Informatika. Egyetemes kódolású karakterkészlet (UCS)

Information technology. Universal Coded Character Set (UCS)

Abstract

E nemzeti szabványt a Magyar Szabványügyi Testület a nemzeti szabványosításról szóló 1995. évi XXVIII. törvény alapján tette közzé. A szabvány alkalmazása előtt győződjön meg arról, hogy módosították vagy helyesbí-tették-e, nincs-e visszavonva, vagy műszaki tartalmú jogszabály hivatkozik-e rá. A szabvány alkalmazása e törvény 6. § (1) bekezdése alapján önkéntes. Az önkéntesség választási lehetőséget biztosít a szabvány alkalmazása vagy mellőzése tekintetében. A szabvány közmegegyezéssel elfogadott műszaki dokumentum, amelynek révén általánosan elismert megoldás érhető el. Ha a szabvány alkalmazását dokumentumban hivatkozva önként vállalja, akkor a hivatkozás vonatkozásában a szabvány alkalmazása kötelező. Ha a törvény 6. § (2) bekezdése értelmében műszaki tartalmú jogszabály hivatkozik vagy utal e szabványra, akkor e szabvány alkalmazása esetén vélelmezni kell, hogy érvényesülnek azok a jogszabályokban meghatározott alapvető követelmények, amelyekre e szabvány vonatkozik. A szabványtól való eltérés esetén megkövetelhető annak igazolása, hogy a választott megoldás is megfelel a jogszabályi követelményeknek. A szabványnak való megfelelőség akkor valósul meg, ha változtatás nélkül érvényesülnek az előírásai. Ezt a szabványra hivatkozva kell igazolni.

Jóváhagyó közlemény

Az ISO/IEC 10646:2014 nemzetközi szabványt a Magyar Szabványügyi Testület a közzétételének napjától magyar nemzeti szabvánnyá nyilvánítja. Magyar nemzeti szabványként az nemzetközi szabvány angol nyelvű változatát kell alkalmazni.

Endorsement notice

The International Standard ISO/IEC 10646:2014 is endorsed by the Hungarian Standards Institution as a Hungarian National Standard from the day of its publication. The English language version of the International Standard shall be considered as the Hungarian National Standard.

Nemzeti előszó

Az eredeti ISO/IEC 10646:2014 nemzetközi szabvány terjedelme 2473 oldal.
A szabvány megvásárolható vagy megrendelhető az MSZT Szabványboltban (1082 Budapest, Horváth Mihály tér 1., levélcím: 1450 Budapest 9., Pf. 24, telefon: 456-6893, telefax: 456-6884), illetve elektronikus formában beszerezhető a http://www.mszt.hu/webaruhaz címen.

CONTENTS

Foreword vii
Introduction viii
1 Scope 1
2 Conformance 1
2.1 General 1
2.2 Conformance of information interchange 1
2.3 Conformance of devices 2
3 Normative references 2
4 Terms and definitions 3
5 General structure of the UCS 9
6 Basic structure and nomenclature 9
6.1 Structure 9
6.2 Coding of characters 11
6.3 Types of code points 11
6.4 Naming of characters 12
6.5 Short identifiers for code points (UIDs) 12
6.6 UCS Sequence Identifiers 13
6.7 Octet sequence identifiers 13
7 Revision and updating of the UCS 14
8 Subsets 14
8.1 General 14
8.2 Limited subset 14
8.3 Selected subset 14
9 UCS encoding forms 14
9.1 Genera 14
9.2 UTF-8 14
9.3 UTF-16 15
9.4 UTF-32 (UCS-4) 16
10 UCS Encoding schemes 16
10.1 General 16
10.2 UTF-8 16
10.3 UTF-16BE 16
10.4 UTF-16LE 16
10.5 UTF-16 16
10.6 UTF-32BE 17
10.7 UTF-32LE 17
10.8 UTF-32 17
11 Use of control functions with the UCS 17
12 Declaration of identification of features 18
12.1 Purpose and context of identification 18
12.2 Identification of a UCS encoding scheme 19
12.3 Identification of subsets of graphic characters 19
12.4 Identification of control function set 19
12.5 Identification of the coding system of ISO/IEC 2022 20
13 Structure of the code charts and lists 20
14 Block and collection names 21
14.1 Block names 21
14.2 Collection names. 21
15 Mirrored characters in bidirectional context 21
15.1 Mirrored characters 21
15.2 Directionality of bidirectional text 21
16 Special characters 22
16.1 General 22
16.2 Space characters 22
16.3 Currency symbols 22
16.4 Format characters 22
16.5 Ideographic description characters 23
16.6 Variation selectors and variation sequences 23
17 Presentation forms of characters 24
18 Compatibility characters 25
19 Order of characters 25
20 Combining characters 25
20.1 Order of combining characters 25
20.2 Combining class and canonical ordering 26
20.3 Appearance in code charts 26
20.4 Alternate coded representations 26
20.5 Multiple combining characters 26
20.6 Collections containing combining characters 27
20.7 Combining Grapheme Joiner 27
21 Normalization forms 27
22 Special features of individual scripts and symbol repertoires 28
22.1 Hangul syllable composition method 28
22.2 Features of scripts used in India and some other South Asian countries. 28
22.3 Byzantine musical symbols 29
22.4 Source references for pictographic symbols 29
23 Source references for CJK Ideographs 29
23.1 List of source references 29
23.2 Source references file for CJK Ideographs 32
23.3 Source reference presentation for CJK Unified Ideographs 34
23.4 Source references presentation for CJK Compatibility Ideographs 36
24 Character names and annotations 37
24.1 Entity names 37
24.2 Name formation 37
24.3 Single name 38
24.4 Name immutability 38
24.5 Name uniqueness 38
24.6 Character names for CJK Ideographs 39
24.7 Character names for Hangul syllables 39
25 Named UCS Sequence Identifiers 41
26 Structure of the Basic Multilingual Plane 42
27 Structure of the Supplementary Multilingual Plane for scripts and symbols (SMP) 44
28 Structure of the Supplementary Ideographic Plane (SIP) 46
29 Structure of the Tertiary Ideographic Plane (TIP) 46
30 Structure of the Supplementary Special-purpose Plane (SSP) 46
31 Code charts and lists of character names 47
31.1 General 47
31.2 Code chart 47
31.3 Character names list 47
31.4 Summary of standardized variation sequences 48
31.5 Pointers to code charts and lists of character names 48
Annex A (normative) Collections of graphic characters for subsets 2381
A. 1 Collections of coded graphic characters 2381
A. 2 Blocks lists 2387
A. 3 Fixed collections of the whole UCS (except Unicode collections) 2389
A. 4 CJK collections 2393
A. 5 Other collections 2393
A. 6 Unicode collections 2397
Annex B (normative) List of combining characters 2410
Annex C (normative) Transformation format for planes 01 to 10 of the UCS (UTF-16) 2411
Annex D (normative) UCS Transformation Format 8 (UTF-8) 2412
Annex E (normative) Mirrored characters in bidirectional context. 2413
Annex F (informative) Format characters 2414
F. 1 General format characters 2414
F. 2 Script-specific format characters 2416
F. 3 Interlinear annotation characters 2417
F. 4 Subtending format characters 2417
F. 5 Shorthand format characters 2418
F. 6 Invisible mathematical operators 2418
F. 7 Western musical symbols 2418
F. 8 Language tagging using Tag characters 2419
Annex G (informative) Alphabetically sorted list of character names 2421
Annex H (informative) The use of "signatures" to identify UCS 2422
Annex I (informative) Ideographic description characters 2423
I. 1 General 2423
I. 2 Syntax of an ideographic description sequence 2423
I. 3 Individual definitions of the ideographic description characters 2423
Annex J (informative) Recommendation for combined receiving/originating devices with internal storage 2426
Annex K (informative) Notations of octet value representations 2427
Annex L (informative) Character naming guidelines 2428
Annex M (informative) Sources of characters 2431
Annex N (informative) External references to character repertoires 2449
N. 1 Methods of reference to character repertoires and their coding 2449
N. 2 Identification of ASN. 1 character abstract syntaxes 2449
N. 3 Identification of ASN. 1 character transfer syntaxes 2450
Annex P (informative) Additional information on CJK Unified Ideographs 2451
Annex Q (informative) Code mapping table for Hangul syllables 2454
Annex R (informative) Names of Hangul syllables 2455
Annex S (informative) Procedure for the unification and arrangement of CJK Ideographs 2456
S. 1 Unification procedure 2456
S. 2 Arrangement procedure 2459
S. 3 Source separation examples 2460
S. 4 Non-unification examples 2465
Annex T (informative) Language tagging using Tag Characters. 2466
Annex U (informative) Characters in identifiers. 2467

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 2, Coded character sets.

This fourth edition cancels and replaces the third edition (ISO/IEC 10646:2012), which has been technically revised. It also incorporates the Amendment ISO/IEC 10646:2012/Amd.1:2013.

Introduction

This International Standard specifies the Universal Coded Character Set (UCS). It is applicable to the representation, transmission, interchange, processing, storage, input and presentation of the written form of the languages of the world as well as additional symbols.

By defining a consistent way of encoding multilingual text it enables the exchange of data internationally. The information technology industry gains data stability, greater global interoperability and data interchange. This International Standard has been widely adopted in new Internet protocols and implemented in modern operating systems and computer languages. This edition covers over 120000 characters from the world's scripts.

This International Standard contains material which may only be available to users who obtain their copy in a machine readable format. That material consists of the following printable files:

- EmojiSrc.txt
- UCSVariants.txt
- CJKSrc.txt
- NUSI.txt
- JIExt.txt
- Allnames.txt
- HangulSy.txt.

Information technology - Universal Coded Character Set (UCS)

1 Scope

This International Standard specifies the Universal Coded Character Set (UCS). It is applicable to the representation, transmission, interchange, processing, storage, input, and presentation of the written form of the languages of the world as well as of additional symbols.

