(Debug)]
enum List<T> {

Cons(T, Box<List<T>>),
Nil,

}

fn main() {
let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
println!("{list:?}");

}

Stack Heap
.- - - - - - - - - - - - -. .- -.
: : : :
: list : : :
: +------+----+----+ : : +------+----+----+ +------+----+----+ :
: | Cons | 1 | o--+----+-----+--->| Cons | 2 | o--+--->| Nil | // | // | :
: +------+----+----+ : : +------+----+----+ +------+----+----+ :
: : : :
: : : :
'- - - - - - - - - - - - -' '- -'

• Box is like std::unique_ptr in C++, except that it's guaranteed to be
not null.

• In the above example, you can even leave out the * in the println!
statement thanks to Deref.

• A Box can be useful when you:

– have a type whose size that can't be known at compile time, but the
Rust compiler wants to know an exact size.

– want to transfer ownership of a large amount of data. To avoid
copying large amounts of data on the stack, instead store the data on
the heap in a Box so only the pointer is moved.

• If Box was not used and we attempted to embed a List directly into the
List, the compiler would not compute a fixed size of the struct in memory
(List would be of infinite size).

• Box solves this problem as it has the same size as a regular pointer and
just points at the next element of the List in the heap.

• Remove the Box in the List definition and show the compiler error. ”Recur-
sive with indirection” is a hint you might want to use a Box or reference
of some kind, instead of storing a value directly.

131

21.2 More to Explore
Niche Optimization
#[derive(Debug)]
enum List<T> {

Cons(T, Box<List<T>>),
Nil,

}

fn main() {
let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
println!("{list:?}");

}

A Box cannot be empty, so the pointer is always valid and non-null. This allows
the compiler to optimize the memory layout:

Stack Heap
.- - - - - - - - - - - - -. .- -.
: : : :
: list : : :
: +----+----+ : : +----+----+ +----+------+ :
: | 1 | o--+-----------+-----+--->| 2 | o--+--->| // | null | :
: +----+----+ : : +----+----+ +----+------+ :
: : : :
: : : :
`- - - - - - - - - - - - -' '- -'

21.3 Rc
Rc is a reference-counted shared pointer. Use this when you need to refer to the
same data from multiple places:

use std::rc::Rc;

fn main() {
let mut a = Rc::new(10);
let mut b = Rc::clone(&a);

println!("a: {a}");
println!("b: {b}");

}

• See Arc and Mutex if you are in a multi-threaded context.
• You can downgrade a shared pointer into a Weak pointer to create cycles

that will get dropped.

132

https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/rc/struct.Weak.html

• Rc's count ensures that its contained value is valid for as long as there are
references.

• Rc in Rust is like std::shared_ptr in C++.
• Rc::clone is cheap: it creates a pointer to the same allocation and increases

the reference count. Does not make a deep clone and can generally be
ignored when looking for performance issues in code.

• make_mut actually clones the inner value if necessary (”clone-on-write”)
and returns a mutable reference.

• Use Rc::strong_count to check the reference count.
• Rc::downgrade gives you a weakly reference-counted object to create cycles

that will be dropped properly (likely in combination with RefCell, on the
next slide).

21.4 Exercise: Binary Tree
A binary tree is a tree-type data structure where every node has two children
(left and right). We will create a tree where each node stores a value. For a given
node N, all nodes in a N's left subtree contain smaller values, and all nodes in
N's right subtree will contain larger values.

Implement the following types, so that the given tests pass.

#[derive(Debug)]
struct BinaryTreeNode<T: Ord + Copy> {

value: T,
left: BinaryTree<T>,
right: BinaryTree<T>,

}

/// A container storing a set of values, using a binary tree.
///
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord + Copy>(Option<Box<BinaryTreeNode<T>>>);

// Implement `new`, `insert`, and `has`.

#[cfg(test)]
mod test {

use super::*;

#[test]
fn len() {

let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);

133

assert_eq!(tree.len(), 1);
tree.insert(1);
assert_eq!(tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);

}

#[test]
fn has() {

let mut tree = BinaryTree::new();
fn check_has(tree: &BinaryTree<i32>, exp: &[bool]) {

let got: Vec<bool> = (0..exp.len()).map(|i| tree.has(i as i32)).collect();
assert_eq!(&got, exp);

}

check_has(&tree, &[false, false, false, false, false]);
tree.insert(0);
check_has(&tree, &[true, false, false, false, false]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(3);
check_has(&tree, &[true, false, false, true, true]);

}

#[test]
fn unbalanced() {

let mut tree = BinaryTree::new();
for i in 0..100 {

tree.insert(i);
}
assert_eq!(tree.len(), 100);
assert!(tree.has(50));

}
}

Extra Credit: implement an iterator over a binary tree that returns the values
in order.

21.4.1 Solution
#[derive(Debug)]
struct BinaryTreeNode<T: Ord + Copy> {

value: T,
left: BinaryTree<T>,

134

right: BinaryTree<T>,
}

/// A container storing a set of values, using a binary tree.
///
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord + Copy>(Option<Box<BinaryTreeNode<T>>>);

impl<T: Ord + Copy> BinaryTree<T> {
fn new() -> Self {

Self(None)
}

fn insert(&mut self, value: T) {
match &mut self.0 {

None => {
self.0 = Some(Box::new(BinaryTreeNode {

value,
left: BinaryTree::new(),
right: BinaryTree::new(),

}));
}
Some(ref mut n) => {

if value < n.value {
n.left.insert(value);

} else if value > n.value {
n.right.insert(value);

}
}

}
}

fn has(&self, value: T) -> bool {
match &self.0 {

None => false,
Some(n) => {

if value == n.value {
true

} else if value < n.value {
n.left.has(value)

} else {
n.right.has(value)

}
}

}

135

}

fn len(&self) -> usize {
match &self.0 {

None => 0,
Some(n) => 1 + n.left.len() + n.right.len(),

}
}

}

fn main() {
let mut tree = BinaryTree::new();
tree.insert("foo");
assert_eq!(tree.len(), 1);
tree.insert("bar");
assert!(tree.has("foo"));

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn len() {

let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);
assert_eq!(tree.len(), 1);
tree.insert(1);
assert_eq!(tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);

}

#[test]
fn has() {

let mut tree = BinaryTree::new();
fn check_has(tree: &BinaryTree<i32>, exp: &[bool]) {

let got: Vec<bool> = (0..exp.len()).map(|i| tree.has(i as i32)).collect();
assert_eq!(&got, exp);

}

check_has(&tree, &[false, false, false, false, false]);
tree.insert(0);
check_has(&tree, &[true, false, false, false, false]);
tree.insert(4);

136

check_has(&tree, &[true, false, false, false, true]);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(3);
check_has(&tree, &[true, false, false, true, true]);

}

#[test]
fn unbalanced() {

let mut tree = BinaryTree::new();
for i in 0..100 {

tree.insert(i);
}
assert_eq!(tree.len(), 100);
assert!(tree.has(50));

}
}

137

Part VI

Day 3: Afternoon

138

Chapter 22

Welcome Back

In this session:

• Borrowing (1 hour)
• Slices and Lifetimes (1 hour and 10 minutes)

Including 10 minute breaks, this session should take about 2 hours and 20
minutes

139

Chapter 23

Borrowing

In this segment:

• Borrowing a Value (10 minutes)
• Borrow Checking (10 minutes)
• Interior Mutability (10 minutes)
• Exercise: Health Statistics (30 minutes)

This segment should take about 1 hour

23.1 Borrowing a Value
As we saw before, instead of transferring ownership when calling a function, you
can let a function borrow the value:

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
Point(p1.0 + p2.0, p1.1 + p2.1)

}

fn main() {
let p1 = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&p1, &p2);
println!("{p1:?} + {p2:?} = {p3:?}");

}

• The add function borrows two points and returns a new point.
• The caller retains ownership of the inputs.

140

This slide is a review of the material on references from day 1, expanding slightly
to include function arguments and return values.

23.2 More to Explore
Notes on stack returns:

• Demonstrate that the return from add is cheap because the compiler
can eliminate the copy operation. Change the above code to print stack
addresses and run it on the Playground or look at the assembly in Godbolt.
In the ”DEBUG” optimization level, the addresses should change, while
they stay the same when changing to the ”RELEASE” setting:

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
let p = Point(p1.0 + p2.0, p1.1 + p2.1);
println!("&p.0: {:p}", &p.0);
p

}

pub fn main() {
let p1 = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&p1, &p2);
println!("&p3.0: {:p}", &p3.0);
println!("{p1:?} + {p2:?} = {p3:?}");

}

• The Rust compiler can do return value optimization (RVO).

• In C++, copy elision has to be defined in the language specification because
constructors can have side effects. In Rust, this is not an issue at all. If
RVO did not happen, Rust will always perform a simple and efficient
memcpy copy.

23.3 Borrow Checking
Rust's borrow checker puts constraints on the ways you can borrow values. For
a given value, at any time:

• You can have one or more shared references to the value, or
• You can have exactly one exclusive reference to the value.

fn main() {
let mut a: i32 = 10;

141

https://play.rust-lang.org/
https://rust.godbolt.org/

let b: &i32 = &a;

{
let c: &mut i32 = &mut a;
*c = 20;

}

println!("a: {a}");
println!("b: {b}");

}

• Note that the requirement is that conflicting references not exist at the
same point. It does not matter where the reference is dereferenced.

• The above code does not compile because a is borrowed as mutable (through
c) and as immutable (through b) at the same time.

• Move the println! statement for b before the scope that introduces c to
make the code compile.

• After that change, the compiler realizes that b is only ever used before
the new mutable borrow of a through c. This is a feature of the borrow
checker called ”non-lexical lifetimes”.

• The exclusive reference constraint is quite strong. Rust uses it to ensure
that data races do not occur. Rust also relies on this constraint to optimize
codes. For example, a value behind a shared reference can be safely cached
in a register for the lifetime of that reference.

• The borrow checker is designed to accommodate many common patterns,
such as taking exclusive references to different fields in a struct at the same
time. But, there are some situations where it doesn't quite ”get it” and
this often results in ”fighting with the borrow checker.”

23.4 Interior Mutability
Rust provides a few safe means of modifying a value given only a shared reference
to that value. All of these replace copmile-time checks with runtime checks.

Cell and RefCell

Cell and RefCell implement what Rust calls interior mutability: mutation of
values in an immutable context.

Cell is typically used for simple types, as it requires copying or moving values.
More complex interior types typically use RefCell, which tracks shared and
exclusive references at runtime and panics if they are misused.

use std::cell::RefCell;
use std::rc::Rc;

#[derive(Debug, Default)]

142

https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html

struct Node {
value: i64,
children: Vec<Rc<RefCell<Node>>>,

}

impl Node {
fn new(value: i64) -> Rc<RefCell<Node>> {

Rc::new(RefCell::new(Node { value, ..Node::default() }))
}

fn sum(&self) -> i64 {
self.value + self.children.iter().map(|c| c.borrow().sum()).sum::<i64>()

}
}

fn main() {
let root = Node::new(1);
root.borrow_mut().children.push(Node::new(5));
let subtree = Node::new(10);
subtree.borrow_mut().children.push(Node::new(11));
subtree.borrow_mut().children.push(Node::new(12));
root.borrow_mut().children.push(subtree);

println!("graph: {root:#?}");
println!("graph sum: {}", root.borrow().sum());

}

• If we were using Cell instead of RefCell in this example, we would have
to move the Node out of the Rc to push children, then move it back in.
This is safe because there's always one, un-referenced value in the cell, but
it's not ergonomic.

• To do anything with a Node, you must call a RefCell method, usually
borrow or borrow_mut.

• Demonstrate that reference loops can be created by adding root to
subtree.children (don't try to print it!).

• To demonstrate a runtime panic, add a fn inc(&mut self) that incre-
ments self.value and calls the same method on its children. This will
panic in the presence of the reference loop, with thread 'main' panicked
at 'already borrowed: BorrowMutError'.

23.5 Exercise: Health Statistics
You're working on implementing a health-monitoring system. As part of that,
you need to keep track of users' health statistics.

You'll start with some stubbed functions in an impl block as well as a User

143

struct definition. Your goal is to implement the stubbed out methods on the
User struct defined in the impl block.

Copy the code below to https://play.rust-lang.org/ and fill in the missing
methods:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

#![allow(dead_code)]
pub struct User {

name: String,
age: u32,
height: f32,
visit_count: usize,
last_blood_pressure: Option<(u32, u32)>,

}

pub struct Measurements {
height: f32,
blood_pressure: (u32, u32),

}

pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,
height_change: f32,
blood_pressure_change: Option<(i32, i32)>,

}

impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {

Self {
name,
age,
height,
visit_count: 0,
last_blood_pressure: None,

}
}

pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport {
todo!("Update a user's statistics based on measurements from a visit to the doctor")

}
}

144

https://play.rust-lang.org/

fn main() {
let bob = User::new(String::from("Bob"), 32, 155.2);
println!("I'm {} and my age is {}", bob.name, bob.age);

}

#[test]
fn test_visit() {

let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq!(bob.visit_count, 0);
let report = bob.visit_doctor(Measurements {

height: 156.1,
blood_pressure: (120, 80),

});
assert_eq!(report.patient_name, "Bob");
assert_eq!(report.visit_count, 1);
assert_eq!(report.blood_pressure_change, None);

let report = bob.visit_doctor(Measurements {
height: 156.1,
blood_pressure: (115, 76),

});

assert_eq!(report.visit_count, 2);
assert_eq!(report.blood_pressure_change, Some((-5, -4)));

}

23.5.1 Solution

#![allow(dead_code)]
pub struct User {

name: String,
age: u32,
height: f32,
visit_count: usize,
last_blood_pressure: Option<(u32, u32)>,

}

pub struct Measurements {
height: f32,
blood_pressure: (u32, u32),

}

pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,

145

height_change: f32,
blood_pressure_change: Option<(i32, i32)>,

}

impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {

Self {
name,
age,
height,
visit_count: 0,
last_blood_pressure: None,

}
}

pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport {
self.visit_count += 1;
let bp = measurements.blood_pressure;
let report = HealthReport {

patient_name: &self.name,
visit_count: self.visit_count as u32,
height_change: measurements.height - self.height,
blood_pressure_change: match self.last_blood_pressure {

Some(lbp) => {
Some((bp.0 as i32 - lbp.0 as i32, bp.1 as i32 - lbp.1 as i32))

}
None => None,

},
};
self.height = measurements.height;
self.last_blood_pressure = Some(bp);
report

}
}

fn main() {
let bob = User::new(String::from("Bob"), 32, 155.2);
println!("I'm {} and my age is {}", bob.name, bob.age);

}

#[test]
fn test_visit() {

let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq!(bob.visit_count, 0);
let report = bob.visit_doctor(Measurements {

height: 156.1,

146

blood_pressure: (120, 80),
});
assert_eq!(report.patient_name, "Bob");
assert_eq!(report.visit_count, 1);
assert_eq!(report.blood_pressure_change, None);

let report = bob.visit_doctor(Measurements {
height: 156.1,
blood_pressure: (115, 76),

});

assert_eq!(report.visit_count, 2);
assert_eq!(report.blood_pressure_change, Some((-5, -4)));

}

147

Chapter 24

Slices and Lifetimes

In this segment:

• Slices: &[T] (10 minutes)
• String References (10 minutes)
• Lifetime Annotations (10 minutes)
• Lifetime Elision (5 minutes)
• Struct Lifetimes (5 minutes)
• Exercise: Protobuf Parsing (30 minutes)

This segment should take about 1 hour and 10 minutes

24.1 Slices
A slice gives you a view into a larger collection:

fn main() {
let mut a: [i32; 6] = [10, 20, 30, 40, 50, 60];
println!("a: {a:?}");

let s: &[i32] = &a[2..4];

println!("s: {s:?}");
}

• Slices borrow data from the sliced type.
• Question: What happens if you modify a[3] right before printing s?

• We create a slice by borrowing a and specifying the starting and ending
indexes in brackets.

• If the slice starts at index 0, Rust’s range syntax allows us to drop the
starting index, meaning that &a[0..a.len()] and &a[..a.len()] are

148

identical.

• The same is true for the last index, so &a[2..a.len()] and &a[2..] are
identical.

• To easily create a slice of the full array, we can therefore use &a[..].

• s is a reference to a slice of i32s. Notice that the type of s (&[i32]) no
longer mentions the array length. This allows us to perform computation
on slices of different sizes.

• Slices always borrow from another object. In this example, a has to remain
'alive' (in scope) for at least as long as our slice.

• The question about modifying a[3] can spark an interesting discussion,
but the answer is that for memory safety reasons you cannot do it through
a at this point in the execution, but you can read the data from both a
and s safely. It works before you created the slice, and again after the
println, when the slice is no longer used. More details will be explained
in the borrow checker section.

24.2 String References
We can now understand the two string types in Rust: &str is almost like &[char],
but with its data stored in a variable-length encoding (UTF-8).

fn main() {
let s1: &str = "World";
println!("s1: {s1}");

let mut s2: String = String::from("Hello ");
println!("s2: {s2}");
s2.push_str(s1);
println!("s2: {s2}");

let s3: &str = &s2[6..];
println!("s3: {s3}");

}

Rust terminology:

• &str an immutable reference to a string slice.
• String a mutable string buffer.

• &str introduces a string slice, which is an immutable reference to UTF-8
encoded string data stored in a block of memory. String literals (”Hello”),
are stored in the program’s binary.

• Rust’s String type is a wrapper around a vector of bytes. As with a
Vec<T>, it is owned.

149

• As with many other types String::from() creates a string from a string
literal; String::new() creates a new empty string, to which string data
can be added using the push() and push_str() methods.

• The format!() macro is a convenient way to generate an owned string from
dynamic values. It accepts the same format specification as println!().

• You can borrow &str slices from String via & and optionally range selection.
If you select a byte range that is not aligned to character boundaries, the
expression will panic. The chars iterator iterates over characters and is
preferred over trying to get character boundaries right.

• For C++ programmers: think of &str as std::string_view from C++,
but the one that always points to a valid string in memory. Rust String
is a rough equivalent of std::string from C++ (main difference: it
can only contain UTF-8 encoded bytes and will never use a small-string
optimization).

• Byte strings literals allow you to create a &[u8] value directly:

fn main() {
println!("{:?}", b"abc");
println!("{:?}", &[97, 98, 99]);

}

24.3 Lifetimes
A reference has a lifetime, which must ”outlive” the value it refers to. This is
verified by the borrow checker.

The lifetime can be implicit - this is what we have seen so far. Lifetimes can
also be explicit: &'a Point, &'document str. Lifetimes start with ' and 'a is
a typical default name. Read &'a Point as ”a borrowed Point which is valid
for at least the lifetime a”.

Lifetimes are always inferred by the compiler: you cannot assign a lifetime
yourself. Explicit lifetime annotations create constraints where there is ambiguity;
the compiler verifies that there is a valid solution.

Lifetimes become more complicated when considering passing values to and
returning values from functions.

#[derive(Debug)]
struct Point(i32, i32);

fn left_most(p1: &Point, p2: &Point) -> &Point {
if p1.0 < p2.0 { p1 } else { p2 }

}

150

fn main() {
let p1: Point = Point(10, 10);
let p2: Point = Point(20, 20);
let p3 = left_most(&p1, &p2); // What is the lifetime of p3?
println!("p3: {p3:?}");

}

In this example, the the compiler does not know what lifetime to infer for p3.
Looking inside the function body shows that it can only safely assume that p3's
lifetime is the shorter of p1 and p2. But just like types, Rust requires explicit
annotations of lifetimes on function arguments and return values.

Add 'a appropriately to left_most:

fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {

This says, ”given p1 and p2 which both outlive 'a, the return value lives for at
least 'a.

In common cases, lifetimes can be elided, as described on the next slide.

24.4 Lifetimes in Function Calls
Lifetimes for function arguments and return values must be fully specified, but
Rust allows lifetimes to be elided in most cases with a few simple rules. This is
not inference -- it is just a syntactic shorthand.

• Each argument which does not have a lifetime annotation is given one.
• If there is only one argument lifetime, it is given to all un-annotated return

values.
• If there are multiple argument lifetimes, but the first one is for self, that

lifetime is given to all un-annotated return values.

#[derive(Debug)]
struct Point(i32, i32);

fn cab_distance(p1: &Point, p2: &Point) -> i32 {
(p1.0 - p2.0).abs() + (p1.1 - p2.1).abs()

}

fn nearest<'a>(points: &'a [Point], query: &Point) -> Option<&'a Point> {
let mut nearest = None;
for p in points {

if let Some((_, nearest_dist)) = nearest {
let dist = cab_distance(p, query);
if dist < nearest_dist {

nearest = Some((p, dist));
}

151

https://doc.rust-lang.org/nomicon/lifetime-elision.html

} else {
nearest = Some((p, cab_distance(p, query)));

};
}
nearest.map(|(p, _)| p)

}

fn main() {
println!(

"{:?}",
nearest(

&[Point(1, 0), Point(1, 0), Point(-1, 0), Point(0, -1),],
&Point(0, 2)

)
);

}

In this example, cab_distance is trivially elided.

The nearest function provides another example of a function with multiple
references in its arguments that requires explicit annotation.

Try adjusting the signature to ”lie” about the lifetimes returned:

fn nearest<'a>(points: &'a [Point], query: &'q Point) -> Option<&'q Point> {

This won't compile, demonstrating that the annotations are checked for validity
by the compiler. Note that this is not the case for raw pointers (unsafe), and
this is a common source of errors with unsafe Rust.

24.5 Lifetimes in Data Structures
If a data type stores borrowed data, it must be annotated with a lifetime:

#[derive(Debug)]
struct Highlight<'doc>(&'doc str);

fn erase(text: String) {
println!("Bye {text}!");

}

fn main() {
let text = String::from("The quick brown fox jumps over the lazy dog.");
let fox = Highlight(&text[4..19]);
let dog = Highlight(&text[35..43]);
// erase(text);
println!("{fox:?}");

152

println!("{dog:?}");
}

• In the above example, the annotation on Highlight enforces that the data
underlying the contained &str lives at least as long as any instance of
Highlight that uses that data.

• If text is consumed before the end of the lifetime of fox (or dog), the
borrow checker throws an error.

• Types with borrowed data force users to hold on to the original data. This
can be useful for creating lightweight views, but it generally makes them
somewhat harder to use.

• When possible, make data structures own their data directly.
• Some structs with multiple references inside can have more than one

lifetime annotation. This can be necessary if there is a need to describe
lifetime relationships between the references themselves, in addition to the
lifetime of the struct itself. Those are very advanced use cases.

24.6 Exercise: Protobuf Parsing
In this exercise, you will build a parser for the protobuf binary encoding. Don't
worry, it's simpler than it seems! This illustrates a common parsing pattern,
passing slices of data. The underlying data itself is never copied.

Fully parsing a protobuf message requires knowing the types of the fields, indexed
by their field numbers. That is typically provided in a proto file. In this exercise,
we'll encode that information into match statements in functions that get called
for each field.

We'll use the following proto:

message PhoneNumber {
optional string number = 1;
optional string type = 2;

}

message Person {
optional string name = 1;
optional int32 id = 2;
repeated PhoneNumber phones = 3;

}

A proto message is encoded as a series of fields, one after the next. Each is
implemented as a ”tag” followed by the value. The tag contains a field number
(e.g., 2 for the id field of a Person message) and a wire type defining how the
payload should be determined from the byte stream.

Integers, including the tag, are represented with a variable-length encoding
called VARINT. Luckily, parse_varint is defined for you below. The given code

153

https://protobuf.dev/programming-guides/encoding/

also defines callbacks to handle Person and PhoneNumber fields, and to parse a
message into a series of calls to those callbacks.

What remains for you is to implement the parse_field function.

use std::convert::TryFrom;
use thiserror::Error;

#[derive(Debug, Error)]
enum Error {

#[error("Invalid varint")]
InvalidVarint,
#[error("Invalid wire-type")]
InvalidWireType,
#[error("Unexpected EOF")]
UnexpectedEOF,
#[error("Invalid length")]
InvalidSize(#[from] std::num::TryFromIntError),
#[error("Unexpected wire-type)")]
UnexpectedWireType,
#[error("Invalid string (not UTF-8)")]
InvalidString,

}

/// A wire type as seen on the wire.
enum WireType {

/// The Varint WireType indicates the value is a single VARINT.
Varint,
//I64, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a VARINT
/// followed by exactly that number of bytes.
Len,
/// The I32 WireType indicates that the value is precisely 4 bytes in little-endian order
/// containing a 32-bit signed integer.
I32,

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint(u64),
//I64(i64), -- not needed for this exercise
Len(&'a [u8]),
I32(i32),

}

#[derive(Debug)]

154

/// A field, containing the field number and its value.
struct Field<'a> {

field_num: u64,
value: FieldValue<'a>,

}

impl TryFrom<u64> for WireType {
type Error = Error;

fn try_from(value: u64) -> Result<WireType, Error> {
Ok(match value {

0 => WireType::Varint,
//1 => WireType::I64, -- not needed for this exercise
2 => WireType::Len,
5 => WireType::I32,
_ => return Err(Error::InvalidWireType),

})
}

}

impl<'a> FieldValue<'a> {
fn as_string(&self) -> Result<&'a str, Error> {

let FieldValue::Len(data) = self else {
return Err(Error::UnexpectedWireType);

};
Ok(std::str::from_utf8(data).map_err(|_| Error::InvalidString)?)

}

fn as_bytes(&self) -> Result<&'a [u8], Error> {
let FieldValue::Len(data) = self else {

return Err(Error::UnexpectedWireType);
};
Ok(data)

}

fn as_u64(&self) -> Result<u64, Error> {
let FieldValue::Varint(value) = self else {

return Err(Error::UnexpectedWireType);
};
Ok(*value)

}
}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> Result<(u64, &[u8]), Error> {

for i in 0..7 {

155

let Some(b) = data.get(i) else {
return Err(Error::InvalidVarint);

};
if b & 0x80 == 0 {

// This is the last byte of the VARINT, so convert it to
// a u64 and return it.
let mut value = 0u64;
for b in data[..=i].iter().rev() {

value = (value << 7) | (b & 0x7f) as u64;
}
return Ok((value, &data[i + 1..]));

}
}

// More than 7 bytes is invalid.
Err(Error::InvalidVarint)

}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> Result<(u64, WireType), Error> {

let field_num = tag >> 3;
let wire_type = WireType::try_from(tag & 0x7)?;
Ok((field_num, wire_type))

}

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> Result<(Field, &[u8]), Error> {

// 1. Read and unpack the tag.
// 2. Based on the wire type, build a Field, consuming as many bytes as
// necessary.
// 3. Return the field, and any un-consumed bytes.
todo!()

}

/// Parse a message in the given data, calling `field_callback` for each field in the message.
///
/// The entire input is consumed.
fn parse_message(

mut data: &[u8],
field_callback: impl Fn(Field) -> Result<(), Error>,

) -> Result<(), Error> {
while !data.is_empty() {

let parsed = parse_field(data)?;
field_callback(parsed.0)?;
data = parsed.1;

156

}
Ok(())

}

fn main() {
/// Handle a field in a Person message.
fn person_field(field: Field) -> Result<(), Error> {

match field.field_num {
1 => println!("name: {}", field.value.as_string()?),
2 => println!("id: {}", field.value.as_u64()?),
3 => {

println!("phone:");
parse_message(field.value.as_bytes()?, phone_number_field)?;

}
_ => {} // skip everything else

}
Ok(())

}

/// Handle a field in a PhoneNumber message.
fn phone_number_field(field: Field) -> Result<(), Error> {

match field.field_num {
1 => println!(" number: {}", field.value.as_string()?),
2 => println!(" type: {}", field.value.as_string()?),
_ => {} // skip everything else

}
Ok(())

}

parse_message(
&[

0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a, 0x16,
0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35, 0x2d, 0x31,
0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a, 0x18, 0x0a, 0x0e,
0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37, 0x2d, 0x35, 0x33, 0x30,
0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c, 0x65,

],
person_field,

)
.unwrap()

}

24.6.1 Solution
use std::convert::TryFrom;
use thiserror::Error;

157

#[derive(Debug, Error)]
enum Error {

#[error("Invalid varint")]
InvalidVarint,
#[error("Invalid wire-type")]
InvalidWireType,
#[error("Unexpected EOF")]
UnexpectedEOF,
#[error("Invalid length")]
InvalidSize(#[from] std::num::TryFromIntError),
#[error("Unexpected wire-type)")]
UnexpectedWireType,
#[error("Invalid string (not UTF-8)")]
InvalidString,

}

/// A wire type as seen on the wire.
enum WireType {

/// The Varint WireType indicates the value is a single VARINT.
Varint,
//I64, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a VARINT
/// followed by exactly that number of bytes.
Len,
/// The I32 WireType indicates that the value is precisely 4 bytes in little-endian order
/// containing a 32-bit signed integer.
I32,

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint(u64),
//I64(i64), -- not needed for this exercise
Len(&'a [u8]),
I32(i32),

}

#[derive(Debug)]
/// A field, containing the field number and its value.
struct Field<'a> {

field_num: u64,
value: FieldValue<'a>,

}

158

impl TryFrom<u64> for WireType {
type Error = Error;

fn try_from(value: u64) -> Result<WireType, Error> {
Ok(match value {

0 => WireType::Varint,
//1 => WireType::I64, -- not needed for this exercise
2 => WireType::Len,
5 => WireType::I32,
_ => return Err(Error::InvalidWireType),

})
}

}

impl<'a> FieldValue<'a> {
fn as_string(&self) -> Result<&'a str, Error> {

let FieldValue::Len(data) = self else {
return Err(Error::UnexpectedWireType);

};
Ok(std::str::from_utf8(data).map_err(|_| Error::InvalidString)?)

}

fn as_bytes(&self) -> Result<&'a [u8], Error> {
let FieldValue::Len(data) = self else {

return Err(Error::UnexpectedWireType);
};
Ok(data)

}

fn as_u64(&self) -> Result<u64, Error> {
let FieldValue::Varint(value) = self else {

return Err(Error::UnexpectedWireType);
};
Ok(*value)

}
}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> Result<(u64, &[u8]), Error> {

for i in 0..7 {
let Some(b) = data.get(i) else {

return Err(Error::InvalidVarint);
};
if b & 0x80 == 0 {

// This is the last byte of the VARINT, so convert it to
// a u64 and return it.

159

let mut value = 0u64;
for b in data[..=i].iter().rev() {

value = (value << 7) | (b & 0x7f) as u64;
}
return Ok((value, &data[i + 1..]));

}
}

// More than 7 bytes is invalid.
Err(Error::InvalidVarint)

}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> Result<(u64, WireType), Error> {

let field_num = tag >> 3;
let wire_type = WireType::try_from(tag & 0x7)?;
Ok((field_num, wire_type))

}

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> Result<(Field, &[u8]), Error> {

let (tag, remainder) = parse_varint(data)?;
let (field_num, wire_type) = unpack_tag(tag)?;
let (fieldvalue, remainder) = match wire_type {

WireType::Varint => {
let (value, remainder) = parse_varint(remainder)?;
(FieldValue::Varint(value), remainder)

}
WireType::Len => {

let (len, remainder) = parse_varint(remainder)?;
let len: usize = len.try_into()?;
if remainder.len() < len as usize {

return Err(Error::UnexpectedEOF);
}
let (value, remainder) = remainder.split_at(len);
(FieldValue::Len(value), remainder)

}
WireType::I32 => {

if remainder.len() < 4usize {
return Err(Error::UnexpectedEOF);

}
let (value, remainder) = remainder.split_at(4);
// Unwrap error because `value` is definitely 4 bytes long.
let value = i32::from_le_bytes(value.try_into().unwrap());
(FieldValue::I32(value), remainder)

}

160

};
Ok((

Field {
field_num,
value: fieldvalue,

},
remainder,

))
}

/// Parse a message in the given data, calling `field_callback` for each field in the message.
///
/// The entire input is consumed.
fn parse_message(

mut data: &[u8],
field_callback: impl Fn(Field) -> Result<(), Error>,

) -> Result<(), Error> {
while !data.is_empty() {

let parsed = parse_field(data)?;
field_callback(parsed.0)?;
data = parsed.1;

}
Ok(())

}

fn main() {
/// Handle a field in a Person message.
fn person_field(field: Field) -> Result<(), Error> {

match field.field_num {
1 => println!("name: {}", field.value.as_string()?),
2 => println!("id: {}", field.value.as_u64()?),
3 => {

println!("phone:");
parse_message(field.value.as_bytes()?, phone_number_field)?;

}
_ => {} // skip everything else

}
Ok(())

}

/// Handle a field in a PhoneNumber message.
fn phone_number_field(field: Field) -> Result<(), Error> {

match field.field_num {
1 => println!(" number: {}", field.value.as_string()?),
2 => println!(" type: {}", field.value.as_string()?),
_ => {} // skip everything else

161

}
Ok(())

}

parse_message(
&[

0x0a, 0x07, 0x6d, 0x61, 0x78, 0x77, 0x65, 0x6c, 0x6c, 0x10, 0x2a, 0x1a, 0x16,
0x0a, 0x0e, 0x2b, 0x31, 0x32, 0x30, 0x32, 0x2d, 0x35, 0x35, 0x35, 0x2d, 0x31,
0x32, 0x31, 0x32, 0x12, 0x04, 0x68, 0x6f, 0x6d, 0x65, 0x1a, 0x18, 0x0a, 0x0e,
0x2b, 0x31, 0x38, 0x30, 0x30, 0x2d, 0x38, 0x36, 0x37, 0x2d, 0x35, 0x33, 0x30,
0x38, 0x12, 0x06, 0x6d, 0x6f, 0x62, 0x69, 0x6c, 0x65,

],
person_field,

)
.unwrap()

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn as_string() {

assert!(FieldValue::Varint(10).as_string().is_err());
assert!(FieldValue::I32(10).as_string().is_err());
assert_eq!(FieldValue::Len(b"hello").as_string().unwrap(), "hello");

}

#[test]
fn as_bytes() {

assert!(FieldValue::Varint(10).as_bytes().is_err());
assert!(FieldValue::I32(10).as_bytes().is_err());
assert_eq!(FieldValue::Len(b"hello").as_bytes().unwrap(), b"hello");

}

#[test]
fn as_u64() {

assert_eq!(FieldValue::Varint(10).as_u64().unwrap(), 10u64);
assert!(FieldValue::I32(10).as_u64().is_err());
assert!(FieldValue::Len(b"hello").as_u64().is_err());

}
}

162

Part VII

Day 4: Morning

163

Chapter 25

Welcome to Day 4

Today we will cover topics relating to building large-scale software in Rust:

• Iterators: a deep dive on the Iterator trait.
• Modules and visibility.
• Testing.
• Error handling: panics, Result, and the try operator ?.
• Unsafe Rust: the escape hatch when you can't express yourself in safe

Rust.

Schedule
In this session:

• Welcome (3 minutes)
• Iterators (45 minutes)
• Modules (45 minutes)
• Testing (1 hour and 5 minutes)

Including 10 minute breaks, this session should take about 3 hours and 10
minutes

164

Chapter 26

Iterators

In this segment:

• Iterator (5 minutes)
• IntoIterator (5 minutes)
• FromIterator (5 minutes)
• Exercise: Iterator Method Chaining (30 minutes)

This segment should take about 45 minutes

26.1 Iterator
The Iterator trait supports iterating over values in a collection. It requires
a next method and provides lots of methods. Many standard library types
implement Iterator, and you can implement it yourself, too:

struct Fibonacci {
curr: u32,
next: u32,

}

impl Iterator for Fibonacci {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
let new_next = self.curr + self.next;
self.curr = self.next;
self.next = new_next;
Some(self.curr)

}
}

165

https://doc.rust-lang.org/std/iter/trait.Iterator.html

fn main() {
let fib = Fibonacci { curr: 0, next: 1 };
for (i, n) in fib.enumerate().take(5) {

println!("fib({i}): {n}");
}

}

• The Iterator trait implements many common functional programming
operations over collections (e.g. map, filter, reduce, etc). This is the
trait where you can find all the documentation about them. In Rust these
functions should produce the code as efficient as equivalent imperative
implementations.

• IntoIterator is the trait that makes for loops work. It is implemented by
collection types such as Vec<T> and references to them such as &Vec<T>
and &[T]. Ranges also implement it. This is why you can iterate over a
vector with for i in some_vec { .. } but some_vec.next() doesn't
exist.

