Skip to content
Branch: master
Find file Copy path
Find file Copy path
MediaPipe Team Project import generated by Copybara. f5df228 Aug 19, 2019
0 contributors

Users who have contributed to this file

229 lines (200 sloc) 7.62 KB

Face Detection (GPU)

This doc focuses on the example graph that performs face detection with TensorFlow Lite on GPU.




To build and install the app:

bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu
adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu/facedetectiongpu.apk



See the general instructions for building iOS examples and generating an Xcode project. This will be the FaceDetectionGpuApp target.

To build on the command line:

bazel build -c opt --config=ios_arm64 mediapipe/examples/ios/facedetectiongpu:FaceDetectionGpuApp



To visualize the graph as shown above, copy the text specification of the graph below and paste it into MediaPipe Visualizer.

Source pbtxt file

# MediaPipe graph that performs face detection with TensorFlow Lite on GPU.
# Used in the examples in
# mediapipie/examples/android/src/java/com/mediapipe/apps/facedetectiongpu and
# mediapipie/examples/ios/facedetectiongpu.

# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"

# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for
# TfLiteTensorsToDetectionsCalculator downstream in the graph to finish
# generating the corresponding detections before it passes through another
# image. All images that come in while waiting are dropped, limiting the number
# of in-flight images between this calculator and
# TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between
# from queuing up incoming images and data excessively, which leads to increased
# latency and memory usage, unwanted in real-time mobile applications. It also
# eliminates unnecessarily computation, e.g., a transformed image produced by
# ImageTransformationCalculator may get dropped downstream if the subsequent
# TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy
# processing previous inputs.
node {
  calculator: "FlowLimiterCalculator"
  input_stream: "input_video"
  input_stream: "FINISHED:detections"
  input_stream_info: {
    tag_index: "FINISHED"
    back_edge: true
  output_stream: "throttled_input_video"

# Transforms the input image on GPU to a 128x128 image. To scale the input
# image, the scale_mode option is set to FIT to preserve the aspect ratio,
# resulting in potential letterboxing in the transformed image.
node: {
  calculator: "ImageTransformationCalculator"
  input_stream: "IMAGE_GPU:throttled_input_video"
  output_stream: "IMAGE_GPU:transformed_input_video"
  output_stream: "LETTERBOX_PADDING:letterbox_padding"
  node_options: {
    [] {
      output_width: 128
      output_height: 128
      scale_mode: FIT

# Converts the transformed input image on GPU into an image tensor stored as a
# TfLiteTensor.
node {
  calculator: "TfLiteConverterCalculator"
  input_stream: "IMAGE_GPU:transformed_input_video"
  output_stream: "TENSORS_GPU:image_tensor"

# Runs a TensorFlow Lite model on GPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
  calculator: "TfLiteInferenceCalculator"
  input_stream: "TENSORS_GPU:image_tensor"
  output_stream: "TENSORS:detection_tensors"
  node_options: {
    [] {
      model_path: "face_detection_front.tflite"

# Generates a single side packet containing a vector of SSD anchors based on
# the specification in the options.
node {
  calculator: "SsdAnchorsCalculator"
  output_side_packet: "anchors"
  node_options: {
    [] {
      num_layers: 4
      min_scale: 0.1484375
      max_scale: 0.75
      input_size_height: 128
      input_size_width: 128
      anchor_offset_x: 0.5
      anchor_offset_y: 0.5
      strides: 8
      strides: 16
      strides: 16
      strides: 16
      aspect_ratios: 1.0
      fixed_anchor_size: true

# Decodes the detection tensors generated by the TensorFlow Lite model, based on
# the SSD anchors and the specification in the options, into a vector of
# detections. Each detection describes a detected object.
node {
  calculator: "TfLiteTensorsToDetectionsCalculator"
  input_stream: "TENSORS:detection_tensors"
  input_side_packet: "ANCHORS:anchors"
  output_stream: "DETECTIONS:detections"
  node_options: {
    [] {
      num_classes: 1
      num_boxes: 896
      num_coords: 16
      box_coord_offset: 0
      keypoint_coord_offset: 4
      num_keypoints: 6
      num_values_per_keypoint: 2
      sigmoid_score: true
      score_clipping_thresh: 100.0
      reverse_output_order: true
      x_scale: 128.0
      y_scale: 128.0
      h_scale: 128.0
      w_scale: 128.0
      min_score_thresh: 0.75

# Performs non-max suppression to remove excessive detections.
node {
  calculator: "NonMaxSuppressionCalculator"
  input_stream: "detections"
  output_stream: "filtered_detections"
  node_options: {
    [] {
      min_suppression_threshold: 0.3
      overlap_type: INTERSECTION_OVER_UNION
      algorithm: WEIGHTED
      return_empty_detections: true

# Maps detection label IDs to the corresponding label text ("Face"). The label
# map is provided in the label_map_path option.
node {
  calculator: "DetectionLabelIdToTextCalculator"
  input_stream: "filtered_detections"
  output_stream: "labeled_detections"
  node_options: {
    [] {
      label_map_path: "face_detection_front_labelmap.txt"

# Adjusts detection locations (already normalized to [0.f, 1.f]) on the
# letterboxed image (after image transformation with the FIT scale mode) to the
# corresponding locations on the same image with the letterbox removed (the
# input image to the graph before image transformation).
node {
  calculator: "DetectionLetterboxRemovalCalculator"
  input_stream: "DETECTIONS:labeled_detections"
  input_stream: "LETTERBOX_PADDING:letterbox_padding"
  output_stream: "DETECTIONS:output_detections"

# Converts the detections to drawing primitives for annotation overlay.
node {
  calculator: "DetectionsToRenderDataCalculator"
  input_stream: "DETECTIONS:output_detections"
  output_stream: "RENDER_DATA:render_data"
  node_options: {
    [] {
      thickness: 10.0
      color { r: 255 g: 0 b: 0 }

# Draws annotations and overlays them on top of the input images.
node {
  calculator: "AnnotationOverlayCalculator"
  input_stream: "INPUT_FRAME_GPU:throttled_input_video"
  input_stream: "render_data"
  output_stream: "OUTPUT_FRAME_GPU:output_video"
You can’t perform that action at this time.