diff --git a/tests/system/large/ml/test_core.py b/tests/system/large/ml/test_core.py index df387e6ee1..aec1065e41 100644 --- a/tests/system/large/ml/test_core.py +++ b/tests/system/large/ml/test_core.py @@ -13,10 +13,13 @@ # limitations under the License. import pandas +import pytest from bigframes.ml import globals +# TODO(garrettwu): Re-enable or not check exact numbers. +@pytest.mark.skip(reason="bqml regression") def test_bqml_e2e(session, dataset_id, penguins_df_default_index, new_penguins_df): df = penguins_df_default_index.dropna() X_train = df[ diff --git a/tests/system/large/ml/test_ensemble.py b/tests/system/large/ml/test_ensemble.py index 2403644a42..2260e7bbce 100644 --- a/tests/system/large/ml/test_ensemble.py +++ b/tests/system/large/ml/test_ensemble.py @@ -20,6 +20,8 @@ import bigframes.ml.ensemble +# TODO(garrettwu): Re-enable or not check exact numbers. +@pytest.mark.skip(reason="bqml regression") @pytest.mark.flaky(retries=2) def test_xgbregressor_default_params(penguins_df_default_index, dataset_id): model = bigframes.ml.ensemble.XGBRegressor() diff --git a/tests/system/large/ml/test_pipeline.py b/tests/system/large/ml/test_pipeline.py index c165b1e030..1a92d0f7d4 100644 --- a/tests/system/large/ml/test_pipeline.py +++ b/tests/system/large/ml/test_pipeline.py @@ -222,6 +222,8 @@ def test_pipeline_logistic_regression_fit_score_predict( ) +# TODO(garrettwu): Re-enable or not check exact numbers. +@pytest.mark.skip(reason="bqml regression") @pytest.mark.flaky(retries=2) def test_pipeline_xgbregressor_fit_score_predict(session, penguins_df_default_index): """Test a supervised model with a minimal preprocessing step""" @@ -297,6 +299,8 @@ def test_pipeline_xgbregressor_fit_score_predict(session, penguins_df_default_in ) +# TODO(garrettwu): Re-enable or not check exact numbers. +@pytest.mark.skip(reason="bqml regression") @pytest.mark.flaky(retries=2) def test_pipeline_random_forest_classifier_fit_score_predict( session, penguins_df_default_index