26.2 IntoIterator
The Iterator trait tells you how to iterate once you have created an iterator.
The related trait IntoIterator defines how to create an iterator for a type. It
is used automatically by the for loop.

struct Grid {
x_coords: Vec<u32>,
y_coords: Vec<u32>,

}

impl IntoIterator for Grid {
type Item = (u32, u32);
type IntoIter = GridIter;
fn into_iter(self) -> GridIter {

GridIter { grid: self, i: 0, j: 0 }
}

}

struct GridIter {
grid: Grid,
i: usize,
j: usize,

}

impl Iterator for GridIter {

166

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

type Item = (u32, u32);

fn next(&mut self) -> Option<(u32, u32)> {
self.i += 1;
if self.i >= self.grid.x_coords.len() {

self.i = 0;
self.j += 1;
if self.j >= self.grid.y_coords.len() {

return None;
}

}
Some((self.grid.x_coords[self.i], self.grid.y_coords[self.j]))

}
}

fn main() {
let grid = Grid {

x_coords: vec![3, 5, 7, 9],
y_coords: vec![10, 20, 30, 40],

};
for (x, y) in grid {

println!("point = {x}, {y}");
}

}

Click through to the docs for IntoIterator. Every implementation of
IntoIterator must declare two types:

• Item: the type to iterate over, such as i8,
• IntoIter: the Iterator type returned by the into_iter method.

Note that IntoIter and Item are linked: the iterator must have the same Item
type, which means that it returns Option<Item>

The example iterates over all combinations of x and y coordinates.

Try iterating over the grid twice in main. Why does this fail? Note that
IntoIterator::into_iter takes ownership of self.

Fix this issue by implementing IntoIterator for &Grid and storing a reference
to the Grid in GridIter.

The same problem can occur for standard library types: for e in some_vector
will take ownership of some_vector and iterate over owned elements from
that vector. Use for e in &some_vector instead, to iterate over references to
elements of some_vector.

167

26.3 FromIterator
FromIterator lets you build a collection from an Iterator.

fn main() {
let primes = vec![2, 3, 5, 7];
let prime_squares = primes

.into_iter()

.map(|prime| prime * prime)

.collect::<Vec<_>>();
println!("prime_squares: {prime_squares:?}");

}

Iterator implements

fn collect(self) -> B
where

B: FromIterator<Self::Item>,
Self: Sized

There are two ways to specify B for this method:

• With the ”turbofish”: some_iterator.collect::<COLLECTION_TYPE>(),
as shown. The _ shorthand used here lets Rust infer the type of the Vec
elements.

• With type inference: let prime_squares: Vec<_> = some_iterator.collect().
Rewrite the example to use this form.

There are basic implementations of FromIterator for Vec, HashMap, etc. There
are also more specialized implementations which let you do cool things like
convert an Iterator<Item = Result<V, E>> into a Result<Vec<V>, E>.

26.4 Exercise: Iterator Method Chaining
In this exercise, you will need to find and use some of the provided methods in
the Iterator trait to implement a complex calculation.

Copy the following code to https://play.rust-lang.org/ and make the tests pass.
Use an iterator expression and collect the result to construct the return value.

/// Calculate the differences between elements of `values` offset by `offset`, wrapping
/// around from the end of `values` to the beginning.
///
/// Element `n` of the result is `values[(n+offset)%len] - values[n]`.
fn offset_differences<N>(offset: usize, values: Vec<N>) -> Vec<N>
where

N: Copy + std::ops::Sub<Output = N>,
{

unimplemented!()

168

https://doc.rust-lang.org/std/iter/trait.FromIterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://play.rust-lang.org/

}

#[test]
fn test_offset_one() {

assert_eq!(offset_differences(1, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);
assert_eq!(offset_differences(1, vec![1, 3, 5]), vec![2, 2, -4]);
assert_eq!(offset_differences(1, vec![1, 3]), vec![2, -2]);

}

#[test]
fn test_larger_offsets() {

assert_eq!(offset_differences(2, vec![1, 3, 5, 7]), vec![4, 4, -4, -4]);
assert_eq!(offset_differences(3, vec![1, 3, 5, 7]), vec![6, -2, -2, -2]);
assert_eq!(offset_differences(4, vec![1, 3, 5, 7]), vec![0, 0, 0, 0]);
assert_eq!(offset_differences(5, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);

}

#[test]
fn test_custom_type() {

assert_eq!(
offset_differences(1, vec![1.0, 11.0, 5.0, 0.0]),
vec![10.0, -6.0, -5.0, 1.0]

);
}

#[test]
fn test_degenerate_cases() {

assert_eq!(offset_differences(1, vec![0]), vec![0]);
assert_eq!(offset_differences(1, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq!(offset_differences(1, empty), vec![]);

}

26.4.1 Solution
/// Calculate the differences between elements of `values` offset by `offset`, wrapping
/// around from the end of `values` to the beginning.
///
/// Element `n` of the result is `values[(n+offset)%len] - values[n]`.
fn offset_differences<N>(offset: usize, values: Vec<N>) -> Vec<N>
where

N: Copy + std::ops::Sub<Output = N>,
{

let a = (&values).into_iter();
let b = (&values).into_iter().cycle().skip(offset);
a.zip(b).map(|(a, b)| *b - *a).take(values.len()).collect()

169

}

#[test]
fn test_offset_one() {

assert_eq!(offset_differences(1, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);
assert_eq!(offset_differences(1, vec![1, 3, 5]), vec![2, 2, -4]);
assert_eq!(offset_differences(1, vec![1, 3]), vec![2, -2]);

}

#[test]
fn test_larger_offsets() {

assert_eq!(offset_differences(2, vec![1, 3, 5, 7]), vec![4, 4, -4, -4]);
assert_eq!(offset_differences(3, vec![1, 3, 5, 7]), vec![6, -2, -2, -2]);
assert_eq!(offset_differences(4, vec![1, 3, 5, 7]), vec![0, 0, 0, 0]);
assert_eq!(offset_differences(5, vec![1, 3, 5, 7]), vec![2, 2, 2, -6]);

}

#[test]
fn test_custom_type() {

assert_eq!(
offset_differences(1, vec![1.0, 11.0, 5.0, 0.0]),
vec![10.0, -6.0, -5.0, 1.0]

);
}

#[test]
fn test_degenerate_cases() {

assert_eq!(offset_differences(1, vec![0]), vec![0]);
assert_eq!(offset_differences(1, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq!(offset_differences(1, empty), vec![]);

}

fn main() {}

170

Chapter 27

Modules

In this segment:

• Modules (5 minutes)
• Filesystem Hierarchy (5 minutes)
• Visibility (5 minutes)
• use, super, self (10 minutes)
• Exercise: Modules for the GUI Library (20 minutes)

This segment should take about 45 minutes

27.1 Modules
We have seen how impl blocks let us namespace functions to a type.

Similarly, mod lets us namespace types and functions:

mod foo {
pub fn do_something() {

println!("In the foo module");
}

}

mod bar {
pub fn do_something() {

println!("In the bar module");
}

}

fn main() {
foo::do_something();

171

bar::do_something();
}

• Packages provide functionality and include a Cargo.toml file that describes
how to build a bundle of 1+ crates.

• Crates are a tree of modules, where a binary crate creates an executable
and a library crate compiles to a library.

• Modules define organization, scope, and are the focus of this section.

27.2 Filesystem Hierarchy
Omitting the module content will tell Rust to look for it in another file:

mod garden;

This tells rust that the garden module content is found at src/garden.rs. Simi-
larly, a garden::vegetablesmodule can be found at src/garden/vegetables.rs.

The crate root is in:

• src/lib.rs (for a library crate)
• src/main.rs (for a binary crate)

Modules defined in files can be documented, too, using ”inner doc comments”.
These document the item that contains them -- in this case, a module.

//! This module implements the garden, including a highly performant germination
//! implementation.

// Re-export types from this module.
pub use seeds::SeedPacket;
pub use garden::Garden;

/// Sow the given seed packets.
pub fn sow(seeds: Vec<SeedPacket>) { todo!() }

/// Harvest the produce in the garden that is ready.
pub fn harvest(garden: &mut Garden) { todo!() }

• Before Rust 2018, modules needed to be located at module/mod.rs instead
of module.rs, and this is still a working alternative for editions after 2018.

• The main reason to introduce filename.rs as alternative to
filename/mod.rs was because many files named mod.rs can be
hard to distinguish in IDEs.

• Deeper nesting can use folders, even if the main module is a file:

src/
��� main.rs

172

��� top_module.rs
��� top_module/

��� sub_module.rs

• The place rust will look for modules can be changed with a compiler
directive:

#[path = "some/path.rs"]
mod some_module;

This is useful, for example, if you would like to place tests for a module in
a file named some_module_test.rs, similar to the convention in Go.

27.3 Visibility
Modules are a privacy boundary:

• Module items are private by default (hides implementation details).
• Parent and sibling items are always visible.
• In other words, if an item is visible in module foo, it's visible in all the

descendants of foo.

mod outer {
fn private() {

println!("outer::private");
}

pub fn public() {
println!("outer::public");

}

mod inner {
fn private() {

println!("outer::inner::private");
}

pub fn public() {
println!("outer::inner::public");
super::private();

}
}

}

fn main() {
outer::public();

}

• Use the pub keyword to make modules public.

173

Additionally, there are advanced pub(...) specifiers to restrict the scope of
public visibility.

• See the Rust Reference.
• Configuring pub(crate) visibility is a common pattern.
• Less commonly, you can give visibility to a specific path.
• In any case, visibility must be granted to an ancestor module (and all of

its descendants).

27.4 use, super, self
A module can bring symbols from another module into scope with use. You will
typically see something like this at the top of each module:

use std::collections::HashSet;
use std::process::abort;

Paths
Paths are resolved as follows:

1. As a relative path:

• foo or self::foo refers to foo in the current module,
• super::foo refers to foo in the parent module.

2. As an absolute path:

• crate::foo refers to foo in the root of the current crate,
• bar::foo refers to foo in the bar crate.

• It is common to ”re-export” symbols at a shorter path. For example, the
top-level lib.rs in a crate might have

mod storage;

pub use storage::disk::DiskStorage;
pub use storage::network::NetworkStorage;

making DiskStorage and NetworkStorage available to other crates with
a convenient, short path.

• For the most part, only items that appear in a module need to be use'd.
However, a trait must be in scope to call any methods on that trait, even
if a type implementing that trait is already in scope. For example, to use
the read_to_string method on a type implementing the Read trait, you
need to use std::io::Read.

• The use statement can have a wildcard: use std::io::*. This is discour-
aged because it is not clear which items are imported, and those might
change over time.

174

https://doc.rust-lang.org/reference/visibility-and-privacy.html#pubin-path-pubcrate-pubsuper-and-pubself

27.5 Exercise: Modules for the GUI Library
In this exercise, you will reorganize the GUI Library exercise from the ”Methods
and Traits” segment of the course into a collection of modules. It is typical to
put each type or set of closely-related types into its own module, so each widget
type should get its own module.

If you no longer have your version, that's fine - refer back to the provided
solution.

Cargo Setup
The Rust playground only supports one file, so you will need to make a Cargo
project on your local filesystem:

cargo init gui-modules
cd gui-modules
cargo run

Edit src/main.rs to add mod statements, and add additional files in the src
directory.

Encourage students to divide the code in a way that feels natural for them,
and get accustomed to the required mod, use, and pub declarations. Afterward,
discuss what organizations are most idiomatic.

27.5.1 Solution
// ---- src/widgets.rs ----
pub trait Widget {

/// Natural width of `self`.
fn width(&self) -> usize;

/// Draw the widget into a buffer.
fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

/// Draw the widget on standard output.
fn draw(&self) {

let mut buffer = String::new();
self.draw_into(&mut buffer);
println!("{buffer}");

}
}

pub use button::Button;
pub use label::Label;
pub use window::Window;

175

// ---- src/widgets/label.rs ----
use super::Widget;

pub struct Label {
label: String,

}

impl Label {
pub fn new(label: &str) -> Label {

Label {
label: label.to_owned(),

}
}

}

impl Widget for Label {
fn width(&self) -> usize {

// ANCHOR_END: Label-width
self.label

.lines()

.map(|line| line.chars().count())

.max()

.unwrap_or(0)
}

// ANCHOR: Label-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Label-draw_into
writeln!(buffer, "{}", &self.label).unwrap();

}
}

// ---- src/widgets/button.rs ----
use super::{Label, Widget};

pub struct Button {
label: Label,

}

impl Button {
pub fn new(label: &str) -> Button {

Button {
label: Label::new(label),

}
}

}

176

impl Widget for Button {
fn width(&self) -> usize {

// ANCHOR_END: Button-width
self.label.width() + 8 // add a bit of padding

}

// ANCHOR: Button-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Button-draw_into
let width = self.width();
let mut label = String::new();
self.label.draw_into(&mut label);

writeln!(buffer, "+{:-<width$}+", "").unwrap();
for line in label.lines() {

writeln!(buffer, "|{:^width$}|", &line).unwrap();
}
writeln!(buffer, "+{:-<width$}+", "").unwrap();

}
}

// ---- src/widgets/window.rs ----
use super::Widget;

pub struct Window {
title: String,
widgets: Vec<Box<dyn Widget>>,

}

impl Window {
pub fn new(title: &str) -> Window {

Window {
title: title.to_owned(),
widgets: Vec::new(),

}
}

pub fn add_widget(&mut self, widget: Box<dyn Widget>) {
self.widgets.push(widget);

}

fn inner_width(&self) -> usize {
std::cmp::max(

self.title.chars().count(),
self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),

177

)
}

}

impl Widget for Window {
fn width(&self) -> usize {

// ANCHOR_END: Window-width
// Add 4 paddings for borders
self.inner_width() + 4

}

// ANCHOR: Window-draw_into
fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {

// ANCHOR_END: Window-draw_into
let mut inner = String::new();
for widget in &self.widgets {

widget.draw_into(&mut inner);
}

let inner_width = self.inner_width();

// TODO: after learning about error handling, you can change
// draw_into to return Result<(), std::fmt::Error>. Then use
// the ?-operator here instead of .unwrap().
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();
writeln!(buffer, "| {:^inner_width$} |", &self.title).unwrap();
writeln!(buffer, "+={:=<inner_width$}=+", "").unwrap();
for line in inner.lines() {

writeln!(buffer, "| {:inner_width$} |", line).unwrap();
}
writeln!(buffer, "+-{:-<inner_width$}-+", "").unwrap();

}
}

// ---- src/main.rs ----
use widgets::Widget;

fn main() {
let mut window = widgets::Window::new("Rust GUI Demo 1.23");
window.add_widget(Box::new(widgets::Label::new(

"This is a small text GUI demo.",
)));
window.add_widget(Box::new(widgets::Button::new("Click me!")));
window.draw();

}

178

Chapter 28

Testing

In this segment:

• Test Modules (5 minutes)
• Other Types of Tests (10 minutes)
• Useful Crates (3 minutes)
• GoogleTest (5 minutes)
• Mocking (5 minutes)
• Compiler lints and Clippy (5 minutes)
• Exercise: Luhn Algorithm (30 minutes)

This segment should take about 1 hour and 5 minutes

28.1 Unit Tests
Rust and Cargo come with a simple unit test framework:

• Unit tests are supported throughout your code.

• Integration tests are supported via the tests/ directory.

Tests are marked with #[test]. Unit tests are often put in a nested tests
module, using #[cfg(test)] to conditionally compile them only when building
tests.

fn first_word(text: &str) -> &str {
match text.find(' ') {

Some(idx) => &text[..idx],
None => &text,

}
}

#[cfg(test)]

179

mod test {
use super::*;

#[test]
fn test_empty() {

assert_eq!(first_word(""), "");
}

#[test]
fn test_single_word() {

assert_eq!(first_word("Hello"), "Hello");
}

#[test]
fn test_multiple_words() {

assert_eq!(first_word("Hello World"), "Hello");
}

}

• This lets you unit test private helpers.
• The #[cfg(test)] attribute is only active when you run cargo test.

Run the tests in the playground in order to show their results.

28.2 Other Types of Tests
Integration Tests
If you want to test your library as a client, use an integration test.

Create a .rs file under tests/:

// tests/my_library.rs
use my_library::init;

#[test]
fn test_init() {

assert!(init().is_ok());
}

These tests only have access to the public API of your crate.

Documentation Tests
Rust has built-in support for documentation tests:

/// Shortens a string to the given length.
///

180

/// ```
/// # use playground::shorten_string;
/// assert_eq!(shorten_string("Hello World", 5), "Hello");
/// assert_eq!(shorten_string("Hello World", 20), "Hello World");
/// ```
pub fn shorten_string(s: &str, length: usize) -> &str {

&s[..std::cmp::min(length, s.len())]
}

• Code blocks in /// comments are automatically seen as Rust code.
• The code will be compiled and executed as part of cargo test.
• Adding # in the code will hide it from the docs, but will still compile/run

it.
• Test the above code on the Rust Playground.

28.3 Useful Crates
Rust comes with only basic support for writing tests.

Here are some additional crates which we recommend for writing tests:

• googletest: Comprehensive test assertion library in the tradition of
GoogleTest for C++.

• proptest: Property-based testing for Rust.
• rstest: Support for fixtures and parameterised tests.

28.4 GoogleTest
The GoogleTest crate allows for flexible test assertions using matchers:

use googletest::prelude::*;

#[googletest::test]
fn test_elements_are() {

let value = vec!["foo", "bar", "baz"];
expect_that!(value, elements_are!(eq("foo"), lt("xyz"), starts_with("b")));

}

If we change the last element to "!", the test fails with a structured error message
pin-pointing the error:

---- test_elements_are stdout ----
Value of: value
Expected: has elements:
0. is equal to "foo"
1. is less than "xyz"
2. starts with prefix "!"

181

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=3ce2ad13ea1302f6572cb15cd96becf0
https://docs.rs/googletest
https://docs.rs/proptest
https://docs.rs/rstest
https://docs.rs/googletest/

Actual: ["foo", "bar", "baz"],
where element #2 is "baz", which does not start with "!"
at src/testing/googletest.rs:6:5

Error: See failure output above

• GoogleTest is not part of the Rust Playground, so you need to run this
example in a local environment. Use cargo add googletest to quickly
add it to an existing Cargo project.

• The use googletest::prelude::*; line imports a number of commonly
used macros and types.

• This just scratches the surface, there are many builtin matchers.

• A particularly nice feature is that mismatches in multi-line strings strings
are shown as a diff:

#[test]
fn test_multiline_string_diff() {

let haiku = "Memory safety found,\n\
Rust's strong typing guides the way,\n\
Secure code you'll write.";

assert_that!(
haiku,
eq("Memory safety found,\n\

Rust's silly humor guides the way,\n\
Secure code you'll write.")

);
}

shows a color-coded diff (colors not shown here):

Value of: haiku
Expected: is equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."
Actual: "Memory safety found,\nRust's strong typing guides the way,\nSecure code you'll write.",
which isn't equal to "Memory safety found,\nRust's silly humor guides the way,\nSecure code you'll write."

Difference(-actual / +expected):
Memory safety found,

-Rust's strong typing guides the way,
+Rust's silly humor guides the way,
Secure code you'll write.
at src/testing/googletest.rs:17:5

• The crate is a Rust port of GoogleTest for C++.

• GoogleTest is available for use in AOSP.

182

https://docs.rs/googletest/latest/googletest/prelude/index.html
https://docs.rs/googletest/latest/googletest/prelude/index.html
https://google.github.io/googletest/

28.5 Mocking
For mocking, Mockall is a widely used library. You need to refactor your code
to use traits, which you can then quickly mock:

use std::time::Duration;

#[mockall::automock]
pub trait Pet {

fn is_hungry(&self, since_last_meal: Duration) -> bool;
}

#[test]
fn test_robot_dog() {

let mut mock_dog = MockPet::new();
mock_dog.expect_is_hungry().return_const(true);
assert_eq!(mock_dog.is_hungry(Duration::from_secs(10)), true);

}

• The advice here is for Android (AOSP) where Mockall is the recommended
mocking library. There are other mocking libraries available on crates.io,
in particular in the area of mocking HTTP services. The other mocking
libraries work in a similar fashion as Mockall, meaning that they make it
easy to get a mock implementation of a given trait.

• Note that mocking is somewhat controversial: mocks allow you to com-
pletely isolate a test from its dependencies. The immediate result is faster
and more stable test execution. On the other hand, the mocks can be config-
ured wrongly and return output different from what the real dependencies
would do.

If at all possible, it is recommended that you use the real dependencies. As
an example, many databases allow you to configure an in-memory backend.
This means that you get the correct behavior in your tests, plus they are
fast and will automatically clean up after themselves.

Similarly, many web frameworks allow you to start an in-process server
which binds to a random port on localhost. Always prefer this over
mocking away the framework since it helps you test your code in the real
environment.

• Mockall is not part of the Rust Playground, so you need to run this example
in a local environment. Use cargo add mockall to quickly add Mockall
to an existing Cargo project.

• Mockall has a lot more functionality. In particular, you can set up expec-
tations which depend on the arguments passed. Here we use this to mock
a cat which becomes hungry 3 hours after the last time it was fed:

183

https://docs.rs/mockall/
https://crates.io/keywords/mock

#[test]
fn test_robot_cat() {

let mut mock_cat = MockPet::new();
mock_cat

.expect_is_hungry()

.with(mockall::predicate::gt(Duration::from_secs(3 * 3600)))

.return_const(true);
mock_cat.expect_is_hungry().return_const(false);
assert_eq!(mock_cat.is_hungry(Duration::from_secs(1 * 3600)), false);
assert_eq!(mock_cat.is_hungry(Duration::from_secs(5 * 3600)), true);

}

• You can use .times(n) to limit the number of times a mock method can
be called to n --- the mock will automatically panic when dropped if this
isn't satisfied.

28.6 Compiler Lints and Clippy
The Rust compiler produces fantastic error messages, as well as helpful built-in
lints. Clippy provides even more lints, organized into groups that can be enabled
per-project.

#[deny(clippy::cast_possible_truncation)]
fn main() {

let x = 3;
while (x < 70000) {

x *= 2;
}
println!("X probably fits in a u16, right? {}", x as u16);

}

Run the code sample and examine the error message. There are also lints
visible here, but those will not be shown once the code compiles. Switch to the
Playground site to show those lints.

After resolving the lints, run clippy on the playground site to show clippy
warnings. Clippy has extensive documentation of its lints, and adds new lints
(including default-deny lints) all the time.

Note that errors or warnings with help: ... can be fixed with cargo fix or
via your editor.

184

https://doc.rust-lang.org/clippy/

28.7 Exercise: Luhn Algorithm

28.8 Luhn Algorithm
The Luhn algorithm is used to validate credit card numbers. The algorithm
takes a string as input and does the following to validate the credit card number:

• Ignore all spaces. Reject number with less than two digits.

• Moving from right to left, double every second digit: for the number
1234, we double 3 and 1. For the number 98765, we double 6 and 8.

• After doubling a digit, sum the digits if the result is greater than 9. So
doubling 7 becomes 14 which becomes 1 + 4 = 5.

• Sum all the undoubled and doubled digits.

• The credit card number is valid if the sum ends with 0.

The provided code provides a buggy implementation of the luhn algorithm, along
with two basic unit tests that confirm that most the algorithm is implemented
correctly.

Copy the code below to https://play.rust-lang.org/ and write additional tests to
uncover bugs in the provided implementation, fixing any bugs you find.

pub fn luhn(cc_number: &str) -> bool {
let mut sum = 0;
let mut double = false;

for c in cc_number.chars().rev() {
if let Some(digit) = c.to_digit(10) {

if double {
let double_digit = digit * 2;
sum += if double_digit > 9 {

double_digit - 9
} else {

double_digit
};

} else {
sum += digit;

}
double = !double;

} else {
continue;

}
}

sum % 10 == 0

185

https://en.wikipedia.org/wiki/Luhn_algorithm
https://play.rust-lang.org/

}

#[cfg(test)]
mod test {

use super::*;

#[test]
fn test_valid_cc_number() {

assert!(luhn("4263 9826 4026 9299"));
assert!(luhn("4539 3195 0343 6467"));
assert!(luhn("7992 7398 713"));

}

#[test]
fn test_invalid_cc_number() {

assert!(!luhn("4223 9826 4026 9299"));
assert!(!luhn("4539 3195 0343 6476"));
assert!(!luhn("8273 1232 7352 0569"));

}
}

28.8.1 Solution
// This is the buggy version that appears in the problem.
#[cfg(never)]
pub fn luhn(cc_number: &str) -> bool {

let mut sum = 0;
let mut double = false;

for c in cc_number.chars().rev() {
if let Some(digit) = c.to_digit(10) {

if double {
let double_digit = digit * 2;
sum += if double_digit > 9 {

double_digit - 9
} else {

double_digit
};

} else {
sum += digit;

}
double = !double;

} else {
continue;

}
}

186

sum % 10 == 0
}

// This is the solution and passes all of the tests below.
pub fn luhn(cc_number: &str) -> bool {

let mut sum = 0;
let mut double = false;
let mut digits = 0;

for c in cc_number.chars().rev() {
if let Some(digit) = c.to_digit(10) {

digits += 1;
if double {

let double_digit = digit * 2;
sum += if double_digit > 9 {

double_digit - 9
} else {

double_digit
};

} else {
sum += digit;

}
double = !double;

} else if c.is_whitespace() {
continue;

} else {
return false;

}
}

digits >= 2 && sum % 10 == 0
}

fn main() {
let cc_number = "1234 5678 1234 5670";
println!(

"Is {cc_number} a valid credit card number? {}",
if luhn(cc_number) { "yes" } else { "no" }

);
}

#[cfg(test)]
mod test {

use super::*;

187

#[test]
fn test_valid_cc_number() {

assert!(luhn("4263 9826 4026 9299"));
assert!(luhn("4539 3195 0343 6467"));
assert!(luhn("7992 7398 713"));

}

#[test]
fn test_invalid_cc_number() {

assert!(!luhn("4223 9826 4026 9299"));
assert!(!luhn("4539 3195 0343 6476"));
assert!(!luhn("8273 1232 7352 0569"));

}

#[test]
fn test_non_digit_cc_number() {

assert!(!luhn("foo"));
assert!(!luhn("foo 0 0"));

}

#[test]
fn test_empty_cc_number() {

assert!(!luhn(""));
assert!(!luhn(" "));
assert!(!luhn(" "));
assert!(!luhn(" "));

}

#[test]
fn test_single_digit_cc_number() {

assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {

assert!(luhn(" 0 0 "));
}

}

188

Part VIII

Day 4: Afternoon

189

Chapter 29

Welcome Back

In this session:

• Error Handling (45 minutes)
• Unsafe Rust (1 hour and 5 minutes)

Including 10 minute breaks, this session should take about 2 hours

190

Chapter 30

Error Handling

In this segment:

• Panics (3 minutes)
• Try operator (5 minutes)
• Try Conversions (5 minutes)
• Error Trait (5 minutes)
• thiserror and anyhow (5 minutes)
• Exercise: Rewriting with Result (20 minutes)

This segment should take about 45 minutes

30.1 Panics
Rust handles fatal errors with a ”panic”.

Rust will trigger a panic if a fatal error happens at runtime:

fn main() {
let v = vec![10, 20, 30];
println!("v[100]: {}", v[100]);

}

• Panics are for unrecoverable and unexpected errors.
– Panics are symptoms of bugs in the program.
– Runtime failures like failed bounds checks can panic
– Assertions (such as assert!) panic on failure
– Purpose-specific panics can use the panic! macro.

• A panic will ”unwind” the stack, dropping values just as if the functions
had returned.

• Use non-panicking APIs (such as Vec::get) if crashing is not acceptable.

191

By default, a panic will cause the stack to unwind. The unwinding can be
caught:

use std::panic;

fn main() {
let result = panic::catch_unwind(|| {

"No problem here!"
});
println!("{result:?}");

let result = panic::catch_unwind(|| {
panic!("oh no!");

});
println!("{result:?}");

}

• Catching is unusual; do not attempt to implement exceptions with
catch_unwind!

• This can be useful in servers which should keep running even if a single
request crashes.

• This does not work if panic = 'abort' is set in your Cargo.toml.

30.2 Try Operator
Runtime errors like connection-refused or file-not-found are handled with the
Result type, but matching this type on every call can be cumbersome. The
try-operator ? is used to return errors to the caller. It lets you turn the common

match some_expression {
Ok(value) => value,
Err(err) => return Err(err),

}

into the much simpler

some_expression?

We can use this to simplify our error handling code:

use std::{fs, io};
use std::io::Read;

fn read_username(path: &str) -> Result<String, io::Error> {
let username_file_result = fs::File::open(path);
let mut username_file = match username_file_result {

Ok(file) => file,
Err(err) => return Err(err),

192

};

let mut username = String::new();
match username_file.read_to_string(&mut username) {

Ok(_) => Ok(username),
Err(err) => Err(err),

}
}

fn main() {
//fs::write("config.dat", "alice").unwrap();
let username = read_username("config.dat");
println!("username or error: {username:?}");

}

Simplify the read_username function to use ?.

Key points:

• The username variable can be either Ok(string) or Err(error).
• Use the fs::write call to test out the different scenarios: no file, empty

file, file with username.
• Note that main can return a Result<(), E> as long as it implements

std::process:Termination. In practice, this means that E implements
Debug. The executable will print the Err variant and return a nonzero
exit status on error.

30.3 Try Conversions
The effective expansion of ? is a little more complicated than previously indicated:

expression?

works the same as

match expression {
Ok(value) => value,
Err(err) => return Err(From::from(err)),

}

The From::from call here means we attempt to convert the error type to the
type returned by the function. This makes it easy to encapsulate errors into
higher-level errors.

Example
use std::error::Error;
use std::fmt::{self, Display, Formatter};
use std::fs::{self, File};

193

use std::io::{self, Read};

#[derive(Debug)]
enum ReadUsernameError {

IoError(io::Error),
EmptyUsername(String),

}

impl Error for ReadUsernameError {}

impl Display for ReadUsernameError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {

match self {
Self::IoError(e) => write!(f, "IO error: {e}"),
Self::EmptyUsername(filename) => write!(f, "Found no username in {filename}"),

}
}

}

impl From<io::Error> for ReadUsernameError {
fn from(err: io::Error) -> ReadUsernameError {

ReadUsernameError::IoError(err)
}

}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
let mut username = String::with_capacity(100);
File::open(path)?.read_to_string(&mut username)?;
if username.is_empty() {

return Err(ReadUsernameError::EmptyUsername(String::from(path)));
}
Ok(username)

}

fn main() {
//fs::write("config.dat", "").unwrap();
let username = read_username("config.dat");
println!("username or error: {username:?}");

}

The return type of the function has to be compatible with the nested func-
tions it calls. For instance, a function returning a Result<T, Err> can only
apply the ? operator on a function returning a Result<AnyT, Err>. It cannot
apply the ? operator on a function returning an Option<AnyT> or Result<T,
OtherErr> unless OtherErr implements From<Err>. Reciprocally, a function
returning an Option<T> can only apply the ? operator on a function returning

194

an Option<AnyT>.

You can convert incompatible types into one another with the different Option
and Result methods such as Option::ok_or, Result::ok, Result::err.

It is good practice for all error types that don't need to be no_std to implement
std::error::Error, which requires Debug and Display. The Error crate for
core is only available in nightly, so not fully no_std compatible yet.

It's generally helpful for them to implement Clone and Eq too where possible,
to make life easier for tests and consumers of your library. In this case we can't
easily do so, because io::Error doesn't implement them.

A common alternative to a From implementation is Result::map_err, especially
when the conversion only happens in one place.

30.4 Dynamic Error Types
Sometimes we want to allow any type of error to be returned without writing
our own enum covering all the different possibilities. The std::error::Error
trait makes it easy to create a trait object that can contain any error.

use std::error::Error;
use std::fs;
use std::io::Read;

fn read_count(path: &str) -> Result<i32, Box<dyn Error>> {
let mut count_str = String::new();
fs::File::open(path)?.read_to_string(&mut count_str)?;
let count: i32 = count_str.parse()?;
Ok(count)

}

fn main() {
fs::write("count.dat", "1i3").unwrap();
match read_count("count.dat") {

Ok(count) => println!("Count: {count}"),
Err(err) => println!("Error: {err}"),

}
}

The read_count function can return std::io::Error (from file operations) or
std::num::ParseIntError (from String::parse).

Boxing errors saves on code, but gives up the ability to cleanly handle different
error cases differently in the program. As such it's generally not a good idea to
use Box<dyn Error> in the public API of a library, but it can be a good option
in a program where you just want to display the error message somewhere.

195

https://github.com/rust-lang/rust/issues/103765

30.5 thiserror and anyhow
The thiserror and anyhow crates are widley used to simplify error handling.
thiserror helps create custom error types that implement From<T>. anyhow
helps with error handling in functions, including adding contextual information
to your errors.

use std::{fs, io};
use std::io::Read;
use anyhow::{Context, Result, bail};

#[derive(Clone, Debug, Eq, Error, PartialEq)]
#[error("Found no username in {0}")]
struct EmptyUsernameError(String);

fn read_username(path: &str) -> Result<String> {
let mut username = String::with_capacity(100);
fs::File::open(path)

.with_context(|| format!("Failed to open {path}"))?

.read_to_string(&mut username)

.context("Failed to read")?;
if username.is_empty() {

bail!(EmptyUsernameError(path));
}
Ok(username)

}

fn main() {
//fs::write("config.dat", "").unwrap();
match read_username("config.dat") {

Ok(username) => println!("Username: {username}"),
Err(err) => println!("Error: {err:?}"),

}
}

• The Error derive macro is provided by thiserror, and has lots of useful
attributes like #[error] to help define a useful error type.

• anyhow::Result<V> is a type alias for Result<V, anyhow::Error>.
• anyhow::Error is essentially a wrapper around Box<dyn Error>. As such

it's again generally not a good choice for the public API of a library, but
is widely used in applications.

• Actual error type inside of it can be extracted for examination if necessary.
• Functionality provided by anyhow::Result<T> may be familiar to Go

developers, as it provides similar usage patterns and ergonomics to (T,
error) from Go.

196

https://docs.rs/thiserror/
https://docs.rs/anyhow/

30.6 Exercise: Rewriting with Result
The following implements a very simple parser for an expression language.
However, it handles errors by panicking. Rewrite it to instead use idiomatic
error handling and propagate errors to a return from main. Feel free to use
thiserror and anyhow.

HINT: start by fixing error handling in the parse function. Once that is work-
ing correctly, update Tokenizer to implement Iterator<Item=Result<Token,
TokenizerError>> and handle that in the parser.

use std::iter::Peekable;
use std::str::Chars;

/// An arithmetic operator.
#[derive(Debug, PartialEq, Clone, Copy)]
enum Op {

Add,
Sub,

}

/// A token in the expression language.
#[derive(Debug, PartialEq)]
enum Token {

Number(String),
Identifier(String),
Operator(Op),

}

/// An expression in the expression language.
#[derive(Debug, PartialEq)]
enum Expression {

/// A reference to a variable.
Var(String),
/// A literal number.
Number(u32),
/// A binary operation.
Operation(Box<Expression>, Op, Box<Expression>),

}

fn tokenize(input: &str) -> Tokenizer {
return Tokenizer(input.chars().peekable());

}

struct Tokenizer<'a>(Peekable<Chars<'a>>);

impl<'a> Iterator for Tokenizer<'a> {

197

type Item = Token;

fn next(&mut self) -> Option<Token> {
let Some(c) = self.0.next() else {

return None;
};
match c {

'0'..='9' => {
let mut num = String::from(c);
while let Some(c @ '0'..='9') = self.0.peek() {

num.push(*c);
self.0.next();

}
Some(Token::Number(num))

}
'a'..='z' => {

let mut ident = String::from(c);
while let Some(c @ 'a'..='z' | c @ '_' | c @ '0'..='9') = self.0.peek() {

ident.push(*c);
self.0.next();

}
Some(Token::Identifier(ident))

}
'+' => Some(Token::Operator(Op::Add)),
'-' => Some(Token::Operator(Op::Sub)),
_ => panic!("Unexpected character {c}"),

}
}

}

fn parse(input: &str) -> Expression {
let mut tokens = tokenize(input);

fn parse_expr<'a>(tokens: &mut Tokenizer<'a>) -> Expression {
let Some(tok) = tokens.next() else {

panic!("Unexpected end of input");
};
let expr = match tok {

Token::Number(num) => {
let v = num.parse().expect("Invalid 32-bit integer'");
Expression::Number(v)

}
Token::Identifier(ident) => Expression::Var(ident),
Token::Operator(_) => panic!("Unexpected token {tok:?}"),

};
// Look ahead to parse a binary operation if present.

198

match tokens.next() {
None => expr,
Some(Token::Operator(op)) => {

Expression::Operation(Box::new(expr), op, Box::new(parse_expr(tokens)))
}
Some(tok) => panic!("Unexpected token {tok:?}"),

}
}

parse_expr(&mut tokens)
}

fn main() {
let expr = parse("10+foo+20-30");
println!("{expr:?}");

}

30.6.1 Solution
use thiserror::Error;
use std::iter::Peekable;
use std::str::Chars;

/// An arithmetic operator.
#[derive(Debug, PartialEq, Clone, Copy)]
enum Op {

Add,
Sub,

}

/// A token in the expression language.
#[derive(Debug, PartialEq)]
enum Token {

Number(String),
Identifier(String),
Operator(Op),

}

/// An expression in the expression language.
#[derive(Debug, PartialEq)]
enum Expression {

/// A reference to a variable.
Var(String),
/// A literal number.
Number(u32),
/// A binary operation.