This International Standard

- specifies the architecture of this International Standard,
- defines terms used in this International Standard,
- describes the general structure of the UCS codespace,
- specifies the Basic Multilingual Plane (BMP) of the UCS,
- specifies supplementary planes of the UCS: the Supplementary Multilingual Plane (SMP), the Supplementary Ideographic Plane (SIP), the Tertiary Ideographic Plane (TIP), and the Supplementary Special-purpose Plane (SSP),
- defines a set of graphic characters used in scripts and the written form of languages on a world-wide scale,
- specifies the nam es for the graph ic characters and format characters of the BMP, SMP, SIP, TIP, SSP and their coded representations within the UCS codespace,
- specifies the coded representations for control characters and private use characters,
- specifies three encoding forms of the UCS: UTF-8, UTF-16, and UTF-32,
- specifies seven encoding schemes of the UCS: UTF-8, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF32BE, and UTF-32LE,
- specifies the management of future additions to this coded character set.

The UCS is an encoding system different from that specified in ISO/IEC 2022. The method to designate UCS from ISO/IEC 2022 is specified in 12.2.

A graphic character will be assigned only one code point in the standard, located either in the BMP or in one of the supplementary planes.

2 Conformance

2.1 General

Whenever private use characters are used as specified in this International Standard, the characters themselves shall not be covered by these conformance requirements.

2.2 Conformance of information interchange

A code unit sequence (CC-data-element) within coded information for interchange is in conformance with this International Standard if
a) all the coded representations of graphic characters within that code unit sequence conform to Clause 6 , to an identified encoding form chosen from Clause 9, and to an identified encoding scheme chosen from Clause 10;
b) all the graphic characters represented within that code unit sequence are taken from those within an identified subset (see Clause 8);
c) all the coded representations of control functions within that code unit sequence conform to Clause 11.

A claim of conformance shall identify the adopted encoding form, the adopted encoding scheme, and the adopted subset by means of a list of collections and/or characters.

2.3 Conformance of devices

A device is in conformance with this International Standard if it conforms to the requirements of item a) below, and either or both of items b) and c).

A claim of conformance shall identify the document that contains the description specified in a) below, and shall identify the adopted encoding form(s), the adopted encoding scheme(s), and the adopted subset (by means of a list of collections and/or characters), and the selection of control functions adopted in accordance with Clause 11.
a) Device description: A device that conforms to this International Standard shall be the subject of a description that identifies the means by which the user may supply characters to the device and/or may recognize them when they are made available to the user, as sp ecified respectively, in subclauses b) and c) below.
b) Originating device: An originating device shall allow its user to supply any characters from an adopted subset, and be capable of transmitting their coded representations within a code unit sequence in accordance with the adopted encoding form and adopted encoding scheme. As such, the originating device shall not emit ill-formed code unit sequences.
c) Receiving device: A receiving device shall be capable of receiving and interpreting any coded representation of characters that are within a code unit sequence in accordance with the adopted encoding form and the ado pted encoding scheme, and s hall make any corresponding characters from the adopted subset available to the user in such a way that the user can identify them. The receiving device shall treat ill-formed code unit sequences as an error condition and shall not interpret such data as character sequences.
Any corresponding characters that are n ot within the adopted subset shall be indicated to the user. The way used for indicating them need not distinguish them from each other.

[^0]
3 Normative references

The following referenced documents are ind ispensable for the application of this document. For da ted references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2022:1994 Information technology - Character code structure and extension techniques.
ISO/IEC 6429:1992 Information technology - Control functions for coded character sets.
Unicode Standard Annex, UAX \#9, The Unicode Bidirectional Algorithm: http://www.unicode.org/reports/tr9/tr9-31.html.

Unicode Standard Annex, UAX \#15, Unicode Normalization Forms: http://www.unicode.org/reports/tr15/tr15-41.html.
Unicode Technical Standard, UTS \#37, Ideographic Variation Database: http://www.unicode.org/reports/tr37/tr37-8.html.
Unicode Standard Version 6.2, Chapter 4, Character Properties
http://www.unicode.org/versions/Unicode7.0.0/ch04.pdf
Section 4.3, Combining Classes - Normative

Section 4.5, General Category - Normative
Section 4.7, Bidi Mirrored - Normative

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.
4.1
base character
graphic character which is not a combining character
NOTE 1 - Most graphic characters are base characters. This sense of graphic combination does not preclude the presentation of base characters from adopting different contextual forms or from participating in ligatures.
NOTE 2 - A base character typically does not graphically combine with preceding characters. There are exceptions for some complex writing systems.

4.2
 Basic Multilingual Plane
 BMP

plane 00 of the UCS codespace

4.3

block

contiguous range of code points to which a set of characters that share common characteristics, such as a script, are allocated; a block does not overlap another block; one or more of the code points within a block may have no character allocated to them

4.4
 canonical form

form with which characters of this coded character set are specified using a single code point within the UCS codespace

NOTE - The canonical form is not to be confused with an encoding form which describes the relationship between UCS code points and one or several code units (see 4.23).

4.5

character
member of a set of elements used for the organization, control, or representation of textual data NOTE - A graphic symbol can be represented by a sequence of one or several coded characters.

4.6

character boundary

(code unit sequence) demarcation between the last code unit of a coded character and the first code unit of the next coded character

4.7
 code chart
 code table

rectangular array showing the representation of coded characters allocated within a range of the UCS codespace

4.8

coded character

association between a character and a code point

4.9
 coded character set
 set of coded characters

4.10

code point
code position
value in the UCS codespace

4.11

code unit
minimal bit combination that can represent a unit of encoded text for processing or interchange
NOTE - Examples of code units are octets (8-bit code units) used in the UTF-8 encoding form, 16-bit code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32 encoding form.
4.12
code unit sequence
CC-data-element

coded-character-data-element

element of interchanged information that is specified to consist of a sequence of code units, in accordance with one or more identified standards for coded character sets

NOTE 1 - Such sequence can contain code units associated with any type of code points.
NOTE 2 - Since its second edition: ISO/IEC 10646:2011, this International Standard does not use implementation levels. Its definition of code unit sequence corresponds to the former unrestricted implementation level 3. Other definitions of code unit sequence, previously known as level 1 and 2, are deprecated. To maintain compatibility with these previous editions, in the context of identification of coded representation in International Standards such as ISO/IEC 8824 and ISO/IEC 8825, the concept of implementation level can still be referenced as 'Implementation level 3'. See Annex N.
4.13
collection
numbered and named set of entities
NOTE 1 - For a non extended collection, these entities consist only of those coded characters whose code points lie within one or more identified ranges (see also 4.25 for extended collection).
NOTE 2 - If any of the identified ranges include code points to which no character is allocated, the repertoire of the collection will change if an additional character is assigned to any of those code points at a future amendment of this International Standard. However it is intended that the collection number and name will remain unchanged in future editions of this International Standard.

4.14
 combining character

character which has General Category values of Spacing Combining Mark (Mc), Non Spacing Mark (Mn), and Enclosing Mark (Me)

NOTE - These characters are intended for combination with the preceding non-combining graphic character, or with a sequence of combining characters preceded by a non-combining character (see also 4.17).

4.15

combining class

value associated with each combining character determining its typographical interaction and its canonical ordering within a sequence of combining characters

4.16

compatibility character

graphic character included as a c oded character of this International Standard primarily for compatibility with existing coded character sets

4.17
 composite sequence

sequence of graphic characters consisting of a base character followed by one or more combining characters, ZERO WIDTH JOINER, or ZERO WIDTH NON-JOINER (see also 4.14)

NOTE 1 - A graphic symbol for a composite sequence generally consists of the combination of the graphic symbols of each character in the sequence.

NOTE 2 - A composite sequence can be used to represent characters not encoded in the repertoire of this International Standard.

4.18

control character
control function the coded representation of which consists of a single code point
NOTE - Although control characters are often 'named' using terms such as DELETE, FORM FEED, ESC, these qualifiers do not correspond to formal character names. See Clause 11 for a list of the long names used by ISO/IEC 6429 in association with the control characters.

4.19

control function
action that affects the recording, processing, transmission, or interpretation of data, and that is represented by a code unit sequence

4.20

decomposition mapping

mapping from a character to a sequence of one or more characters that is a canonical or compatibility equivalent

4.21

default state
state that is assumed when no state has been explicitly specified

```
NOTE - See F.2.1, F.2.2, and F.2.3.
```


4.22

device

component of information processing equipment which can transmit and/or receive coded information within code unit sequences

NOTE - It may be an input/output device in the conventional sense, or a process such as an application program or gateway function.

4.23

encoding form

form that determines how each UCS code point for a UCS character is to be expressed as one or m ore code units used by the encoding form

> NOTE - This International Standard specifies UTF-8, UTF-16, and UTF-32.

4.24

encoding scheme

scheme that specifies the serialization of the code units from the encoding form into octets
NOTE - Some of the UCS encoding schemes have the same labels as the UCS encoding form. However they are used in different contexts. UCS encoding forms refer to in-memory and application interface representation of textual data. UCS encoding schemes refer to octet-serialized textual data.

4.25

extended collection

collection for which the entities can also consist of sequences of code points that are in Normalization Form C (NFC)

NOTE 1 - Some collections such as 3 LATIN EXTENDED-A, 4 LATIN EXTENDED-B, 15 ARABIC EXTENDED, and many more, have the term 'extended' in their name. This does not make them extended collections.
NOTE 2 - See Clause 21 for discussion of Normalization Form C.
NOTE 3 - The sequences of code points are referenced by Named UCS Sequence Identifiers (NUSI) (see Clause 25).

4.26
 fixed collection

collection in which every code point within the identified range(s) has a character allocated to it, and which is intended to remain unchanged in future editions of this International Standard

4.27

format character

character whose primary function is to affect the layout or processing of characters around it
NOTE - A format character generally does not have a visible representation of its own.

