Find file Copy path
e682af7 Dec 14, 2018
3 contributors

Users who have contributed to this file

@mattjj @froystig @dougalm
97 lines (79 sloc) 3.07 KB
# Copyright 2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
"""A basic MNIST example using JAX together with the mini-libraries stax, for
neural network building, and minmax, for first-order stochastic optimization.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import itertools
import numpy.random as npr
import jax.numpy as np
from jax.config import config
from jax import jit, grad
from jax.experimental import minmax
from jax.experimental import stax
from jax.experimental.stax import Dense, Relu, LogSoftmax
from examples import datasets
def loss(params, batch):
inputs, targets = batch
preds = predict(params, inputs)
return -np.mean(preds * targets)
def accuracy(params, batch):
inputs, targets = batch
target_class = np.argmax(targets, axis=1)
predicted_class = np.argmax(predict(params, inputs), axis=1)
return np.mean(predicted_class == target_class)
init_random_params, predict = stax.serial(
Dense(1024), Relu,
Dense(1024), Relu,
Dense(10), LogSoftmax)
if __name__ == "__main__":
step_size = 0.001
num_epochs = 10
batch_size = 128
momentum_mass = 0.9
train_images, train_labels, test_images, test_labels = datasets.mnist()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, batch_size)
num_batches = num_complete_batches + bool(leftover)
def data_stream():
rng = npr.RandomState(0)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * batch_size:(i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]
batches = data_stream()
opt_init, opt_update = minmax.momentum(step_size, mass=momentum_mass)
def update(i, opt_state, batch):
params = minmax.get_params(opt_state)
return opt_update(i, grad(loss)(params, batch), opt_state)
_, init_params = init_random_params((-1, 28 * 28))
opt_state = opt_init(init_params)
itercount = itertools.count()
print("\nStarting training...")
for epoch in range(num_epochs):
start_time = time.time()
for _ in range(num_batches):
opt_state = update(next(itercount), opt_state, next(batches))
epoch_time = time.time() - start_time
params = minmax.get_params(opt_state)
train_acc = accuracy(params, (train_images, train_labels))
test_acc = accuracy(params, (test_images, test_labels))
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time))
print("Training set accuracy {}".format(train_acc))
print("Test set accuracy {}".format(test_acc))