199

Operation(Box<Expression>, Op, Box<Expression>),
}

fn tokenize(input: &str) -> Tokenizer {
return Tokenizer(input.chars().peekable());

}

#[derive(Debug, Error)]
enum TokenizerError {

#[error("Unexpected character '{0}' in input")]
UnexpectedCharacter(char),

}

struct Tokenizer<'a>(Peekable<Chars<'a>>);

impl<'a> Iterator for Tokenizer<'a> {
type Item = Result<Token, TokenizerError>;

fn next(&mut self) -> Option<Result<Token, TokenizerError>> {
let Some(c) = self.0.next() else {

return None;
};
match c {

'0'..='9' => {
let mut num = String::from(c);
while let Some(c @ '0'..='9') = self.0.peek() {

num.push(*c);
self.0.next();

}
Some(Ok(Token::Number(num)))

}
'a'..='z' => {

let mut ident = String::from(c);
while let Some(c @ 'a'..='z' | c @ '_' | c @ '0'..='9') = self.0.peek() {

ident.push(*c);
self.0.next();

}
Some(Ok(Token::Identifier(ident)))

}
'+' => Some(Ok(Token::Operator(Op::Add))),
'-' => Some(Ok(Token::Operator(Op::Sub))),
_ => Some(Err(TokenizerError::UnexpectedCharacter(c))),

}
}

}

200

#[derive(Debug, Error)]
enum ParserError {

#[error("Tokenizer error: {0}")]
TokenizerError(#[from] TokenizerError),
#[error("Unexpected end of input")]
UnexpectedEOF,
#[error("Unexpected token {0:?}")]
UnexpectedToken(Token),
#[error("Invalid number")]
InvalidNumber(#[from] std::num::ParseIntError),

}

fn parse(input: &str) -> Result<Expression, ParserError> {
let mut tokens = tokenize(input);

fn parse_expr<'a>(tokens: &mut Tokenizer<'a>) -> Result<Expression, ParserError> {
let Some(tok) = tokens.next().transpose()? else {

return Err(ParserError::UnexpectedEOF);
};
let expr = match tok {

Token::Number(num) => {
let v = num.parse()?;
Expression::Number(v)

}
Token::Identifier(ident) => Expression::Var(ident),
Token::Operator(_) => return Err(ParserError::UnexpectedToken(tok)),

};
// Look ahead to parse a binary operation if present.
Ok(match tokens.next() {

None => expr,
Some(Ok(Token::Operator(op))) => {

Expression::Operation(Box::new(expr), op, Box::new(parse_expr(tokens)?))
}
Some(Err(e)) => return Err(e.into()),
Some(Ok(tok)) => return Err(ParserError::UnexpectedToken(tok)),

})
}

parse_expr(&mut tokens)
}

fn main() -> anyhow::Result<()> {
let expr = parse("10+foo+20-30")?;
println!("{expr:?}");
Ok(())

}

201

Chapter 31

Unsafe Rust

In this segment:

• Unsafe (5 minutes)
• Dereferencing Raw Pointers (10 minutes)
• Mutable Static Variables (5 minutes)
• Unions (5 minutes)
• Unsafe Functions (5 minutes)
• Unsafe Traits (5 minutes)
• Exercise: FFI Wrapper (30 minutes)

This segment should take about 1 hour and 5 minutes

31.1 Unsafe Rust
The Rust language has two parts:

• Safe Rust: memory safe, no undefined behavior possible.
• Unsafe Rust: can trigger undefined behavior if preconditions are violated.

We saw mostly safe Rust in this course, but it's important to know what Unsafe
Rust is.

Unsafe code is usually small and isolated, and its correctness should be carefully
documented. It is usually wrapped in a safe abstraction layer.

Unsafe Rust gives you access to five new capabilities:

• Dereference raw pointers.
• Access or modify mutable static variables.
• Access union fields.
• Call unsafe functions, including extern functions.
• Implement unsafe traits.

202

We will briefly cover unsafe capabilities next. For full details, please see Chapter
19.1 in the Rust Book and the Rustonomicon.

Unsafe Rust does not mean the code is incorrect. It means that developers
have turned off some compiler safety features and have to write correct code
by themselves. It means the compiler no longer enforces Rust's memory-safety
rules.

31.2 Dereferencing Raw Pointers
Creating pointers is safe, but dereferencing them requires unsafe:

fn main() {
let mut s = String::from("careful!");

let r1 = &mut s as *mut String;
let r2 = r1 as *const String;

// Safe because r1 and r2 were obtained from references and so are
// guaranteed to be non-null and properly aligned, the objects underlying
// the references from which they were obtained are live throughout the
// whole unsafe block, and they are not accessed either through the
// references or concurrently through any other pointers.
unsafe {

println!("r1 is: {}", *r1);
*r1 = String::from("uhoh");
println!("r2 is: {}", *r2);

}

// NOT SAFE. DO NOT DO THIS.
/*
let r3: &String = unsafe { &*r1 };
drop(s);
println!("r3 is: {}", *r3);
*/

}

It is good practice (and required by the Android Rust style guide) to write a
comment for each unsafe block explaining how the code inside it satisfies the
safety requirements of the unsafe operations it is doing.

In the case of pointer dereferences, this means that the pointers must be valid,
i.e.:

• The pointer must be non-null.
• The pointer must be dereferenceable (within the bounds of a single allocated

object).

203

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/std/ptr/index.html#safety

• The object must not have been deallocated.
• There must not be concurrent accesses to the same location.
• If the pointer was obtained by casting a reference, the underlying object

must be live and no reference may be used to access the memory.

In most cases the pointer must also be properly aligned.

The ”NOT SAFE” sectoin gives an example of a common kind of UB bug: *r1
has the 'static lifetime, so r3 has type &'static String, and thus outlives s.
Creating a reference from a pointer requires great care.

31.3 Mutable Static Variables
It is safe to read an immutable static variable:

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
println!("HELLO_WORLD: {HELLO_WORLD}");

}

However, since data races can occur, it is unsafe to read and write mutable static
variables:

static mut COUNTER: u32 = 0;

fn add_to_counter(inc: u32) {
unsafe { COUNTER += inc; } // Potential data race!

}

fn main() {
add_to_counter(42);

unsafe { println!("COUNTER: {COUNTER}"); } // Potential data race!
}

• The program here is safe because it is single-threaded. However, the Rust
compiler is conservative and will assume the worst. Try removing the
unsafe and see how the compiler explains that it is undefined behavior to
mutate a static from multiple threads.

• Using a mutable static is generally a bad idea, but there are some cases
where it might make sense in low-level no_std code, such as implementing
a heap allocator or working with some C APIs.

31.4 Unions
Unions are like enums, but you need to track the active field yourself:

204

#[repr(C)]
union MyUnion {

i: u8,
b: bool,

}

fn main() {
let u = MyUnion { i: 42 };
println!("int: {}", unsafe { u.i });
println!("bool: {}", unsafe { u.b }); // Undefined behavior!

}

Unions are very rarely needed in Rust as you can usually use an enum. They
are occasionally needed for interacting with C library APIs.

If you just want to reinterpret bytes as a different type, you probably want
std::mem::transmute or a safe wrapper such as the zerocopy crate.

31.5 Unsafe Functions
Calling Unsafe Functions
A function or method can be marked unsafe if it has extra preconditions you
must uphold to avoid undefined behaviour:

extern "C" {
fn abs(input: i32) -> i32;

}

fn main() {
let emojis = "���";

// Safe because the indices are in the correct order, within the bounds of
// the string slice, and lie on UTF-8 sequence boundaries.
unsafe {

println!("emoji: {}", emojis.get_unchecked(0..4));
println!("emoji: {}", emojis.get_unchecked(4..7));
println!("emoji: {}", emojis.get_unchecked(7..11));

}

println!("char count: {}", count_chars(unsafe { emojis.get_unchecked(0..7) }));

unsafe {
// Undefined behavior if abs misbehaves.
println!("Absolute value of -3 according to C: {}", abs(-3));

}

205

https://doc.rust-lang.org/stable/std/mem/fn.transmute.html
https://crates.io/crates/zerocopy

// Not upholding the UTF-8 encoding requirement breaks memory safety!
// println!("emoji: {}", unsafe { emojis.get_unchecked(0..3) });
// println!("char count: {}", count_chars(unsafe { emojis.get_unchecked(0..3) }));

}

fn count_chars(s: &str) -> usize {
s.chars().count()

}

Writing Unsafe Functions
You can mark your own functions as unsafe if they require particular conditions
to avoid undefined behaviour.

/// Swaps the values pointed to by the given pointers.
///
/// # Safety
///
/// The pointers must be valid and properly aligned.
unsafe fn swap(a: *mut u8, b: *mut u8) {

let temp = *a;
*a = *b;
*b = temp;

}

fn main() {
let mut a = 42;
let mut b = 66;

// Safe because ...
unsafe {

swap(&mut a, &mut b);
}

println!("a = {}, b = {}", a, b);
}

Calling Unsafe Functions
get_unchecked, like most _unchecked functions, is unsafe, because it can create
UB if the range is incorrect. abs is incorrect for a different reason: it is an
external function (FFI). Calling external functions is usually only a problem
when those functions do things with pointers which might violate Rust's memory
model, but in general any C function might have undefined behaviour under any
arbitrary circumstances.

The "C" in this example is the ABI; other ABIs are available too.

206

https://doc.rust-lang.org/reference/items/external-blocks.html

Writing Unsafe Functions
We wouldn't actually use pointers for a swap function - it can be done safely
with references.

Note that unsafe code is allowed within an unsafe function without an unsafe
block. We can prohibit this with #[deny(unsafe_op_in_unsafe_fn)]. Try
adding it and see what happens. This will likely change in a future Rust edition.

31.6 Implementing Unsafe Traits
Like with functions, you can mark a trait as unsafe if the implementation must
guarantee particular conditions to avoid undefined behaviour.

For example, the zerocopy crate has an unsafe trait that looks something like
this:

use std::mem::size_of_val;
use std::slice;

/// ...
/// # Safety
/// The type must have a defined representation and no padding.
pub unsafe trait AsBytes {

fn as_bytes(&self) -> &[u8] {
unsafe {

slice::from_raw_parts(self as *const Self as *const u8, size_of_val(self))
}

}
}

// Safe because u32 has a defined representation and no padding.
unsafe impl AsBytes for u32 {}

There should be a # Safety section on the Rustdoc for the trait explaining the
requirements for the trait to be safely implemented.

The actual safety section for AsBytes is rather longer and more complicated.

The built-in Send and Sync traits are unsafe.

31.7 Safe FFI Wrapper
Rust has great support for calling functions through a foreign function interface
(FFI). We will use this to build a safe wrapper for the libc functions you would
use from C to read the names of files in a directory.

You will want to consult the manual pages:

207

https://docs.rs/zerocopy/latest/zerocopy/trait.AsBytes.html
https://docs.rs/zerocopy/latest/zerocopy/trait.AsBytes.html

• opendir(3)
• readdir(3)
• closedir(3)

You will also want to browse the std::ffi module. There you find a number of
string types which you need for the exercise:

Types Encoding Use
str and String UTF-8 Text processing in Rust
CStr and CString NUL-terminated Communicating with C functions
OsStr and OsString OS-specific Communicating with the OS

You will convert between all these types:

• &str to CString: you need to allocate space for a trailing \0 character,
• CString to *const i8: you need a pointer to call C functions,
• *const i8 to &CStr: you need something which can find the trailing \0

character,
• &CStr to &[u8]: a slice of bytes is the universal interface for ”some unknown

data”,
• &[u8] to &OsStr: &OsStr is a step towards OsString, use OsStrExt to

create it,
• &OsStr to OsString: you need to clone the data in &OsStr to be able to

return it and call readdir again.

The Nomicon also has a very useful chapter about FFI.

Copy the code below to https://play.rust-lang.org/ and fill in the missing
functions and methods:

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

mod ffi {
use std::os::raw::{c_char, c_int};
#[cfg(not(target_os = "macos"))]
use std::os::raw::{c_long, c_uchar, c_ulong, c_ushort};

// Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
#[repr(C)]
pub struct DIR {

_data: [u8; 0],
_marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,

}

// Layout according to the Linux man page for readdir(3), where ino_t and
// off_t are resolved according to the definitions in

208

https://man7.org/linux/man-pages/man3/opendir.3.html
https://man7.org/linux/man-pages/man3/readdir.3.html
https://man7.org/linux/man-pages/man3/closedir.3.html
https://doc.rust-lang.org/std/ffi/
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.OsStr.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/os/unix/ffi/trait.OsStrExt.html
https://doc.rust-lang.org/nomicon/ffi.html
https://play.rust-lang.org/

// /usr/include/x86_64-linux-gnu/{sys/types.h, bits/typesizes.h}.
#[cfg(not(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_ino: c_ulong,
pub d_off: c_long,
pub d_reclen: c_ushort,
pub d_type: c_uchar,
pub d_name: [c_char; 256],

}

// Layout according to the macOS man page for dir(5).
#[cfg(all(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_fileno: u64,
pub d_seekoff: u64,
pub d_reclen: u16,
pub d_namlen: u16,
pub d_type: u8,
pub d_name: [c_char; 1024],

}

extern "C" {
pub fn opendir(s: *const c_char) -> *mut DIR;

#[cfg(not(all(target_os = "macos", target_arch = "x86_64")))]
pub fn readdir(s: *mut DIR) -> *const dirent;

// See https://github.com/rust-lang/libc/issues/414 and the section on
// _DARWIN_FEATURE_64_BIT_INODE in the macOS man page for stat(2).
//
// "Platforms that existed before these updates were available" refers
// to macOS (as opposed to iOS / wearOS / etc.) on Intel and PowerPC.
#[cfg(all(target_os = "macos", target_arch = "x86_64"))]
#[link_name = "readdir$INODE64"]
pub fn readdir(s: *mut DIR) -> *const dirent;

pub fn closedir(s: *mut DIR) -> c_int;
}

}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]

209

struct DirectoryIterator {
path: CString,
dir: *mut ffi::DIR,

}

impl DirectoryIterator {
fn new(path: &str) -> Result<DirectoryIterator, String> {

// Call opendir and return a Ok value if that worked,
// otherwise return Err with a message.
unimplemented!()

}
}

impl Iterator for DirectoryIterator {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {

// Keep calling readdir until we get a NULL pointer back.
unimplemented!()

}
}

impl Drop for DirectoryIterator {
fn drop(&mut self) {

// Call closedir as needed.
unimplemented!()

}
}

fn main() -> Result<(), String> {
let iter = DirectoryIterator::new(".")?;
println!("files: {:#?}", iter.collect::<Vec<_>>());
Ok(())

}

31.7.1 Solution
mod ffi {

use std::os::raw::{c_char, c_int};
#[cfg(not(target_os = "macos"))]
use std::os::raw::{c_long, c_uchar, c_ulong, c_ushort};

// Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
#[repr(C)]
pub struct DIR {

_data: [u8; 0],
_marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,

210

}

// Layout according to the Linux man page for readdir(3), where ino_t and
// off_t are resolved according to the definitions in
// /usr/include/x86_64-linux-gnu/{sys/types.h, bits/typesizes.h}.
#[cfg(not(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_ino: c_ulong,
pub d_off: c_long,
pub d_reclen: c_ushort,
pub d_type: c_uchar,
pub d_name: [c_char; 256],

}

// Layout according to the macOS man page for dir(5).
#[cfg(all(target_os = "macos"))]
#[repr(C)]
pub struct dirent {

pub d_fileno: u64,
pub d_seekoff: u64,
pub d_reclen: u16,
pub d_namlen: u16,
pub d_type: u8,
pub d_name: [c_char; 1024],

}

extern "C" {
pub fn opendir(s: *const c_char) -> *mut DIR;

#[cfg(not(all(target_os = "macos", target_arch = "x86_64")))]
pub fn readdir(s: *mut DIR) -> *const dirent;

// See https://github.com/rust-lang/libc/issues/414 and the section on
// _DARWIN_FEATURE_64_BIT_INODE in the macOS man page for stat(2).
//
// "Platforms that existed before these updates were available" refers
// to macOS (as opposed to iOS / wearOS / etc.) on Intel and PowerPC.
#[cfg(all(target_os = "macos", target_arch = "x86_64"))]
#[link_name = "readdir$INODE64"]
pub fn readdir(s: *mut DIR) -> *const dirent;

pub fn closedir(s: *mut DIR) -> c_int;
}

}

211

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {

path: CString,
dir: *mut ffi::DIR,

}

impl DirectoryIterator {
fn new(path: &str) -> Result<DirectoryIterator, String> {

// Call opendir and return a Ok value if that worked,
// otherwise return Err with a message.
let path = CString::new(path).map_err(|err| format!("Invalid path: {err}"))?;
// SAFETY: path.as_ptr() cannot be NULL.
let dir = unsafe { ffi::opendir(path.as_ptr()) };
if dir.is_null() {

Err(format!("Could not open {:?}", path))
} else {

Ok(DirectoryIterator { path, dir })
}

}
}

impl Iterator for DirectoryIterator {
type Item = OsString;
fn next(&mut self) -> Option<OsString> {

// Keep calling readdir until we get a NULL pointer back.
// SAFETY: self.dir is never NULL.
let dirent = unsafe { ffi::readdir(self.dir) };
if dirent.is_null() {

// We have reached the end of the directory.
return None;

}
// SAFETY: dirent is not NULL and dirent.d_name is NUL
// terminated.
let d_name = unsafe { CStr::from_ptr((*dirent).d_name.as_ptr()) };
let os_str = OsStr::from_bytes(d_name.to_bytes());
Some(os_str.to_owned())

}
}

impl Drop for DirectoryIterator {
fn drop(&mut self) {

// Call closedir as needed.
if !self.dir.is_null() {

212

// SAFETY: self.dir is not NULL.
if unsafe { ffi::closedir(self.dir) } != 0 {

panic!("Could not close {:?}", self.path);
}

}
}

}

fn main() -> Result<(), String> {
let iter = DirectoryIterator::new(".")?;
println!("files: {:#?}", iter.collect::<Vec<_>>());
Ok(())

}

#[cfg(test)]
mod tests {

use super::*;
use std::error::Error;

#[test]
fn test_nonexisting_directory() {

let iter = DirectoryIterator::new("no-such-directory");
assert!(iter.is_err());

}

#[test]
fn test_empty_directory() -> Result<(), Box<dyn Error>> {

let tmp = tempfile::TempDir::new()?;
let iter = DirectoryIterator::new(

tmp.path().to_str().ok_or("Non UTF-8 character in path")?,
)?;
let mut entries = iter.collect::<Vec<_>>();
entries.sort();
assert_eq!(entries, &[".", ".."]);
Ok(())

}

#[test]
fn test_nonempty_directory() -> Result<(), Box<dyn Error>> {

let tmp = tempfile::TempDir::new()?;
std::fs::write(tmp.path().join("foo.txt"), "The Foo Diaries\n")?;
std::fs::write(tmp.path().join("bar.png"), "<PNG>\n")?;
std::fs::write(tmp.path().join("crab.rs"), "//! Crab\n")?;
let iter = DirectoryIterator::new(

tmp.path().to_str().ok_or("Non UTF-8 character in path")?,
)?;

213

let mut entries = iter.collect::<Vec<_>>();
entries.sort();
assert_eq!(entries, &[".", "..", "bar.png", "crab.rs", "foo.txt"]);
Ok(())

}
}

214

Part IX

Android

215

Chapter 32

Welcome to Rust in Android

Rust is supported for system software on Android. This means that you can
write new services, libraries, drivers or even firmware in Rust (or improve existing
code as needed).

We will attempt to call Rust from one of your own projects today. So
try to find a little corner of your code base where we can move some
lines of code to Rust. The fewer dependencies and ”exotic” types the
better. Something that parses some raw bytes would be ideal.

The speaker may mention any of the following given the increased use of Rust in
Android:

• Service example: DNS over HTTP

• Libraries: Rutabaga Virtual Graphics Interface

• Kernel Drivers: Binder

• Firmware: pKVM firmware

216

https://security.googleblog.com/2022/07/dns-over-http3-in-android.html
https://crosvm.dev/book/appendix/rutabaga_gfx.html
https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-0-08ba9197f637@google.com/
https://security.googleblog.com/2023/10/bare-metal-rust-in-android.html

Chapter 33

Setup

We will be using a Cuttlefish Android Virtual Device to test our code. Make
sure you have access to one or create a new one with:

source build/envsetup.sh
lunch aosp_cf_x86_64_phone-trunk_staging-userdebug
acloud create

Please see the Android Developer Codelab for details.

Key points:

• Cuttlefish is a reference Android device designed to work on generic Linux
desktops. MacOS support is also planned.

• The Cuttlefish system image maintains high fidelity to real devices, and is
the ideal emulator to run many Rust use cases.

217

https://source.android.com/docs/setup/start

Chapter 34

Build Rules

The Android build system (Soong) supports Rust via a number of modules:

Module Type Description
rust_binary Produces a Rust binary.
rust_library Produces a Rust library, and provides both rlib and dylib variants.
rust_ffi Produces a Rust C library usable by cc modules, and provides both static and shared variants.
rust_proc_macro Produces a proc-macro Rust library. These are analogous to compiler plugins.
rust_test Produces a Rust test binary that uses the standard Rust test harness.
rust_fuzz Produces a Rust fuzz binary leveraging libfuzzer.
rust_protobuf Generates source and produces a Rust library that provides an interface for a particular protobuf.
rust_bindgen Generates source and produces a Rust library containing Rust bindings to C libraries.

We will look at rust_binary and rust_library next.

Additional items speaker may mention:

• Cargo is not optimized for multi-language repos, and also downloads
packages from the internet.

• For compliance and performance, Android must have crates in-tree. It
must also interop with C/C++/Java code. Soong fills that gap.

• Soong has many similarities to Bazel, which is the open-source variant of
Blaze (used in google3).

• There is a plan to transition Android, ChromeOS, and Fuchsia to Bazel.

• Learning Bazel-like build rules is useful for all Rust OS developers.

• Fun fact: Data from Star Trek is a Soong-type Android.

218

https://source.android.com/docs/setup/build/bazel/introduction
https://chromium.googlesource.com/chromiumos/bazel/
https://source.android.com/docs/setup/build/bazel/introduction

34.1 Rust Binaries
Let us start with a simple application. At the root of an AOSP checkout, create
the following files:

hello_rust/Android.bp:

rust_binary {
name: "hello_rust",
crate_name: "hello_rust",
srcs: ["src/main.rs"],

}

hello_rust/src/main.rs:

//! Rust demo.

/// Prints a greeting to standard output.
fn main() {

println!("Hello from Rust!");
}

You can now build, push, and run the binary:

m hello_rust
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust" /data/local/tmp
adb shell /data/local/tmp/hello_rust

Hello from Rust!

34.2 Rust Libraries
You use rust_library to create a new Rust library for Android.

Here we declare a dependency on two libraries:

• libgreeting, which we define below,
• libtextwrap, which is a crate already vendored in external/rust/crates/.

hello_rust/Android.bp:

rust_binary {
name: "hello_rust_with_dep",
crate_name: "hello_rust_with_dep",
srcs: ["src/main.rs"],
rustlibs: [

"libgreetings",
"libtextwrap",

],
}

219

https://cs.android.com/android/platform/superproject/+/master:external/rust/crates/

rust_library {
name: "libgreetings",
crate_name: "greetings",
srcs: ["src/lib.rs"],

}

hello_rust/src/main.rs:

//! Rust demo.

use greetings::greeting;
use textwrap::fill;

/// Prints a greeting to standard output.
fn main() {

println!("{}", fill(&greeting("Bob"), 24));
}

hello_rust/src/lib.rs:

//! Greeting library.

/// Greet `name`.
pub fn greeting(name: &str) -> String {

format!("Hello {name}, it is very nice to meet you!")
}

You build, push, and run the binary like before:

m hello_rust_with_dep
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep" /data/local/tmp
adb shell /data/local/tmp/hello_rust_with_dep

Hello Bob, it is very
nice to meet you!

220

Chapter 35

AIDL

The Android Interface Definition Language (AIDL) is supported in Rust:

• Rust code can call existing AIDL servers,
• You can create new AIDL servers in Rust.

35.1 AIDL Interfaces
You declare the API of your service using an AIDL interface:

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {

/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years);

}

birthday_service/aidl/Android.bp:

aidl_interface {
name: "com.example.birthdayservice",
srcs: ["com/example/birthdayservice/*.aidl"],
unstable: true,
backend: {

rust: { // Rust is not enabled by default
enabled: true,

},
},

}

221

https://developer.android.com/guide/components/aidl

Add vendor_available: true if your AIDL file is used by a binary in the
vendor partition.

35.2 Service Implementation
We can now implement the AIDL service:

birthday_service/src/lib.rs:

//! Implementation of the `IBirthdayService` AIDL interface.
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

/// The `IBirthdayService` implementation.
pub struct BirthdayService;

impl binder::Interface for BirthdayService {}

impl IBirthdayService for BirthdayService {
fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String> {

Ok(format!(
"Happy Birthday {name}, congratulations with the {years} years!"

))
}

}

birthday_service/Android.bp:

rust_library {
name: "libbirthdayservice",
srcs: ["src/lib.rs"],
crate_name: "birthdayservice",
rustlibs: [

"com.example.birthdayservice-rust",
"libbinder_rs",

],
}

35.3 AIDL Server
Finally, we can create a server which exposes the service:

birthday_service/src/server.rs:

//! Birthday service.
use birthdayservice::BirthdayService;
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::BnBirthdayService;

222

use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Entry point for birthday service.
fn main() {

let birthday_service = BirthdayService;
let birthday_service_binder = BnBirthdayService::new_binder(

birthday_service,
binder::BinderFeatures::default(),

);
binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder.as_binder())

.expect("Failed to register service");
binder::ProcessState::join_thread_pool()

}

birthday_service/Android.bp:

rust_binary {
name: "birthday_server",
crate_name: "birthday_server",
srcs: ["src/server.rs"],
rustlibs: [

"com.example.birthdayservice-rust",
"libbinder_rs",
"libbirthdayservice",

],
}

35.4 Deploy
We can now build, push, and start the service:

m birthday_server
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_server" /data/local/tmp
adb shell /data/local/tmp/birthday_server

In another terminal, check that the service runs:

adb shell service check birthdayservice

Service birthdayservice: found

You can also call the service with service call:

adb shell service call birthdayservice 1 s16 Bob i32 24

Result: Parcel(
0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'

223

0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'
0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'
0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'
0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'
0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'
0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'
0x00000070: 00210073 00000000 's.!..... ')

35.5 AIDL Client
Finally, we can create a Rust client for our new service.

birthday_service/src/client.rs:

//! Birthday service.
use com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::IBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Connect to the BirthdayService.
pub fn connect() -> Result<binder::Strong<dyn IBirthdayService>, binder::StatusCode> {

binder::get_interface(SERVICE_IDENTIFIER)
}

/// Call the birthday service.
fn main() -> Result<(), binder::Status> {

let name = std::env::args()
.nth(1)
.unwrap_or_else(|| String::from("Bob"));

let years = std::env::args()
.nth(2)
.and_then(|arg| arg.parse::<i32>().ok())
.unwrap_or(42);

binder::ProcessState::start_thread_pool();
let service = connect().expect("Failed to connect to BirthdayService");
let msg = service.wishHappyBirthday(&name, years)?;
println!("{msg}");
Ok(())

}

birthday_service/Android.bp:

rust_binary {
name: "birthday_client",
crate_name: "birthday_client",

224

srcs: ["src/client.rs"],
rustlibs: [

"com.example.birthdayservice-rust",
"libbinder_rs",

],
}

Notice that the client does not depend on libbirthdayservice.

Build, push, and run the client on your device:

m birthday_client
adb push "$ANDROID_PRODUCT_OUT/system/bin/birthday_client" /data/local/tmp
adb shell /data/local/tmp/birthday_client Charlie 60

Happy Birthday Charlie, congratulations with the 60 years!

35.6 Changing API
Let us extend the API with more functionality: we want to let clients specify a
list of lines for the birthday card:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {

/** Generate a Happy Birthday message. */
String wishHappyBirthday(String name, int years, in String[] text);

}

225

Chapter 36

Logging

You should use the log crate to automatically log to logcat (on-device) or
stdout (on-host):

hello_rust_logs/Android.bp:

rust_binary {
name: "hello_rust_logs",
crate_name: "hello_rust_logs",
srcs: ["src/main.rs"],
rustlibs: [

"liblog_rust",
"liblogger",

],
host_supported: true,

}

hello_rust_logs/src/main.rs:

//! Rust logging demo.

use log::{debug, error, info};

/// Logs a greeting.
fn main() {

logger::init(
logger::Config::default()

.with_tag_on_device("rust")

.with_min_level(log::Level::Trace),
);
debug!("Starting program.");
info!("Things are going fine.");

226

error!("Something went wrong!");
}

Build, push, and run the binary on your device:

m hello_rust_logs
adb push "$ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs" /data/local/tmp
adb shell /data/local/tmp/hello_rust_logs

The logs show up in adb logcat:

adb logcat -s rust

09-08 08:38:32.454 2420 2420 D rust: hello_rust_logs: Starting program.
09-08 08:38:32.454 2420 2420 I rust: hello_rust_logs: Things are going fine.
09-08 08:38:32.454 2420 2420 E rust: hello_rust_logs: Something went wrong!

227

Chapter 37

Interoperability

Rust has excellent support for interoperability with other languages. This means
that you can:

• Call Rust functions from other languages.
• Call functions written in other languages from Rust.

When you call functions in a foreign language we say that you're using a foreign
function interface, also known as FFI.

37.1 Interoperability with C
Rust has full support for linking object files with a C calling convention. Similarly,
you can export Rust functions and call them from C.

You can do it by hand if you want:

extern "C" {
fn abs(x: i32) -> i32;

}

fn main() {
let x = -42;
let abs_x = unsafe { abs(x) };
println!("{x}, {abs_x}");

}

We already saw this in the Safe FFI Wrapper exercise.

This assumes full knowledge of the target platform. Not recommended
for production.

We will look at better options next.

228

../../exercises/day-3/safe-ffi-wrapper.md

37.1.1 Using Bindgen
The bindgen tool can auto-generate bindings from a C header file.

First create a small C library:

interoperability/bindgen/libbirthday.h:

typedef struct card {
const char* name;
int years;

} card;

void print_card(const card* card);

interoperability/bindgen/libbirthday.c:

#include <stdio.h>
#include "libbirthday.h"

void print_card(const card* card) {
printf("+--------------\n");
printf("| Happy Birthday %s!\n", card->name);
printf("| Congratulations with the %i years!\n", card->years);
printf("+--------------\n");

}

Add this to your Android.bp file:

interoperability/bindgen/Android.bp:

cc_library {
name: "libbirthday",
srcs: ["libbirthday.c"],

}

Create a wrapper header file for the library (not strictly needed in this example):

interoperability/bindgen/libbirthday_wrapper.h:

#include "libbirthday.h"

You can now auto-generate the bindings:

interoperability/bindgen/Android.bp:

rust_bindgen {
name: "libbirthday_bindgen",
crate_name: "birthday_bindgen",
wrapper_src: "libbirthday_wrapper.h",
source_stem: "bindings",
static_libs: ["libbirthday"],

}

229

https://rust-lang.github.io/rust-bindgen/introduction.html

Finally, we can use the bindings in our Rust program:

interoperability/bindgen/Android.bp:

rust_binary {
name: "print_birthday_card",
srcs: ["main.rs"],
rustlibs: ["libbirthday_bindgen"],

}

interoperability/bindgen/main.rs:

//! Bindgen demo.

use birthday_bindgen::{card, print_card};

fn main() {
let name = std::ffi::CString::new("Peter").unwrap();
let card = card {

name: name.as_ptr(),
years: 42,

};
unsafe {

print_card(&card as *const card);
}

}

Build, push, and run the binary on your device:

m print_birthday_card
adb push "$ANDROID_PRODUCT_OUT/system/bin/print_birthday_card" /data/local/tmp
adb shell /data/local/tmp/print_birthday_card

Finally, we can run auto-generated tests to ensure the bindings work:

interoperability/bindgen/Android.bp:

rust_test {
name: "libbirthday_bindgen_test",
srcs: [":libbirthday_bindgen"],
crate_name: "libbirthday_bindgen_test",
test_suites: ["general-tests"],
auto_gen_config: true,
clippy_lints: "none", // Generated file, skip linting
lints: "none",

}

atest libbirthday_bindgen_test

230

37.1.2 Calling Rust
Exporting Rust functions and types to C is easy:

interoperability/rust/libanalyze/analyze.rs

//! Rust FFI demo.
#![deny(improper_ctypes_definitions)]

use std::os::raw::c_int;

/// Analyze the numbers.
#[no_mangle]
pub extern "C" fn analyze_numbers(x: c_int, y: c_int) {

if x < y {
println!("x ({x}) is smallest!");

} else {
println!("y ({y}) is probably larger than x ({x})");

}
}

interoperability/rust/libanalyze/analyze.h

#ifndef ANALYSE_H
#define ANALYSE_H

extern "C" {
void analyze_numbers(int x, int y);
}

#endif

interoperability/rust/libanalyze/Android.bp

rust_ffi {
name: "libanalyze_ffi",
crate_name: "analyze_ffi",
srcs: ["analyze.rs"],
include_dirs: ["."],

}

We can now call this from a C binary:

interoperability/rust/analyze/main.c

#include "analyze.h"

int main() {
analyze_numbers(10, 20);
analyze_numbers(123, 123);

231

return 0;
}

interoperability/rust/analyze/Android.bp

cc_binary {
name: "analyze_numbers",
srcs: ["main.c"],
static_libs: ["libanalyze_ffi"],

}

Build, push, and run the binary on your device:

m analyze_numbers
adb push "$ANDROID_PRODUCT_OUT/system/bin/analyze_numbers" /data/local/tmp
adb shell /data/local/tmp/analyze_numbers

#[no_mangle] disables Rust's usual name mangling, so the exported symbol
will just be the name of the function. You can also use #[export_name =
"some_name"] to specify whatever name you want.

37.2 With C++
The CXX crate makes it possible to do safe interoperability between Rust and
C++.

The overall approach looks like this:

37.2.1 The Bridge Module
CXX relies on a description of the function signatures that will be exposed from
each language to the other. You provide this description using extern blocks in
a Rust module annotated with the #[cxx::bridge] attribute macro.

#[allow(unsafe_op_in_unsafe_fn)]
#[cxx::bridge(namespace = "org::blobstore")]
mod ffi {

// Shared structs with fields visible to both languages.
struct BlobMetadata {

size: usize,
tags: Vec<String>,

}

// Rust types and signatures exposed to C++.
extern "Rust" {

type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

232

https://cxx.rs/

// C++ types and signatures exposed to Rust.
unsafe extern "C++" {

include!("include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);
fn metadata(&self, blobid: u64) -> BlobMetadata;

}
}

• The bridge is generally declared in an ffi module within your crate.
• From the declarations made in the bridge module, CXX will generate

matching Rust and C++ type/function definitions in order to expose those
items to both languages.

• To view the generated Rust code, use cargo-expand to view the expanded
proc macro. For most of the examples you would use cargo expand ::ffi
to expand just the ffi module (though this doesn't apply for Android
projects).

• To view the generated C++ code, look in target/cxxbridge.

37.2.2 Rust Bridge Declarations
#[cxx::bridge]
mod ffi {

extern "Rust" {
type MyType; // Opaque type
fn foo(&self); // Method on `MyType`
fn bar() -> Box<MyType>; // Free function

}
}

struct MyType(i32);

impl MyType {
fn foo(&self) {

println!("{}", self.0);
}

}

fn bar() -> Box<MyType> {
Box::new(MyType(123))

}

233

https://github.com/dtolnay/cargo-expand

• Items declared in the extern "Rust" reference items that are in scope in
the parent module.

• The CXX code generator uses your extern "Rust" section(s) to produce
a C++ header file containing the corresponding C++ declarations. The
generated header has the same path as the Rust source file containing the
bridge, except with a .rs.h file extension.