4.28
 General Category

GC
value assigned to each UCS code point which determines its major class, such as letter, punctuation, and symbol

NOTE 1 - Each value is defined as General Category property using a two-letter abbreviation in the Unicode Standard (see reference to the current Unicode Standard General Category in 3).
NOTE 2 - When referred as a group containing all GC values sharing the same first letter, the group may be described using the first letter only. For example, 'L' stands for all letters 'Lu', 'Ll', 'Lt', 'Lm', and 'Lo'.

4.29

graphic character

character, other than a control function or a format character, that has a visual representation normally handwritten, printed, or displayed

4.30

graphic symbol

visual representation of a graphic character or of a composite sequence

4.31

high-surrogate code point
code point in the range D800 to DBFF reserved for the use of UTF-16

4.32

high-surrogate code unit

16-bit code unit in the range D800 to DBFF used in UTF-16 as the leading code unit of a surrogate pair

```
NOTE - See 9.3.
```


4.33

ill-formed code unit sequence
UCS code unit sequence that purports to be in a UCS encoding form which does not conform to the specification of that encoding form

EXAMPLE - An unpaired surrogate code unit is an ill-formed code unit sequence.

4.34

ill-formed code unit sequence subset

non-empty subset of a code unit sequence X which does not contain any code unit which also belong to any minimal well-formed code unit sequence subset of X

NOTE - An ill-formed code unit sequence subset cannot overlap with a minimal well-formed code unit sequence.

4.35

interchange
transfer of character coded data from one user t o another, using telecommunication means or int erchangeable media

NOTE - Interchange implies data serialization and the use of a UCS encoding scheme.

4.36

interworking
process of permitting two or more systems, each employing different coded character sets, to meaningfully interchange character coded data

NOTE - Conversion between the two codes might be involved.

4.37

ISO/IEC 10646-1
former subdivision of ISO/IEC 10646 containing the specification of the overall architecture and the Basic Multilingual Plane (BMP)

NOTE 1 - It is also referred to as Part 1 of ISO/IEC 10646.
NOTE 2 - There are a first and a second Edition of ISO/IEC 10646-1.
4.38

ISO/IEC 10646-2
former subdivision of ISO/IEC 10646 containing the specification of the Supplementary Multilingual Plane (SMP), the Supplementary Ideographic Plane (SIP) and the Supplementary Special-purpose Plane (SSP)

NOTE 1 - It is also referred to as Part 2 of ISO/IEC 10646.
NOTE 2 - There is only a first edition of ISO/IEC 10646-2.
4.39
low-surrogate code point
code point in the range DC00 to DFFF reserved for the use of UTF-16
4.40

low-surrogate code unit

16-bit code unit in the range DC00 to DFFF used in UTF-16 as the trailing code unit of a surrogate pair

```
NOTE - See 9.3.
```

4.41
minimal well-formed code unit sequence
well-formed code unit sequence that maps to a single UCS scalar value

4.42

mirrored character
character whose image is mirrored horizontally in text that is laid out from right to left

4.43

octet
8-bit code unit
NOTE - The value is expressed in hexadecimal notation from 00 to FF in this International Standard (see Annex K).

4.44

plane
subdivision of the UCS codespace consisting of contiguous 65536 code points beginning at a multiple of 65536 which can be identified by a number from 00 to 10

```
NOTE - The UCS codespace contain 17 planes.
```


4.45

presentation
process of writing, printing, or displaying a graphic symbol

4.46

presentation form
(in the presentation of some scripts) form of a graphic symbol representing a character that depends on the position of the character relative to other characters

4.47

private use plane
plane within this coded character set, the content of which is not specified in this International Standard
NOTE - Planes OF and 10 are private use planes.

ISO/IEC 10646:2014 (E)

4.48

repertoire
specified set of characters that are represented in a coded character set
4.49
row
subdivision of a plane consisting of contiguous 256 code points beginning at a multiple of 256 which can be identified by a number from 00 to FF
4.50
script
set of graphic characters used for the written form of one or more languages

4.51

supplementary plane
plane other than Plane 00 of the UCS codespace
NOTE - A supplementary plane accommodates characters which have not been allocated to the Basic Multilingual Plane.
4.52

Supplementary Multilingual Plane for scripts and symbols
SMP
plane 01 of the UCS codespace
4.53

Supplementary Ideographic Plane
SIP
plane 02 of the UCS codespace
4.54

Supplementary Special-purpose Plane
SSP
plane OE of the UCS codespace

4.55

surrogate pair
representation for a single character that consists of a sequence of two 16-bit code units, where the first value of the pair is a high-surrogate code unit and the second value is a low-surrogate code unit
4.56

Tertiary Ideographic Plane
TIP
plane 03 of the UCS codespace

4.57

UCS codespace

codespace consisting of the integers from 0 to 10 FFFF (hexadecimal) available for assigning the repertoire of the UCS characters
4.58

UCS scalar value
any UCS code point except high-surrogate and low-surrogate code points

4.59

unpaired surrogate code unit
code unit in a code unit sequence that is either a high-surrogate code unit that is not immediately followed by a low-surrogate unit, or a low-surrogate code unit that is not immediately preceded by a high-surrogate code unit

4.60

user

person or other entity that invokes the service provided by a device
NOTE - This entity can be a process such as an application program if the "device" is a code converter or a gateway function.

4.61

well-formed code unit sequence

UCS code unit sequence that purports to be in a UCS encoding form which conforms to the specification of that encoding form and contains no ill-formed code unit sequence subset

5 General structure of the UCS

The general structure of the Universal Coded Character Set (referred to hereafter as "this coded character set") is described in this explanatory clause, and is illustrated in figure 1. The normative specification of the structure is given in the following clauses.

The canonical form of this coded character set - the way in which it is to be conceived - uses the UCS codespace which consists of the integers from 0 to 10FFFF.

This International Standard defines coded characters for the following planes:

- The Basic Multilingual Plane (BMP, Plane 00).
- The Supplementary Multilingual Plane for scripts and symbols (SMP, Plane 01).
- The Supplementary Ideographic Plane (SIP, Plane 02).
- The Supplementary Special-purpose Plane (SSP, Plane 0E).

The Tertiary Ideographic Plane (TIP, Plane 03) is reserved for ideographic characters and is currently empty. The planes from 04 to OD are reserved for future standardization.

The planes 0F and 10 are reserved for private use.
Subsets of the coding space may be used in order to give a sub-repertoire of graphic characters.

6 Basic structure and nomenclature

6.1 Structure

The Universal Coded Character Set as specified in this International Standard shall be regarded as a single entity made of 17 planes.

Figure 1 - Planes of the Universal Coded Character Set

6.2 Coding of characters

Each encoded character within the UCS codespace is represented by an integer between 0 and 10FFFF identified as a code point.

When a single character is to be identified in terms of its code point, it is represented by a six digit form of the integer such as

000030	for DIGIT ZERO
000041	for LATIN CAPITAL LETTER A
010000	for LINEAR B SYLLABLE B008 A

When referring to characters within plane 00, the leading two digits may be omitted; for characters within planes 01 to $0 F$, the leading digit may be omitted, such as

```
0030 for DIGIT ZERO
0 0 4 1 ~ f o r ~ L A T I N ~ C A P I T A L ~ L E T T E R ~ A ~
10000 for LINEAR B SYLLABLE B008 A
```


6.3 Types of code points

6.3.1 Classification

UCS code points are categorized in basic types, according to their General Category value. These values shall be determined according to the U nicode Standard General Category property (see Clause 3). The Table 1 summarizes the types:

Table 1: Type of code points

Basic Type	Brief Description	General Category	Character status	Code point status
Graphic	Letter, mark, number, punctuation, symbols, and spaces	L, M, N, P, S, Zs	Assigned to character	Assigned code point
Format	Invisible, but affects neighbouring characters	Cf, ZI, Zp		
Control	Control functions consisting of a single code point	Cc		
Private use	Usage defined by private agreement outside this standard	Co		
Surrogate	Permanently reserved for UTF- 16	Cs	Not assigned to character	
Noncharacter	Permanently reserved for internal usage	Cn		
Reserved	Reserved for future assignment			Unassigned code point

Surrogate, noncharacter, and reserved code points are not assigned to characters and are subject to restriction in interchange. For example, surrogate code points do not have well-formed representations in any UCS encoding form.

6.3.2 Graphic characters

The same graphic character shall not be allocated to more than one code point. There are graphic characters with similar shapes in the coded character set; they are used for different purposes and have different character names.

6.3.3 Format characters

Format characters form a class of characters which are invisible but affect neighbouring characters.

6.3.4 Control characters

Code points 0000 to 001F, 007F to 009F in the BMP are reserved for control characters (see Clause 11).

6.3.5 Private use characters

Code points from E000 to F8FF in the BMP are reserved for private use. All code points of Plane 0F and Plane 10, except for FFFFE, FFFFF, 10FFFE, and 10FFFF are reserved for private use.

Private use characters are not constrained in any way by this International Standard. Private use characters can be used to provide user-defined characters. For example, this is a common requirement for users of ideographic scripts.

> NOTE - For meaningful interchange of private use characters, an agreement, independent of this International Standard, is necessary between sender and recipient.

6.3.6 Surrogate code points

Code points D800 to DFFF are reserved for the use of the UTF-16 encoding form (see 9.3). The first half (D800 to DBFF) contains the high-surrogate code points and the second half (DC00 to DFFF) contains the low-surrogate code points.

6.3.7 Noncharacter code points

The status of noncharacter code points cannot be changed by future amendments. Noncharacters consist of FDD0-FDEF and any code point ending in the value FFFE or FFFF.

> NOTE - Code point FFFE is reserved for "signature". Code points FDDO to FDEF, and FFFF can be used for internal processing uses requiring numeric values which are guaranteed not to be coded characters, such as in terminating tables, or signaling end-of-text. Furthermore, since FFFF is the largest BMP value, it may also be used as the final value in binary or s equential searching index within the context of UTF-16.

