Skip to content
Permalink
14883b01c9
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
60 lines (46 sloc) 1.8 KB
# Copyright 2020 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import jax.numpy as jnp
import numpy as onp
from .. import struct
from .base import OptimizerDef
@struct.dataclass
class _AdagradHyperParams:
"""Adagrad hyper parameters"""
learning_rate: float
eps: float
@struct.dataclass
class _AdagradParamState:
"""Adagrad parameter state"""
G: onp.ndarray
class Adagrad(OptimizerDef):
"""Adagrad optimizer"""
def __init__(self, learning_rate: float = None, eps=1e-8):
"""Constructor for the Adagrad optimizer.
Args:
learning_rate: the step size used to update the parameters.
"""
hyper_params = _AdagradHyperParams(learning_rate, eps)
super().__init__(hyper_params)
def init_param_state(self, param):
"""Initialize parameter state"""
return _AdagradParamState(jnp.zeros_like(param))
def apply_param_gradient(self, step, hyper_params, param, state, grad):
"""Apply per-parameter gradients"""
assert hyper_params.learning_rate is not None, 'no learning rate provided.'
new_G = state.G + jnp.square(grad)
new_param = param - hyper_params.learning_rate * grad / (jnp.sqrt(new_G) +
hyper_params.eps)
new_state = _AdagradParamState(new_G)
return new_param, new_state