37.2.3 Generated C++
#[cxx::bridge]
mod ffi {

// Rust types and signatures exposed to C++.
extern "Rust" {

type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

}

Results in (roughly) the following C++:

struct MultiBuf final : public ::rust::Opaque {
~MultiBuf() = delete;

private:
friend ::rust::layout;
struct layout {
static ::std::size_t size() noexcept;
static ::std::size_t align() noexcept;

};
};

::rust::Slice<::std::uint8_t const> next_chunk(::org::blobstore::MultiBuf &buf) noexcept;

37.2.4 C++ Bridge Declarations
#[cxx::bridge]
mod ffi {

// C++ types and signatures exposed to Rust.
unsafe extern "C++" {

include!("include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: Pin<&mut BlobstoreClient>, parts: &mut MultiBuf) -> u64;
fn tag(self: Pin<&mut BlobstoreClient>, blobid: u64, tag: &str);

234

fn metadata(&self, blobid: u64) -> BlobMetadata;
}

}

Results in (roughly) the following Rust:

#[repr(C)]
pub struct BlobstoreClient {

_private: ::cxx::private::Opaque,
}

pub fn new_blobstore_client() -> ::cxx::UniquePtr<BlobstoreClient> {
extern "C" {

#[link_name = "org$blobstore$cxxbridge1$new_blobstore_client"]
fn __new_blobstore_client() -> *mut BlobstoreClient;

}
unsafe { ::cxx::UniquePtr::from_raw(__new_blobstore_client()) }

}

impl BlobstoreClient {
pub fn put(&self, parts: &mut MultiBuf) -> u64 {

extern "C" {
#[link_name = "org$blobstore$cxxbridge1$BlobstoreClient$put"]
fn __put(

_: &BlobstoreClient,
parts: *mut ::cxx::core::ffi::c_void,

) -> u64;
}
unsafe {

__put(self, parts as *mut MultiBuf as *mut ::cxx::core::ffi::c_void)
}

}
}

// ...

• The programmer does not need to promise that the signatures they have
typed in are accurate. CXX performs static assertions that the signatures
exactly correspond with what is declared in C++.

• unsafe extern blocks allow you to declare C++ functions that are safe
to call from Rust.

37.2.5 Shared Types
#[cxx::bridge]
mod ffi {

#[derive(Clone, Debug, Hash)]

235

struct PlayingCard {
suit: Suit,
value: u8, // A=1, J=11, Q=12, K=13

}

enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,

}
}

• Only C-like (unit) enums are supported.
• A limited number of traits are supported for #[derive()] on shared types.

Corresponding functionality is also generated for the C++ code, e.g. if
you derive Hash also generates an implementation of std::hash for the
corresponding C++ type.

37.2.6 Shared Enums
#[cxx::bridge]
mod ffi {

enum Suit {
Clubs,
Diamonds,
Hearts,
Spades,

}
}

Generated Rust:

#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(transparent)]
pub struct Suit {

pub repr: u8,
}

#[allow(non_upper_case_globals)]
impl Suit {

pub const Clubs: Self = Suit { repr: 0 };
pub const Diamonds: Self = Suit { repr: 1 };
pub const Hearts: Self = Suit { repr: 2 };
pub const Spades: Self = Suit { repr: 3 };

}

Generated C++:

236

enum class Suit : uint8_t {
Clubs = 0,
Diamonds = 1,
Hearts = 2,
Spades = 3,

};

• On the Rust side, the code generated for shared enums is actually a struct
wrapping a numeric value. This is because it is not UB in C++ for an
enum class to hold a value different from all of the listed variants, and our
Rust representation needs to have the same behavior.

37.2.7 Rust Error Handling
#[cxx::bridge]
mod ffi {

extern "Rust" {
fn fallible(depth: usize) -> Result<String>;

}
}

fn fallible(depth: usize) -> anyhow::Result<String> {
if depth == 0 {

return Err(anyhow::Error::msg("fallible1 requires depth > 0"));
}

Ok("Success!".into())
}

• Rust functions that return Result are translated to exceptions on the C++
side.

• The exception thrown will always be of type rust::Error, which primarily
exposes a way to get the error message string. The error message will come
from the error type's Display impl.

• A panic unwinding from Rust to C++ will always cause the process to
immediately terminate.

37.2.8 C++ Error Handling
#[cxx::bridge]
mod ffi {

unsafe extern "C++" {
include!("example/include/example.h");
fn fallible(depth: usize) -> Result<String>;

}
}

237

fn main() {
if let Err(err) = ffi::fallible(99) {

eprintln!("Error: {}", err);
process::exit(1);

}
}

• C++ functions declared to return a Result will catch any thrown exception
on the C++ side and return it as an Err value to the calling Rust function.

• If an exception is thrown from an extern ”C++” function that is not
declared by the CXX bridge to return Result, the program calls C++'s
std::terminate. The behavior is equivalent to the same exception being
thrown through a noexcept C++ function.

37.2.9 Additional Types

Rust Type C++ Type
String rust::String
&str rust::Str
CxxString std::string
&[T]/&mut [T] rust::Slice
Box<T> rust::Box<T>
UniquePtr<T> std::unique_ptr<T>
Vec<T> rust::Vec<T>
CxxVector<T> std::vector<T>

• These types can be used in the fields of shared structs and the arguments
and returns of extern functions.

• Note that Rust's String does not map directly to std::string. There
are a few reasons for this:

– std::string does not uphold the UTF-8 invariant that String re-
quires.

– The two types have different layouts in memory and so can't be passed
directly between languages.

– std::string requires move constructors that don't match Rust's
move semantics, so a std::string can't be passed by value to Rust.

37.2.10 Building in Android
Create a cc_library_static to build the C++ library, including the CXX
generated header and source file.

cc_library_static {
name: "libcxx_test_cpp",
srcs: ["cxx_test.cpp"],

238

generated_headers: [
"cxx-bridge-header",
"libcxx_test_bridge_header"

],
generated_sources: ["libcxx_test_bridge_code"],

}

• Point out that libcxx_test_bridge_header and libcxx_test_bridge_code
are the dependencies for the CXX-generated C++ bindings. We'll show
how these are setup on the next slide.

• Note that you also need to depend on the cxx-bridge-header library in
order to pull in common CXX definitions.

• Full docs for using CXX in Android can be found in the Android docs.
You may want to share that link with the class so that students know
where they can find these instructions again in the future.

37.2.11 Building in Android
Create two genrules: One to generate the CXX header, and one to generate the
CXX source file. These are then used as inputs to the cc_library_static.

// Generate a C++ header containing the C++ bindings
// to the Rust exported functions in lib.rs.
genrule {

name: "libcxx_test_bridge_header",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) --header > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.h"],

}

// Generate the C++ code that Rust calls into.
genrule {

name: "libcxx_test_bridge_code",
tools: ["cxxbridge"],
cmd: "$(location cxxbridge) $(in) > $(out)",
srcs: ["lib.rs"],
out: ["lib.rs.cc"],

}

• The cxxbridge tool is a standalone tool that generates the C++ side of
the bridge module. It is included in Android and available as a Soong tool.

• By convention, if your Rust source file is lib.rs your header file will be
named lib.rs.h and your source file will be named lib.rs.cc. This
naming convention isn't enforced, though.

239

https://source.android.com/docs/setup/build/rust/building-rust-modules/android-rust-patterns#rust-cpp-interop-using-cxx

37.2.12 Building in Android
Create a rust_binary that depends on libcxx and your cc_library_static.

rust_binary {
name: "cxx_test",
srcs: ["lib.rs"],
rustlibs: ["libcxx"],
static_libs: ["libcxx_test_cpp"],

}

37.3 Interoperability with Java
Java can load shared objects via Java Native Interface (JNI). The jni crate
allows you to create a compatible library.

First, we create a Rust function to export to Java:

interoperability/java/src/lib.rs:

//! Rust <-> Java FFI demo.

use jni::objects::{JClass, JString};
use jni::sys::jstring;
use jni::JNIEnv;

/// HelloWorld::hello method implementation.
#[no_mangle]
pub extern "system" fn Java_HelloWorld_hello(

env: JNIEnv,
_class: JClass,
name: JString,

) -> jstring {
let input: String = env.get_string(name).unwrap().into();
let greeting = format!("Hello, {input}!");
let output = env.new_string(greeting).unwrap();
output.into_inner()

}

interoperability/java/Android.bp:

rust_ffi_shared {
name: "libhello_jni",
crate_name: "hello_jni",
srcs: ["src/lib.rs"],
rustlibs: ["libjni"],

}

Finally, we can call this function from Java:

240

https://en.wikipedia.org/wiki/Java_Native_Interface
https://docs.rs/jni/

interoperability/java/HelloWorld.java:

class HelloWorld {
private static native String hello(String name);

static {
System.loadLibrary("hello_jni");

}

public static void main(String[] args) {
String output = HelloWorld.hello("Alice");
System.out.println(output);

}
}

interoperability/java/Android.bp:

java_binary {
name: "helloworld_jni",
srcs: ["HelloWorld.java"],
main_class: "HelloWorld",
required: ["libhello_jni"],

}

Finally, you can build, sync, and run the binary:

m helloworld_jni
adb sync # requires adb root && adb remount
adb shell /system/bin/helloworld_jni

241

Chapter 38

Exercises

This is a group exercise: We will look at one of the projects you work with and
try to integrate some Rust into it. Some suggestions:

• Call your AIDL service with a client written in Rust.

• Move a function from your project to Rust and call it.

No solution is provided here since this is open-ended: it relies on someone in the
class having a piece of code which you can turn in to Rust on the fly.

242

Part X

Chromium

243

Chapter 39

Welcome to Rust in
Chromium

Rust is supported for third-party libraries in Chromium, with first-party glue
code to connect between Rust and existing Chromium C++ code.

Today, we'll call into Rust to do something silly with strings. If
you've got a corner of the code where you're displaying a UTF8
string to the user, feel free to follow this recipe in your part of the
codebase instead of the exact part we talk about.

244

Chapter 40

Setup

Make sure you can build and run Chromium. Any platform and set of build
flags is OK, so long as your code is relatively recent (commit position 1223636
onwards, corresponding to November 2023):

gn gen out/Debug
autoninja -C out/Debug chrome
out/Debug/chrome # or on Mac, out/Debug/Chromium.app/Contents/MacOS/Chromium

(A component, debug build is recommended for quickest iteration time. This is
the default!)

See How to build Chromium if you aren't already at that point. Be warned:
setting up to build Chromium takes time.

It's also recommended that you have Visual Studio code installed.

245

https://www.chromium.org/developers/how-tos/get-the-code/

Chapter 41

About the exercises

This part of the course has a series of exercises which build on each other. We'll
be doing them spread throughout the course instead of just at the end. If you
don't have time to complete a certain part, don't worry: you can catch up in
the next slot.

246

Chapter 42

Comparing Chromium and
Cargo ecosystems

Rust community typically uses cargo and libraries from crates.io. Chromium is
built using gn and ninja and a curated set of dependencies.

When writing code in Rust, your choices are:

• Use gn and ninja with the help of the templates from //build/rust/*.gni
(e.g. rust_static_library that we'll meet later). This uses Chromium's
audited toolchain and crates.

• Use cargo, but restrict yourself to Chromium's audited toolchain and
crates

• Use cargo, trusting a toolchain and/or crates downloaded from the internet

From here on we'll be focusing on gn and ninja, because this is how Rust
code can be built into the Chromium browser. At the same time, Cargo is an
important part of the Rust ecosystem and you should keep it in your toolbox.

Mini exercise
Split into small groups and:

• Brainstorm scenarios where cargo may offer an advantage and assess the
risk profile of these scenarios.

• Discuss which tools, libraries, and groups of people need to be trusted
when using gn and ninja, offline cargo, etc.

Ask students to avoid peeking at the speaker notes before completing the exercise.
Assuming folks taking the course are physically together, ask them to discuss in
small groups of 3-4 people.

247

https://crates.io/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/rust.md#Using-cargo
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/rust.md#Using-cargo
https://rustup.rs/
https://crates.io/

Notes/hints related to the first part of the exercise (”scenarios where Cargo may
offer an advantage”):

• It's fantastic that when writing a tool, or prototyping a part of Chromium,
one has access to the rich ecosystem of crates.io libraries. There is a crate
for almost anything and they are usually quite pleasant to use. (clap for
command-line parsing, serde for serializing/deserializing to/from various
formats, itertools for working with iterators, etc.).

– cargo makes it easy to try a library (just add a single line to
Cargo.toml and start writing code)

– It may be worth comparing how CPAN helped make perl a popular
choice. Or comparing with python + pip.

• Development experience is made really nice not only by core Rust tools
(e.g. using rustup to switch to a different rustc version when testing a
crate that needs to work on nightly, current stable, and older stable) but
also by an ecosystem of third-party tools (e.g. Mozilla provides cargo
vet for streamlining and sharing security audits; criterion crate gives a
streamlined way to run benchmarks).

– cargo makes it easy to add a tool via cargo install --locked
cargo-vet.

– It may be worth comparing with Chrome Extensions or VScode
extensions.

• Broad, generic examples of projects where cargo may be the right choice:

– Perhaps surprisingly, Rust is becoming increasingly popular in the
industry for writing command line tools. The breadth and ergonomics
of libraries is comparable to Python, while being more robust (thanks
to the rich typesystem) and running faster (as a compiled, rather
than interpreted language).

– Participating in the Rust ecosystem requires using standard Rust tools
like Cargo. Libraries that want to get external contributions, and
want to be used outside of Chromium (e.g. in Bazel or Android/Soong
build environments) should probably use Cargo.

• Examples of Chromium-related projects that are cargo-based:

– serde_json_lenient (experimented with in other parts of Google
which resulted in PRs with performance improvements)

– Fontations libraries like font-types
– gnrt tool (we will meet it later in the course) which depends on clap

for command-line parsing and on toml for configuration files.
∗ Disclaimer: a unique reason for using cargo was unavailability of
gn when building and bootstrapping Rust standard library when
building Rust toolchain.)

∗ run_gnrt.py uses Chromium's copy of cargo and rustc. gnrt
depends on third-party libraries downloaded from the internet, by

248

run_gnrt.py asks cargo that only --locked content is allowed
via Cargo.lock.)

Students may identify the following items as being implicitly or explicitly trusted:

• rustc (the Rust compiler) which in turn depends on the LLVM libraries,
the Clang compiler, the rustc sources (fetched from GitHub, reviewed by
Rust compiler team), binary Rust compiler downloaded for bootstrapping

• rustup (it may be worth pointing out that rustup is developed under
the umbrella of the https://github.com/rust-lang/ organization - same as
rustc)

• cargo, rustfmt, etc.
• Various internal infrastructure (bots that build rustc, system for distribut-

ing the prebuilt toolchain to Chromium engineers, etc.)
• Cargo tools like cargo audit, cargo vet, etc.
• Rust libraries vendored into //third_party/rust (audited by secu-

rity@chromium.org)
• Other Rust libraries (some niche, some quite popular and commonly used)

249

Chapter 43

Chromium Rust policy

Chromium does not yet allow first-party Rust except in rare cases as approved
by Chromium's Area Tech Leads.

Chromium's policy on third party libraries is outlined here - Rust is allowed for
third party libraries under various circumstances, including if they're the best
option for performance or for security.

Very few Rust libraries directly expose a C/C++ API, so that means that nearly
all such libraries will require a small amount of first-party glue code.

C++ Rust
.- - - - - - - - - -. .- -.
: : : :
: Existing Chromium : : Chromium Rust Existing Rust :
: "C++" : : "wrapper" crate :
: +---------------+ : : +----------------+ +-------------+ :
: | | : : | | | | :
: | o-----+-+-----------+-+-> o-+----------+--> | :
: | | : Language : | | Crate | | :
: +---------------+ : boundary : +----------------+ API +-------------+ :
: : : :
`- - - - - - - - - -' `- -'

First-party Rust glue code for a particular third-party crate should
normally be kept in third_party/rust/<crate>/<version>/wrapper.

Because of this, today's course will be heavily focused on:

• Bringing in third-party Rust libraries (”crates”)
• Writing glue code to be able to use those crates from Chromium C++.

If this policy changes over time, the course will evolve to keep up.

250

https://source.chromium.org/chromium/chromium/src/+/main:ATL_OWNERS
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#rust

Chapter 44

Build rules

Rust code is usually built using cargo. Chromium builds with gn and ninja for
efficiency --- its static rules allow maximum parallelism. Rust is no exception.

Adding Rust code to Chromium
In some existing Chromium BUILD.gn file, declare a rust_static_library:

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = ["lib.rs"]

}

You can also add deps on other Rust targets. Later we'll use this to depend
upon third party code.

You must specify both the crate root, and a full list of sources. The crate_root
is the file given to the Rust compiler representing the root file of the compilation
unit --- typically lib.rs. sources is a complete list of all source files which
ninja needs in order to determine when rebuilds are necessary.

(There's no such thing as a Rust source_set, because in Rust, an entire crate
is a compilation unit. A static_library is the smallest unit.)

Students might be wondering why we need a gn template, rather than using
gn's built-in support for Rust static libraries. The answer is that this template
provides support for CXX interop, Rust features, and unit tests, some of which
we'll use later.

251

https://gn.googlesource.com/gn/+/main/docs/reference.md#func_static_library

44.1 Including unsafe Rust code
Unsafe Rust code is forbidden in rust_static_library by default --- it won't
compile. If you need unsafe Rust code, add allow_unsafe = true to the gn
target. (Later in the course we'll see circumstances where this is necessary.)

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = [
"lib.rs",
"hippopotamus.rs"

]
allow_unsafe = true

}

44.2 Depending on Rust code from Chromium
C++

Simply add the above target to the deps of some Chromium C++ target.

import("//build/rust/rust_static_library.gni")

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"
sources = ["lib.rs"]

}

or source_set, static_library etc.
component("preexisting_cpp") {
deps = [":my_rust_lib"]

}

44.3 Visual Studio code
Types are elided in Rust code, which makes a good IDE even more useful than
for C++. Visual Studio code works well for Rust in Chromium. To use it,

• Ensure your VSCode has the rust-analyzer extension, not earlier forms
of Rust support

• gn gen out/Debug --export-rust-project (or equivalent for your out-
put directory)

• ln -s out/Debug/rust-project.json rust-project.json

252

A demo of some of the code annotation and exploration features of rust-analyzer
might be beneficial if the audience are naturally skeptical of IDEs.

The following steps may help with the demo (but feel free to instead use a piece
of Chromium-related Rust that you are most familiar with):

• Open components/qr_code_generator/qr_code_generator_ffi_glue.rs
• Place the cursor over the QrCode::new call (around line 26) in

‘qr_code_generator_ffi_glue.rs
• Demo show documentation (typical bindings: vscode = ctrl k i; vim/CoC

= K).
• Demo go to definition (typical bindings: vscode = F12; vim/CoC

= g d). (This will take you to //third_party/rust/.../qr_code-
.../src/lib.rs.)

• Demo outline and navigate to the QrCode::with_bits method (around
line 164; the outline is in the file explorer pane in vscode; typical vim/CoC
bindings = space o)

• Demo type annotations (there are quote a few nice examples in the
QrCode::with_bits method)

It may be worth pointing out that gn gen ... --export-rust-project will
need to be rerun after editing BUILD.gn files (which we will do a few times
throughout the exercises in this session).

44.4 Build rules exercise
In your Chromium build, add a new Rust target to //ui/base/BUILD.gn con-
taining:

#[no_mangle]
pub extern "C" fn hello_from_rust() {

println!("Hello from Rust!")
}

Important: note that no_mangle here is considered a type of unsafety by the
Rust compiler, so you'll need to to allow unsafe code in your gn target.

Add this new Rust target as a dependency of //ui/base:base. Declare this
function at the top of ui/base/resource/resource_bundle.cc (later, we'll see
how this can be automated by bindings generation tools):

extern "C" void hello_from_rust();

Call this function from somewhere in ui/base/resource/resource_bundle.cc
- we suggest the top of ResourceBundle::MaybeMangleLocalizedString. Build
and run Chromium, and ensure that ”Hello from Rust!” is printed lots of times.

If you use VSCode, now set up Rust to work well in VSCode. It will be useful
in subsequent exercises. If you've succeeded, you will be able to use right-click

253

”Go to definition” on println!.

Where to find help
• The options available to the rust_static_library gn template
• Information about #[no_mangle]
• Information about extern "C"
• Information about gn's --export-rust-project switch
• How to install rust-analyzer in VSCode

This example is unusual because it boils down to the lowest-common-denominator
interop language, C. Both C++ and Rust can natively declare and call C ABI
functions. Later in the course, we'll connect C++ directly to Rust.

allow_unsafe = true is required here because #[no_mangle] might allow Rust
to generate two functions with the same name, and Rust can no longer guarantee
that the right one is called.

If you need a pure Rust executable, you can also do that using the
rust_executable gn template.

254

https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_static_library.gni;l=16
https://doc.rust-lang.org/beta/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/std/keyword.extern.html
https://gn.googlesource.com/gn/+/main/docs/reference.md#compilation-database
https://code.visualstudio.com/docs/languages/rust

Chapter 45

Interoperability with C++

The Rust community offers multiple options for C++/Rust interop, with new
tools being developed all the time. At the moment, Chromium uses a tool called
CXX.

You describe your whole language boundary in an interface definition language
(which looks a lot like Rust) and then CXX tools generate declarations for
functions and types in both Rust and C++.

See the CXX tutorial for a full example of using this.

Talk through the diagram. Explain that behind the scenes, this is doing just
the same as you previously did. Point out that automating the process has the
following benefits:

• The tool guarantees that the C++ and Rust sides match (e.g. you get
compile errors if the #[cxx::bridge] doesn't match the actual C++ or
Rust definitions, but with out-of-sync manual bindings you'd get Undefined
Behavior)

• The tool automates generation of FFI thunks (small, C-ABI-compatible,
free functions) for non-C features (e.g. enabling FFI calls into Rust or
C++ methods; manual bindings would require authoring such top-level,
free functions manually)

• The tool and the library can handle a set of core types - for example:
– &[T] can be passed across the FFI boundary, even though it doesn't

guarantee any particular ABI or memory layout. With manual bind-
ings std::span<T> / &[T] have to be manually destructured and
rebuilt out of a pointer and length - this is error-prone given that
each language represents empty slices slightly differently)

– Smart pointers like std::unique_ptr<T>, std::shared_ptr<T>,
and/or Box are natively supported. With manual bindings, one would
have to pass C-ABI-compatible raw pointers, which would increase

255

https://cxx.rs/tutorial.html

lifetime and memory-safety risks.
– rust::String and CxxString types understand and maintain

differences in string representation across the languages (e.g.
rust::String::lossy can build a Rust string from non-UTF8 input
and rust::String::c_str can NUL-terminate a string).

45.1 Example bindings
CXX requires that the whole C++/Rust boundary is declared in cxx::bridge
”modules” inside .rs source code.

#[cxx::bridge]
mod ffi {

extern "Rust" {
type MultiBuf;

fn next_chunk(buf: &mut MultiBuf) -> &[u8];
}

unsafe extern "C++" {
include!("example/include/blobstore.h");

type BlobstoreClient;

fn new_blobstore_client() -> UniquePtr<BlobstoreClient>;
fn put(self: &BlobstoreClient, buf: &mut MultiBuf) -> Result<u64>;

}
}

// Definitions of Rust types and functions go here

Point out:

• Native support for C++'s std::unique_ptr in Rust
• Native support for Rust slices in C++
• Calls from C++ to Rust, and Rust types (in the top part)
• Calls from Rust to C++, and C++ types (in the bottom part)

Common misconception: It looks like a C++ header is being parsed by Rust,
but this is misleading. This header is never interpreted by Rust, but simply
#included in the generated C++ code for the benefit of C++ compilers.

Limitations of CXX
By far the most useful page when using CXX is the type reference.

CXX fundamentally suits cases where:

256

https://cxx.rs/bindings.html

• Your Rust-C++ interface is sufficiently simple that you can declare all of
it.

• You're using only the types natively supported by CXX already, for example
std::unique_ptr, std::string, &[u8] etc.

It has many limitations --- for example lack of support for Rust's Option type.

These limitations constrain us to using Rust in Chromium only for well isolated
”leaf nodes” rather than for arbitrary Rust-C++ interop. When considering
a use-case for Rust in Chromium, a good starting point is to draft the CXX
bindings for the language boundary to see if it appears simple enough.

You should also discuss some of the other sticky points with CXX, for example:

• Its error handling is based around C++ exceptions (given on the next
slide)

• Function pointers are awkward to use.

45.2 CXX error handling
CXX's support for Result<T,E> relies on C++ exceptions, so we can't use that
in Chromium. Alternatives:

• Where success can be represented as a simple Boolean, as done in our QR
code generator: Return a Boolean representing success, and record results
using out-parameters:

#[cxx::bridge(namespace = "qr_code_generator")]
mod ffi {
extern "Rust" {
fn generate_qr_code_using_rust(
data: &[u8],
min_version: i16,
out_pixels: Pin<&mut CxxVector<u8>>,
out_qr_size: &mut usize,

) -> bool;
}

}

• Where success is more complex, provide a Rust object which can be queried
for details of success or failure:

#[cxx::bridge]
mod ffi {
extern "Rust" {
type PngDecoder;
fn create_png_decoder() -> Box<PngDecoder>;
fn decode(self: &PngDecoder, png: &[u8]) -> bool; // whether successful
fn get_err_code(self: &PngDecoder) -> u32; // or some more complex error type

257

https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator_ffi_glue.rs;l=10
https://source.chromium.org/chromium/chromium/src/+/main:components/qr_code_generator/qr_code_generator_ffi_glue.rs;l=10

fn get_decoded_image(self: &PngDecoder) -> &[u8];
// or some more complex success type

}
}

The best way to learn CXX is by doing, so, another exercise!

Using cxx in Chromium
In Chromium, we define an independent #[cxx::bridge] mod for each
leaf-node where we want to use Rust. You'd typically have one for each
rust_static_library. Just add

cxx_bindings = ["my_rust_file.rs"]
list of files containing #[cxx::bridge], not all source files

allow_unsafe = true

to your existing rust_static_library target alongside crate_root and
sources.

C++ headers will be generated at a sensible location, so you can just

#include "ui/base/my_rust_file.rs.h"

You will find some utility functions in //base to convert to/from Chromium
C++ types to CXX Rust types --- for example SpanToRustSlice.

Students may ask --- why do we still need allow_unsafe = true?

The broad answer is that no C/C++ code is ”safe” by the normal Rust standards.
Calling back and forth to C/C++ from Rust may do arbitrary things to memory,
and compromise the safety of Rust's own data layouts. Presence of too many
unsafe keywords in C/C++ interop can harm the signal-to-noise ratio of such a
keyword, and is controversial, but strictly, bringing any foreign code into a Rust
binary can cause unexpected behavior from Rust's perspective.

The narrow answer lies in the diagram at the top of this page --- behind the
scenes, CXX generates Rust unsafe and extern "C" functions just like we did
manually in the previous section.

45.3 Exercise: Interoperability with C++
Part one

• In the Rust file you previously created, add a #[cxx::bridge] which
specifies a single function, to be called from C++, called hello_from_rust,
taking no parameters and returning no value.

• Modify your previous hello_from_rust function to remove extern "C"
and #[no_mangle]. This is now just a standard Rust function.

• Modify your gn target to build these bindings.

258

https://source.chromium.org/chromium/chromium/src/+/main:base/containers/span_rust.h;l=21
https://steveklabnik.com/writing/the-cxx-debate

• In your C++ code, remove the forward-declaration of hello_from_rust.
Instead, include the generated header file.

• Build and run!

Part two
It's a good idea to play with CXX a little. It helps you think about how flexible
Rust in Chromium actually is.

Some things to try:

• Call back into C++ from Rust. You will need:
– An additional header file which you can include! from your

cxx::bridge. You'll need to declare your C++ function in that new
header file.

– An unsafe block to call such a function, or alternatively specify the
unsafe keyword in your #[cxx::bridge] as described here.

– You may also need to #include "third_party/rust/cxx/v1/crate/include/cxx.h"
• Pass a C++ string from C++ into Rust.
• Pass a reference to a C++ object into Rust.
• Intentionally get the Rust function signatures mismatched from the

#[cxx::bridge], and get used to the errors you see.
• Intentionally get the C++ function signatures mismatched from the

#[cxx::bridge], and get used to the errors you see.
• Pass a std::unique_ptr of some type from C++ into Rust, so that Rust

can own some C++ object.
• Create a Rust object and pass it into C++, so that C++ owns it. (Hint:

you need a Box).
• Declare some methods on a C++ type. Call them from Rust.
• Declare some methods on a Rust type. Call them from C++.

Part three
Now you understand the strengths and limitations of CXX interop, think of a
couple of use-cases for Rust in Chromium where the interface would be sufficiently
simple. Sketch how you might define that interface.

Where to find help
• The cxx binding reference
• The rust_static_library gn template

Some of the questions you may encounter:

• I'm seeing a problem initializing a variable of type X with type Y, where X
and Y are both function types. This is because your C++ function doesn't
quite match the declaration in your cxx::bridge.

259

https://cxx.rs/extern-c++.html#functions-and-member-functions
https://cxx.rs/bindings.html
https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_static_library.gni;l=16

• I seem to be able to freely convert C++ references into Rust references.
Doesn't that risk UB? For CXX's opaque types, no, because they are
zero-sized. For CXX trivial types yes, it's possible to cause UB, although
CXX's design makes it quite difficult to craft such an example.

260

Chapter 46

Adding third party crates

Rust libraries are called ”crates” and are found at crates.io. It's very easy for
Rust crates to depend upon one another. So they do!

Property C++ library Rust crate
Build system Lots Consistent: Cargo.toml
Typical library size Large-ish Small
Transitive dependencies Few Lots

For a Chromium engineer, this has pros and cons:

• All crates use a common build system so we can automate their inclusion
into Chromium...

• ... but, crates typically have transitive dependencies, so you will likely
have to bring in multiple libraries.

We'll discuss:

• How to put a crate in the Chromium source code tree
• How to make gn build rules for it
• How to audit its source code for sufficient safety.

46.1 Configuring the Cargo.toml file to add
crates

Chromium has a single set of centrally-managed direct crate dependencies. These
are managed through a single Cargo.toml:

[dependencies]
bitflags = "1"

261

https://crates.io
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/Cargo.toml

cfg-if = "1"
cxx = "1"
lots more...

As with any other Cargo.toml, you can specify more details about the depen-
dencies --- most commonly, you'll want to specify the features that you wish
to enable in the crate.

When adding a crate to Chromium, you'll often need to provide some extra
information in an additional file, gnrt_config.toml, which we'll meet next.

46.2 Configuring gnrt_config.toml
Alongside Cargo.toml is gnrt_config.toml. This contains Chromium-specific
extensions to crate handling.

If you add a new crate, you should specify at least the group. This is one of:

'safe': The library satisfies the rule-of-2 and can be used in any process.
'sandbox': The library does not satisfy the rule-of-2 and must be used in
a sandboxed process such as the renderer or a utility process.
'test': The library is only used in tests.

For instance,

[crate.my-new-crate]
group = 'test' # only used in test code

Depending on the crate source code layout, you may also need to use this file to
specify where its LICENSE file(s) can be found.

Later, we'll see some other things you will need to configure in this file to resolve
problems.

46.3 Downloading crates
A tool called gnrt knows how to download crates and how to generate BUILD.gn
rules.

To start, download the crate you want like this:

cd chromium/src
vpython3 tools/crates/run_gnrt.py -- vendor

Although the gnrt tool is part of the Chromium source code, by
running this command you will be downloading and running its
dependencies from crates.io. See the earlier section discussing this
security decision.

This vendor command may download:

262

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/gnrt_config.toml

• Your crate
• Direct and transitive dependencies
• New versions of other crates, as required by cargo to resolve the complete

set of crates required by Chromium.

Chromium maintains patches for some crates, kept in //third_party/rust/chromium_crates_io/patches.
These will be reapplied automatically, but if patching fails you may need to take
manual action.

46.4 Generating gn build rules
Once you've downloaded the crate, generate the BUILD.gn files like this:

vpython3 tools/crates/run_gnrt.py -- gen

Now run git status. You should find:

• At least one new crate source code in third_party/rust/chromium_crates_io/vendor
• At least one new BUILD.gn in third_party/rust/<crate name>/v<major

semver version>
• An appropriate README.chromium

The ”major semver version” is a Rust ”semver” version number.

Take a close look, especially at the things generated in third_party/rust.

Talk a little about semver --- and specifically the way that in Chromium it's
to allow multiple incompatible versions of a crate, which is discouraged but
sometimes necessary in the Cargo ecosystem.

46.5 Resolving problems
If your build fails, it may be because of a build.rs: programs which do arbitrary
things at build time. This is fundamentally at odds with the design of gn and
ninja which aim for static, deterministic, build rules to maximize parallelism
and repeatability of builds.

Some build.rs actions are automatically supported; others require action:

build script effect Supported by our gn templates Work required by you
Checking rustc version to configure features on and off Yes None
Checking platform or CPU to configure features on and off Yes None
Generating code Yes Yes - specify in gnrt_config.toml
Building C/C++ No Patch around it
Arbitrary other actions No Patch around it

Fortunately, most crates don't contain a build script, and fortunately, most build
scripts only do the top two actions.

263

https://doc.rust-lang.org/cargo/reference/semver.html

46.5.1 Build scripts which generate code
If ninja complains about missing files, check the build.rs to see if it writes
source code files.

If so, modify gnrt_config.toml to add build-script-outputs to the crate. If
this is a transitive dependency, that is, one on which Chromium code should not
directly depend, also add allow-first-party-usage=false. There are several
examples already in that file:

[crate.unicode-linebreak]
allow-first-party-usage = false
build-script-outputs = ["tables.rs"]

Now rerun gnrt.py -- gen to regenerate BUILD.gn files to inform ninja that
this particular output file is input to subsequent build steps.

46.5.2 Build scripts which build C++ or take arbitrary
actions

Some crates use the cc crate to build and link C/C++ libraries. Other crates
parse C/C++ using bindgen within their build scripts. These actions can't be
supported in a Chromium context --- our gn, ninja and LLVM build system is
very specific in expressing relationships between build actions.

So, your options are:

• Avoid these crates
• Apply a patch to the crate.

Patches should be kept in third_party/rust/chromium_crates_io/patches/<crate>
- see for example the patches against the cxx crate - and will be applied
automatically by gnrt each time it upgrades the crate.

46.6 Depending on a crate
Once you've added a third-party crate and generated build rules, depending on
a crate is simple. Find your rust_static_library target, and add a dep on
the :lib target within your crate.

Specifically,

+------------+ +----------------------+
"//third_party/rust" | crate name | "/v" | major semver version | "/:lib"

+------------+ +----------------------+

For instance,

rust_static_library("my_rust_lib") {
crate_root = "lib.rs"

264

https://crates.io/crates/cc
https://crates.io/crates/bindgen
https://source.chromium.org/chromium/chromium/src/+/main:third_party/rust/chromium_crates_io/patches/cxx/

sources = ["lib.rs"]
deps = ["//third_party/rust/example_rust_crate/v1:lib"]

}

46.7 Auditing third party crates
Adding new libraries is subject to Chromium's standard policies, but of course
also subject to security review. As you may be bringing in not just a single crate
but also transitive dependencies, there may be a lot of code to review. On the
other hand, safe Rust code can have limited negative side effects. How should
you review it?

Over time Chromium aims to move to a process based around cargo vet.

Meanwhile, for each new crate addition, we are checking for the following:

• Understand why each crate is used. What's the relationship between crates?
If the build system for each crate contains a build.rs or procedural macros,
work out what they're for. Are they compatible with the way Chromium
is normally built?

• Check each crate seems to be reasonably well maintained
• Use cd third-party/rust/chromium_crates_io; cargo audit to

check for known vulnerabilities (first you'll need to cargo install
cargo-audit, which ironically involves downloading lots of dependencies
from the internet2)

• Ensure any unsafe code is good enough for the Rule of Two
• Check for any use of fs or net APIs
• Read all the code at a sufficient level to look for anything out of place

that might have been maliciously inserted. (You can't realistically aim for
100% perfection here: there's often just too much code.)

These are just guidelines --- work with reviewers from security@chromium.org
to work out the right way to become confident of the crate.

46.8 Checking crates into Chromium source code
git status should reveal:

• Crate code in //third_party/rust/chromium_crates_io
• Metadata (BUILD.gn and README.chromium) in //third_party/rust/<crate>/<version>

Please also add an OWNERS file in the latter location.

You should land all this, along with your Cargo.toml and gnrt_config.toml
changes, into the Chromium repo.

Important: you need to use git add -f because otherwise .gitignore files
may result in some files being skipped.

265

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/rust.md#Third_party-review
https://mozilla.github.io/cargo-vet/
https://chromium.googlesource.com/chromium/src/+/main/docs/security/rule-of-2.md#unsafe-code-in-safe-languages

As you do so, you might find presubmit checks fail because of non-inclusive
language. This is because Rust crate data tends to include names of git branches,
and many projects still use non-inclusive terminology there. So you may need to
run:

infra/update_inclusive_language_presubmit_exempt_dirs.sh > infra/inclusive_language_presubmit_exempt_dirs.txt
git add -p infra/inclusive_language_presubmit_exempt_dirs.txt # add whatever changes are yours

46.9 Keeping crates up to date
As the OWNER of any third party Chromium dependency, you are expected to
keep it up to date with any security fixes. It is hoped that we will soon automate
this for Rust crates, but for now, it's still your responsibility just as it is for any
other third party dependency.