6.3.8 Reserved code points

Reserved code points are reserved for future standardization and shall not be used for any other purpose. Future editions of this International Standard may allocate characters to some of these reserved code points.

6.4 Naming of characters

This International Standard assigns a unique name to each graphic and format character. The name of a character either
a) denotes the customary meaning of the character, or
b) describes the shape of the corresponding graphic symbol, or
c) follows the rule given in 24.6 for Chinese /Japanese/Korean (CJK) ideographs, or
d) follows the rule given in 24.7 for Hangul syllables.

Some characters may have one or more alternate names called character name aliases which are correction of the original names. Additional rules to be used for constructing the names of characters are given in 24.

The list of character names, except for CJK unified ideographs and Hangul syllables, is provided in 31.
NOTE - The list of character names is also part of the Unicode character Database in: http://www.unicode.org/Public/UNIDATA/NamesList.txt with the syntax described in: http://www.unicode.org/Public/UNIDATA/NamesList.html.

6.5 Short identifiers for code points (UIDs)

This International Standard defines short identifiers for each code point, including code points that are reserved (unassigned). A short identifier for any code point is distinct from a short identifier for any other code point. If a character is allocated at a code point, a short identifier for that code point can be used to refer to the character allocated at that code point.

NOTE 1 - For instance, U+DC00 identifies a surrogate code point, and U+FFFF identifies a noncharacter code point. U+0025 identifies a graphic code point to which a graphic character is allocated; U+0025 a lso identifies that character (named PERCENT SIGN).

NOTE 2 - These short identifiers are independent of the language in which this standard is written, and are thus retained in all translations of the text.

The following alternative forms of notation of a short identifier are defined here.
a) The six-digit form of short identifier consists of the sequence of six hexadecimal digits that represents the code point of the character (see 6.2).
b) The four-to-five-digit form of short identifier shall consist of the last four to five digits of the six-digit form. Leading zeroes beyond four digits are suppressed.
c) The character "+" (PLUS SIGN) may, as an option, precede the digit form of short identifier.
d) The prefix letter "U" (LATIN CAPITAL LETTER U) may, as an option, precede any of the three forms of short identifier defined in a) to c) above.
The capital letters A to F, and U that appear within short identifiers may be replaced by the corresponding small letters.

The full syntax of the notation of a short identifier, in Backus-Naur form, is
$\{U \mid u\}\{+\}(x x x x|x x x x x| x x x x x x)$
where " x " represents one hexadecimal digit (0 to $9, A$ to F, or a to f).

EXAMPLE

The short identifier for LATIN SMALL LETTER LONG S may be notated in any of the following forms:
017F +017F U017F U+017F

Any of the capital letters may be replaced by the corresponding small letter.

6.6 UCS Sequence Identifiers

This International Standard defines an identifier for any sequence of code points taken from the standard. Such an identifier is known as a UCS Sequence Identifier (USI). For a s equence of n code points it has the following form:
<UID1, UID2, ..., UIDn>
where UID1, UID2, etc. represent the short identifiers of the corresponding code points, in the same order as those code points appear in the sequence. If each of the code points in such a sequence has a character allocated to it, the USI can be used to identify the sequence of characters allocated at those code points. The syntax for UID1, UID2, etc. is specified in 6.5. A COMMA character (optionally followed by a SPACE character) separates the UIDs. The UCS Sequence Identifier includes at least two UIDs; it begins with a LESS-THAN SIGN and is terminated by a GREATER-THAN SIGN.

The full syntax of the notation of a UCS Sequence Identifier, in Backus-Naur form, is
"<" (xxxx | xxxxx | xxxxxx) (("," space?) (xxxx | xxxxx | xxxxxx))+ ">"
where " x " represents one hexadecimal digit (0 to $9, A$ to F, or a to f).
NOTE - UCS Sequences Identifiers cannot be used for specification of subset content. They may be used outside this standard to identify: composite sequences for mapping purposes, font repertoire, etc.

6.7 Octet sequence identifiers

To represent serialized octet in the context of the encoding schemes definition (see Clause 10), this International Standard defines an identifier for serialized octet sequence. For a sequence of n octets it has the following form:

$$
<X X X_{1} X X_{2} \ldots X_{n}>
$$

where $\mathrm{xx}_{1}, \mathrm{xx}_{2}$, and $\mathrm{x} \mathrm{x}_{\mathrm{n}}$, represents the first, second, and $\mathrm{n}^{\text {th }}$ octets using two hexadecimal digits for each octet.

7 Revision and updating of the UCS

The revision and updating of this coded character set will be carried out by ISO/IEC JTC1/SC2.
The names and code points allocation of all characters in this coded character set shall remain unchanged in all future editions and amendments of this standard. This also includes character name aliases.

NOTE - Character name aliases are created to denote errors in the character names which cannot be fixed after publication of the standard.

8 Subsets

8.1 General

This International Standard provides the specification of subsets of coded graphic characters for use in interchange, by originating devices, and by receiving devices.

There are two alternatives for the specification of subsets: limited subset and selected subset. An adopted subset may comprise either of them, or a combination of the two.

8.2 Limited subset

A limited subset consists of a list of graphic characters in the specified subset. This specification allows applications and devices that were developed using other codes to interwork with this coded character set.

A claim of conformance referring to a limited subset shall list the graphic characters in the subset by the names of graphic characters or code points as defined in this International Standard.

8.3 Selected subset

A selected subset consists of a list of collections of graphic characters as defined in this International Standard. The collections from which the selection may be made are listed in Annex A. A selected subset shall always automatically include the code points from 0020 to 007E.

A claim of conformance referring to a selected subset shall list the collections chosen as defined in this International Standard.

9 UCS encoding forms

9.1 General

This International Standard provides three encoding forms expressing each UCS scalar value in a unique sequence of one or more code units. These are named UTF-8, UTF-16, and UTF-32 respectively.

9.2 UTF-8

UTF-8 is the UCS encoding form that assigns each UCS scalar value to an octet sequence of one to four octets, as specified in table 2.

- UCS characters from the B ASIC LATIN collection are represented in UTF-8 in accordance with ISO/IEC 4873, i.e. single octets with values ranging from 20 to 7 E .
- Control functions in code points from 0000 to 001 F , and the control character in code point 007F, are represented without the padding octets specified in Clause 11, i.e. as single octets with values ranging from 00 to 1 F , and 7 F respectively in accordance with ISO/IEC 4873 and with the 8 -bit structure of ISO/IEC 2022.
- Octet values 00 to 7F do not otherwise occur in the UTF-8 coded representation of any character. This provides compatibility with existing file-handling systems and communications sub-systems which parse code unit sequences for these octet values.
- The first octet in the UT F-8 coded representation of any character can be directly identified when a code unit sequence is examined, one octet at a time, starting from an arbitrary location. It indicates
the number of continuing octets (if any) in the multi-octet sequence that constitutes the code unit representation of that character.

Table 2 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of UCS scalar values corresponding to one, two, three, and four octet sequences.

Table 2: UTF-8 Bit distribution

Scalar value	$\mathbf{1}^{\text {st }}$ octet	$\mathbf{2}^{\text {nd }}$ octet	$3^{\text {rd }}$ octet	$\mathbf{4}^{\text {th }}$ octet
$000000000 x x x x x x x$	$0 x x x x x x x$			
00000yyyyyyxxxxxx	$110 y y y y y$	$10 x x x x x x$		
zzzzyyyyyyxxxxx	$1110 z z z z$	$10 y y y y y y$	$10 x x x x x x$	
000uuuuuzzzzyyyyyyyxxxxxx	11110 uuu	10 uuzzzz	$10 y y y y y y y$	$10 x x x x x x$

Because surrogate code points are not UCS scalar values, any UTF-8 sequence that would otherwise map to code points D800-DFFF is ill-formed.

Table 3 lists all the ranges (inclusive) of the octet sequences that are well-formed in UTF-8. Any UTF-8 sequence that does not match the patterns listed in table 3 is ill-formed.

Table 3: Well-formed UTF-8 Octet sequences

Code points	$\mathbf{1}^{\text {st }}$ octet	$\mathbf{2}^{\text {nd }}$ octet	$\mathbf{3}^{\text {rd }}$ octet	$\mathbf{4}^{\text {th }}$ octet
$0000-007 F$	$00-7 F$			
$0080-07 F F$	C2-DF	$80-B F$		
$0800-0 F F F$	E0	A0-BF	$80-B F$	
$1000-C F F F$	E1-EC	$80-B F$	$80-B F$	$80-B F$
D000-D7FF	ED	$80-9 F$	$80-B F$	$80-B F$
E000-FFFF	EE-EF	$80-B F$	$80-B F$	$80-B F$
$10000-3 F F F F$	F0	$90-B F$	$80-B F$	$80-B F$
$40000-F F F F F$	F1-F3	$80-B F$	$80-B F$	
$100000-10 F F F F$	F4	$80-8 F$		

As a consequence of the well-formedness conditions specified in table 9.2, the following octet values are disallowed in UTF-8: C0-C1, F5-FE.

9.3 UTF-16

UTF-16 is the UCS encoding form that assigns each UCS scalar value to a sequence of one to two unsigned 16 -bit code units, as specified in table 4.

In the UTF-16 encoding form, code points in the range 0000-D7FF and E000-FFFF are represented as a single 16-bit code unit; code points in the range 10000-10FFFF are represented as pairs of 16-bit code units. These pairs of special code units are known as surrogate pairs.

The values of the code units used for surrogate pairs are disjoint from the code units used for the single code unit representation, thus maintaining non-overlap for all code point representations in UTF-16.

UTF-16 optimizes the representation of characters in the BMP which contains the vast majority of common use characters.

Because surrogate code points are not UCS scalar values, unpaired surrogate code units are ill-formed.