46.10 Exercise
Add uwuify to Chromium, turning off the crate's default features. Assume
that the crate will be used in shipping Chromium, but won't be used to handle
untrustworthy input.

(In the next exercise we'll use uwuify from Chromium, but feel free to skip ahead
and do that now if you like. Or, you could create a new rust_executable target
which uses uwuify).

The total crates needed are: uwuify, smallvec, scopeguard, parking_lot, park-
ing_lot_core, lock_api and instant. If students are downloading even more than
that, they probably forgot to turn off the default features.

Thanks to Daniel Liu for this crate!

266

https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#add-owners
https://chromium.googlesource.com/chromium/src/+/main/docs/adding_to_third_party.md#add-owners
https://crates.io/crates/uwuify
https://doc.rust-lang.org/cargo/reference/features.html#the-default-feature
https://source.chromium.org/chromium/chromium/src/+/main:build/rust/rust_executable.gni
https://github.com/Daniel-Liu-c0deb0t

Chapter 47

Bringing it together ---
Exercise

In this exercise, you're going to add a whole new Chromium feature, bringing
together everything you already learned.

The brief from Product Management
A community of pixies has been discovered living in a remote rainforest. It's
important that we get Chromium for Pixies delivered to them as soon as possible.

The requirement is to translate all Chromium's UI strings into Pixie language.

There's not time to wait for proper translations, but fortunately pixie language
is very close to English, and it turns out there's a Rust crate which does the
translation.

In fact, you already imported that crate in the previous exercise.

(Obviously, real translations of Chrome require incredible care and diligence.
Don't ship this!)

Steps
Modify ResourceBundle::MaybeMangleLocalizedString so that it uwuifies all
strings before display. In this special build of Chromium, it should always do
this irrespective of the setting of mangle_localized_strings_.

If you've done everything right across all these exercises, congratulations, you
should have created Chrome for pixies!

267

https://crates.io/crates/uwuify

• UTF16 vs UTF8. Students should be aware that Rust strings are always
UTF8, and will probably decide that it's better to do the conversion on
the C++ side using base::UTF16ToUTF8 and back again.

• If students decide to do the conversion on the Rust side, they'll need
to consider String::from_utf16, consider error handling, and consider
which CXX supported types can transfer a lot of u16s.

• Students may design the C++/Rust boundary in several different ways,
e.g. taking and returning strings by value, or taking a mutable reference
to a string. If a mutable reference is used, CXX will likely tell the student
that they need to use Pin. You may need to explain what Pin does, and
then explain why CXX needs it for mutable references to C++ data: the
answer is that C++ data can't be moved around like Rust data, because
it may contain self-referential pointers.

• The C++ target containing ResourceBundle::MaybeMangleLocalizedString
will need to depend on a rust_static_library target. The student
probably already did this.

• The rust_static_library target will need to depend on //third_party/rust/uwuify/v0_2:lib.

268

https://doc.rust-lang.org/std/string/struct.String.html#method.from_utf16
https://cxx.rs/binding/slice.html
https://doc.rust-lang.org/std/pin/

Part XI

Bare Metal: Morning

269

Chapter 48

Welcome to Bare Metal
Rust

This is a standalone one-day course about bare-metal Rust, aimed at people who
are familiar with the basics of Rust (perhaps from completing the Comprehensive
Rust course), and ideally also have some experience with bare-metal programming
in some other language such as C.

Today we will talk about 'bare-metal' Rust: running Rust code without an OS
underneath us. This will be divided into several parts:

• What is no_std Rust?
• Writing firmware for microcontrollers.
• Writing bootloader / kernel code for application processors.
• Some useful crates for bare-metal Rust development.

For the microcontroller part of the course we will use the BBC micro:bit v2 as an
example. It's a development board based on the Nordic nRF51822 microcontroller
with some LEDs and buttons, an I2C-connected accelerometer and compass, and
an on-board SWD debugger.

To get started, install some tools we'll need later. On gLinux or Debian:

sudo apt install gcc-aarch64-linux-gnu gdb-multiarch libudev-dev picocom pkg-config qemu-system-arm
rustup update
rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils cargo-embed

And give users in the plugdev group access to the micro:bit programmer:

echo 'SUBSYSTEM=="usb", ATTR{idVendor}=="0d28", MODE="0664", GROUP="plugdev"' |\
sudo tee /etc/udev/rules.d/50-microbit.rules

270

https://microbit.org/
https://tech.microbit.org/hardware/

sudo udevadm control --reload-rules

On MacOS:

xcode-select --install
brew install gdb picocom qemu
brew install --cask gcc-aarch64-embedded
rustup update
rustup target add aarch64-unknown-none thumbv7em-none-eabihf
rustup component add llvm-tools-preview
cargo install cargo-binutils cargo-embed

271

Chapter 49

no_std

core

alloc

std

• Slices, &str, CStr
• NonZeroU8...
• Option, Result
• Display, Debug, write!...
• Iterator
• panic!, assert_eq!...
• NonNull and all the usual pointer-related functions
• Future and async/await
• fence, AtomicBool, AtomicPtr, AtomicU32...
• Duration

• Box, Cow, Arc, Rc
• Vec, BinaryHeap, BtreeMap, LinkedList, VecDeque
• String, CString, format!

• Error
• HashMap
• Mutex, Condvar, Barrier, Once, RwLock, mpsc
• File and the rest of fs
• println!, Read, Write, Stdin, Stdout and the rest of io
• Path, OsString
• net
• Command, Child, ExitCode
• spawn, sleep and the rest of thread
• SystemTime, Instant

272

• HashMap depends on RNG.
• std re-exports the contents of both core and alloc.

49.1 A minimal no_std program
#![no_main]
#![no_std]

use core::panic::PanicInfo;

#[panic_handler]
fn panic(_panic: &PanicInfo) -> ! {

loop {}
}

• This will compile to an empty binary.
• std provides a panic handler; without it we must provide our own.
• It can also be provided by another crate, such as panic-halt.
• Depending on the target, you may need to compile with panic = "abort"

to avoid an error about eh_personality.
• Note that there is no main or any other entry point; it's up to you to define

your own entry point. This will typically involve a linker script and some
assembly code to set things up ready for Rust code to run.

49.2 alloc
To use alloc you must implement a global (heap) allocator.

#![no_main]
#![no_std]

extern crate alloc;
extern crate panic_halt as _;

use alloc::string::ToString;
use alloc::vec::Vec;
use buddy_system_allocator::LockedHeap;

#[global_allocator]
static HEAP_ALLOCATOR: LockedHeap<32> = LockedHeap::<32>::new();

static mut HEAP: [u8; 65536] = [0; 65536];

pub fn entry() {
// Safe because `HEAP` is only used here and `entry` is only called once.

273

https://doc.rust-lang.org/stable/std/alloc/trait.GlobalAlloc.html

unsafe {
// Give the allocator some memory to allocate.
HEAP_ALLOCATOR

.lock()

.init(HEAP.as_mut_ptr() as usize, HEAP.len());
}

// Now we can do things that require heap allocation.
let mut v = Vec::new();
v.push("A string".to_string());

}

• buddy_system_allocator is a third-party crate implementing a basic
buddy system allocator. Other crates are available, or you can write your
own or hook into your existing allocator.

• The const parameter of LockedHeap is the max order of the allocator; i.e.
in this case it can allocate regions of up to 2**32 bytes.

• If any crate in your dependency tree depends on alloc then you must
have exactly one global allocator defined in your binary. Usually this is
done in the top-level binary crate.

• extern crate panic_halt as _ is necessary to ensure that the
panic_halt crate is linked in so we get its panic handler.

• This example will build but not run, as it doesn't have an entry point.

274

Chapter 50

Microcontrollers

The cortex_m_rt crate provides (among other things) a reset handler for Cortex
M microcontrollers.

#![no_main]
#![no_std]

extern crate panic_halt as _;

mod interrupts;

use cortex_m_rt::entry;

#[entry]
fn main() -> ! {

loop {}
}

Next we'll look at how to access peripherals, with increasing levels of abstraction.

• The cortex_m_rt::entry macro requires that the function have type fn()
-> !, because returning to the reset handler doesn't make sense.

• Run the example with cargo embed --bin minimal

50.1 Raw MMIO
Most microcontrollers access peripherals via memory-mapped IO. Let's try
turning on an LED on our micro:bit:

#![no_main]
#![no_std]

275

extern crate panic_halt as _;

mod interrupts;

use core::mem::size_of;
use cortex_m_rt::entry;

/// GPIO port 0 peripheral address
const GPIO_P0: usize = 0x5000_0000;

// GPIO peripheral offsets
const PIN_CNF: usize = 0x700;
const OUTSET: usize = 0x508;
const OUTCLR: usize = 0x50c;

// PIN_CNF fields
const DIR_OUTPUT: u32 = 0x1;
const INPUT_DISCONNECT: u32 = 0x1 << 1;
const PULL_DISABLED: u32 = 0x0 << 2;
const DRIVE_S0S1: u32 = 0x0 << 8;
const SENSE_DISABLED: u32 = 0x0 << 16;

#[entry]
fn main() -> ! {

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
let pin_cnf_21 = (GPIO_P0 + PIN_CNF + 21 * size_of::<u32>()) as *mut u32;
let pin_cnf_28 = (GPIO_P0 + PIN_CNF + 28 * size_of::<u32>()) as *mut u32;
// Safe because the pointers are to valid peripheral control registers, and
// no aliases exist.
unsafe {

pin_cnf_21.write_volatile(
DIR_OUTPUT | INPUT_DISCONNECT | PULL_DISABLED | DRIVE_S0S1 | SENSE_DISABLED,

);
pin_cnf_28.write_volatile(

DIR_OUTPUT | INPUT_DISCONNECT | PULL_DISABLED | DRIVE_S0S1 | SENSE_DISABLED,
);

}

// Set pin 28 low and pin 21 high to turn the LED on.
let gpio0_outset = (GPIO_P0 + OUTSET) as *mut u32;
let gpio0_outclr = (GPIO_P0 + OUTCLR) as *mut u32;
// Safe because the pointers are to valid peripheral control registers, and
// no aliases exist.
unsafe {

gpio0_outclr.write_volatile(1 << 28);
gpio0_outset.write_volatile(1 << 21);

276

}

loop {}
}

• GPIO 0 pin 21 is connected to the first column of the LED matrix, and
pin 28 to the first row.

Run the example with:

cargo embed --bin mmio

50.2 Peripheral Access Crates
svd2rust generates mostly-safe Rust wrappers for memory-mapped peripherals
from CMSIS-SVD files.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use nrf52833_pac::Peripherals;

#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();
let gpio0 = p.P0;

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
gpio0.pin_cnf[21].write(|w| {

w.dir().output();
w.input().disconnect();
w.pull().disabled();
w.drive().s0s1();
w.sense().disabled();
w

});
gpio0.pin_cnf[28].write(|w| {

w.dir().output();
w.input().disconnect();
w.pull().disabled();
w.drive().s0s1();
w.sense().disabled();
w

});

277

https://crates.io/crates/svd2rust
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html

// Set pin 28 low and pin 21 high to turn the LED on.
gpio0.outclr.write(|w| w.pin28().clear());
gpio0.outset.write(|w| w.pin21().set());

loop {}
}

• SVD (System View Description) files are XML files typically provided by
silicon vendors which describe the memory map of the device.

– They are organised by peripheral, register, field and value, with names,
descriptions, addresses and so on.

– SVD files are often buggy and incomplete, so there are various projects
which patch the mistakes, add missing details, and publish the gener-
ated crates.

• cortex-m-rt provides the vector table, among other things.
• If you cargo install cargo-binutils then you can run cargo objdump

--bin pac -- -d --no-show-raw-insn to see the resulting binary.

Run the example with:

cargo embed --bin pac

50.3 HAL crates
HAL crates for many microcontrollers provide wrappers around various periph-
erals. These generally implement traits from embedded-hal.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use nrf52833_hal::gpio::{p0, Level};
use nrf52833_hal::pac::Peripherals;
use nrf52833_hal::prelude::*;

#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();

// Create HAL wrapper for GPIO port 0.
let gpio0 = p0::Parts::new(p.P0);

// Configure GPIO 0 pins 21 and 28 as push-pull outputs.
let mut col1 = gpio0.p0_28.into_push_pull_output(Level::High);

278

https://github.com/rust-embedded/awesome-embedded-rust#hal-implementation-crates
https://crates.io/crates/embedded-hal

let mut row1 = gpio0.p0_21.into_push_pull_output(Level::Low);

// Set pin 28 low and pin 21 high to turn the LED on.
col1.set_low().unwrap();
row1.set_high().unwrap();

loop {}
}

• set_low and set_high are methods on the embedded_hal OutputPin
trait.

• HAL crates exist for many Cortex-M and RISC-V devices, including various
STM32, GD32, nRF, NXP, MSP430, AVR and PIC microcontrollers.

Run the example with:

cargo embed --bin hal

50.4 Board support crates
Board support crates provide a further level of wrapping for a specific board for
convenience.

#![no_main]
#![no_std]

extern crate panic_halt as _;

use cortex_m_rt::entry;
use microbit::hal::prelude::*;
use microbit::Board;

#[entry]
fn main() -> ! {

let mut board = Board::take().unwrap();

board.display_pins.col1.set_low().unwrap();
board.display_pins.row1.set_high().unwrap();

loop {}
}

• In this case the board support crate is just providing more useful names,
and a bit of initialisation.

• The crate may also include drivers for some on-board devices outside of
the microcontroller itself.

– microbit-v2 includes a simple driver for the LED matrix.

279

Run the example with:

cargo embed --bin board_support

50.5 The type state pattern
#[entry]
fn main() -> ! {

let p = Peripherals::take().unwrap();
let gpio0 = p0::Parts::new(p.P0);

let pin: P0_01<Disconnected> = gpio0.p0_01;

// let gpio0_01_again = gpio0.p0_01; // Error, moved.
let pin_input: P0_01<Input<Floating>> = pin.into_floating_input();
if pin_input.is_high().unwrap() {

// ...
}
let mut pin_output: P0_01<Output<OpenDrain>> = pin_input

.into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, Level::Low);
pin_output.set_high().unwrap();
// pin_input.is_high(); // Error, moved.

let _pin2: P0_02<Output<OpenDrain>> = gpio0
.p0_02
.into_open_drain_output(OpenDrainConfig::Disconnect0Standard1, Level::Low);

let _pin3: P0_03<Output<PushPull>> = gpio0.p0_03.into_push_pull_output(Level::Low);

loop {}
}

• Pins don't implement Copy or Clone, so only one instance of each can
exist. Once a pin is moved out of the port struct nobody else can take it.

• Changing the configuration of a pin consumes the old pin instance, so you
can’t keep use the old instance afterwards.

• The type of a value indicates the state that it is in: e.g. in this case, the
configuration state of a GPIO pin. This encodes the state machine into the
type system, and ensures that you don't try to use a pin in a certain way
without properly configuring it first. Illegal state transitions are caught at
compile time.

• You can call is_high on an input pin and set_high on an output pin, but
not vice-versa.

• Many HAL crates follow this pattern.

280

50.6 embedded-hal
The embedded-hal crate provides a number of traits covering common micro-
controller peripherals.

• GPIO
• ADC
• I2C, SPI, UART, CAN
• RNG
• Timers
• Watchdogs

Other crates then implement drivers in terms of these traits, e.g. an accelerometer
driver might need an I2C or SPI bus implementation.

• There are implementations for many microcontrollers, as well as other
platforms such as Linux on Raspberry Pi.

• There is work in progress on an async version of embedded-hal, but it
isn't stable yet.

50.7 probe-rs and cargo-embed
probe-rs is a handy toolset for embedded debugging, like OpenOCD but better
integrated.

• SWD (Serial Wire Debug) and JTAG via CMSIS-DAP, ST-Link and J-Link
probes

• GDB stub and Microsoft DAP (Debug Adapter Protocol) server
• Cargo integration

cargo-embed is a cargo subcommand to build and flash binaries, log RTT (Real
Time Transfers) output and connect GDB. It's configured by an Embed.toml file
in your project directory.

• CMSIS-DAP is an Arm standard protocol over USB for an in-circuit
debugger to access the CoreSight Debug Access Port of various Arm
Cortex processors. It's what the on-board debugger on the BBC micro:bit
uses.

• ST-Link is a range of in-circuit debuggers from ST Microelectronics, J-Link
is a range from SEGGER.

• The Debug Access Port is usually either a 5-pin JTAG interface or 2-pin
Serial Wire Debug.

• probe-rs is a library which you can integrate into your own tools if you
want to.

• The Microsoft Debug Adapter Protocol lets VSCode and other IDEs debug
code running on any supported microcontroller.

• cargo-embed is a binary built using the probe-rs library.

281

https://crates.io/crates/embedded-hal
https://github.com/rust-embedded/awesome-embedded-rust#driver-crates
https://probe.rs/
https://arm-software.github.io/CMSIS_5/DAP/html/index.html
https://microsoft.github.io/debug-adapter-protocol/

• RTT (Real Time Transfers) is a mechanism to transfer data between the
debug host and the target through a number of ringbuffers.

50.7.1 Debugging
Embed.toml:

[default.general]
chip = "nrf52833_xxAA"

[debug.gdb]
enabled = true

In one terminal under src/bare-metal/microcontrollers/examples/:

cargo embed --bin board_support debug

In another terminal in the same directory:

On gLinux or Debian:

gdb-multiarch target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1337"

On MacOS:

arm-none-eabi-gdb target/thumbv7em-none-eabihf/debug/board_support --eval-command="target remote :1337"

In GDB, try running:

b src/bin/board_support.rs:29
b src/bin/board_support.rs:30
b src/bin/board_support.rs:32
c
c
c

50.8 Other projects
• RTIC

– ”Real-Time Interrupt-driven Concurrency”
– Shared resource management, message passing, task scheduling, timer

queue
• Embassy

– async executors with priorities, timers, networking, USB
• TockOS

– Security-focused RTOS with preemptive scheduling and Memory
Protection Unit support

• Hubris
– Microkernel RTOS from Oxide Computer Company with memory

protection, unprivileged drivers, IPC

282

https://rtic.rs/
https://embassy.dev/
https://www.tockos.org/documentation/getting-started
https://hubris.oxide.computer/

• Bindings for FreeRTOS
• Some platforms have std implementations, e.g. esp-idf.

• RTIC can be considered either an RTOS or a concurrency framework.
– It doesn't include any HALs.
– It uses the Cortex-M NVIC (Nested Virtual Interrupt Controller) for

scheduling rather than a proper kernel.
– Cortex-M only.

• Google uses TockOS on the Haven microcontroller for Titan security keys.
• FreeRTOS is mostly written in C, but there are Rust bindings for writing

applications.

283

https://github.com/lobaro/FreeRTOS-rust
https://esp-rs.github.io/book/overview/using-the-standard-library.html

Chapter 51

Exercises

We will read the direction from an I2C compass, and log the readings to a serial
port.

After looking at the exercises, you can look at the solutions provided.

51.1 Compass
We will read the direction from an I2C compass, and log the readings to a serial
port. If you have time, try displaying it on the LEDs somehow too, or use the
buttons somehow.

Hints:

• Check the documentation for the lsm303agr and microbit-v2 crates, as
well as the micro:bit hardware.

• The LSM303AGR Inertial Measurement Unit is connected to the internal
I2C bus.

• TWI is another name for I2C, so the I2C master peripheral is called TWIM.
• The LSM303AGR driver needs something implementing the embedded_hal::blocking::i2c::WriteRead

trait. The microbit::hal::Twim struct implements this.
• You have a microbit::Board struct with fields for the various pins and

peripherals.
• You can also look at the nRF52833 datasheet if you want, but it shouldn't

be necessary for this exercise.

Download the exercise template and look in the compass directory for the
following files.

src/main.rs:

#![no_main]
#![no_std]

284

https://docs.rs/lsm303agr/latest/lsm303agr/
https://docs.rs/microbit-v2/latest/microbit/
https://tech.microbit.org/hardware/
https://docs.rs/microbit-v2/latest/microbit/hal/struct.Twim.html
https://docs.rs/microbit-v2/latest/microbit/struct.Board.html
https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.5.pdf
../../comprehensive-rust-exercises.zip

extern crate panic_halt as _;

use core::fmt::Write;
use cortex_m_rt::entry;
use microbit::{hal::uarte::{Baudrate, Parity, Uarte}, Board};

#[entry]
fn main() -> ! {

let board = Board::take().unwrap();

// Configure serial port.
let mut serial = Uarte::new(

board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,

);

// Set up the I2C controller and Inertial Measurement Unit.
// TODO

writeln!(serial, "Ready.").unwrap();

loop {
// Read compass data and log it to the serial port.
// TODO

}
}

Cargo.toml (you shouldn't need to change this):

[workspace]

[package]
name = "compass"
version = "0.1.0"
edition = "2021"
publish = false

[dependencies]
cortex-m-rt = "0.7.3"
embedded-hal = "0.2.6"
lsm303agr = "0.2.2"
microbit-v2 = "0.13.0"
panic-halt = "0.2.0"

285

Embed.toml (you shouldn't need to change this):

[default.general]
chip = "nrf52833_xxAA"

[debug.gdb]
enabled = true

[debug.reset]
halt_afterwards = true

.cargo/config.toml (you shouldn't need to change this):

[build]
target = "thumbv7em-none-eabihf" # Cortex-M4F

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
rustflags = ["-C", "link-arg=-Tlink.x"]

See the serial output on Linux with:

picocom --baud 115200 --imap lfcrlf /dev/ttyACM0

Or on Mac OS something like (the device name may be slightly different):

picocom --baud 115200 --imap lfcrlf /dev/tty.usbmodem14502

Use Ctrl+A Ctrl+Q to quit picocom.

51.2 Bare Metal Rust Morning Exercise
Compass
(back to exercise)

#![no_main]
#![no_std]

extern crate panic_halt as _;

use core::fmt::Write;
use cortex_m_rt::entry;
use core::cmp::{max, min};
use lsm303agr::{AccelOutputDataRate, Lsm303agr, MagOutputDataRate};
use microbit::display::blocking::Display;
use microbit::hal::prelude::*;
use microbit::hal::twim::Twim;
use microbit::hal::uarte::{Baudrate, Parity, Uarte};
use microbit::hal::Timer;
use microbit::pac::twim0::frequency::FREQUENCY_A;

286

use microbit::Board;

const COMPASS_SCALE: i32 = 30000;
const ACCELEROMETER_SCALE: i32 = 700;

#[entry]
fn main() -> ! {

let board = Board::take().unwrap();

// Configure serial port.
let mut serial = Uarte::new(

board.UARTE0,
board.uart.into(),
Parity::EXCLUDED,
Baudrate::BAUD115200,

);

// Set up the I2C controller and Inertial Measurement Unit.
writeln!(serial, "Setting up IMU...").unwrap();
let i2c = Twim::new(board.TWIM0, board.i2c_internal.into(), FREQUENCY_A::K100);
let mut imu = Lsm303agr::new_with_i2c(i2c);
imu.init().unwrap();
imu.set_mag_odr(MagOutputDataRate::Hz50).unwrap();
imu.set_accel_odr(AccelOutputDataRate::Hz50).unwrap();
let mut imu = imu.into_mag_continuous().ok().unwrap();

// Set up display and timer.
let mut timer = Timer::new(board.TIMER0);
let mut display = Display::new(board.display_pins);

let mut mode = Mode::Compass;
let mut button_pressed = false;

writeln!(serial, "Ready.").unwrap();

loop {
// Read compass data and log it to the serial port.
while !(imu.mag_status().unwrap().xyz_new_data

&& imu.accel_status().unwrap().xyz_new_data)
{}
let compass_reading = imu.mag_data().unwrap();
let accelerometer_reading = imu.accel_data().unwrap();
writeln!(

serial,
"{},{},{}\t{},{},{}",
compass_reading.x,

287

compass_reading.y,
compass_reading.z,
accelerometer_reading.x,
accelerometer_reading.y,
accelerometer_reading.z,

)
.unwrap();

let mut image = [[0; 5]; 5];
let (x, y) = match mode {

Mode::Compass => (
scale(-compass_reading.x, -COMPASS_SCALE, COMPASS_SCALE, 0, 4) as usize,
scale(compass_reading.y, -COMPASS_SCALE, COMPASS_SCALE, 0, 4) as usize,

),
Mode::Accelerometer => (

scale(
accelerometer_reading.x,
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,

) as usize,
scale(

-accelerometer_reading.y,
-ACCELEROMETER_SCALE,
ACCELEROMETER_SCALE,
0,
4,

) as usize,
),

};
image[y][x] = 255;
display.show(&mut timer, image, 100);

// If button A is pressed, switch to the next mode and briefly blink all LEDs on.
if board.buttons.button_a.is_low().unwrap() {

if !button_pressed {
mode = mode.next();
display.show(&mut timer, [[255; 5]; 5], 200);

}
button_pressed = true;

} else {
button_pressed = false;

}
}

}

288

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Mode {

Compass,
Accelerometer,

}

impl Mode {
fn next(self) -> Self {

match self {
Self::Compass => Self::Accelerometer,
Self::Accelerometer => Self::Compass,

}
}

}

fn scale(value: i32, min_in: i32, max_in: i32, min_out: i32, max_out: i32) -> i32 {
let range_in = max_in - min_in;
let range_out = max_out - min_out;
cap(

min_out + range_out * (value - min_in) / range_in,
min_out,
max_out,

)
}

fn cap(value: i32, min_value: i32, max_value: i32) -> i32 {
max(min_value, min(value, max_value))

}

289

Part XII

Bare Metal: Afternoon

290

Chapter 52

Application processors

So far we've talked about microcontrollers, such as the Arm Cortex-M series.
Now let's try writing something for Cortex-A. For simplicity we'll just work with
QEMU's aarch64 'virt' board.

• Broadly speaking, microcontrollers don't have an MMU or multiple levels
of privilege (exception levels on Arm CPUs, rings on x86), while application
processors do.

• QEMU supports emulating various different machines or board models for
each architecture. The 'virt' board doesn't correspond to any particular
real hardware, but is designed purely for virtual machines.

52.1 Getting Ready to Rust
Before we can start running Rust code, we need to do some initialisation.

.section .init.entry, "ax"

.global entry
entry:

/*
* Load and apply the memory management configuration, ready to enable MMU and
* caches.
*/
adrp x30, idmap
msr ttbr0_el1, x30

mov_i x30, .Lmairval
msr mair_el1, x30

mov_i x30, .Ltcrval
/* Copy the supported PA range into TCR_EL1.IPS. */

291

https://qemu-project.gitlab.io/qemu/system/arm/virt.html

mrs x29, id_aa64mmfr0_el1
bfi x30, x29, #32, #4

msr tcr_el1, x30

mov_i x30, .Lsctlrval

/*
* Ensure everything before this point has completed, then invalidate any
* potentially stale local TLB entries before they start being used.
*/
isb
tlbi vmalle1
ic iallu
dsb nsh
isb

/*
* Configure sctlr_el1 to enable MMU and cache and don't proceed until this
* has completed.
*/
msr sctlr_el1, x30
isb

/* Disable trapping floating point access in EL1. */
mrs x30, cpacr_el1
orr x30, x30, #(0x3 << 20)
msr cpacr_el1, x30
isb

/* Zero out the bss section. */
adr_l x29, bss_begin
adr_l x30, bss_end

0: cmp x29, x30
b.hs 1f
stp xzr, xzr, [x29], #16
b 0b

1: /* Prepare the stack. */
adr_l x30, boot_stack_end
mov sp, x30

/* Set up exception vector. */
adr x30, vector_table_el1
msr vbar_el1, x30

292

/* Call into Rust code. */
bl main

/* Loop forever waiting for interrupts. */
2: wfi

b 2b

• This is the same as it would be for C: initialising the processor state,
zeroing the BSS, and setting up the stack pointer.

– The BSS (block starting symbol, for historical reasons) is the part of
the object file which containing statically allocated variables which
are initialised to zero. They are omitted from the image, to avoid
wasting space on zeroes. The compiler assumes that the loader will
take care of zeroing them.

• The BSS may already be zeroed, depending on how memory is initialised
and the image is loaded, but we zero it to be sure.

• We need to enable the MMU and cache before reading or writing any
memory. If we don't:

– Unaligned accesses will fault. We build the Rust code for the aarch64-
unknown-none target which sets +strict-align to prevent the com-
piler generating unaligned accesses, so it should be fine in this case,
but this is not necessarily the case in general.

– If it were running in a VM, this can lead to cache coherency issues. The
problem is that the VM is accessing memory directly with the cache
disabled, while the host has cacheable aliases to the same memory.
Even if the host doesn't explicitly access the memory, speculative
accesses can lead to cache fills, and then changes from one or the
other will get lost when the cache is cleaned or the VM enables the
cache. (Cache is keyed by physical address, not VA or IPA.)

• For simplicity, we just use a hardcoded pagetable (see idmap.S) which
identity maps the first 1 GiB of address space for devices, the next 1 GiB
for DRAM, and another 1 GiB higher up for more devices. This matches
the memory layout that QEMU uses.

• We also set up the exception vector (vbar_el1), which we'll see more about
later.

• All examples this afternoon assume we will be running at exception level
1 (EL1). If you need to run at a different exception level you'll need to
modify entry.S accordingly.

52.2 Inline assembly
Sometimes we need to use assembly to do things that aren't possible with Rust
code. For example, to make an HVC (hypervisor call) to tell the firmware to
power off the system:

293

#![no_main]
#![no_std]

use core::arch::asm;
use core::panic::PanicInfo;

mod exceptions;

const PSCI_SYSTEM_OFF: u32 = 0x84000008;

#[no_mangle]
extern "C" fn main(_x0: u64, _x1: u64, _x2: u64, _x3: u64) {

// Safe because this only uses the declared registers and doesn't do
// anything with memory.
unsafe {

asm!("hvc #0",
inout("w0") PSCI_SYSTEM_OFF => _,
inout("w1") 0 => _,
inout("w2") 0 => _,
inout("w3") 0 => _,
inout("w4") 0 => _,
inout("w5") 0 => _,
inout("w6") 0 => _,
inout("w7") 0 => _,
options(nomem, nostack)

);
}

loop {}
}

(If you actually want to do this, use the smccc crate which has wrappers for all
these functions.)

• PSCI is the Arm Power State Coordination Interface, a standard set of
functions to manage system and CPU power states, among other things.
It is implemented by EL3 firmware and hypervisors on many systems.

• The 0 => _ syntax means initialise the register to 0 before running the
inline assembly code, and ignore its contents afterwards. We need to
use inout rather than in because the call could potentially clobber the
contents of the registers.

• This main function needs to be #[no_mangle] and extern "C" because it
is called from our entry point in entry.S.

• _x0–_x3 are the values of registers x0–x3, which are conventionally used by
the bootloader to pass things like a pointer to the device tree. According
to the standard aarch64 calling convention (which is what extern "C"
specifies to use), registers x0–x7 are used for the first 8 arguments passed

294

https://crates.io/crates/smccc

to a function, so entry.S doesn't need to do anything special except make
sure it doesn't change these registers.

• Run the example in QEMU with make qemu_psci under src/bare-
metal/aps/examples.

52.3 Volatile memory access for MMIO
• Use pointer::read_volatile and pointer::write_volatile.
• Never hold a reference.
• addr_of! lets you get fields of structs without creating an intermediate

reference.

• Volatile access: read or write operations may have side-effects, so prevent
the compiler or hardware from reordering, duplicating or eliding them.

– Usually if you write and then read, e.g. via a mutable reference, the
compiler may assume that the value read is the same as the value
just written, and not bother actually reading memory.

• Some existing crates for volatile access to hardware do hold references, but
this is unsound. Whenever a reference exist, the compiler may choose to
dereference it.

• Use the addr_of! macro to get struct field pointers from a pointer to the
struct.

52.4 Let's write a UART driver
The QEMU 'virt' machine has a PL011 UART, so let's write a driver for that.

const FLAG_REGISTER_OFFSET: usize = 0x18;
const FR_BUSY: u8 = 1 << 3;
const FR_TXFF: u8 = 1 << 5;

/// Minimal driver for a PL011 UART.
#[derive(Debug)]
pub struct Uart {

base_address: *mut u8,
}

impl Uart {
/// Constructs a new instance of the UART driver for a PL011 device at the
/// given base address.
///
/// # Safety
///
/// The given base address must point to the 8 MMIO control registers of a
/// PL011 device, which must be mapped into the address space of the process

295

https://developer.arm.com/documentation/ddi0183/g

/// as device memory and not have any other aliases.
pub unsafe fn new(base_address: *mut u8) -> Self {

Self { base_address }
}

/// Writes a single byte to the UART.
pub fn write_byte(&self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register() & FR_TXFF != 0 {}

// Safe because we know that the base address points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe {

// Write to the TX buffer.
self.base_address.write_volatile(byte);

}

// Wait until the UART is no longer busy.
while self.read_flag_register() & FR_BUSY != 0 {}

}

fn read_flag_register(&self) -> u8 {
// Safe because we know that the base address points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe { self.base_address.add(FLAG_REGISTER_OFFSET).read_volatile() }

}
}

• Note that Uart::new is unsafe while the other methods are safe. This
is because as long as the caller of Uart::new guarantees that its safety
requirements are met (i.e. that there is only ever one instance of the driver
for a given UART, and nothing else aliasing its address space), then it is
always safe to call write_byte later because we can assume the necessary
preconditions.

• We could have done it the other way around (making new safe but
write_byte unsafe), but that would be much less convenient to use as
every place that calls write_byte would need to reason about the safety

• This is a common pattern for writing safe wrappers of unsafe code: moving
the burden of proof for soundness from a large number of places to a
smaller number of places.

52.4.1 More traits
We derived the Debug trait. It would be useful to implement a few more traits
too.

296

use core::fmt::{self, Write};

impl Write for Uart {
fn write_str(&mut self, s: &str) -> fmt::Result {

for c in s.as_bytes() {
self.write_byte(*c);

}
Ok(())

}
}

// Safe because it just contains a pointer to device memory, which can be
// accessed from any context.
unsafe impl Send for Uart {}

• Implementing Write lets us use the write! and writeln! macros with
our Uart type.

• Run the example in QEMU with make qemu_minimal under src/bare-
metal/aps/examples.

52.5 A better UART driver
The PL011 actually has a bunch more registers, and adding offsets to construct
pointers to access them is error-prone and hard to read. Plus, some of them are
bit fields which would be nice to access in a structured way.

Offset Register name Width
0x00 DR 12
0x04 RSR 4
0x18 FR 9
0x20 ILPR 8
0x24 IBRD 16
0x28 FBRD 6
0x2c LCR_H 8
0x30 CR 16
0x34 IFLS 6
0x38 IMSC 11
0x3c RIS 11
0x40 MIS 11
0x44 ICR 11
0x48 DMACR 3

• There are also some ID registers which have been omitted for brevity.

297

https://developer.arm.com/documentation/ddi0183/g/programmers-model/summary-of-registers

52.5.1 Bitflags
The bitflags crate is useful for working with bitflags.

use bitflags::bitflags;

bitflags! {
/// Flags from the UART flag register.
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct Flags: u16 {

/// Clear to send.
const CTS = 1 << 0;
/// Data set ready.
const DSR = 1 << 1;
/// Data carrier detect.
const DCD = 1 << 2;
/// UART busy transmitting data.
const BUSY = 1 << 3;
/// Receive FIFO is empty.
const RXFE = 1 << 4;
/// Transmit FIFO is full.
const TXFF = 1 << 5;
/// Receive FIFO is full.
const RXFF = 1 << 6;
/// Transmit FIFO is empty.
const TXFE = 1 << 7;
/// Ring indicator.
const RI = 1 << 8;

}
}

• The bitflags! macro creates a newtype something like Flags(u16),
along with a bunch of method implementations to get and set flags.

52.5.2 Multiple registers
We can use a struct to represent the memory layout of the UART's registers.

#[repr(C, align(4))]
struct Registers {

dr: u16,
_reserved0: [u8; 2],
rsr: ReceiveStatus,
_reserved1: [u8; 19],
fr: Flags,
_reserved2: [u8; 6],
ilpr: u8,

298

https://crates.io/crates/bitflags

_reserved3: [u8; 3],
ibrd: u16,
_reserved4: [u8; 2],
fbrd: u8,
_reserved5: [u8; 3],
lcr_h: u8,
_reserved6: [u8; 3],
cr: u16,
_reserved7: [u8; 3],
ifls: u8,
_reserved8: [u8; 3],
imsc: u16,
_reserved9: [u8; 2],
ris: u16,
_reserved10: [u8; 2],
mis: u16,
_reserved11: [u8; 2],
icr: u16,
_reserved12: [u8; 2],
dmacr: u8,
_reserved13: [u8; 3],

}

• #[repr(C)] tells the compiler to lay the struct fields out in order, following
the same rules as C. This is necessary for our struct to have a predictable
layout, as default Rust representation allows the compiler to (among other
things) reorder fields however it sees fit.

52.5.3 Driver
Now let's use the new Registers struct in our driver.

/// Driver for a PL011 UART.
#[derive(Debug)]
pub struct Uart {

registers: *mut Registers,
}

impl Uart {
/// Constructs a new instance of the UART driver for a PL011 device at the
/// given base address.
///
/// # Safety
///
/// The given base address must point to the 8 MMIO control registers of a
/// PL011 device, which must be mapped into the address space of the process
/// as device memory and not have any other aliases.

299

https://doc.rust-lang.org/reference/type-layout.html#the-c-representation

pub unsafe fn new(base_address: *mut u32) -> Self {
Self {

registers: base_address as *mut Registers,
}

}

/// Writes a single byte to the UART.
pub fn write_byte(&self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register().contains(Flags::TXFF) {}

// Safe because we know that self.registers points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe {

// Write to the TX buffer.
addr_of_mut!((*self.registers).dr).write_volatile(byte.into());

}

// Wait until the UART is no longer busy.
while self.read_flag_register().contains(Flags::BUSY) {}

}

/// Reads and returns a pending byte, or `None` if nothing has been received.
pub fn read_byte(&self) -> Option<u8> {

if self.read_flag_register().contains(Flags::RXFE) {
None

} else {
let data = unsafe { addr_of!((*self.registers).dr).read_volatile() };
// TODO: Check for error conditions in bits 8-11.
Some(data as u8)

}
}

fn read_flag_register(&self) -> Flags {
// Safe because we know that self.registers points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe { addr_of!((*self.registers).fr).read_volatile() }

}
}

• Note the use of addr_of! / addr_of_mut! to get pointers to individual
fields without creating an intermediate reference, which would be unsound.

300

52.5.4 Using it
Let's write a small program using our driver to write to the serial console, and
echo incoming bytes.

#![no_main]
#![no_std]

mod exceptions;
mod pl011;

use crate::pl011::Uart;
use core::fmt::Write;
use core::panic::PanicInfo;
use log::error;
use smccc::psci::system_off;
use smccc::Hvc;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;

#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 device,
// and nothing else accesses that address range.
let mut uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };

writeln!(uart, "main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})").unwrap();

loop {
if let Some(byte) = uart.read_byte() {

uart.write_byte(byte);
match byte {

b'\r' => {
uart.write_byte(b'\n');

}
b'q' => break,
_ => {}

}
}

}

writeln!(uart, "Bye!").unwrap();
system_off::<Hvc>().unwrap();

}

• As in the inline assembly example, this main function is called from our

301

entry point code in entry.S. See the speaker notes there for details.
• Run the example in QEMU with make qemu under src/bare-

metal/aps/examples.

52.6 Logging
It would be nice to be able to use the logging macros from the log crate. We
can do this by implementing the Log trait.

use crate::pl011::Uart;
use core::fmt::Write;
use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};
use spin::mutex::SpinMutex;

static LOGGER: Logger = Logger {
uart: SpinMutex::new(None),

};

struct Logger {
uart: SpinMutex<Option<Uart>>,

}

impl Log for Logger {
fn enabled(&self, _metadata: &Metadata) -> bool {

true
}

fn log(&self, record: &Record) {
writeln!(

self.uart.lock().as_mut().unwrap(),
"[{}] {}",
record.level(),
record.args()

)
.unwrap();

}

fn flush(&self) {}
}

/// Initialises UART logger.
pub fn init(uart: Uart, max_level: LevelFilter) -> Result<(), SetLoggerError> {

LOGGER.uart.lock().replace(uart);

log::set_logger(&LOGGER)?;

302

https://crates.io/crates/log

log::set_max_level(max_level);
Ok(())

}

• The unwrap in log is safe because we initialise LOGGER before calling
set_logger.

52.6.1 Using it
We need to initialise the logger before we use it.

#![no_main]
#![no_std]

mod exceptions;
mod logger;
mod pl011;

use crate::pl011::Uart;
use core::panic::PanicInfo;
use log::{error, info, LevelFilter};
use smccc::psci::system_off;
use smccc::Hvc;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;

#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 device,
// and nothing else accesses that address range.
let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({x0:#x}, {x1:#x}, {x2:#x}, {x3:#x})");

assert_eq!(x1, 42);

system_off::<Hvc>().unwrap();
}

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

303

• Note that our panic handler can now log details of panics.
• Run the example in QEMU with make qemu_logger under src/bare-

metal/aps/examples.

52.7 Exceptions
AArch64 defines an exception vector table with 16 entries, for 4 types of ex-
ceptions (synchronous, IRQ, FIQ, SError) from 4 states (current EL with SP0,
current EL with SPx, lower EL using AArch64, lower EL using AArch32). We
implement this in assembly to save volatile registers to the stack before calling
into Rust code:

use log::error;
use smccc::psci::system_off;
use smccc::Hvc;

#[no_mangle]
extern "C" fn sync_exception_current(_elr: u64, _spsr: u64) {

error!("sync_exception_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn irq_current(_elr: u64, _spsr: u64) {

error!("irq_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn fiq_current(_elr: u64, _spsr: u64) {

error!("fiq_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn serr_current(_elr: u64, _spsr: u64) {

error!("serr_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn sync_lower(_elr: u64, _spsr: u64) {

error!("sync_lower");
system_off::<Hvc>().unwrap();

}

304

#[no_mangle]
extern "C" fn irq_lower(_elr: u64, _spsr: u64) {

error!("irq_lower");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn fiq_lower(_elr: u64, _spsr: u64) {

error!("fiq_lower");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn serr_lower(_elr: u64, _spsr: u64) {

error!("serr_lower");
system_off::<Hvc>().unwrap();

}

• EL is exception level; all our examples this afternoon run in EL1.
• For simplicity we aren't distinguishing between SP0 and SPx for the

current EL exceptions, or between AArch32 and AArch64 for the lower
EL exceptions.

• For this example we just log the exception and power down, as we don't
expect any of them to actually happen.

• We can think of exception handlers and our main execution context more
or less like different threads. Send and Sync will control what we can
share between them, just like with threads. For example, if we want to
share some value between exception handlers and the rest of the program,
and it's Send but not Sync, then we'll need to wrap it in something like a
Mutex and put it in a static.

52.8 Other projects
• oreboot

– ”coreboot without the C”
– Supports x86, aarch64 and RISC-V.
– Relies on LinuxBoot rather than having many drivers itself.

• Rust RaspberryPi OS tutorial
– Initialisation, UART driver, simple bootloader, JTAG, exception

levels, exception handling, page tables
– Some dodginess around cache maintenance and initialisation in Rust,

not necessarily a good example to copy for production code.
• cargo-call-stack

– Static analysis to determine maximum stack usage.

305

https://github.com/oreboot/oreboot
https://github.com/rust-embedded/rust-raspberrypi-OS-tutorials
https://crates.io/crates/cargo-call-stack

• The RaspberryPi OS tutorial runs Rust code before the MMU and caches
are enabled. This will read and write memory (e.g. the stack). However:

– Without the MMU and cache, unaligned accesses will fault. It builds
with aarch64-unknown-none which sets +strict-align to prevent
the compiler generating unaligned accesses so it should be alright, but
this is not necessarily the case in general.

– If it were running in a VM, this can lead to cache coherency issues. The
problem is that the VM is accessing memory directly with the cache
disabled, while the host has cacheable aliases to the same memory.
Even if the host doesn't explicitly access the memory, speculative
accesses can lead to cache fills, and then changes from one or the other
will get lost. Again this is alright in this particular case (running
directly on the hardware with no hypervisor), but isn't a good pattern
in general.

306

Chapter 53

Useful crates

We'll go over a few crates which solve some common problems in bare-metal
programming.

53.1 zerocopy
The zerocopy crate (from Fuchsia) provides traits and macros for safely con-
verting between byte sequences and other types.

use zerocopy::AsBytes;

#[repr(u32)]
#[derive(AsBytes, Debug, Default)]
enum RequestType {

#[default]
In = 0,
Out = 1,
Flush = 4,

}

#[repr(C)]
#[derive(AsBytes, Debug, Default)]
struct VirtioBlockRequest {

request_type: RequestType,
reserved: u32,
sector: u64,

}

fn main() {
let request = VirtioBlockRequest {

307

https://docs.rs/zerocopy/

request_type: RequestType::Flush,
sector: 42,
..Default::default()

};

assert_eq!(
request.as_bytes(),
&[4, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 0]

);
}

This is not suitable for MMIO (as it doesn't use volatile reads and writes), but
can be useful for working with structures shared with hardware e.g. by DMA,
or sent over some external interface.

• FromBytes can be implemented for types for which any byte pattern is
valid, and so can safely be converted from an untrusted sequence of bytes.

• Attempting to derive FromBytes for these types would fail, because
RequestType doesn't use all possible u32 values as discriminants, so not
all byte patterns are valid.

• zerocopy::byteorder has types for byte-order aware numeric primitives.
• Run the example with cargo run under src/bare-metal/useful-

crates/zerocopy-example/. (It won't run in the Playground because of
the crate dependency.)

53.2 aarch64-paging
The aarch64-paging crate lets you create page tables according to the AArch64
Virtual Memory System Architecture.

use aarch64_paging::{
idmap::IdMap,
paging::{Attributes, MemoryRegion},

};

const ASID: usize = 1;
const ROOT_LEVEL: usize = 1;

// Create a new page table with identity mapping.
let mut idmap = IdMap::new(ASID, ROOT_LEVEL);
// Map a 2 MiB region of memory as read-only.
idmap.map_range(

&MemoryRegion::new(0x80200000, 0x80400000),
Attributes::NORMAL | Attributes::NON_GLOBAL | Attributes::READ_ONLY,

).unwrap();
// Set `TTBR0_EL1` to activate the page table.

308

https://crates.io/crates/aarch64-paging

idmap.activate();

• For now it only supports EL1, but support for other exception levels should
be straightforward to add.

• This is used in Android for the Protected VM Firmware.
• There's no easy way to run this example, as it needs to run on real hardware

or under QEMU.

53.3 buddy_system_allocator
buddy_system_allocator is a third-party crate implementing a basic buddy
system allocator. It can be used both for LockedHeap implementing GlobalAlloc
so you can use the standard alloc crate (as we saw before), or for allocating
other address space. For example, we might want to allocate MMIO space for
PCI BARs:

use buddy_system_allocator::FrameAllocator;
use core::alloc::Layout;

fn main() {
let mut allocator = FrameAllocator::<32>::new();
allocator.add_frame(0x200_0000, 0x400_0000);

let layout = Layout::from_size_align(0x100, 0x100).unwrap();
let bar = allocator

.alloc_aligned(layout)

.expect("Failed to allocate 0x100 byte MMIO region");
println!("Allocated 0x100 byte MMIO region at {:#x}", bar);

}

• PCI BARs always have alignment equal to their size.
• Run the example with cargo run under src/bare-metal/useful-

crates/allocator-example/. (It won't run in the Playground because
of the crate dependency.)

53.4 tinyvec
Sometimes you want something which can be resized like a Vec, but without
heap allocation. tinyvec provides this: a vector backed by an array or slice,
which could be statically allocated or on the stack, which keeps track of how
many elements are used and panics if you try to use more than are allocated.

use tinyvec::{array_vec, ArrayVec};

fn main() {
let mut numbers: ArrayVec<[u32; 5]> = array_vec!(42, 66);

309

https://cs.android.com/android/platform/superproject/+/master:packages/modules/Virtualization/pvmfw/
https://crates.io/crates/buddy_system_allocator
https://docs.rs/buddy_system_allocator/0.9.0/buddy_system_allocator/struct.LockedHeap.html
https://doc.rust-lang.org/core/alloc/trait.GlobalAlloc.html
https://crates.io/crates/tinyvec

println!("{numbers:?}");
numbers.push(7);
println!("{numbers:?}");
numbers.remove(1);
println!("{numbers:?}");

}

• tinyvec requires that the element type implement Default for initialisa-
tion.

• The Rust Playground includes tinyvec, so this example will run fine inline.

53.5 spin
std::sync::Mutex and the other synchronisation primitives from std::sync
are not available in core or alloc. How can we manage synchronisation or
interior mutability, such as for sharing state between different CPUs?

The spin crate provides spinlock-based equivalents of many of these primitives.

use spin::mutex::SpinMutex;

static counter: SpinMutex<u32> = SpinMutex::new(0);

fn main() {
println!("count: {}", counter.lock());
*counter.lock() += 2;
println!("count: {}", counter.lock());

}

• Be careful to avoid deadlock if you take locks in interrupt handlers.
• spin also has a ticket lock mutex implementation; equivalents of RwLock,

Barrier and Once from std::sync; and Lazy for lazy initialisation.
• The once_cell crate also has some useful types for late initialisation with

a slightly different approach to spin::once::Once.
• The Rust Playground includes spin, so this example will run fine inline.

310

https://crates.io/crates/spin
https://crates.io/crates/once_cell

Chapter 54

Android

To build a bare-metal Rust binary in AOSP, you need to use a rust_ffi_static
Soong rule to build your Rust code, then a cc_binary with a linker script to
produce the binary itself, and then a raw_binary to convert the ELF to a raw
binary ready to be run.

rust_ffi_static {
name: "libvmbase_example",
defaults: ["vmbase_ffi_defaults"],
crate_name: "vmbase_example",
srcs: ["src/main.rs"],
rustlibs: [

"libvmbase",
],

}

cc_binary {
name: "vmbase_example",
defaults: ["vmbase_elf_defaults"],
srcs: [

"idmap.S",
],
static_libs: [

"libvmbase_example",
],
linker_scripts: [

"image.ld",
":vmbase_sections",

],
}

311

raw_binary {
name: "vmbase_example_bin",
stem: "vmbase_example.bin",
src: ":vmbase_example",
enabled: false,
target: {

android_arm64: {
enabled: true,

},
},

}

54.1 vmbase
For VMs running under crosvm on aarch64, the vmbase library provides a linker
script and useful defaults for the build rules, along with an entry point, UART
console logging and more.

#![no_main]
#![no_std]

use vmbase::{main, println};

main!(main);

pub fn main(arg0: u64, arg1: u64, arg2: u64, arg3: u64) {
println!("Hello world");

}

• The main! macro marks your main function, to be called from the vmbase
entry point.

• The vmbase entry point handles console initialisation, and issues a
PSCI_SYSTEM_OFF to shutdown the VM if your main function returns.

312

https://android.googlesource.com/platform/packages/modules/Virtualization/+/refs/heads/master/vmbase/

Chapter 55

Exercises

We will write a driver for the PL031 real-time clock device.

After looking at the exercises, you can look at the solutions provided.

55.1 RTC driver
The QEMU aarch64 virt machine has a PL031 real-time clock at 0x9010000. For
this exercise, you should write a driver for it.

1. Use it to print the current time to the serial console. You can use the
chrono crate for date/time formatting.

2. Use the match register and raw interrupt status to busy-wait until a given
time, e.g. 3 seconds in the future. (Call core::hint::spin_loop inside
the loop.)

3. Extension if you have time: Enable and handle the interrupt generated by
the RTC match. You can use the driver provided in the arm-gic crate to
configure the Arm Generic Interrupt Controller.
• Use the RTC interrupt, which is wired to the GIC as IntId::spi(2).
• Once the interrupt is enabled, you can put the core to sleep via

arm_gic::wfi(), which will cause the core to sleep until it receives
an interrupt.

Download the exercise template and look in the rtc directory for the following
files.

src/main.rs:

#![no_main]
#![no_std]

mod exceptions;

313

https://developer.arm.com/documentation/ddi0224/c
https://crates.io/crates/chrono
https://doc.rust-lang.org/core/hint/fn.spin_loop.html
https://docs.rs/arm-gic/
../../comprehensive-rust-exercises.zip

mod logger;
mod pl011;

use crate::pl011::Uart;
use arm_gic::gicv3::GicV3;
use core::panic::PanicInfo;
use log::{error, info, trace, LevelFilter};
use smccc::psci::system_off;
use smccc::Hvc;

/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;
const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;

#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 device,
// and nothing else accesses that address range.
let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);

// Safe because `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.
let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, GICR_BASE_ADDRESS) };
gic.setup();

// TODO: Create instance of RTC driver and print current time.

// TODO: Wait for 3 seconds.

system_off::<Hvc>().unwrap();
}

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

314

src/exceptions.rs (you should only need to change this for the 3rd part of the
exercise):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use arm_gic::gicv3::GicV3;
use log::{error, info, trace};
use smccc::psci::system_off;
use smccc::Hvc;

#[no_mangle]
extern "C" fn sync_exception_current(_elr: u64, _spsr: u64) {

error!("sync_exception_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn irq_current(_elr: u64, _spsr: u64) {

trace!("irq_current");
let intid = GicV3::get_and_acknowledge_interrupt().expect("No pending interrupt");
info!("IRQ {intid:?}");

}

#[no_mangle]
extern "C" fn fiq_current(_elr: u64, _spsr: u64) {

error!("fiq_current");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn serr_current(_elr: u64, _spsr: u64) {

error!("serr_current");
system_off::<Hvc>().unwrap();

}

315

#[no_mangle]
extern "C" fn sync_lower(_elr: u64, _spsr: u64) {

error!("sync_lower");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn irq_lower(_elr: u64, _spsr: u64) {

error!("irq_lower");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn fiq_lower(_elr: u64, _spsr: u64) {

error!("fiq_lower");
system_off::<Hvc>().unwrap();

}

#[no_mangle]
extern "C" fn serr_lower(_elr: u64, _spsr: u64) {

error!("serr_lower");
system_off::<Hvc>().unwrap();

}

src/logger.rs (you shouldn't need to change this):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: main
use crate::pl011::Uart;
use core::fmt::Write;
use log::{LevelFilter, Log, Metadata, Record, SetLoggerError};
use spin::mutex::SpinMutex;

316

static LOGGER: Logger = Logger {
uart: SpinMutex::new(None),

};

struct Logger {
uart: SpinMutex<Option<Uart>>,

}

impl Log for Logger {
fn enabled(&self, _metadata: &Metadata) -> bool {

true
}

fn log(&self, record: &Record) {
writeln!(

self.uart.lock().as_mut().unwrap(),
"[{}] {}",
record.level(),
record.args()

)
.unwrap();

}

fn flush(&self) {}
}

/// Initialises UART logger.
pub fn init(uart: Uart, max_level: LevelFilter) -> Result<(), SetLoggerError> {

LOGGER.uart.lock().replace(uart);

log::set_logger(&LOGGER)?;
log::set_max_level(max_level);
Ok(())

}

src/pl011.rs (you shouldn't need to change this):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,

317

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![allow(unused)]

use core::fmt::{self, Write};
use core::ptr::{addr_of, addr_of_mut};

// ANCHOR: Flags
use bitflags::bitflags;

bitflags! {
/// Flags from the UART flag register.
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct Flags: u16 {

/// Clear to send.
const CTS = 1 << 0;
/// Data set ready.
const DSR = 1 << 1;
/// Data carrier detect.
const DCD = 1 << 2;
/// UART busy transmitting data.
const BUSY = 1 << 3;
/// Receive FIFO is empty.
const RXFE = 1 << 4;
/// Transmit FIFO is full.
const TXFF = 1 << 5;
/// Receive FIFO is full.
const RXFF = 1 << 6;
/// Transmit FIFO is empty.
const TXFE = 1 << 7;
/// Ring indicator.
const RI = 1 << 8;

}
}
// ANCHOR_END: Flags

bitflags! {
/// Flags from the UART Receive Status Register / Error Clear Register.
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
struct ReceiveStatus: u16 {

/// Framing error.
const FE = 1 << 0;

318

/// Parity error.
const PE = 1 << 1;
/// Break error.
const BE = 1 << 2;
/// Overrun error.
const OE = 1 << 3;

}
}

// ANCHOR: Registers
#[repr(C, align(4))]
struct Registers {

dr: u16,
_reserved0: [u8; 2],
rsr: ReceiveStatus,
_reserved1: [u8; 19],
fr: Flags,
_reserved2: [u8; 6],
ilpr: u8,
_reserved3: [u8; 3],
ibrd: u16,
_reserved4: [u8; 2],
fbrd: u8,
_reserved5: [u8; 3],
lcr_h: u8,
_reserved6: [u8; 3],
cr: u16,
_reserved7: [u8; 3],
ifls: u8,
_reserved8: [u8; 3],
imsc: u16,
_reserved9: [u8; 2],
ris: u16,
_reserved10: [u8; 2],
mis: u16,
_reserved11: [u8; 2],
icr: u16,
_reserved12: [u8; 2],
dmacr: u8,
_reserved13: [u8; 3],

}
// ANCHOR_END: Registers

// ANCHOR: Uart
/// Driver for a PL011 UART.
#[derive(Debug)]

319

pub struct Uart {
registers: *mut Registers,

}

impl Uart {
/// Constructs a new instance of the UART driver for a PL011 device at the
/// given base address.
///
/// # Safety
///
/// The given base address must point to the MMIO control registers of a
/// PL011 device, which must be mapped into the address space of the process
/// as device memory and not have any other aliases.
pub unsafe fn new(base_address: *mut u32) -> Self {

Self {
registers: base_address as *mut Registers,

}
}

/// Writes a single byte to the UART.
pub fn write_byte(&self, byte: u8) {

// Wait until there is room in the TX buffer.
while self.read_flag_register().contains(Flags::TXFF) {}

// Safe because we know that self.registers points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe {

// Write to the TX buffer.
addr_of_mut!((*self.registers).dr).write_volatile(byte.into());

}

// Wait until the UART is no longer busy.
while self.read_flag_register().contains(Flags::BUSY) {}

}

/// Reads and returns a pending byte, or `None` if nothing has been received.
pub fn read_byte(&self) -> Option<u8> {

if self.read_flag_register().contains(Flags::RXFE) {
None

} else {
let data = unsafe { addr_of!((*self.registers).dr).read_volatile() };
// TODO: Check for error conditions in bits 8-11.
Some(data as u8)

}
}

320

fn read_flag_register(&self) -> Flags {
// Safe because we know that self.registers points to the control
// registers of a PL011 device which is appropriately mapped.
unsafe { addr_of!((*self.registers).fr).read_volatile() }

}
}
// ANCHOR_END: Uart

impl Write for Uart {
fn write_str(&mut self, s: &str) -> fmt::Result {

for c in s.as_bytes() {
self.write_byte(*c);

}
Ok(())

}
}

// Safe because it just contains a pointer to device memory, which can be
// accessed from any context.
unsafe impl Send for Uart {}

Cargo.toml (you shouldn't need to change this):

[workspace]

[package]
name = "rtc"
version = "0.1.0"
edition = "2021"
publish = false

[dependencies]
arm-gic = "0.1.0"
bitflags = "2.0.0"
chrono = { version = "0.4.24", default-features = false }
log = "0.4.17"
smccc = "0.1.1"
spin = "0.9.8"

[build-dependencies]
cc = "1.0.73"

build.rs (you shouldn't need to change this):

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.

321

// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use cc::Build;
use std::env;

fn main() {
#[cfg(target_os = "linux")]
env::set_var("CROSS_COMPILE", "aarch64-linux-gnu");
#[cfg(not(target_os = "linux"))]
env::set_var("CROSS_COMPILE", "aarch64-none-elf");

Build::new()
.file("entry.S")
.file("exceptions.S")
.file("idmap.S")
.compile("empty")

}

entry.S (you shouldn't need to change this):

/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

.macro adr_l, reg:req, sym:req
adrp \reg, \sym
add \reg, \reg, :lo12:\sym

322

.endm

.macro mov_i, reg:req, imm:req
movz \reg, :abs_g3:\imm
movk \reg, :abs_g2_nc:\imm
movk \reg, :abs_g1_nc:\imm
movk \reg, :abs_g0_nc:\imm

.endm

.set .L_MAIR_DEV_nGnRE, 0x04

.set .L_MAIR_MEM_WBWA, 0xff

.set .Lmairval, .L_MAIR_DEV_nGnRE | (.L_MAIR_MEM_WBWA << 8)

/* 4 KiB granule size for TTBR0_EL1. */
.set .L_TCR_TG0_4KB, 0x0 << 14
/* 4 KiB granule size for TTBR1_EL1. */
.set .L_TCR_TG1_4KB, 0x2 << 30
/* Disable translation table walk for TTBR1_EL1, generating a translation fault instead. */
.set .L_TCR_EPD1, 0x1 << 23
/* Translation table walks for TTBR0_EL1 are inner sharable. */
.set .L_TCR_SH_INNER, 0x3 << 12
/*
* Translation table walks for TTBR0_EL1 are outer write-back read-allocate write-allocate
* cacheable.
*/

.set .L_TCR_RGN_OWB, 0x1 << 10
/*
* Translation table walks for TTBR0_EL1 are inner write-back read-allocate write-allocate
* cacheable.
*/

.set .L_TCR_RGN_IWB, 0x1 << 8
/* Size offset for TTBR0_EL1 is 2**39 bytes (512 GiB). */
.set .L_TCR_T0SZ_512, 64 - 39
.set .Ltcrval, .L_TCR_TG0_4KB | .L_TCR_TG1_4KB | .L_TCR_EPD1 | .L_TCR_RGN_OWB
.set .Ltcrval, .Ltcrval | .L_TCR_RGN_IWB | .L_TCR_SH_INNER | .L_TCR_T0SZ_512

/* Stage 1 instruction access cacheability is unaffected. */
.set .L_SCTLR_ELx_I, 0x1 << 12
/* SP alignment fault if SP is not aligned to a 16 byte boundary. */
.set .L_SCTLR_ELx_SA, 0x1 << 3
/* Stage 1 data access cacheability is unaffected. */
.set .L_SCTLR_ELx_C, 0x1 << 2
/* EL0 and EL1 stage 1 MMU enabled. */
.set .L_SCTLR_ELx_M, 0x1 << 0
/* Privileged Access Never is unchanged on taking an exception to EL1. */
.set .L_SCTLR_EL1_SPAN, 0x1 << 23

323

/* SETEND instruction disabled at EL0 in aarch32 mode. */
.set .L_SCTLR_EL1_SED, 0x1 << 8
/* Various IT instructions are disabled at EL0 in aarch32 mode. */
.set .L_SCTLR_EL1_ITD, 0x1 << 7
.set .L_SCTLR_EL1_RES1, (0x1 << 11) | (0x1 << 20) | (0x1 << 22) | (0x1 << 28) | (0x1 << 29)
.set .Lsctlrval, .L_SCTLR_ELx_M | .L_SCTLR_ELx_C | .L_SCTLR_ELx_SA | .L_SCTLR_EL1_ITD | .L_SCTLR_EL1_SED
.set .Lsctlrval, .Lsctlrval | .L_SCTLR_ELx_I | .L_SCTLR_EL1_SPAN | .L_SCTLR_EL1_RES1

/**
* This is a generic entry point for an image. It carries out the operations required to prepare the
* loaded image to be run. Specifically, it zeroes the bss section using registers x25 and above,
* prepares the stack, enables floating point, and sets up the exception vector. It preserves x0-x3
* for the Rust entry point, as these may contain boot parameters.
*/

.section .init.entry, "ax"

.global entry
entry:

/* Load and apply the memory management configuration, ready to enable MMU and caches. */
adrp x30, idmap
msr ttbr0_el1, x30

mov_i x30, .Lmairval
msr mair_el1, x30

mov_i x30, .Ltcrval
/* Copy the supported PA range into TCR_EL1.IPS. */
mrs x29, id_aa64mmfr0_el1
bfi x30, x29, #32, #4

msr tcr_el1, x30

mov_i x30, .Lsctlrval

/*
* Ensure everything before this point has completed, then invalidate any potentially stale
* local TLB entries before they start being used.
*/
isb
tlbi vmalle1
ic iallu
dsb nsh
isb

/*
* Configure sctlr_el1 to enable MMU and cache and don't proceed until this has completed.
*/

324

msr sctlr_el1, x30
isb

/* Disable trapping floating point access in EL1. */
mrs x30, cpacr_el1
orr x30, x30, #(0x3 << 20)
msr cpacr_el1, x30
isb

/* Zero out the bss section. */
adr_l x29, bss_begin
adr_l x30, bss_end

0: cmp x29, x30
b.hs 1f
stp xzr, xzr, [x29], #16
b 0b

1: /* Prepare the stack. */
adr_l x30, boot_stack_end
mov sp, x30

/* Set up exception vector. */
adr x30, vector_table_el1
msr vbar_el1, x30

/* Call into Rust code. */
bl main

/* Loop forever waiting for interrupts. */
2: wfi

b 2b

exceptions.S (you shouldn't need to change this):

/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

325

* limitations under the License.
*/

/**
* Saves the volatile registers onto the stack. This currently takes 14
* instructions, so it can be used in exception handlers with 18 instructions
* left.
*
* On return, x0 and x1 are initialised to elr_el2 and spsr_el2 respectively,
* which can be used as the first and second arguments of a subsequent call.
*/

.macro save_volatile_to_stack
/* Reserve stack space and save registers x0-x18, x29 & x30. */
stp x0, x1, [sp, #-(8 * 24)]!
stp x2, x3, [sp, #8 * 2]
stp x4, x5, [sp, #8 * 4]
stp x6, x7, [sp, #8 * 6]
stp x8, x9, [sp, #8 * 8]
stp x10, x11, [sp, #8 * 10]
stp x12, x13, [sp, #8 * 12]
stp x14, x15, [sp, #8 * 14]
stp x16, x17, [sp, #8 * 16]
str x18, [sp, #8 * 18]
stp x29, x30, [sp, #8 * 20]

/*
* Save elr_el1 & spsr_el1. This such that we can take nested exception
* and still be able to unwind.
*/
mrs x0, elr_el1
mrs x1, spsr_el1
stp x0, x1, [sp, #8 * 22]

.endm

/**
* Restores the volatile registers from the stack. This currently takes 14
* instructions, so it can be used in exception handlers while still leaving 18
* instructions left; if paired with save_volatile_to_stack, there are 4
* instructions to spare.
*/

.macro restore_volatile_from_stack
/* Restore registers x2-x18, x29 & x30. */
ldp x2, x3, [sp, #8 * 2]
ldp x4, x5, [sp, #8 * 4]
ldp x6, x7, [sp, #8 * 6]
ldp x8, x9, [sp, #8 * 8]

326

ldp x10, x11, [sp, #8 * 10]
ldp x12, x13, [sp, #8 * 12]
ldp x14, x15, [sp, #8 * 14]
ldp x16, x17, [sp, #8 * 16]
ldr x18, [sp, #8 * 18]
ldp x29, x30, [sp, #8 * 20]

/* Restore registers elr_el1 & spsr_el1, using x0 & x1 as scratch. */
ldp x0, x1, [sp, #8 * 22]
msr elr_el1, x0
msr spsr_el1, x1

/* Restore x0 & x1, and release stack space. */
ldp x0, x1, [sp], #8 * 24

.endm

/**
* This is a generic handler for exceptions taken at the current EL while using
* SP0. It behaves similarly to the SPx case by first switching to SPx, doing
* the work, then switching back to SP0 before returning.
*
* Switching to SPx and calling the Rust handler takes 16 instructions. To
* restore and return we need an additional 16 instructions, so we can implement
* the whole handler within the allotted 32 instructions.
*/

.macro current_exception_sp0 handler:req
msr spsel, #1
save_volatile_to_stack
bl \handler
restore_volatile_from_stack
msr spsel, #0
eret

.endm

/**
* This is a generic handler for exceptions taken at the current EL while using
* SPx. It saves volatile registers, calls the Rust handler, restores volatile
* registers, then returns.
*
* This also works for exceptions taken from EL0, if we don't care about
* non-volatile registers.
*
* Saving state and jumping to the Rust handler takes 15 instructions, and
* restoring and returning also takes 15 instructions, so we can fit the whole
* handler in 30 instructions, under the limit of 32.
*/

327

.macro current_exception_spx handler:req
save_volatile_to_stack
bl \handler
restore_volatile_from_stack
eret

.endm

.section .text.vector_table_el1, "ax"

.global vector_table_el1

.balign 0x800
vector_table_el1:
sync_cur_sp0:

current_exception_sp0 sync_exception_current

.balign 0x80
irq_cur_sp0:

current_exception_sp0 irq_current

.balign 0x80
fiq_cur_sp0:

current_exception_sp0 fiq_current

.balign 0x80
serr_cur_sp0:

current_exception_sp0 serr_current

.balign 0x80
sync_cur_spx:

current_exception_spx sync_exception_current

.balign 0x80
irq_cur_spx:

current_exception_spx irq_current

.balign 0x80
fiq_cur_spx:

current_exception_spx fiq_current

.balign 0x80
serr_cur_spx:

current_exception_spx serr_current

.balign 0x80
sync_lower_64:

current_exception_spx sync_lower

328

.balign 0x80
irq_lower_64:

current_exception_spx irq_lower

.balign 0x80
fiq_lower_64:

current_exception_spx fiq_lower

.balign 0x80
serr_lower_64:

current_exception_spx serr_lower

.balign 0x80
sync_lower_32:

current_exception_spx sync_lower

.balign 0x80
irq_lower_32:

current_exception_spx irq_lower

.balign 0x80
fiq_lower_32:

current_exception_spx fiq_lower

.balign 0x80
serr_lower_32:

current_exception_spx serr_lower

idmap.S (you shouldn't need to change this):

/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

.set .L_TT_TYPE_BLOCK, 0x1

329

.set .L_TT_TYPE_PAGE, 0x3

.set .L_TT_TYPE_TABLE, 0x3

/* Access flag. */
.set .L_TT_AF, 0x1 << 10
/* Not global. */
.set .L_TT_NG, 0x1 << 11
.set .L_TT_XN, 0x3 << 53

.set .L_TT_MT_DEV, 0x0 << 2 // MAIR #0 (DEV_nGnRE)

.set .L_TT_MT_MEM, (0x1 << 2) | (0x3 << 8) // MAIR #1 (MEM_WBWA), inner shareable

.set .L_BLOCK_DEV, .L_TT_TYPE_BLOCK | .L_TT_MT_DEV | .L_TT_AF | .L_TT_XN

.set .L_BLOCK_MEM, .L_TT_TYPE_BLOCK | .L_TT_MT_MEM | .L_TT_AF | .L_TT_NG

.section ".rodata.idmap", "a", %progbits

.global idmap

.align 12
idmap:

/* level 1 */
.quad .L_BLOCK_DEV | 0x0 // 1 GiB of device mappings
.quad .L_BLOCK_MEM | 0x40000000 // 1 GiB of DRAM
.fill 254, 8, 0x0 // 254 GiB of unmapped VA space
.quad .L_BLOCK_DEV | 0x4000000000 // 1 GiB of device mappings
.fill 255, 8, 0x0 // 255 GiB of remaining VA space

image.ld (you shouldn't need to change this):

/*
* Copyright 2023 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* Code will start running at this symbol which is placed at the start of the
* image.

330

*/
ENTRY(entry)

MEMORY
{

image : ORIGIN = 0x40080000, LENGTH = 2M
}

SECTIONS
{

/*
* Collect together the code.
*/
.init : ALIGN(4096) {

text_begin = .;
*(.init.entry)
(.init.)

} >image
.text : {

(.text.)
} >image
text_end = .;

/*
* Collect together read-only data.
*/
.rodata : ALIGN(4096) {

rodata_begin = .;
(.rodata.)

} >image
.got : {

*(.got)
} >image
rodata_end = .;

/*
* Collect together the read-write data including .bss at the end which
* will be zero'd by the entry code.
*/
.data : ALIGN(4096) {

data_begin = .;
(.data.)
/*
* The entry point code assumes that .data is a multiple of 32
* bytes long.
*/

331

. = ALIGN(32);
data_end = .;

} >image

/* Everything beyond this point will not be included in the binary. */
bin_end = .;

/* The entry point code assumes that .bss is 16-byte aligned. */
.bss : ALIGN(16) {

bss_begin = .;
(.bss.)
*(COMMON)
. = ALIGN(16);
bss_end = .;

} >image

.stack (NOLOAD) : ALIGN(4096) {
boot_stack_begin = .;
. += 40 * 4096;
. = ALIGN(4096);
boot_stack_end = .;

} >image

. = ALIGN(4K);
PROVIDE(dma_region = .);

/*
* Remove unused sections from the image.
*/
/DISCARD/ : {

/* The image loads itself so doesn't need these sections. */
*(.gnu.hash)
*(.hash)
*(.interp)
*(.eh_frame_hdr)
*(.eh_frame)
*(.note.gnu.build-id)

}
}

Makefile (you shouldn't need to change this):

Copyright 2023 Google LLC
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

332

#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

UNAME := $(shell uname -s)
ifeq ($(UNAME),Linux)

TARGET = aarch64-linux-gnu
else

TARGET = aarch64-none-elf
endif
OBJCOPY = $(TARGET)-objcopy

.PHONY: build qemu_minimal qemu qemu_logger

all: rtc.bin

build:
cargo build

rtc.bin: build
$(OBJCOPY) -O binary target/aarch64-unknown-none/debug/rtc $@

qemu: rtc.bin
qemu-system-aarch64 -machine virt,gic-version=3 -cpu max -serial mon:stdio -display none -kernel $< -s

clean:
cargo clean
rm -f *.bin

.cargo/config.toml (you shouldn't need to change this):

[build]
target = "aarch64-unknown-none"
rustflags = ["-C", "link-arg=-Timage.ld"]

Run the code in QEMU with make qemu.