Table 4 specifies the bit distribution for the UTF-16 encoding form. Calculation of the surrogate pair values involves subtraction of 10000 hexadecimal to account for the starting offset to the scalar value (expressed as 'wwww = uuuuu-1' in the table).

Table 4: UTF-16 Bit distribution

Scalar value	UTF-16
xxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxxx
000uuuuuxxxxxxxxxxxxxxxxx	110110wwwwxxxxxx 110111xxxxxxxxxxx

NOTE - Former editions of this International Standard included references to a two-octet BMP form called UCS-2 which would be a subset of the UTF-16 encoding form restricted to the BMP UCS scalar values. The UCS-2 form is deprecated.

9.4 UTF-32 (UCS-4)

UTF-32 (or UCS-4) is the UCS encoding form that assigns each UCS scalar value to a single unsigned 32-bit code unit. The terms UTF-32 and UCS-4 can be used interchangeably to designate this encoding form.

Because surrogate code points are not UCS scalar values, UTF-32 code units in the range 0000 D8000000 DFFF are ill-formed.

10 UCS Encoding schemes

10.1 General

Encoding schemes are octet serializations specific to each UCS encoding form, including the specification of a signature, if allowed. The signature is the code unit sequence corresponding to the code point FEFF ZERO WIDTH NO-BREAK SPACE in the corresponding encoding form. When used, a signature at the beginning of a stream of serialized octets indicates the order of the octets within the encoding form used for the representation of the characters.

This International Standard specifies seven encoding schemes: UTF-8, UTF-16BE, UTF-16LE, UTF-16, UTF-32BE, UTF-32LE, and UTF-32.

10.2 UTF-8

The UTF-8 encoding scheme serializes a UTF-8 code unit sequence in exactly the same order as the code unit sequence itself.

When represented in UTF-8, the signature turns into the octet sequence <EF BB BF>. Its usage at the beginning of a UTF-8 data stream is neither required or recommended but does not affect conformance.

10.3 UTF-16BE

The UTF-16BE encoding scheme serializes a UTF-16 code unit sequence by ordering octets in a way that the more significant octet precedes the less significant octet (also known as big-endian ordering).

In UTF-16BE, an initial octet sequence of <FE FF> is interpreted as FEFF ZE RO WIDTH NO-BREAK SPACE and does not convey a signature meaning.

10.4 UTF-16LE

The UTF-16LE encoding scheme serializes a UTF-16 code unit sequence by ordering octets in a way that the less significant octet precedes the more significant octet (also known as little-endian ordering).

In UTF-16LE, an initial octet sequence of <FF FE> is interpreted as F EFF ZERO WIDTH NO-BREAK SPACE and does not convey a signature meaning.

10.5 UTF-16

The UTF-16 encoding scheme serializes a UTF-16 code unit sequence by ordering octets in a way that either the less significant octet precedes or follows the more significant octet.

In the UTF-16 encoding scheme, the initial signature read as <FE FF> indicates that the more significant octet precedes the less significant octet, and <FF FE> the reverse. The signature is not part of the textual data.

In the absence of signature, the octet order of the UTF-16 encoding scheme is that the more significant octet precedes the less significant octet.

10.6 UTF-32BE

The UTF-32BE encoding scheme serializes a UTF-32 code unit sequence by ordering octets in a way that the more significant octets precede the less significant octets (also known as big-endian ordering).

In UTF-32BE, an initial octet sequence of <00 00 FE FF> is interpreted as F EFF ZERO WIDTH NOBREAK SPACE and does not convey a signature meaning.

10.7 UTF-32LE

The UTF-32LE encoding scheme serializes a UTF-32 code unit sequence by ordering octets in a way that the less significant octets precede the more significant octets (also known as little-endian ordering).

In UTF-32LE, an initial octet sequence of <FF FE 0000 > is interpreted as FEFF ZERO WIDTH NOBREAK SPACE and does not convey a signature meaning.

10.8 UTF-32

The UTF-32 encoding scheme serializes a UTF-32 code unit sequence by ordering octets in a way that either the less significant octets precede or follow the more significant octets.

In the UTF-32 encoding scheme, the initial signature read as <00 00 FE FF> indicates that the more significant octet precedes the less significant octet, and <FF FE $0000>$ the reverse. The signature is not part of the textual data.

In the absence of signature, the octet order of the UTF-32 encoding scheme is that the more significant octets precede the less significant octets.

11 Use of control functions with the UCS

This coded character set provides for use of control functions encoded according to ISO/IEC 6429 or similarly structured standards for control functions, and standards derived from these. A set or subset of such coded control functions may be used in conjunction with this coded character set. These standards encode a control function as a sequence of one or more octets.

When a control character of ISO/IEC 6429 is used with this coded character set, its coded representation as specified in ISO/IEC 6429 shall be padded to correspond with the number of octets in code unit of the adopted encoded form (see Clause 9). Thus, the least significant octet shall be the bit combination specified in ISO/IEC 6429, and the more significant octet(s) shall be zeros.

For example, the control character FORM FEED is represented by "000C" in the UTF-16 encoding form, and "0000 000C" in the UTF-32 encoding form.

For escape sequences, control sequences, and control strings (see ISO/IEC 6429) consisting of a coded control character followed by additional bit combinations in the range 20 to 7 F , each bit combination shall be padded by octet(s) with value 00.

For example, the escape sequence "ESC 02/00 04/00" is represented by "1B 2040 " in the UTF-8 encoding form, by "001B 0020 0040" in the UTF-16 encoding form, and "0000001B 0000002000000040 " in the UTF-32 encoding form.

NOTE 1 - The term "character" appears in the definition of many of the control functions specified in ISO/IEC 6429, to identify the elements on which the control functions will act. When such control functions are applied to coded characters according to this International Standard, the action of those control functions will depend on t he type of element from this International Standard that has been chosen, by the application, to be the element (or character) on which the control functions act. These
elements may be chosen to be characters (non-combining characters and/or combining characters) or may be chosen in other ways (such as composite sequences) when applicable.

Code extension control functions for the ISO/IEC 2022 code extension techniques (such as designation escape sequences, single shift, and locking shift) shall not be used with this coded character set.

NOTE 2 - The following list provides the long names from ISO/IEC 6429 used in association with the control characters.

0000 NULL	$007 F$ DELETE
0001 START OF HEADING	0082 BREAK PERMITTED HERE
0002 START OF TEXT	0083 NO BREAK HERE
0003 END OF TEXT	0084 INDEX
0004 END OF TRANSMISSION	0085 NEXT LINE
0005 ENQUIRY	0086 START OF SELECTED AREA
0006 ACKNOWLEDGE	0087 END OF SELECTED AREA
0007 BELL	0088 CHARACTER TABULATION SET
0008 BACKSPACE	0089 CHARACTER TABULATION WITH
0009 CHARACTER TABULATION	JUSTIFICATION
000A LINE FEED	$008 A$ LINE TABULATION SET
000B LINE TABULATION	$008 B$ PARTIAL LINE FORWARD
000C FORM FEED	008 C PARTIAL LINE BACKWARD
000D CARRIAGE RETURN	$008 D ~ R E V E R S E ~ L I N E ~ F E E D ~$
000E SHIFT-OUT	$008 E$ SINGLE-SHIFT TWO
000F SHIFT-IN	$008 F ~ S I N G L E-S H I F T ~ T H R E E ~$
0010 DATA LINK ESCAPE	0090 DEVICE CONTROL STRING
0011 DEVICE CONTROL ONE	0091 PRIVATE USE ONE
0012 DEVICE CONTROL TWO	0092 PRIVATE USE TWO
0013 DEVICE CONTROL THREE	0093 SET TRANSMIT STATE
0014 DEVICE CONTROL FOUR	0094 CANCEL CHARACTER
0015 NEGATIVE ACKNOWLEDGE	0095 MESSAGE WAITING
0016 SYNCHRONOUS IDLE	0096 START OF GUARDED AREA
0017 END OF TRANSMISSION BLOCK	0097 END OF GUARDED AREA
0018 CANCEL	0098 START OF STRING
0019 END OF MEDIUM	$009 A ~ S I N G L E ~ C H A R A C T E R ~ I N T R O D U C E R ~$
001A SUBSTITUTE	$009 B ~ C O N T R O L ~ S E Q U E N C E ~ I N T R O D U C E R ~$
001B ESCAPE	$009 C ~ S T R I N G ~ T E R M I N A T O R ~$
001C INFORMATION SEPARATOR FOUR	$009 D ~ O P E R A T I N G ~ S Y S T E M ~ C O M M A N D ~$
001D INFORMATION SEPARATOR THREE	$009 E ~ P R I V A C Y ~ M E S S A G E ~$
001E INFORMATION SEPARATOR TWO	$009 F ~ A P P L I C A T I O N ~ P R O G R A M ~ C O M M A N D ~$

001E INFORMATION SEPARATOR TWO
009F APPLICATION PROGRAM COMMAND

The control character 0084 INDEX has been removed from ISO/IEC 6429:1992. In addition, the control characters 000E and 000F are nam ed SHIFT-OUT and SHIFT-IN respectively in 7-bit environment and LOCKING-SHIFT ONE and LOCKINGSHIFT ZERO respectively in 8-bit environment.

12 Declaration of identification of features

12.1 Purpose and context of identification

Code unit sequences conforming to this International Standard are intended to form all or part of a composite unit of coded information that is interchanged between an originator and a recipient. The identification of this International Standard (including the encoding form and the encoding scheme) and any subset of the coding space that have been adopted by the originator should also be available to the recipient. The route by which such identification is communicated to the recipient is outside the scope of this International Standard.

However, some standards for interchange of coded information may permit, or require, that the coded representation of the identification applicable to the code unit sequence forms a part of the interchanged information. Clause 12 specifies a coded representation for the identification of UCS and a subset of this International Standard, and also of a C0 and a C1 set of control functions from ISO/IEC 6429 for use in conjunction with this International Standard. Such coded representations provide all or part of an identification data element, which may be included in information interchange in accordance with the relevant standard.