55.2 Bare Metal Rust Afternoon
RTC driver
(back to exercise)

333

main.rs:

#![no_main]
#![no_std]

mod exceptions;
mod logger;
mod pl011;
mod pl031;

use crate::pl031::Rtc;
use arm_gic::gicv3::{IntId, Trigger};
use arm_gic::{irq_enable, wfi};
use chrono::{TimeZone, Utc};
use core::hint::spin_loop;
use crate::pl011::Uart;
use arm_gic::gicv3::GicV3;
use core::panic::PanicInfo;
use log::{error, info, trace, LevelFilter};
use smccc::psci::system_off;
use smccc::Hvc;

/// Base addresses of the GICv3.
const GICD_BASE_ADDRESS: *mut u64 = 0x800_0000 as _;
const GICR_BASE_ADDRESS: *mut u64 = 0x80A_0000 as _;

/// Base address of the primary PL011 UART.
const PL011_BASE_ADDRESS: *mut u32 = 0x900_0000 as _;

/// Base address of the PL031 RTC.
const PL031_BASE_ADDRESS: *mut u32 = 0x901_0000 as _;
/// The IRQ used by the PL031 RTC.
const PL031_IRQ: IntId = IntId::spi(2);

#[no_mangle]
extern "C" fn main(x0: u64, x1: u64, x2: u64, x3: u64) {

// Safe because `PL011_BASE_ADDRESS` is the base address of a PL011 device,
// and nothing else accesses that address range.
let uart = unsafe { Uart::new(PL011_BASE_ADDRESS) };
logger::init(uart, LevelFilter::Trace).unwrap();

info!("main({:#x}, {:#x}, {:#x}, {:#x})", x0, x1, x2, x3);

// Safe because `GICD_BASE_ADDRESS` and `GICR_BASE_ADDRESS` are the base
// addresses of a GICv3 distributor and redistributor respectively, and
// nothing else accesses those address ranges.

334

let mut gic = unsafe { GicV3::new(GICD_BASE_ADDRESS, GICR_BASE_ADDRESS) };
gic.setup();

// Safe because `PL031_BASE_ADDRESS` is the base address of a PL031 device,
// and nothing else accesses that address range.
let mut rtc = unsafe { Rtc::new(PL031_BASE_ADDRESS) };
let timestamp = rtc.read();
let time = Utc.timestamp_opt(timestamp.into(), 0).unwrap();
info!("RTC: {time}");

GicV3::set_priority_mask(0xff);
gic.set_interrupt_priority(PL031_IRQ, 0x80);
gic.set_trigger(PL031_IRQ, Trigger::Level);
irq_enable();
gic.enable_interrupt(PL031_IRQ, true);

// Wait for 3 seconds, without interrupts.
let target = timestamp + 3;
rtc.set_match(target);
info!(

"Waiting for {}",
Utc.timestamp_opt(target.into(), 0).unwrap()

);
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
while !rtc.matched() {

spin_loop();
}
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
info!("Finished waiting");

// Wait another 3 seconds for an interrupt.
let target = timestamp + 6;
info!(

"Waiting for {}",
Utc.timestamp_opt(target.into(), 0).unwrap()

);
rtc.set_match(target);
rtc.clear_interrupt();

335

rtc.enable_interrupt(true);
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
while !rtc.interrupt_pending() {

wfi();
}
trace!(

"matched={}, interrupt_pending={}",
rtc.matched(),
rtc.interrupt_pending()

);
info!("Finished waiting");

system_off::<Hvc>().unwrap();
}

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {

error!("{info}");
system_off::<Hvc>().unwrap();
loop {}

}

pl031.rs:

use core::ptr::{addr_of, addr_of_mut};

#[repr(C, align(4))]
struct Registers {

/// Data register
dr: u32,
/// Match register
mr: u32,
/// Load register
lr: u32,
/// Control register
cr: u8,
_reserved0: [u8; 3],
/// Interrupt Mask Set or Clear register
imsc: u8,
_reserved1: [u8; 3],
/// Raw Interrupt Status
ris: u8,
_reserved2: [u8; 3],

336

/// Masked Interrupt Status
mis: u8,
_reserved3: [u8; 3],
/// Interrupt Clear Register
icr: u8,
_reserved4: [u8; 3],

}

/// Driver for a PL031 real-time clock.
#[derive(Debug)]
pub struct Rtc {

registers: *mut Registers,
}

impl Rtc {
/// Constructs a new instance of the RTC driver for a PL031 device at the
/// given base address.
///
/// # Safety
///
/// The given base address must point to the MMIO control registers of a
/// PL031 device, which must be mapped into the address space of the process
/// as device memory and not have any other aliases.
pub unsafe fn new(base_address: *mut u32) -> Self {

Self {
registers: base_address as *mut Registers,

}
}

/// Reads the current RTC value.
pub fn read(&self) -> u32 {

// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
unsafe { addr_of!((*self.registers).dr).read_volatile() }

}

/// Writes a match value. When the RTC value matches this then an interrupt
/// will be generated (if it is enabled).
pub fn set_match(&mut self, value: u32) {

// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
unsafe { addr_of_mut!((*self.registers).mr).write_volatile(value) }

}

/// Returns whether the match register matches the RTC value, whether or not
/// the interrupt is enabled.

337

pub fn matched(&self) -> bool {
// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
let ris = unsafe { addr_of!((*self.registers).ris).read_volatile() };
(ris & 0x01) != 0

}

/// Returns whether there is currently an interrupt pending.
///
/// This should be true if and only if `matched` returns true and the
/// interrupt is masked.
pub fn interrupt_pending(&self) -> bool {

// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
let ris = unsafe { addr_of!((*self.registers).mis).read_volatile() };
(ris & 0x01) != 0

}

/// Sets or clears the interrupt mask.
///
/// When the mask is true the interrupt is enabled; when it is false the
/// interrupt is disabled.
pub fn enable_interrupt(&mut self, mask: bool) {

let imsc = if mask { 0x01 } else { 0x00 };
// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
unsafe { addr_of_mut!((*self.registers).imsc).write_volatile(imsc) }

}

/// Clears a pending interrupt, if any.
pub fn clear_interrupt(&mut self) {

// Safe because we know that self.registers points to the control
// registers of a PL031 device which is appropriately mapped.
unsafe { addr_of_mut!((*self.registers).icr).write_volatile(0x01) }

}
}

// Safe because it just contains a pointer to device memory, which can be
// accessed from any context.
unsafe impl Send for Rtc {}

338

Part XIII

Concurrency: Morning

339

Chapter 56

Welcome to Concurrency in
Rust

Rust has full support for concurrency using OS threads with mutexes and
channels.

The Rust type system plays an important role in making many concurrency bugs
compile time bugs. This is often referred to as fearless concurrency since you
can rely on the compiler to ensure correctness at runtime.

340

Chapter 57

Threads

Rust threads work similarly to threads in other languages:

use std::thread;
use std::time::Duration;

fn main() {
thread::spawn(|| {

for i in 1..10 {
println!("Count in thread: {i}!");
thread::sleep(Duration::from_millis(5));

}
});

for i in 1..5 {
println!("Main thread: {i}");
thread::sleep(Duration::from_millis(5));

}
}

• Threads are all daemon threads, the main thread does not wait for them.
• Thread panics are independent of each other.

– Panics can carry a payload, which can be unpacked with
downcast_ref.

Key points:

• Notice that the thread is stopped before it reaches 10 --- the main thread
is not waiting.

• Use let handle = thread::spawn(...) and later handle.join() to
wait for the thread to finish.

341

• Trigger a panic in the thread, notice how this doesn't affect main.

• Use the Result return value from handle.join() to get access to the
panic payload. This is a good time to talk about Any.

57.1 Scoped Threads
Normal threads cannot borrow from their environment:

use std::thread;

fn foo() {
let s = String::from("Hello");
thread::spawn(|| {

println!("Length: {}", s.len());
});

}

fn main() {
foo();

}

However, you can use a scoped thread for this:

use std::thread;

fn main() {
let s = String::from("Hello");

thread::scope(|scope| {
scope.spawn(|| {

println!("Length: {}", s.len());
});

});
}

• The reason for that is that when the thread::scope function completes,
all the threads are guaranteed to be joined, so they can return borrowed
data.

• Normal Rust borrowing rules apply: you can either borrow mutably by
one thread, or immutably by any number of threads.

342

https://doc.rust-lang.org/std/any/index.html
https://doc.rust-lang.org/std/thread/fn.scope.html

Chapter 58

Channels

Rust channels have two parts: a Sender<T> and a Receiver<T>. The two parts
are connected via the channel, but you only see the end-points.

use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

tx.send(10).unwrap();
tx.send(20).unwrap();

println!("Received: {:?}", rx.recv());
println!("Received: {:?}", rx.recv());

let tx2 = tx.clone();
tx2.send(30).unwrap();
println!("Received: {:?}", rx.recv());

}

• mpsc stands for Multi-Producer, Single-Consumer. Sender and
SyncSender implement Clone (so you can make multiple producers) but
Receiver does not.

• send() and recv() return Result. If they return Err, it means the
counterpart Sender or Receiver is dropped and the channel is closed.

58.1 Unbounded Channels
You get an unbounded and asynchronous channel with mpsc::channel():

343

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let thread_id = thread::current().id();
for i in 1..10 {

tx.send(format!("Message {i}")).unwrap();
println!("{thread_id:?}: sent Message {i}");

}
println!("{thread_id:?}: done");

});
thread::sleep(Duration::from_millis(100));

for msg in rx.iter() {
println!("Main: got {msg}");

}
}

58.2 Bounded Channels
With bounded (synchronous) channels, send can block the current thread:

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
let (tx, rx) = mpsc::sync_channel(3);

thread::spawn(move || {
let thread_id = thread::current().id();
for i in 1..10 {

tx.send(format!("Message {i}")).unwrap();
println!("{thread_id:?}: sent Message {i}");

}
println!("{thread_id:?}: done");

});
thread::sleep(Duration::from_millis(100));

for msg in rx.iter() {
println!("Main: got {msg}");

344

}
}

• Calling send will block the current thread until there is space in the channel
for the new message. The thread can be blocked indefinitely if there is
nobody who reads from the channel.

• A call to send will abort with an error (that is why it returns Result) if
the channel is closed. A channel is closed when the receiver is dropped.

• A bounded channel with a size of zero is called a ”rendezvous channel”.
Every send will block the current thread until another thread calls read.

345

Chapter 59

Send and Sync

How does Rust know to forbid shared access across threads? The answer is in
two traits:

• Send: a type T is Send if it is safe to move a T across a thread boundary.
• Sync: a type T is Sync if it is safe to move a &T across a thread boundary.

Send and Sync are unsafe traits. The compiler will automatically derive them
for your types as long as they only contain Send and Sync types. You can also
implement them manually when you know it is valid.

• One can think of these traits as markers that the type has certain thread-
safety properties.

• They can be used in the generic constraints as normal traits.

59.1 Send
A type T is Send if it is safe to move a T value to another thread.

The effect of moving ownership to another thread is that destructors will run in
that thread. So the question is when you can allocate a value in one thread and
deallocate it in another.

As an example, a connection to the SQLite library must only be accessed from a
single thread.

59.2 Sync
A type T is Sync if it is safe to access a T value from multiple threads
at the same time.

More precisely, the definition is:

346

https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
../unsafe/unsafe-traits.md
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html

T is Sync if and only if &T is Send

This statement is essentially a shorthand way of saying that if a type is thread-safe
for shared use, it is also thread-safe to pass references of it across threads.

This is because if a type is Sync it means that it can be shared across multiple
threads without the risk of data races or other synchronization issues, so it is
safe to move it to another thread. A reference to the type is also safe to move to
another thread, because the data it references can be accessed from any thread
safely.

59.3 Examples
Send + Sync

Most types you come across are Send + Sync:

• i8, f32, bool, char, &str, ...
• (T1, T2), [T; N], &[T], struct { x: T }, ...
• String, Option<T>, Vec<T>, Box<T>, ...
• Arc<T>: Explicitly thread-safe via atomic reference count.
• Mutex<T>: Explicitly thread-safe via internal locking.
• AtomicBool, AtomicU8, ...: Uses special atomic instructions.

The generic types are typically Send + Sync when the type parameters are Send
+ Sync.

Send + !Sync

These types can be moved to other threads, but they're not thread-safe. Typically
because of interior mutability:

• mpsc::Sender<T>
• mpsc::Receiver<T>
• Cell<T>
• RefCell<T>

!Send + Sync

These types are thread-safe, but they cannot be moved to another thread:

• MutexGuard<T: Sync>: Uses OS level primitives which must be deallo-
cated on the thread which created them.

!Send + !Sync

These types are not thread-safe and cannot be moved to other threads:

347

• Rc<T>: each Rc<T> has a reference to an RcBox<T>, which contains a
non-atomic reference count.

• *const T, *mut T: Rust assumes raw pointers may have special concur-
rency considerations.

348

Chapter 60

Shared State

Rust uses the type system to enforce synchronization of shared data. This is
primarily done via two types:

• Arc<T>, atomic reference counted T: handles sharing between threads and
takes care to deallocate T when the last reference is dropped,

• Mutex<T>: ensures mutually exclusive access to the T value.

60.1 Arc
Arc<T> allows shared read-only access via Arc::clone:

use std::thread;
use std::sync::Arc;

fn main() {
let v = Arc::new(vec![10, 20, 30]);
let mut handles = Vec::new();
for _ in 1..5 {

let v = Arc::clone(&v);
handles.push(thread::spawn(move || {

let thread_id = thread::current().id();
println!("{thread_id:?}: {v:?}");

}));
}

handles.into_iter().for_each(|h| h.join().unwrap());
println!("v: {v:?}");

}

• Arc stands for ”Atomic Reference Counted”, a thread safe version of Rc

349

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Arc.html

that uses atomic operations.
• Arc<T> implements Clone whether or not T does. It implements Send and

Sync if and only if T implements them both.
• Arc::clone() has the cost of atomic operations that get executed, but

after that the use of the T is free.
• Beware of reference cycles, Arc does not use a garbage collector to detect

them.
– std::sync::Weak can help.

60.2 Mutex
Mutex<T> ensures mutual exclusion and allows mutable access to T behind a
read-only interface:

use std::sync::Mutex;

fn main() {
let v = Mutex::new(vec![10, 20, 30]);
println!("v: {:?}", v.lock().unwrap());

{
let mut guard = v.lock().unwrap();
guard.push(40);

}

println!("v: {:?}", v.lock().unwrap());
}

Notice how we have a impl<T: Send> Sync for Mutex<T> blanket implemen-
tation.

• Mutex in Rust looks like a collection with just one element --- the protected
data.

– It is not possible to forget to acquire the mutex before accessing the
protected data.

• You can get an &mut T from an &Mutex<T> by taking the lock. The
MutexGuard ensures that the &mut T doesn't outlive the lock being held.

• Mutex<T> implements both Send and Sync iff (if and only if) T implements
Send.

• A read-write lock counterpart: RwLock.
• Why does lock() return a Result?

– If the thread that held the Mutex panicked, the Mutex becomes ”poi-
soned” to signal that the data it protected might be in an inconsistent
state. Calling lock() on a poisoned mutex fails with a PoisonError.
You can call into_inner() on the error to recover the data regardless.

350

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html#impl-Sync-for-Mutex%3CT%3E
https://doc.rust-lang.org/std/sync/struct.PoisonError.html

60.3 Example
Let us see Arc and Mutex in action:

use std::thread;
// use std::sync::{Arc, Mutex};

fn main() {
let v = vec![10, 20, 30];
let handle = thread::spawn(|| {

v.push(10);
});
v.push(1000);

handle.join().unwrap();
println!("v: {v:?}");

}

Possible solution:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
let v = Arc::new(Mutex::new(vec![10, 20, 30]));

let v2 = Arc::clone(&v);
let handle = thread::spawn(move || {

let mut v2 = v2.lock().unwrap();
v2.push(10);

});

{
let mut v = v.lock().unwrap();
v.push(1000);

}

handle.join().unwrap();

println!("v: {v:?}");
}

Notable parts:

• v is wrapped in both Arc and Mutex, because their concerns are orthogonal.
– Wrapping a Mutex in an Arc is a common pattern to share mutable

state between threads.
• v: Arc<_> needs to be cloned as v2 before it can be moved into another

351

thread. Note move was added to the lambda signature.
• Blocks are introduced to narrow the scope of the LockGuard as much as

possible.

352

Chapter 61

Exercises

Let us practice our new concurrency skills with

• Dining philosophers: a classic problem in concurrency.

• Multi-threaded link checker: a larger project where you'll use Cargo to
download dependencies and then check links in parallel.

After looking at the exercises, you can look at the solutions provided.

61.1 Dining Philosophers
The dining philosophers problem is a classic problem in concurrency:

Five philosophers dine together at the same table. Each philosopher
has their own place at the table. There is a fork between each plate.
The dish served is a kind of spaghetti which has to be eaten with two
forks. Each philosopher can only alternately think and eat. Moreover,
a philosopher can only eat their spaghetti when they have both a
left and right fork. Thus two forks will only be available when their
two nearest neighbors are thinking, not eating. After an individual
philosopher finishes eating, they will put down both forks.

You will need a local Cargo installation for this exercise. Copy the code below
to a file called src/main.rs, fill out the blanks, and test that cargo run does
not deadlock:

use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

353

struct Philosopher {
name: String,
// left_fork: ...
// right_fork: ...
// thoughts: ...

}

impl Philosopher {
fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();

}

fn eat(&self) {
// Pick up forks...
println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));

}
}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

fn main() {
// Create forks

// Create philosophers

// Make each of them think and eat 100 times

// Output their thoughts
}

You can use the following Cargo.toml:

[package]
name = "dining-philosophers"
version = "0.1.0"
edition = "2021"

61.2 Multi-threaded Link Checker
Let us use our new knowledge to create a multi-threaded link checker. It should
start at a webpage and check that links on the page are valid. It should recursively
check other pages on the same domain and keep doing this until all pages have

354

been validated.

For this, you will need an HTTP client such as reqwest. Create a new Cargo
project and reqwest it as a dependency with:

cargo new link-checker
cd link-checker
cargo add --features blocking,rustls-tls reqwest

If cargo add fails with error: no such subcommand, then please
edit the Cargo.toml file by hand. Add the dependencies listed below.

You will also need a way to find links. We can use scraper for that:

cargo add scraper

Finally, we'll need some way of handling errors. We use thiserror for that:

cargo add thiserror

The cargo add calls will update the Cargo.toml file to look like this:

[package]
name = "link-checker"
version = "0.1.0"
edition = "2021"
publish = false

[dependencies]
reqwest = { version = "0.11.12", features = ["blocking", "rustls-tls"] }
scraper = "0.13.0"
thiserror = "1.0.37"

You can now download the start page. Try with a small site such as
https://www.google.org/.

Your src/main.rs file should look something like this:

use reqwest::{blocking::Client, Url};
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {

#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),

}

#[derive(Debug)]
struct CrawlCommand {

355

https://docs.rs/reqwest/
https://docs.rs/scraper/
https://docs.rs/thiserror/

url: Url,
extract_links: bool,

}

fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {

return Err(Error::BadResponse(response.status().to_string()));
}

let mut link_urls = Vec::new();
if !command.extract_links {

return Ok(link_urls);
}

let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);

let selector = Selector::parse("a").unwrap();
let href_values = document

.select(&selector)

.filter_map(|element| element.value().attr("href"));
for href in href_values {

match base_url.join(href) {
Ok(link_url) => {

link_urls.push(link_url);
}
Err(err) => {

println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}

}
}
Ok(link_urls)

}

fn main() {
let client = Client::new();
let start_url = Url::parse("https://www.google.org").unwrap();
let crawl_command = CrawlCommand{ url: start_url, extract_links: true };
match visit_page(&client, &crawl_command) {

Ok(links) => println!("Links: {links:#?}"),
Err(err) => println!("Could not extract links: {err:#}"),

}
}

356

Run the code in src/main.rs with

cargo run

Tasks
• Use threads to check the links in parallel: send the URLs to be checked to

a channel and let a few threads check the URLs in parallel.
• Extend this to recursively extract links from all pages on the

www.google.org domain. Put an upper limit of 100 pages or so
so that you don't end up being blocked by the site.

61.3 Concurrency Morning Exercise
Dining Philosophers
(back to exercise)

use std::sync::{mpsc, Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

struct Philosopher {
name: String,
left_fork: Arc<Mutex<Fork>>,
right_fork: Arc<Mutex<Fork>>,
thoughts: mpsc::SyncSender<String>,

}

impl Philosopher {
fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name))
.unwrap();

}

fn eat(&self) {
println!("{} is trying to eat", &self.name);
let _left = self.left_fork.lock().unwrap();
let _right = self.right_fork.lock().unwrap();

println!("{} is eating...", &self.name);
thread::sleep(Duration::from_millis(10));

}

357

}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

fn main() {
let (tx, rx) = mpsc::sync_channel(10);

let forks = (0..PHILOSOPHERS.len())
.map(|_| Arc::new(Mutex::new(Fork)))
.collect::<Vec<_>>();

for i in 0..forks.len() {
let tx = tx.clone();
let mut left_fork = Arc::clone(&forks[i]);
let mut right_fork = Arc::clone(&forks[(i + 1) % forks.len()]);

// To avoid a deadlock, we have to break the symmetry
// somewhere. This will swap the forks without deinitializing
// either of them.
if i == forks.len() - 1 {

std::mem::swap(&mut left_fork, &mut right_fork);
}

let philosopher = Philosopher {
name: PHILOSOPHERS[i].to_string(),
thoughts: tx,
left_fork,
right_fork,

};

thread::spawn(move || {
for _ in 0..100 {

philosopher.eat();
philosopher.think();

}
});

}

drop(tx);
for thought in rx {

println!("{thought}");
}

}

358

Link Checker
(back to exercise)

use std::{sync::mpsc, sync::Arc, sync::Mutex, thread};

use reqwest::{blocking::Client, Url};
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {

#[error("request error: {0}")]
ReqwestError(#[from] reqwest::Error),
#[error("bad http response: {0}")]
BadResponse(String),

}

#[derive(Debug)]
struct CrawlCommand {

url: Url,
extract_links: bool,

}

fn visit_page(client: &Client, command: &CrawlCommand) -> Result<Vec<Url>, Error> {
println!("Checking {:#}", command.url);
let response = client.get(command.url.clone()).send()?;
if !response.status().is_success() {

return Err(Error::BadResponse(response.status().to_string()));
}

let mut link_urls = Vec::new();
if !command.extract_links {

return Ok(link_urls);
}

let base_url = response.url().to_owned();
let body_text = response.text()?;
let document = Html::parse_document(&body_text);

let selector = Selector::parse("a").unwrap();
let href_values = document

.select(&selector)

.filter_map(|element| element.value().attr("href"));
for href in href_values {

match base_url.join(href) {

359

Ok(link_url) => {
link_urls.push(link_url);

}
Err(err) => {

println!("On {base_url:#}: ignored unparsable {href:?}: {err}");
}

}
}
Ok(link_urls)

}

struct CrawlState {
domain: String,
visited_pages: std::collections::HashSet<String>,

}

impl CrawlState {
fn new(start_url: &Url) -> CrawlState {

let mut visited_pages = std::collections::HashSet::new();
visited_pages.insert(start_url.as_str().to_string());
CrawlState {

domain: start_url.domain().unwrap().to_string(),
visited_pages,

}
}

/// Determine whether links within the given page should be extracted.
fn should_extract_links(&self, url: &Url) -> bool {

let Some(url_domain) = url.domain() else {
return false;

};
url_domain == self.domain

}

/// Mark the given page as visited, returning false if it had already
/// been visited.
fn mark_visited(&mut self, url: &Url) -> bool {

self.visited_pages.insert(url.as_str().to_string())
}

}

type CrawlResult = Result<Vec<Url>, (Url, Error)>;
fn spawn_crawler_threads(

command_receiver: mpsc::Receiver<CrawlCommand>,
result_sender: mpsc::Sender<CrawlResult>,
thread_count: u32,

360

) {
let command_receiver = Arc::new(Mutex::new(command_receiver));

for _ in 0..thread_count {
let result_sender = result_sender.clone();
let command_receiver = command_receiver.clone();
thread::spawn(move || {

let client = Client::new();
loop {

let command_result = {
let receiver_guard = command_receiver.lock().unwrap();
receiver_guard.recv()

};
let Ok(crawl_command) = command_result else {

// The sender got dropped. No more commands coming in.
break;

};
let crawl_result = match visit_page(&client, &crawl_command) {

Ok(link_urls) => Ok(link_urls),
Err(error) => Err((crawl_command.url, error)),

};
result_sender.send(crawl_result).unwrap();

}
});

}
}

fn control_crawl(
start_url: Url,
command_sender: mpsc::Sender<CrawlCommand>,
result_receiver: mpsc::Receiver<CrawlResult>,

) -> Vec<Url> {
let mut crawl_state = CrawlState::new(&start_url);
let start_command = CrawlCommand {

url: start_url,
extract_links: true,

};
command_sender.send(start_command).unwrap();
let mut pending_urls = 1;

let mut bad_urls = Vec::new();
while pending_urls > 0 {

let crawl_result = result_receiver.recv().unwrap();
pending_urls -= 1;

match crawl_result {

361

Ok(link_urls) => {
for url in link_urls {

if crawl_state.mark_visited(&url) {
let extract_links = crawl_state.should_extract_links(&url);
let crawl_command = CrawlCommand { url, extract_links };
command_sender.send(crawl_command).unwrap();
pending_urls += 1;

}
}

}
Err((url, error)) => {

bad_urls.push(url);
println!("Got crawling error: {:#}", error);
continue;

}
}

}
bad_urls

}

fn check_links(start_url: Url) -> Vec<Url> {
let (result_sender, result_receiver) = mpsc::channel::<CrawlResult>();
let (command_sender, command_receiver) = mpsc::channel::<CrawlCommand>();
spawn_crawler_threads(command_receiver, result_sender, 16);
control_crawl(start_url, command_sender, result_receiver)

}

fn main() {
let start_url = reqwest::Url::parse("https://www.google.org").unwrap();
let bad_urls = check_links(start_url);
println!("Bad URLs: {:#?}", bad_urls);

}

362

Part XIV

Concurrency: Afternoon

363

Chapter 62

Async Rust

”Async” is a concurrency model where multiple tasks are executed concurrently
by executing each task until it would block, then switching to another task that
is ready to make progress. The model allows running a larger number of tasks on
a limited number of threads. This is because the per-task overhead is typically
very low and operating systems provide primitives for efficiently identifying I/O
that is able to proceed.

Rust's asynchronous operation is based on ”futures”, which represent work that
may be completed in the future. Futures are ”polled” until they signal that they
are complete.

Futures are polled by an async runtime, and several different runtimes are
available.

Comparisons
• Python has a similar model in its asyncio. However, its Future type is

callback-based, and not polled. Async Python programs require a ”loop”,
similar to a runtime in Rust.

• JavaScript's Promise is similar, but again callback-based. The language
runtime implements the event loop, so many of the details of Promise
resolution are hidden.

62.1 async/await
At a high level, async Rust code looks very much like ”normal” sequential code:

use futures::executor::block_on;

364

async fn count_to(count: i32) {
for i in 1..=count {

println!("Count is: {i}!");
}

}

async fn async_main(count: i32) {
count_to(count).await;

}

fn main() {
block_on(async_main(10));

}

Key points:

• Note that this is a simplified example to show the syntax. There is no long
running operation or any real concurrency in it!

• What is the return type of an async call?

– Use let future: () = async_main(10); in main to see the type.

• The ”async” keyword is syntactic sugar. The compiler replaces the return
type with a future.

• You cannot make main async, without additional instructions to the com-
piler on how to use the returned future.

• You need an executor to run async code. block_on blocks the current
thread until the provided future has run to completion.

• .await asynchronously waits for the completion of another operation.
Unlike block_on, .await doesn't block the current thread.

• .await can only be used inside an async function (or block; these are
introduced later).

62.2 Futures
Future is a trait, implemented by objects that represent an operation that may
not be complete yet. A future can be polled, and poll returns a Poll.

use std::pin::Pin;
use std::task::Context;

pub trait Future {
type Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

365

https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/task/enum.Poll.html

pub enum Poll<T> {
Ready(T),
Pending,

}

An async function returns an impl Future. It's also possible (but uncommon)
to implement Future for your own types. For example, the JoinHandle returned
from tokio::spawn implements Future to allow joining to it.

The .await keyword, applied to a Future, causes the current async function to
pause until that Future is ready, and then evaluates to its output.

• The Future and Poll types are implemented exactly as shown; click the
links to show the implementations in the docs.

• We will not get to Pin and Context, as we will focus on writing async
code, rather than building new async primitives. Briefly:

– Context allows a Future to schedule itself to be polled again when
an event occurs.

– Pin ensures that the Future isn't moved in memory, so that pointers
into that future remain valid. This is required to allow references to
remain valid after an .await.

62.3 Runtimes
A runtime provides support for performing operations asynchronously (a reactor)
and is responsible for executing futures (an executor). Rust does not have a
”built-in” runtime, but several options are available:

• Tokio: performant, with a well-developed ecosystem of functionality like
Hyper for HTTP or Tonic for gRPC.

• async-std: aims to be a ”std for async”, and includes a basic runtime in
async::task.

• smol: simple and lightweight

Several larger applications have their own runtimes. For example, Fuchsia already
has one.

• Note that of the listed runtimes, only Tokio is supported in the Rust
playground. The playground also does not permit any I/O, so most
interesting async things can't run in the playground.

• Futures are ”inert” in that they do not do anything (not even start an I/O
operation) unless there is an executor polling them. This differs from JS
Promises, for example, which will run to completion even if they are never
used.

366

https://tokio.rs/
https://hyper.rs/
https://github.com/hyperium/tonic
https://async.rs/
https://docs.rs/smol/latest/smol/
https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/lib/fuchsia-async/src/lib.rs

62.3.1 Tokio
Tokio provides:

• A multi-threaded runtime for executing asynchronous code.
• An asynchronous version of the standard library.
• A large ecosystem of libraries.

use tokio::time;

async fn count_to(count: i32) {
for i in 1..=count {

println!("Count in task: {i}!");
time::sleep(time::Duration::from_millis(5)).await;

}
}

#[tokio::main]
async fn main() {

tokio::spawn(count_to(10));

for i in 1..5 {
println!("Main task: {i}");
time::sleep(time::Duration::from_millis(5)).await;

}
}

• With the tokio::main macro we can now make main async.

• The spawn function creates a new, concurrent ”task”.

• Note: spawn takes a Future, you don't call .await on count_to.

Further exploration:

• Why does count_to not (usually) get to 10? This is an example of async
cancellation. tokio::spawn returns a handle which can be awaited to wait
until it finishes.

• Try count_to(10).await instead of spawning.

• Try awaiting the task returned from tokio::spawn.

62.4 Tasks
Rust has a task system, which is a form of lightweight threading.

A task has a single top-level future which the executor polls to make progress.
That future may have one or more nested futures that its poll method polls,

367

corresponding loosely to a call stack. Concurrency within a task is possible by
polling multiple child futures, such as racing a timer and an I/O operation.

use tokio::io::{self, AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;

#[tokio::main]
async fn main() -> io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6142").await?;
println!("listening on port 6142");

loop {
let (mut socket, addr) = listener.accept().await?;

println!("connection from {addr:?}");

tokio::spawn(async move {
if let Err(e) = socket.write_all(b"Who are you?\n").await {

println!("socket error: {e:?}");
return;

}

let mut buf = vec![0; 1024];
let reply = match socket.read(&mut buf).await {

Ok(n) => {
let name = std::str::from_utf8(&buf[..n]).unwrap().trim();
format!("Thanks for dialing in, {name}!\n")

}
Err(e) => {

println!("socket error: {e:?}");
return;

}
};

if let Err(e) = socket.write_all(reply.as_bytes()).await {
println!("socket error: {e:?}");

}
});

}
}

Copy this example into your prepared src/main.rs and run it from there.

Try connecting to it with a TCP connection tool like nc or telnet.

• Ask students to visualize what the state of the example server would be
with a few connected clients. What tasks exist? What are their Futures?

368

https://www.unix.com/man-page/linux/1/nc/
https://www.unix.com/man-page/linux/1/telnet/

• This is the first time we've seen an async block. This is similar to a closure,
but does not take any arguments. Its return value is a Future, similar to
an async fn.

• Refactor the async block into a function, and improve the error handling
using ?.

62.5 Async Channels
Several crates have support for asynchronous channels. For instance tokio:

use tokio::sync::mpsc::{self, Receiver};

async fn ping_handler(mut input: Receiver<()>) {
let mut count: usize = 0;

while let Some(_) = input.recv().await {
count += 1;
println!("Received {count} pings so far.");

}

println!("ping_handler complete");
}

#[tokio::main]
async fn main() {

let (sender, receiver) = mpsc::channel(32);
let ping_handler_task = tokio::spawn(ping_handler(receiver));
for i in 0..10 {

sender.send(()).await.expect("Failed to send ping.");
println!("Sent {} pings so far.", i + 1);

}

drop(sender);
ping_handler_task.await.expect("Something went wrong in ping handler task.");

}

• Change the channel size to 3 and see how it affects the execution.

• Overall, the interface is similar to the sync channels as seen in the morning
class.

• Try removing the std::mem::drop call. What happens? Why?

• The Flume crate has channels that implement both sync and async send
and recv. This can be convenient for complex applications with both IO
and heavy CPU processing tasks.

369

https://docs.rs/flume/latest/flume/

• What makes working with async channels preferable is the ability to
combine them with other futures to combine them and create complex
control flow.

370

Chapter 63

Futures Control Flow

Futures can be combined together to produce concurrent compute flow graphs.
We have already seen tasks, that function as independent threads of execution.

• Join
• Select

63.1 Join
A join operation waits until all of a set of futures are ready, and returns a
collection of their results. This is similar to Promise.all in JavaScript or
asyncio.gather in Python.

use anyhow::Result;
use futures::future;
use reqwest;
use std::collections::HashMap;

async fn size_of_page(url: &str) -> Result<usize> {
let resp = reqwest::get(url).await?;
Ok(resp.text().await?.len())

}

#[tokio::main]
async fn main() {

let urls: [&str; 4] = [
"https://google.com",
"https://httpbin.org/ip",
"https://play.rust-lang.org/",
"BAD_URL",

];

371

let futures_iter = urls.into_iter().map(size_of_page);
let results = future::join_all(futures_iter).await;
let page_sizes_dict: HashMap<&str, Result<usize>> =

urls.into_iter().zip(results.into_iter()).collect();
println!("{:?}", page_sizes_dict);

}

Copy this example into your prepared src/main.rs and run it from there.

• For multiple futures of disjoint types, you can use std::future::join!
but you must know how many futures you will have at compile time. This
is currently in the futures crate, soon to be stabilised in std::future.

• The risk of join is that one of the futures may never resolve, this would
cause your program to stall.

• You can also combine join_all with join! for instance to join all re-
quests to an http service as well as a database query. Try adding a
tokio::time::sleep to the future, using futures::join!. This is not
a timeout (that requires select!, explained in the next chapter), but
demonstrates join!.

63.2 Select
A select operation waits until any of a set of futures is ready, and
responds to that future's result. In JavaScript, this is similar to
Promise.race. In Python, it compares to asyncio.wait(task_set,
return_when=asyncio.FIRST_COMPLETED).

Similar to a match statement, the body of select! has a number of arms, each
of the form pattern = future => statement. When the future is ready, the
statement is executed with the variables in pattern bound to the future's
result.

use tokio::sync::mpsc::{self, Receiver};
use tokio::time::{sleep, Duration};

#[derive(Debug, PartialEq)]
enum Animal {

Cat { name: String },
Dog { name: String },

}

async fn first_animal_to_finish_race(
mut cat_rcv: Receiver<String>,
mut dog_rcv: Receiver<String>,

) -> Option<Animal> {
tokio::select! {

372

cat_name = cat_rcv.recv() => Some(Animal::Cat { name: cat_name? }),
dog_name = dog_rcv.recv() => Some(Animal::Dog { name: dog_name? })

}
}

#[tokio::main]
async fn main() {

let (cat_sender, cat_receiver) = mpsc::channel(32);
let (dog_sender, dog_receiver) = mpsc::channel(32);
tokio::spawn(async move {

sleep(Duration::from_millis(500)).await;
cat_sender

.send(String::from("Felix"))

.await

.expect("Failed to send cat.");
});
tokio::spawn(async move {

sleep(Duration::from_millis(50)).await;
dog_sender

.send(String::from("Rex"))

.await

.expect("Failed to send dog.");
});

let winner = first_animal_to_finish_race(cat_receiver, dog_receiver)
.await
.expect("Failed to receive winner");

println!("Winner is {winner:?}");
}

• In this example, we have a race between a cat and a dog. first_animal_to_finish_race
listens to both channels and will pick whichever arrives first. Since the
dog takes 50ms, it wins against the cat that take 500ms.