In the context of these identifications, because the more significant octets shall precede the less significant octets when serialized, the only encoding schemes that can be selected are UTF-8, UTF-16BE, and UTF-32BE according to the relevant encoding forms (UTF-8, UTF-16, and UTF-32 respectively).

If two or more of the identifications are present, the order of those identifications shall follow the order as specified in Clause 12.

NOTE - An alternative method of identification is described in Annex N.

12.2 Identification of a UCS encoding scheme

When the escape sequences from ISO/IEC 2022 are used, the identification of a UCS encoding scheme (see Clause 9) specified by this International Standard shall be by a designation sequence chosen from the following list:

ESC 02/05 02/15 04/09
UTF-8 encoding form; UTF-8 encoding scheme
ESC 02/05 02/15 04/12
UTF-16 encoding form; UTF-16BE encoding scheme
ESC 02/05 02/15 04/06
UTF-32 encoding form; UTF-32BE encoding scheme
NOTE - The following designation sequences: ESC 02/05 02/15 04/00, ESC 02/05 02/15 04/01, ESC 02/05 02/15 04/03, ESC 02/05 02/15 04/04, ESC 02/05 02/15 04/07, ESC 02/05 02/15 04/08, ESC 02/05 02/15 04/10, ESC 02/05 02/15 04/11 used in previous versions of this standard to identify implementation levels 1 and 2 are deprec ated. The remaining designation sequences correspond to the former level 3 which is now the only supported content definition for code unit sequences.
ESC 02/05 04/07
UTF-8 encoding form; UTF-8 encoding scheme
If such an escape sequence appears within a code unit sequence conforming to ISO/IEC 2022, it shall consist only of the sequences of bit combinations as shown above.

If such an escape sequence appears within a code unit sequence conforming to this International Standard, it shall be padded in accordance with Clause 11 when the identified encoding form is either UTF-16 or UTF-32. No padding is necessary when the identified encoding form is UTF-8. See also 12.5.

12.3 Identification of subsets of graphic characters

When the control sequences of ISO/IEC 6429 are used, the identification of subsets (see Clause 8) specified by this International Standard shall be by a control sequence IDENTIFY UNIVERSAL CHARACTER SUBSET (IUCS) as shown below.

CSI Ps... 02/00 06/13
Ps... means that there can be any number of selective parameters. The parameters are to be tak en from the subset collection numbers as shown in 9 . When there is more than one parameter, each parameter value is separated by an octet with value 03/11.

Parameter values are represented by digits where octet values $03 / 00$ to $03 / 09$ represent digits 0 to 9 .
If such an escape sequence appears within a code unit sequence conforming to ISO/IEC 2022, it shall consist only of the sequences of bit combinations as shown above.

If such a control sequence appears within a code unit sequence conforming to this International Standard, it shall be padded in accordance with Clause 11.

12.4 Identification of control function set

When the escape sequences from ISO/IEC 2022 are used, the identification of each set of control functions (see Clause 11) of ISO/IEC 6429 to be used in conjunction with ISO/IEC 10646 shall be an identifier sequence of the type shown below.

ESC 02/01 04/00 identifies the full C0 set of ISO/IEC 6429
ESC 02/02 04/03 identifies the full C1 set of ISO/IEC 6429

For other C0 or C1 sets, the final octet F shall be obtained from the International Register of Coded Character Sets. The identifier sequences for these sets shall be
$\begin{array}{ll}\text { ESC 02/01 F } & \text { identifies a C0 set } \\ \text { ESC 02/02 F } & \text { identifies a C1 set }\end{array}$
If such an escape sequence appears within a code unit sequence conforming to ISO/IEC 2022, it shall consist only of the sequences of bit combinations as shown above.

If such an escape sequence appears within a code unit sequence conforming to this International Standard, it shall be padded in accordance with Clause 11.

12.5 Identification of the coding system of ISO/IEC 2022

When the escape sequences from ISO/IEC 2022 are used, the identification of a return, or tra nsfer, from UCS to the coding system of ISO/IEC 2022 shall be by the escape sequence ESC $02 / 0504 / 00$. If such an escape sequence appears within a code unit sequence conforming to this International Standard, it shall be padded in accordance with Clause 11.

If such an escape sequence appears within a code unit sequence conforming to ISO/IEC 2022, it shall consist only of the sequence of bit combinations as shown above.

NOTE - Escape sequence ESC 02/05 04/00 is normally used for return to the restored state of ISO/IEC 2022. The escape sequence ESC 02/05 04/00 specified here is sometimes not exactly as specified in ISO/IEC 2022 due to the presence of padding octets. For this reason the escape sequences used in 12.2 for the identification of UCS (except for ESC 02/05 04/07) include the octet $02 / 15$ to indicate that the return does not always conform to that standard.

13 Structure of the code charts and lists

Clause 31 sets out the detailed code charts and the lists of character names for the graphic characters. It specifies for each character their graphic symbol, their coded representation, and their character name.

NOTE - Clause 31 also includes additional information on characters clarifying some feature of a character, such as its naming or usage, or its associated graphic symbol.
Graphic symbols are to be regarded as typical visual representations of the corresponding graphic characters. This International Standard does not attempt to prescribe the exact shape or colour of each character. The shape is affected by the design of the font or other representation method employed, which is out of scope. Although the representative glyphs in this International Standard are consistently presented in black and white, it does not prevent implementations from using graphic symbols with some specific colour or even with multiple colours, fully or partly animated graphics, or both. When characters are typically associated with a particular colour, conventions of European heraldry are used to represent those colours in monochromatic line drawings in the code charts. Furthermore, the usage of 'BLACK' and 'WHITE' in character names does not imply a specific colour. It is simply a distinction between a filled character and an outline character.

Graphic characters specified in this International Standard are uniquely identified by their names. This does not imply that the graphic symbols by which they are commonly imaged are always different. Examples of graphic characters with similar graphic symbols are LATIN CAPITAL LETTER A, GREEK CAPITAL LETTER ALPHA and CYRILLIC CAPITAL LETTER A.

The meaning attributed to any character is not specified by this International Standard; it may differ from country to country, or from one application to another.

For the alphabetic scripts, the general principle has been to arrange the characters within any row in approximate alphabetic sequence; where the script has capital and small letters, these are arranged in pairs. However, this general principle has been overridden in some cases. For example, for those scripts for which a relevant standard exists, the characters are allocated according to that standard. This arrangement within the code charts will aid conversion between the existing standards and this coded character set. In general, however, it is anticipated that conversion between this coded character set and any other coded character set will use a table lookup technique.

It is not intended, nor will it often be the case, that the characters needed by any one user will be found all grouped together in one part of the code charts.

Furthermore, the user of any script will find that needed characters may have been coded elsewhere in this coded character set. This especially applies to the digits, to the symbols, and to the use of Latin letters in dual-script applications.

Therefore, in using this coded character set, the reader is advised to refer first to the block names list in Annex A. 2 or an overview of the Planes in figures 7 to 12, and then to turn to the specific code chart for the relevant script and for symbols and digits. In addition, Annex G contains an alphabetically sorted list of character names.

14 Block and collection names

14.1 Block names

Named blocks of contiguous code points are specified within a plane for the purpose of allocation of characters sharing some common characteristic, such as script. The blocks specified within the BMP, SMP, SIP and SSP are listed in A.2, and are illustrated in figures 7 to 12 .

Rules to be used for constructing the names of blocks are given in 24.5.1.

14.2 Collection names

Collections are shown in Annex A.
Rules to be used for constructing the names of collections are given in 24.5.2.

15 Mirrored characters in bidirectional context

15.1 Mirrored characters

A class of characters has special significance in the context of bidirectional text. The interpretation and rendering of any of these characters depend on the direction of the character being rendered that is in effect at the point in the code unit sequence where the coded representation of the character appears. The list of these characters is determined by having the 'Bidi_Mirrored' property set to ' Y ' in the Unicode Standard. These values shall be determined according to the Unicode Standard Bidi Mirrored property (see Clause 3).

NOTE 1 - Typically, a mirrored character has its image mirrored horizontally in text that is laid out from right to left. However, for some mathematical symbols, the 'mirrored' form is not an exact mirror image. See the Unicode Technical Report \#25, "Unicode Support for Mathematics" for additional details.
This character mirroring is not limited to paired characters and shall be applied to all characters belonging to that class.

EXAMPLE

In a right-to-left text segment, the GREATER-THAN SIGN (rendered as " $>$ " in left-to-right text) may be rendered as the "<" graphic symbol.
NOTE 2 - Many ancient scripts and some scripts in modern use can be written either right-to-left or left-to-right. It is often customary for one of these scripts to use the appropriately mirrored graphical symbol for any character represented by a graphic symbol that is not symmetric around the vertical axis. In such cases, it is up to the rendering system to display the graphic image appropriate for the writing direction employed. The directionality of the representative graphic symbol shown in the character code charts matches the default writing direction for the script. Characters belonging to these scripts have the "Bidi_Mirrored' property set to ' N ' in the Unicode Standard (see reference to the Unicode Standard Bidi Mirrored property in 3).
Examples of such scripts include, but are not limited to, Old Italic, an ancient script for which the default writing direction in this standard is left-to-right, and Cypriot, an ancient script for which the default writing direction in this standard is right-to-left.

15.2 Directionality of bidirectional text

The Unicode Bidirectional Algorithm (see Clause 3) describes the algorithm used to determine the directionality for bidirectional text. It shall be used in the context of this International Standard.

16 Special characters

16.1 General

There are some characters that do not have printable graphic symbols or are otherwise special in some ways.

16.2 Space characters

The following characters are space characters. They represent all characters which have the General Category value set to 'Zs'.