• You can use oneshot channels in this example as the channels are supposed
to receive only one send.

• Try adding a deadline to the race, demonstrating selecting different sorts
of futures.

• Note that select! drops unmatched branches, which cancels their futures.
It is easiest to use when every execution of select! creates new futures.

– An alternative is to pass &mut future instead of the future itself, but
this can lead to issues, further discussed in the pinning slide.

373

Chapter 64

Pitfalls of async/await

Async / await provides convenient and efficient abstraction for concurrent asyn-
chronous programming. However, the async/await model in Rust also comes
with its share of pitfalls and footguns. We illustrate some of them in this chapter:

• Blocking the Executor
• Pin
• Async Traits
• Cancellation

64.1 Blocking the executor
Most async runtimes only allow IO tasks to run concurrently. This means that
CPU blocking tasks will block the executor and prevent other tasks from being
executed. An easy workaround is to use async equivalent methods where possible.

use futures::future::join_all;
use std::time::Instant;

async fn sleep_ms(start: &Instant, id: u64, duration_ms: u64) {
std::thread::sleep(std::time::Duration::from_millis(duration_ms));
println!(

"future {id} slept for {duration_ms}ms, finished after {}ms",
start.elapsed().as_millis()

);
}

#[tokio::main(flavor = "current_thread")]
async fn main() {

let start = Instant::now();

374

let sleep_futures = (1..=10).map(|t| sleep_ms(&start, t, t * 10));
join_all(sleep_futures).await;

}

• Run the code and see that the sleeps happen consecutively rather than
concurrently.

• The "current_thread" flavor puts all tasks on a single thread. This makes
the effect more obvious, but the bug is still present in the multi-threaded
flavor.

• Switch the std::thread::sleep to tokio::time::sleep and await its
result.

• Another fix would be to tokio::task::spawn_blocking which spawns an
actual thread and transforms its handle into a future without blocking the
executor.

• You should not think of tasks as OS threads. They do not map 1 to 1 and
most executors will allow many tasks to run on a single OS thread. This
is particularly problematic when interacting with other libraries via FFI,
where that library might depend on thread-local storage or map to specific
OS threads (e.g., CUDA). Prefer tokio::task::spawn_blocking in such
situations.

• Use sync mutexes with care. Holding a mutex over an .await may cause
another task to block, and that task may be running on the same thread.

64.2 Pin
When you await a future, all local variables (that would ordinarily be stored on a
stack frame) are instead stored in the Future for the current async block. If your
future has pointers to data on the stack, those pointers might get invalidated.
This is unsafe.

Therefore, you must guarantee that the addresses your future points to don't
change. That is why we need to ”pin” futures. Using the same future repeatedly
in a select! often leads to issues with pinned values.

use tokio::sync::{mpsc, oneshot};
use tokio::task::spawn;
use tokio::time::{sleep, Duration};

// A work item. In this case, just sleep for the given time and respond
// with a message on the `respond_on` channel.
#[derive(Debug)]
struct Work {

input: u32,
respond_on: oneshot::Sender<u32>,

375

}

// A worker which listens for work on a queue and performs it.
async fn worker(mut work_queue: mpsc::Receiver<Work>) {

let mut iterations = 0;
loop {

tokio::select! {
Some(work) = work_queue.recv() => {

sleep(Duration::from_millis(10)).await; // Pretend to work.
work.respond_on

.send(work.input * 1000)

.expect("failed to send response");
iterations += 1;

}
// TODO: report number of iterations every 100ms

}
}

}

// A requester which requests work and waits for it to complete.
async fn do_work(work_queue: &mpsc::Sender<Work>, input: u32) -> u32 {

let (tx, rx) = oneshot::channel();
work_queue

.send(Work {
input,
respond_on: tx,

})
.await
.expect("failed to send on work queue");

rx.await.expect("failed waiting for response")
}

#[tokio::main]
async fn main() {

let (tx, rx) = mpsc::channel(10);
spawn(worker(rx));
for i in 0..100 {

let resp = do_work(&tx, i).await;
println!("work result for iteration {i}: {resp}");

}
}

• You may recognize this as an example of the actor pattern. Actors typically
call select! in a loop.

• This serves as a summation of a few of the previous lessons, so take your
time with it.

376

– Naively add a _ = sleep(Duration::from_millis(100)) => {
println!(..) } to the select!. This will never execute. Why?

– Instead, add a timeout_fut containing that future outside of the
loop:

let mut timeout_fut = sleep(Duration::from_millis(100));
loop {

select! {
..,
_ = timeout_fut => { println!(..); },

}
}

– This still doesn't work. Follow the compiler errors, adding &mut to the
timeout_fut in the select! to work around the move, then using
Box::pin:

let mut timeout_fut = Box::pin(sleep(Duration::from_millis(100)));
loop {

select! {
..,
_ = &mut timeout_fut => { println!(..); },

}
}

– This compiles, but once the timeout expires it is Poll::Ready on
every iteration (a fused future would help with this). Update to reset
timeout_fut every time it expires.

• Box allocates on the heap. In some cases, std::pin::pin! (only recently
stabilized, with older code often using tokio::pin!) is also an option, but
that is difficult to use for a future that is reassigned.

• Another alternative is to not use pin at all but spawn another task that
will send to a oneshot channel every 100ms.

64.3 Async Traits
Async methods in traits are not yet supported in the stable channel (An experi-
mental feature exists in nightly and should be stabilized in the mid term.)

The crate async_trait provides a workaround through a macro:

use async_trait::async_trait;
use std::time::Instant;
use tokio::time::{sleep, Duration};

#[async_trait]

377

https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://docs.rs/async-trait/latest/async_trait/

trait Sleeper {
async fn sleep(&self);

}

struct FixedSleeper {
sleep_ms: u64,

}

#[async_trait]
impl Sleeper for FixedSleeper {

async fn sleep(&self) {
sleep(Duration::from_millis(self.sleep_ms)).await;

}
}

async fn run_all_sleepers_multiple_times(sleepers: Vec<Box<dyn Sleeper>>, n_times: usize) {
for _ in 0..n_times {

println!("running all sleepers..");
for sleeper in &sleepers {

let start = Instant::now();
sleeper.sleep().await;
println!("slept for {}ms", start.elapsed().as_millis());

}
}

}

#[tokio::main]
async fn main() {

let sleepers: Vec<Box<dyn Sleeper>> = vec![
Box::new(FixedSleeper { sleep_ms: 50 }),
Box::new(FixedSleeper { sleep_ms: 100 }),

];
run_all_sleepers_multiple_times(sleepers, 5).await;

}

• async_trait is easy to use, but note that it's using heap allocations to
achieve this. This heap allocation has performance overhead.

• The challenges in language support for async trait are deep Rust and
probably not worth describing in-depth. Niko Matsakis did a good job of
explaining them in this post if you are interested in digging deeper.

• Try creating a new sleeper struct that will sleep for a random amount of
time and adding it to the Vec.

378

https://smallcultfollowing.com/babysteps/blog/2019/10/26/async-fn-in-traits-are-hard/

64.4 Cancellation
Dropping a future implies it can never be polled again. This is called cancellation
and it can occur at any await point. Care is needed to ensure the system works
correctly even when futures are cancelled. For example, it shouldn't deadlock or
lose data.

use std::io::{self, ErrorKind};
use std::time::Duration;
use tokio::io::{AsyncReadExt, AsyncWriteExt, DuplexStream};

struct LinesReader {
stream: DuplexStream,

}

impl LinesReader {
fn new(stream: DuplexStream) -> Self {

Self { stream }
}

async fn next(&mut self) -> io::Result<Option<String>> {
let mut bytes = Vec::new();
let mut buf = [0];
while self.stream.read(&mut buf[..]).await? != 0 {

bytes.push(buf[0]);
if buf[0] == b'\n' {

break;
}

}
if bytes.is_empty() {

return Ok(None)
}
let s = String::from_utf8(bytes)

.map_err(|_| io::Error::new(ErrorKind::InvalidData, "not UTF-8"))?;
Ok(Some(s))

}
}

async fn slow_copy(source: String, mut dest: DuplexStream) -> std::io::Result<()> {
for b in source.bytes() {

dest.write_u8(b).await?;
tokio::time::sleep(Duration::from_millis(10)).await

}
Ok(())

}

379

#[tokio::main]
async fn main() -> std::io::Result<()> {

let (client, server) = tokio::io::duplex(5);
let handle = tokio::spawn(slow_copy("hi\nthere\n".to_owned(), client));

let mut lines = LinesReader::new(server);
let mut interval = tokio::time::interval(Duration::from_millis(60));
loop {

tokio::select! {
_ = interval.tick() => println!("tick!"),
line = lines.next() => if let Some(l) = line? {

print!("{}", l)
} else {

break
},

}
}
handle.await.unwrap()?;
Ok(())

}

• The compiler doesn't help with cancellation-safety. You need to read API
documentation and consider what state your async fn holds.

• Unlike panic and ?, cancellation is part of normal control flow (vs error-
handling).

• The example loses parts of the string.

– Whenever the tick() branch finishes first, next() and its buf are
dropped.

– LinesReader can be made cancellation-safe by making buf part of
the struct:

struct LinesReader {
stream: DuplexStream,
bytes: Vec<u8>,
buf: [u8; 1],

}

impl LinesReader {
fn new(stream: DuplexStream) -> Self {

Self { stream, bytes: Vec::new(), buf: [0] }
}
async fn next(&mut self) -> io::Result<Option<String>> {

// prefix buf and bytes with self.
// ...
let raw = std::mem::take(&mut self.bytes);

380

let s = String::from_utf8(raw)
// ...

}
}

• Interval::tick is cancellation-safe because it keeps track of whether a
tick has been 'delivered'.

• AsyncReadExt::read is cancellation-safe because it either returns or
doesn't read data.

• AsyncBufReadExt::read_line is similar to the example and isn't
cancellation-safe. See its documentation for details and alternatives.

381

https://docs.rs/tokio/latest/tokio/time/struct.Interval.html#method.tick
https://docs.rs/tokio/latest/tokio/io/trait.AsyncReadExt.html#method.read
https://docs.rs/tokio/latest/tokio/io/trait.AsyncBufReadExt.html#method.read_line

Chapter 65

Exercises

To practice your Async Rust skills, we have again two exercises for you:

• Dining philosophers: we already saw this problem in the morning. This
time you are going to implement it with Async Rust.

• A Broadcast Chat Application: this is a larger project that allows you
experiment with more advanced Async Rust features.

After looking at the exercises, you can look at the solutions provided.

65.1 Dining Philosophers --- Async
See dining philosophers for a description of the problem.

As before, you will need a local Cargo installation for this exercise. Copy the
code below to a file called src/main.rs, fill out the blanks, and test that cargo
run does not deadlock:

use std::sync::Arc;
use tokio::time;
use tokio::sync::mpsc::{self, Sender};
use tokio::sync::Mutex;

struct Fork;

struct Philosopher {
name: String,
// left_fork: ...
// right_fork: ...
// thoughts: ...

}

382

impl Philosopher {
async fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name)).await
.unwrap();

}

async fn eat(&self) {
// Pick up forks...
println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;

}
}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

#[tokio::main]
async fn main() {

// Create forks

// Create philosophers

// Make them think and eat

// Output their thoughts
}

Since this time you are using Async Rust, you'll need a tokio dependency. You
can use the following Cargo.toml:

[package]
name = "dining-philosophers-async-dine"
version = "0.1.0"
edition = "2021"

[dependencies]
tokio = {version = "1.26.0", features = ["sync", "time", "macros", "rt-multi-thread"]}

Also note that this time you have to use the Mutex and the mpsc module from
the tokio crate.

• Can you make your implementation single-threaded?

383

65.2 Broadcast Chat Application
In this exercise, we want to use our new knowledge to implement a broadcast chat
application. We have a chat server that the clients connect to and publish their
messages. The client reads user messages from the standard input, and sends
them to the server. The chat server broadcasts each message that it receives to
all the clients.

For this, we use a broadcast channel on the server, and tokio_websockets for
the communication between the client and the server.

Create a new Cargo project and add the following dependencies:

Cargo.toml:

[package]
name = "chat-async"
version = "0.1.0"
edition = "2021"

[dependencies]
futures-util = { version = "0.3.28", features = ["sink"] }
http = "0.2.9"
tokio = { version = "1.28.1", features = ["full"] }
tokio-websockets = { version = "0.4.0", features = ["client", "fastrand", "server", "sha1_smol"] }

The required APIs
You are going to need the following functions from tokio and tokio_websockets.
Spend a few minutes to familiarize yourself with the API.

• StreamExt::next() implemented by WebsocketStream: for asynchronously
reading messages from a Websocket Stream.

• SinkExt::send() implemented by WebsocketStream: for asynchronously
sending messages on a Websocket Stream.

• Lines::next_line(): for asynchronously reading user messages from the
standard input.

• Sender::subscribe(): for subscribing to a broadcast channel.

Two binaries
Normally in a Cargo project, you can have only one binary, and one src/main.rs
file. In this project, we need two binaries. One for the client, and one for the
server. You could potentially make them two separate Cargo projects, but we are
going to put them in a single Cargo project with two binaries. For this to work,
the client and the server code should go under src/bin (see the documentation).

Copy the following server and client code into src/bin/server.rs and
src/bin/client.rs, respectively. Your task is to complete these files as

384

https://docs.rs/tokio/latest/tokio/sync/broadcast/fn.channel.html
https://docs.rs/tokio-websockets/0.4.0/tokio_websockets/
https://docs.rs/tokio-websockets/0.4.0/tokio_websockets/
https://docs.rs/futures-util/0.3.28/futures_util/stream/trait.StreamExt.html#method.next
https://docs.rs/futures-util/0.3.28/futures_util/sink/trait.SinkExt.html#method.send
https://docs.rs/tokio/latest/tokio/io/struct.Lines.html#method.next_line
https://docs.rs/tokio/latest/tokio/sync/broadcast/struct.Sender.html#method.subscribe
https://doc.rust-lang.org/cargo/reference/cargo-targets.html#binaries

described below.

src/bin/server.rs:

use futures_util::sink::SinkExt;
use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{channel, Sender};
use tokio_websockets::{Message, ServerBuilder, WebsocketStream};

async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebsocketStream<TcpStream>,
bcast_tx: Sender<String>,

) -> Result<(), Box<dyn Error + Send + Sync>> {

// TODO: For a hint, see the description of the task below.

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {

let (bcast_tx, _) = channel(16);

let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");

loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {

// Wrap the raw TCP stream into a websocket.
let ws_stream = ServerBuilder::new().accept(socket).await?;

handle_connection(addr, ws_stream, bcast_tx).await
});

}
}

src/bin/client.rs:

use futures_util::stream::StreamExt;
use futures_util::SinkExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};

385

use tokio_websockets::{ClientBuilder, Message};

#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {

let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))

.connect()

.await?;

let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();

// TODO: For a hint, see the description of the task below.

}

Running the binaries
Run the server with:

cargo run --bin server

and the client with:

cargo run --bin client

Tasks
• Implement the handle_connection function in src/bin/server.rs.

– Hint: Use tokio::select! for concurrently performing two tasks in
a continuous loop. One task receives messages from the client and
broadcasts them. The other sends messages received by the server to
the client.

• Complete the main function in src/bin/client.rs.
– Hint: As before, use tokio::select! in a continuous loop for concur-

rently performing two tasks: (1) reading user messages from standard
input and sending them to the server, and (2) receiving messages
from the server, and displaying them for the user.

• Optional: Once you are done, change the code to broadcast messages to
all clients, but the sender of the message.

65.3 Concurrency Afternoon Exercise
Dining Philosophers --- Async
(back to exercise)

386

use std::sync::Arc;
use tokio::time;
use tokio::sync::mpsc::{self, Sender};
use tokio::sync::Mutex;

struct Fork;

struct Philosopher {
name: String,
left_fork: Arc<Mutex<Fork>>,
right_fork: Arc<Mutex<Fork>>,
thoughts: Sender<String>,

}

impl Philosopher {
async fn think(&self) {

self.thoughts
.send(format!("Eureka! {} has a new idea!", &self.name)).await
.unwrap();

}

async fn eat(&self) {
// Pick up forks...
let _first_lock = self.left_fork.lock().await;
// Add a delay before picking the second fork to allow the execution
// to transfer to another task
time::sleep(time::Duration::from_millis(1)).await;
let _second_lock = self.right_fork.lock().await;

println!("{} is eating...", &self.name);
time::sleep(time::Duration::from_millis(5)).await;

// The locks are dropped here
}

}

static PHILOSOPHERS: &[&str] =
&["Socrates", "Hypatia", "Plato", "Aristotle", "Pythagoras"];

#[tokio::main]
async fn main() {

// Create forks
let mut forks = vec![];
(0..PHILOSOPHERS.len()).for_each(|_| forks.push(Arc::new(Mutex::new(Fork))));

// Create philosophers

387

let (philosophers, mut rx) = {
let mut philosophers = vec![];
let (tx, rx) = mpsc::channel(10);
for (i, name) in PHILOSOPHERS.iter().enumerate() {

let left_fork = Arc::clone(&forks[i]);
let right_fork = Arc::clone(&forks[(i + 1) % PHILOSOPHERS.len()]);
// To avoid a deadlock, we have to break the symmetry
// somewhere. This will swap the forks without deinitializing
// either of them.
if i == 0 {

std::mem::swap(&mut left_fork, &mut right_fork);
}
philosophers.push(Philosopher {

name: name.to_string(),
left_fork,
right_fork,
thoughts: tx.clone(),

});
}
(philosophers, rx)
// tx is dropped here, so we don't need to explicitly drop it later

};

// Make them think and eat
for phil in philosophers {

tokio::spawn(async move {
for _ in 0..100 {

phil.think().await;
phil.eat().await;

}
});

}

// Output their thoughts
while let Some(thought) = rx.recv().await {

println!("Here is a thought: {thought}");
}

}

Broadcast Chat Application
(back to exercise)

src/bin/server.rs:

use futures_util::sink::SinkExt;

388

use futures_util::stream::StreamExt;
use std::error::Error;
use std::net::SocketAddr;
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::broadcast::{channel, Sender};
use tokio_websockets::{Message, ServerBuilder, WebsocketStream};

async fn handle_connection(
addr: SocketAddr,
mut ws_stream: WebsocketStream<TcpStream>,
bcast_tx: Sender<String>,

) -> Result<(), Box<dyn Error + Send + Sync>> {

ws_stream
.send(Message::text("Welcome to chat! Type a message".into()))
.await?;

let mut bcast_rx = bcast_tx.subscribe();

// A continuous loop for concurrently performing two tasks: (1) receiving
// messages from `ws_stream` and broadcasting them, and (2) receiving
// messages on `bcast_rx` and sending them to the client.
loop {

tokio::select! {
incoming = ws_stream.next() => {

match incoming {
Some(Ok(msg)) => {

if let Some(text) = msg.as_text() {
println!("From client {addr:?} {text:?}");
bcast_tx.send(text.into())?;

}
}
Some(Err(err)) => return Err(err.into()),
None => return Ok(()),

}
}
msg = bcast_rx.recv() => {

ws_stream.send(Message::text(msg?)).await?;
}

}
}

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error + Send + Sync>> {

let (bcast_tx, _) = channel(16);

389

let listener = TcpListener::bind("127.0.0.1:2000").await?;
println!("listening on port 2000");

loop {
let (socket, addr) = listener.accept().await?;
println!("New connection from {addr:?}");
let bcast_tx = bcast_tx.clone();
tokio::spawn(async move {

// Wrap the raw TCP stream into a websocket.
let ws_stream = ServerBuilder::new().accept(socket).await?;

handle_connection(addr, ws_stream, bcast_tx).await
});

}
}

src/bin/client.rs:

use futures_util::stream::StreamExt;
use futures_util::SinkExt;
use http::Uri;
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio_websockets::{ClientBuilder, Message};

#[tokio::main]
async fn main() -> Result<(), tokio_websockets::Error> {

let (mut ws_stream, _) =
ClientBuilder::from_uri(Uri::from_static("ws://127.0.0.1:2000"))

.connect()

.await?;

let stdin = tokio::io::stdin();
let mut stdin = BufReader::new(stdin).lines();

// Continuous loop for concurrently sending and receiving messages.
loop {

tokio::select! {
incoming = ws_stream.next() => {

match incoming {
Some(Ok(msg)) => {

if let Some(text) = msg.as_text() {
println!("From server: {}", text);

}
},
Some(Err(err)) => return Err(err.into()),
None => return Ok(()),

}

390

}
res = stdin.next_line() => {

match res {
Ok(None) => return Ok(()),
Ok(Some(line)) => ws_stream.send(Message::text(line.to_string())).await?,
Err(err) => return Err(err.into()),

}
}

}
}

}

391

Part XV

Final Words

392

Chapter 66

Thanks!

Thank you for taking Comprehensive Rust �! We hope you enjoyed it and that it
was useful.

We've had a lot of fun putting the course together. The course is not perfect, so
if you spotted any mistakes or have ideas for improvements, please get in contact
with us on GitHub. We would love to hear from you.

393

https://github.com/google/comprehensive-rust/discussions
https://github.com/google/comprehensive-rust/discussions

Chapter 67

Glossary

The following is a glossary which aims to give a short definition of many Rust
terms. For translations, this also serves to connect the term back to the English
original.

• allocate:
Dynamic memory allocation on the heap.

• argument:
Information that is passed into a function or method.

• Bare-metal Rust:
Low-level Rust development, often deployed to a system without an oper-
ating system. See Bare-metal Rust.

• block:
See Blocks and scope.

• borrow:
See Borrowing.

• borrow checker:
The part of the Rust compiler which checks that all borrows are valid.

• brace:
{ and }. Also called curly brace, they delimit blocks.

• build:
The process of converting source code into executable code or a usable
program.

• call:
To invoke or execute a function or method.

• channel:
Used to safely pass messages between threads.

• Comprehensive Rust �:
The courses here are jointly called Comprehensive Rust �.

• concurrency:
The execution of multiple tasks or processes at the same time.

394

memory-management/stack-vs-heap.md
control-flow/blocks.md
ownership/borrowing.md

• Concurrency in Rust:
See Concurrency in Rust.

• constant:
A value that does not change during the execution of a program.

• control flow:
The order in which the individual statements or instructions are executed
in a program.

• crash:
An unexpected and unhandled failure or termination of a program.

• enumeration:
A data type that consists of named constant values.

• error:
An unexpected condition or result that deviates from the expected behavior.

• error handling:
The process of managing and responding to errors that occur during
program execution.

• exercise:
A task or problem designed to practice and test programming skills.

• function:
A reusable block of code that performs a specific task.

• garbage collector:
A mechanism that automatically frees up memory occupied by objects that
are no longer in use.

• generics:
A feature that allows writing code with placeholders for types, enabling
code reuse with different data types.

• immutable:
Unable to be changed after creation.

• integration test:
A type of test that verifies the interactions between different parts or
components of a system.

• keyword:
A reserved word in a programming language that has a specific meaning
and cannot be used as an identifier.

• library:
A collection of precompiled routines or code that can be used by programs.

• macro:
Rust macros can be recognized by a ! in the name. Macros are used
when normal functions are not enough. A typical example is format!,
which takes a variable number of arguments, which isn't supported by Rust
functions.

• main function:
Rust programs start executing with the main function.

• match:
A control flow construct in Rust that allows for pattern matching on the
value of an expression.

395

• memory leak:
A situation where a program fails to release memory that is no longer
needed, leading to a gradual increase in memory usage.

• method:
A function associated with an object or a type in Rust.

• module:
A namespace that contains definitions, such as functions, types, or traits,
to organize code in Rust.

• move:
The transfer of ownership of a value from one variable to another in Rust.

• mutable:
A property in Rust that allows variables to be modified after they have
been declared.

• ownership:
The concept in Rust that defines which part of the code is responsible for
managing the memory associated with a value.

• panic:
An unrecoverable error condition in Rust that results in the termination of
the program.

• parameter:
A value that is passed into a function or method when it is called.

• pattern:
A combination of values, literals, or structures that can be matched against
an expression in Rust.

• payload:
The data or information carried by a message, event, or data structure.

• program:
A set of instructions that a computer can execute to perform a specific
task or solve a particular problem.

• programming language:
A formal system used to communicate instructions to a computer, such as
Rust.

• receiver:
The first parameter in a Rust method that represents the instance on which
the method is called.

• reference counting:
A memory management technique in which the number of references to
an object is tracked, and the object is deallocated when the count reaches
zero.

• return:
A keyword in Rust used to indicate the value to be returned from a function.

• Rust:
A systems programming language that focuses on safety, performance, and
concurrency.

• Rust Fundamentals:
Days 1 to 3 of this course.

396

• Rust in Android:
See Rust in Android.

• Rust in Chromium:
See Rust in Chromium.

• safe:
Refers to code that adheres to Rust's ownership and borrowing rules,
preventing memory-related errors.

• scope:
The region of a program where a variable is valid and can be used.

• standard library:
A collection of modules providing essential functionality in Rust.

• static:
A keyword in Rust used to define static variables or items with a 'static
lifetime.

• string:
A data type storing textual data. See String vs str for more.

• struct:
A composite data type in Rust that groups together variables of different
types under a single name.

• test:
A Rust module containing functions that test the correctness of other
functions.

• thread:
A separate sequence of execution in a program, allowing concurrent execu-
tion.

• thread safety:
The property of a program that ensures correct behavior in a multithreaded
environment.

• trait:
A collection of methods defined for an unknown type, providing a way to
achieve polymorphism in Rust.

• type:
A classification that specifies which operations can be performed on values
of a particular kind in Rust.

• type inference:
The ability of the Rust compiler to deduce the type of a variable or
expression.

• undefined behavior:
Actions or conditions in Rust that have no specified result, often leading
to unpredictable program behavior.

• union:
A data type that can hold values of different types but only one at a time.

• unit test:
Rust comes with built-in support for running small unit tests and larger
integration tests. See Unit Tests.

• unsafe:

397

basic-syntax/string-slices.html

The subset of Rust which allows you to trigger undefined behavior. See
Unsafe Rust.

• variable:
A memory location storing data. Variables are valid in a scope.

398

unsafe.html

Chapter 68

Other Rust Resources

The Rust community has created a wealth of high-quality and free resources
online.

Official Documentation
The Rust project hosts many resources. These cover Rust in general:

• The Rust Programming Language: the canonical free book about Rust.
Covers the language in detail and includes a few projects for people to
build.

• Rust By Example: covers the Rust syntax via a series of examples which
showcase different constructs. Sometimes includes small exercises where
you are asked to expand on the code in the examples.

• Rust Standard Library: full documentation of the standard library for
Rust.

• The Rust Reference: an incomplete book which describes the Rust grammar
and memory model.

More specialized guides hosted on the official Rust site:

• The Rustonomicon: covers unsafe Rust, including working with raw point-
ers and interfacing with other languages (FFI).

• Asynchronous Programming in Rust: covers the new asynchronous pro-
gramming model which was introduced after the Rust Book was written.

• The Embedded Rust Book: an introduction to using Rust on embedded
devices without an operating system.

Unofficial Learning Material
A small selection of other guides and tutorial for Rust:

399

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/nomicon/
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/stable/embedded-book/

• Learn Rust the Dangerous Way: covers Rust from the perspective of
low-level C programmers.

• Rust for Embedded C Programmers: covers Rust from the perspective of
developers who write firmware in C.

• Rust for professionals: covers the syntax of Rust using side-by-side com-
parisons with other languages such as C, C++, Java, JavaScript, and
Python.

• Rust on Exercism: 100+ exercises to help you learn Rust.
• Ferrous Teaching Material: a series of small presentations covering both

basic and advanced part of the Rust language. Other topics such as
WebAssembly, and async/await are also covered.

• Beginner's Series to Rust and Take your first steps with Rust: two Rust
guides aimed at new developers. The first is a set of 35 videos and the
second is a set of 11 modules which covers Rust syntax and basic constructs.

• Learn Rust With Entirely Too Many Linked Lists: in-depth exploration of
Rust's memory management rules, through implementing a few different
types of list structures.

Please see the Little Book of Rust Books for even more Rust books.

400

http://cliffle.com/p/dangerust/
https://docs.opentitan.org/doc/ug/rust_for_c/
https://overexact.com/rust-for-professionals/
https://exercism.org/tracks/rust
https://ferrous-systems.github.io/teaching-material/index.html
https://docs.microsoft.com/en-us/shows/beginners-series-to-rust/
https://docs.microsoft.com/en-us/learn/paths/rust-first-steps/
https://rust-unofficial.github.io/too-many-lists/
https://lborb.github.io/book/

Chapter 69

Credits

The material here builds on top of the many great sources of Rust documentation.
See the page on other resources for a full list of useful resources.

The material of Comprehensive Rust is licensed under the terms of the Apache
2.0 license, please see LICENSE for details.

Rust by Example
Some examples and exercises have been copied and adapted from Rust by
Example. Please see the third_party/rust-by-example/ directory for details,
including the license terms.

Rust on Exercism
Some exercises have been copied and adapted from Rust on Exercism. Please
see the third_party/rust-on-exercism/ directory for details, including the
license terms.

CXX
The Interoperability with C++ section uses an image from CXX. Please see the
third_party/cxx/ directory for details, including the license terms.

401

https://github.com/google/comprehensive-rust/blob/main/LICENSE
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/rust-by-example/
https://exercism.org/tracks/rust
https://cxx.rs/

	Welcome to Comprehensive Rust 🦀
	Running the Course
	Course Structure
	Keyboard Shortcuts
	Translations

	Using Cargo
	The Rust Ecosystem
	Code Samples in This Training
	Running Code Locally with Cargo

	I Day 1: Morning
	Welcome to Day 1
	Hello, World
	What is Rust?
	Hello, World
	Benefits of Rust
	Playground

	Types and Values
	Variables
	Values
	Arithmetic
	Strings
	Type Inference
	Exercise: Fibonacci
	Solution

	Control Flow Basics
	Conditionals
	Loops
	break and continue
	Blocks and Scopes
	Functions
	Macros
	Exercise: Collatz Sequence
	Solution

	II Day 1: Afternoon
	Welcome Back
	Tuples and Arrays
	Tuples and Arrays
	Array Iteration
	Pattern Matching
	Destructuring
	Exercise: Nested Arrays
	Solution

	References
	Shared References
	Exclusive References
	Exercise: Geometry
	Solution

	User-Defined Types
	Named Structs
	Tuple Structs
	Enums
	Static and Const
	More to Explore
	Type Aliases
	Exercise: Elevator Events
	Solution

	III Day 2: Morning
	Welcome to Day 2
	Pattern Matching
	Destructuring
	Structs
	Enums
	Let Control Flow
	if let expressions
	while-let
	Exercise: Expression Evaluation
	Solution

	Methods and Traits
	Methods
	Traits
	Deriving
	Trait Objects
	Exercise: GUI Library
	Solution

	Generics
	Generic Functions
	Generic Data Types
	Trait Bounds
	impl Trait
	Exercise: Generic min
	Solution

	IV Day 2: Afternoon
	Welcome Back
	Standard Library Types
	Standard Library
	Language Docs
	Option
	Result
	String
	Vec
	HashMap
	Exercise: Counter
	Solution

	Standard Library Traits
	Comparisons
	Operators
	From and Into
	Casting
	Read and Write
	The Default Trait
	Closures
	Exercise: ROT13
	Solution

	V Day 3: Morning
	Welcome to Day 3
	Memory Management
	Review of Program Memory
	Approaches to Memory Management
	Ownership
	Move Semantics
	More to Explore
	Clone
	Copy Types
	The Drop Trait
	Exercise: Builder Type
	Solution

	Smart Pointers
	Box<T>
	More to Explore
	Rc
	Exercise: Binary Tree
	Solution

	VI Day 3: Afternoon
	Welcome Back
	Borrowing
	Borrowing a Value
	More to Explore
	Borrow Checking
	Interior Mutability
	Exercise: Health Statistics
	Solution

	Slices and Lifetimes
	Slices
	String References
	Lifetimes
	Lifetimes in Function Calls
	Lifetimes in Data Structures
	Exercise: Protobuf Parsing
	Solution

	VII Day 4: Morning
	Welcome to Day 4
	Iterators
	Iterator
	IntoIterator
	FromIterator
	Exercise: Iterator Method Chaining
	Solution

	Modules
	Modules
	Filesystem Hierarchy
	Visibility
	use, super, self
	Exercise: Modules for the GUI Library
	Solution

	Testing
	Unit Tests
	Other Types of Tests
	Useful Crates
	GoogleTest
	Mocking
	Compiler Lints and Clippy
	Exercise: Luhn Algorithm
	Luhn Algorithm
	Solution

	VIII Day 4: Afternoon
	Welcome Back
	Error Handling
	Panics
	Try Operator
	Try Conversions
	Dynamic Error Types
	thiserror and anyhow
	Exercise: Rewriting with Result
	Solution

	Unsafe Rust
	Unsafe Rust
	Dereferencing Raw Pointers
	Mutable Static Variables
	Unions
	Unsafe Functions
	Implementing Unsafe Traits
	Safe FFI Wrapper
	Solution

	IX Android
	Welcome to Rust in Android
	Setup
	Build Rules
	Rust Binaries
	Rust Libraries

	AIDL
	AIDL Interfaces
	Service Implementation
	AIDL Server
	Deploy
	AIDL Client
	Changing API

	Logging
	Interoperability
	Interoperability with C
	Using Bindgen
	Calling Rust

	With C++
	The Bridge Module
	Rust Bridge Declarations
	Generated C++
	C++ Bridge Declarations
	Shared Types
	Shared Enums
	Rust Error Handling
	C++ Error Handling
	Additional Types
	Building in Android
	Building in Android
	Building in Android

	Interoperability with Java

	Exercises

	X Chromium
	Welcome to Rust in Chromium
	Setup
	About the exercises
	Comparing Chromium and Cargo ecosystems
	Chromium Rust policy
	Build rules
	Including unsafe Rust code
	Depending on Rust code from Chromium C++
	Visual Studio code
	Build rules exercise

	Interoperability with C++
	Example bindings
	CXX error handling
	Exercise: Interoperability with C++

	Adding third party crates
	Configuring the Cargo.toml file to add crates
	Configuring gnrt_config.toml
	Downloading crates
	Generating gn build rules
	Resolving problems
	Build scripts which generate code
	Build scripts which build C++ or take arbitrary actions

	Depending on a crate
	Auditing third party crates
	Checking crates into Chromium source code
	Keeping crates up to date
	Exercise

	Bringing it together --- Exercise

	XI Bare Metal: Morning
	Welcome to Bare Metal Rust
	no_std
	A minimal no_std program
	alloc

	Microcontrollers
	Raw MMIO
	Peripheral Access Crates
	HAL crates
	Board support crates
	The type state pattern
	embedded-hal
	probe-rs and cargo-embed
	Debugging

	Other projects

	Exercises
	Compass
	Bare Metal Rust Morning Exercise

	XII Bare Metal: Afternoon
	Application processors
	Getting Ready to Rust
	Inline assembly
	Volatile memory access for MMIO
	Let's write a UART driver
	More traits

	A better UART driver
	Bitflags
	Multiple registers
	Driver
	Using it

	Logging
	Using it

	Exceptions
	Other projects

	Useful crates
	zerocopy
	aarch64-paging
	buddy_system_allocator
	tinyvec
	spin

	Android
	vmbase

	Exercises
	RTC driver
	Bare Metal Rust Afternoon

	XIII Concurrency: Morning
	Welcome to Concurrency in Rust
	Threads
	Scoped Threads

	Channels
	Unbounded Channels
	Bounded Channels

	Send and Sync
	Send
	Sync
	Examples

	Shared State
	Arc
	Mutex
	Example

	Exercises
	Dining Philosophers
	Multi-threaded Link Checker
	Concurrency Morning Exercise

	XIV Concurrency: Afternoon
	Async Rust
	async/await
	Futures
	Runtimes
	Tokio

	Tasks
	Async Channels

	Futures Control Flow
	Join
	Select

	Pitfalls of async/await
	Blocking the executor
	Pin
	Async Traits
	Cancellation

	Exercises
	Dining Philosophers --- Async
	Broadcast Chat Application
	Concurrency Afternoon Exercise

	XV Final Words
	Thanks!
	Glossary
	Other Rust Resources
	Credits