Code Point	Name	2005	FOUR-PER-EM SPACE
0020	SPACE	2006	SIX-PER-EM SPACE
$00 A 0$	NO-BREAK SPACE	2007	FIGURE SPACE
1680	OGHAM SPACE MARK	2008	PUNCTUATION SPACE
2000	EN QUAD	2009	THIN SPACE
2001	EM QUAD	200 A	HAIR SPACE
2002	EN SPACE	$202 F$	NARROW NO-BREAK SPACE
2003	EM SPACE	$205 F$	MEDIUM MATHEMATICAL SPACE
2004	THREE-PER-EM SPACE	3000	IDEOGRAPHIC SPACE

NOTE 1 - The character 1680 OGHAM SPACE MARK is typically represented with a visible glyph showing the central stemline, and it is only represented by a blank glyph in a "stemless" style font.
NOTE 2 - The character 202F NARROW NO-BREAK-SPACE is a non-breaking space. It is similar to 00AO NO-BREAK SPACE, except that it is rendered with a narrower width. When used with the Mongolian script this character is usually rendered at one-third of the width of a normal space, and it separates a suffix from the Mongolian word-stem. This allows for the normal rules of Mongolian character shaping to apply, while indicating that there is no word boundary at that position.

16.3 Currency symbols

Currency symbols in this International Standard do not necessarily identify the currency of a country. For example, YEN SIGN can be used for Japanese Yen and Chinese Yuan. Also, DOLLAR SIGN is used in numerous countries including the United States of America.

16.4 Format characters

The following characters are format characters (see 6.3.3). They represent all characters which have the General Category value set to 'Cf', 'Zl', and 'Zp'. See Annex F.

Code Point	Name	2063	INVISIBLE SEPARATOR
00AD	SOFT HYPHEN	2064	INVISIBLE PLUS
0600	ARABIC NUMBER SIGN	2066	LEFT-TO-RIGHT ISOLATE
0601	ARABIC SIGN SANAH	2067	RIGHT-TO-LEFT ISOLATE
0602	ARABIC FOOTNOTE MARKER	2068	FIRST STRONG ISOLATE
0603	ARABIC SIGN SAFHA	2069	POP DIRECTIONAL ISOLATE
0604	ARABIC SIGN SAMVAT	206A	I NHIBIT SYMMETRIC SWAPPING
0605	ARABIC NUMBER MARK ABOVE	206B	ACTIVATE SYMMETRIC SWAPPING
061C	ARABIC LETTER MARK	206C	INHIBIT ARABIC FORM SHAPING
06DD	ARABIC END OF AYAH	206D	ACTIVATE ARABIC FORM SHAPING
070F	SYRIAC ABBREVIATION MARK	206E	NATIONAL DIGIT SHAPES
180E	MONGOLIAN VOWEL SEPARATOR	206F	NOMINAL DI GIT SHAPES
200B	ZERO WIDTH SPACE	FEFF	ZERO WIDTH NO-BREAK SPACE
200C	ZERO WIDTH NON-JOINER	FFF9	I NTERLINEAR ANNOTATION ANCHOR
200D	ZERO WIDTH JOINER	FFFA	I INTERLINEAR ANNOTATI ON SEPARATOR
200E	LEFT-TO-RIGHT MARK	FFFB	I NTERLINEAR ANNOTATION TERMINATOR
200F	RIGHT-TO-LEFT MARK	110BD	KAITHI NUMBER SIGN
2028	LINE SEPARATOR	1BCA0	SHORTHAND FORMAT LETTER OVERLAP
2029	PARAGRAPH SEPARATOR	1BCA1	SHORTHAND FORMAT CONTINUING
202A	LEFT-TO-RIGHT EMBEDDING		OVERLAP
202B	RIGHT-TO-LEFT EMBEDDING	1BCA2	SHORTHAND FORMAT DOWN STEP
202C	POP DIRECTIONAL FORMATTING	1BCA3	SHORTHAND FORMAT UP STEP
202D	LEFT-TO-RIGHT OVERRIDE	1 1773	MUSICAL SYMBOL BEGIN BEAM
202E	RIGHT-TO-LEFT OVERRIDE	1D174	MUSICAL SYMBOL END BEAM
2060	WORD JOINER	1 1775	MUSICAL SYMBOL BEGIN TIE
2061	FUNCTION APPLICATION	1D176	MUSICAL SYMBOL END TIE
2062	INVISIBLE TIMES	1 1177	MUSICAL SYMBOL BEGIN SLUR

```
1D178 MUSICAL SYMBOL END SLUR
1D179 MUSICAL SYMBOL BEGIN PHRASE
1D17A MUSICAL SYMBOL END PHRASE
```

E0001 LANGUAGE TAG
E0020-E007F TAG SPACE to CANCEL TAG

16.5 Ideographic description characters

An Ideographic Description Character (IDC) is a graphic character, which is used with a sequence of other graphic characters to form an Ideographic Description Sequence (IDS). Such a sequence may be used to describe an ideographic character which is not specified with this International Standard. The AnnexI describes them in more details. The list of IDC follows:

Code Point	Name
2FF0	IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO RIGHT
2FF1	IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO BELOW
2FF2	IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO MIDDLE AND RIGHT
2FF3	IDEOGRAPHIC DESCRIPTI ON CHARACTER ABOVE TO MIDDLE AND BELOW
2FF4	IDEOGRAPHIC DESCRIPTI ON CHARACTER FULL SURROUND
2FF5	IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM ABOVE
2FF6	IDEOGRAPHIC DESCRIPTI ON CHARACTER SURROUND FROM BELOW
2FF7	IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM LEFT
2FF8	IDEOGRAPHIC DESCRIPTI ON CHARACTER SURROUND FROM UPPER LEFT
2FF9	IDEOGRAPHIC DESCRIPTI ON CHARACTER SURROUND FROM UPPER RIGHT
2FFA	IDEOGRAPHIC DESCRIPTI ON CHARACTER SURROUND FROM LOWER LEFT
2FFB	IDEOGRAPHIC DESCRIPTION CHARACTER OVERLAID

16.6 Variation selectors and variation sequences

16.6.1 General

Variation selectors are a specific class of combining characters immediately following a base character for which there is no canonical mapping and no equivalent composite sequence. The purpose is to indicate a specific variant form of graphic symbol for that base character. The character sequence consisting of such base character followed by a variation selector is called a variation sequence.

NOTE - The variation selector only selects a specific appearance among those acceptable for an already encoded character. It is not intended as a general code extension mechanism.
Variation selectors are made of all coded characters included in the blocks VARIATION SELECTORS and VARIATION SELECTORS SUPPLEMENT and the three Mongolian Free Variation Selectors (FVS1 To FVS3).

A variation sequence whose base character is a CJK unified ideograph and whose variation selector is from the VARIATION SELECTORS SUPPLEMENT BLOCK is called an ideographic variation sequence. All other variation sequences are called standardized variation sequences. The variant form of a graphic symbol specified by a standardized variation sequence is called a standardized variant.

Only the variation sequences defined or referenced in 16.6 indicate a specific variant form of graphic symbol; all other such sequences are undefined. Furthermore, variation selectors following other base characters and any non-base characters have no effect on the selection of the graphic symbol for that character.

16.6.2 Standardized variation sequences

Standardized variation sequences are defined by a machine-readable format that is accessible as a link.
The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark that specifies Standardized Variations Sequences. Each line in the text file contains the following information organized in two or three fields:

- 1st field: Variation sequence expressed as a UC S Sequence Identifier (using a modified syntax for the USI, omitting commas and angle brackets),
- 2nd field: Description of the variation sequence,
- 3rd field (optional): Shaping environments where the variation sequence applies. The possible values are: isolate, initial, medial, final.

The fields are delimited by a SEMICOLON (';';) followed optionally by zero or more SPACE characters. The last field may be followed by a comment starting with a NUMBER SIGN ('\#') describing the name of the base character. Comment lines, starting with a NUMBER SIGN ('\#') are informational only. Comment lines and blank lines in the text file should be ignored by any automatic process which parses the data file to extract the normative list of Standardized Variants.

Click on this highlighted text to access the reference file.

NOTE 1 - The content is also available as a separate viewable file in the same file directory as this document. The file is named "UCSVariants.txt". These sequences are also described as StandardizedVariants.html in the Unicode character database (http://www.unicode.org/Public/UNIDATA/StandardizedVariants.html).

The Standardized Variations Sequences contain sequences associated with allowed base characters from the following categories:

- Mathematical symbols

NOTE 2 - The VARIATION SELECTOR-1 (FE00) is the only variation selector used with mathematical symbols.

- Mongolian characters. Only some presentation forms of the base Mongolian characters used with the Mongolian free variation selectors produce variant appearances.
NOTE 3 - The Mongolian characters have various presentation forms depending on their position in a code unit sequence. These presentations forms are called isolate, initial, medial and final.
- Manichaean characters

NOTE 4 - These are similar to Mongolian variations sequences in depending on their position in a code unit sequence, but using only isolate and final presentation forms.

- Phags-pa characters. These variation sequences do not select fixed visual representation; rather, they select a representation that is reversed from the normal form predicted by the preceding character.
- Pictographic symbols. The range of presentations may include a traditional black and white text style, using FEOE VARIATION SELECTOR-15, or an 'emoji' style, using FEOF VARIATION SELECTOR-16, whose presentation often involves color/grayscale and/or animation.
NOTE 5 - Standardized variations sequences involving the characters 0023 NUMBER SIGN and the range 0030-0039 (DIGIT ZERO to DIGIT NINE) are intended for use with 20E3 COMBINING ENCLOSING KEYCAP, such as in: <0023, FE0E, 20E3> NUMBER SIGN inside a COMBINING ENCLOSING KEYCAP in text style.
- CJK Unified Ideographs. Each of these variation sequences corresponds to a CJK compatibility ideograph. Its specified appearance is that of the corresponding CJK compatibility ideograph.
NOTE 6 - All normalization forms replace CJK compatibility ideographs with the corresponding CJK unified ideographs, but leave the variation sequences unchanged (see Clause 21). In contexts where normalization forms are used and the distinction between the CJK compatibility ideographs and CJK unified ideographs is desired, the usage of variation sequences is a mechanism to maintain that distinction. No equivalence between these variation sequences and the corresponding compatibility ideographs is defined. Conversion considerations are out of scope of this International Standard

16.6.3 Ideographic variation sequences

Variations sequences composed of a unified ideograph as the base character and one of VARIATION SELECTOR-17 to V ARIATION SELECTOR-256 from the Supplementary Special-purpose Plane (SSP) are registered in the Ideographic Variation Database defined by Unicode Technical Standard \#37. The version referenced in Clause 3 shall be used in the context of this International Standard.

NOTE - This International Standard incorporates by reference the variation sequences listed in version 2010-11-14 of the Ideographic Variation Database, as described at http://www.unicode.org/ivd/data/2012-03-02/.

17 Presentation forms of characters

Each presentation form of a character provides an alternative form, for use in a particular context, to the nominal form of the character or sequence of characters from the other zones of graphic characters. The transformation from the nominal form to the presentation forms may involve substitution, superimposition, or combination.

The rules for the superimposition, choice of differently shaped characters, or combination into ligatures, or conjuncts, which are often of extreme complexity, are not specified in this International Standard.

In general, presentation forms are not intended to be used as a substitute for the nominal forms of the graphic characters specified elsewhere within this coded character set. However, specific applications may encode these presentation forms instead of the nominal forms for specific reasons among which is compatibility with existing devices. The rules for searching, sorting, and other processing operations on presentation forms are outside the scope of this International Standard.

Within the BMP these characters are mostly allocated to code points within rows from FB to FF.

18 Compatibility characters

Compatibility characters are included in this International Standard primarily for compatibility with existing coded character sets to allow two-way code conversion without loss of information.

Within the BMP many of these characters are allocated to code points within rows F9, FA, FE, an d FF, and within rows 31 and 33 . Some compatibility characters are also allocated within other rows.

NOTE 1 - There are twelve code points in the row FA of the BMP which are allocated to CJK Unified Ideographs.
Within the Supplementary Ideographic Plane (SIP) these characters are allocated to code points within rows F8 to FA.

The CJK compatibility ideographs are ideographs that should have been unified with one of the CJK unified ideographs, per the unification rule described in Annex S. However, they are included in this International Standard as separate characters, because, based on various national, cultural, or historical reasons for some specific country and region, some national and regional standards assign separate code points for them.

> NOTE 2 - For this reason, compatibility ideographs should only be used for maintaining and guaranteeing a round trip conversion with the specific national, regional, or other standard. Other usage is strongly discouraged.
> NOTE 3 - Because compatibility ideographs are not preserved through any normalization forms, use of standardized variation sequences for CJK Unified Ideographs (see 16.6) may be preferred in contexts where normalization forms are used and the distinction between CJK compatibility ideographs and the corresponding CJK Unified ideographs needs to be maintained. In context where compatibility ideographs should be preserved, normalization forms cannot be used.

19 Order of characters

Usually, coded characters appear in a code unit sequence in logical order (logical or backing store order corresponds approximately to the order in which characters are entered from the keyboard, after corrections such as insertions, deletions, and overtyping have taken place). This applies even when characters of different dominant direction are mixed: left-to-right (Greek, Latin, Thai) with right-to-left (Arabic, Hebrew), or with vertical (Mongolian) script.

Some characters may not appear linearly in final rendered text. For example, the medial form of DEVANAGARI VOWEL SIGN I is displayed before the character that it logically follows in the code unit sequence.

20 Combining characters

20.1 Order of combining characters

Coded representations of combining characters shall follow that of the graphic character with which they are associated (for example, coded representations of LATIN SMALL LETTER A followed by COMBINING TILDE represent a composite sequence for Latin "ã").

If a combining character is to be regarded as a composite sequence in its own right, it shall be coded as a composite sequence by association with the character 00A0 NO-BREAK SPACE. For example, grave accent can be composed as 00A0 NO-BREAK SPACE followed by 0300 COMBINING GRAVE ACCENT.

NOTE - Indic combining marks for vowels form a special category of combining characters, since the presentation can depend on more than one of the surrounding characters. Thus it might not be desirable to associate these Indic combining marks with the character NO-BREAK SPACE.

20.2 Combining class and canonical ordering

Each combining character has a combining class value determined by the Unicode Standard. These values shall be determined according to the Unicode Standard Combining Class property (see Clause 3). The combining class is used to determine the canonical ordering which is part of the norm alization process (see Clause 21). Canonical ordering consists in ordering combining characters in the increasing order of their combining class. Combining characters with a combining class value of zero are not re-ordered relative to other characters.

20.3 Appearance in code charts

Combining characters intended to be positioned relative to the associated character are depicted within the character code charts above, below, to the right of, to the left of, in, around, or through a dotted circle to show their position relative to the base character. In presentation, these characters are intended to be positioned relative to the preceding base character in some manner, and not to stand alone or function as base characters. This is the motivation for the term "combining".

NOTE - Diacritics are the principal class of combining characters used in European alphabets. For many other scripts used in India and South East Asia, combining characters encode vowel letters; as such they are not generally referred to as "diacritical marks".

20.4 Alternate coded representations

Alternate coded representations of text are generated by using multiple combining characters in different orders, or using various equivalent combinations of characters and composite sequences. These alternate coded representations result in multiple representations of the same text. Norm alizing (see Clause 21) these coded representations reduces significantly, but does not eliminate, the occurrences of these multiple representations.

NOTE - For example, the French word "là" may be represented by the characters LATIN SMALL LETTER L followed by LATIN SMALL LETTER A WITH GRAVE, or may be repres ented by the characters LATIN SMALL LETTER L followed by LATIN SMALL LETTER A followed by COMBINING GRAVE ACCENT. When the normalization forms are applied on those alternate coded representations, only one representation remains. The form of the remaining representation depends on the normalization form used.

20.5 Multiple combining characters

There are instances where more than one combining character is applied to a single graphic character. This International Standard does not restrict the number of combining characters that can follow a base character. The following rules apply to the presentation of these characters:
a) If the com bining characters can interact in presentation (for example, COMBINING MACRON and COMBINING DIAERESIS), then the position of the combining characters in the resulting graphic display is determined by the order of the coded representation of the combining characters. The presentations of combining characters are to be positioned from the base character outward. For example, combining characters placed above a base character are stacked vertically, starting with the first encountered in the sequence of coded representations and continuing for as many marks above as are required by the coded combining characters following the coded base character. For combining characters placed below a base character, the situation is inverted, with the combining characters starting from the base character and stacking downward.
An example of multiple combining characters above the base character is found in Thai, where a consonant letter can have above it one of the vowels 0 E 34 to 0 E 37 and, above that, one of four tone marks $0 E 48$ to $0 E 4 B$. The order of the coded representation is: base consonant, followed by a vowel, followed by a tone mark.
b) Some specific combining characters override the default stacking behaviour by being positioned horizontally rather than stacking, or by forming a ligature with an adjacent combining character. When positioned horizontally, the order of coded representations is reflected by positioning in the dominant order of the script with which they are used. For example, horizontal accents in a left-to-right script are coded left-to-right.

Prominent characters that show such override behaviour are associated with specific scripts or alphabets. For example, the COMBINING GREEK KORONIS (0343) requires that, together with a following acute or grave accent, they be rendered side-by-side above a letter, rather than the accent marks being stacked above the COMBINING GREEK KORONIS. The order of the coded representations is: the letter itself, followed by that of the breathing mark, followed by that of the accent marks. Two Vietnamese tone marks, which have the same graphic appearance as the Latin acute and grave accent marks, do not stack above the three Vietnamese vowel letters which already contain the circumflex diacritic (â, ê, ô). Instead, they form ligatures with the circumflex component of the vowel letters.
c) If the combining characters do not interact in presentation (for example, when one combining character is above a graphic character and another is below), the resultant graphic symbol from the base character and combining characters in different orders may appear the same. For example, the coded representations of LATIN SMALL LETTER A, followed by COMBINING CARON, followed by COMBINING OGONEK may result in the same graphic symbol as the coded representations of LATIN SMALL LETTER A, followed by COMBINING OGONEK, followed by COMBINING CARON.
Combining characters in Hebrew or Arabic scripts do not normally interact. Therefore, the sequence of their coded representations in a composite sequence does not affect its graphic symbol. The rules for forming the combined graphic symbol are beyond the scope of this International Standard.

20.6 Collections containing combining characters

In some collections of characters listed in Annex A, such as collections 14 (BASIC ARABIC) or 25 (THAI), both combining characters and non-combining characters are included.

Other collections of characters listed in Annex A comprise only combining characters, for example collection 7 (COMBINING DIACRITICAL MARKS).

20.7 Combining Grapheme Joiner

The character 034F COMBINING GRAPHEME JOINER is used to indicate that adjacent characters are to be treated as a un it for the purpose of language-sensitive collation and searching. In language-sensitive collation and searching, the combining grapheme joiner shall be ignored unless it specifically occurs with a tailored collation element mapping. For rendering, the combining grapheme joiner is invisible.

NOTE - The combining grapheme joiner may be used to differentiate two usages of a combining character by using it for one of the two cases. For example, where a distinction is needed between the German umlaut and the tréma, the COMBINING GRAPHEME JOINER (034F) followed by the COMBINING DIAERESIS (0308) should be used to represent the tréma while the COMBINING DIAERESIS (0308) alone should be used to represent the German umlaut.

21 Normalization forms

Normalization forms are the mechanisms allowing the selection of a unique coded representation among alternative; but equivalent coded text representations of the same text. Normalization forms for use with this International Standard are specified in the Unicode Standard UAX\#15 (see Clause 3) and shall be used in the context of this International Standard. There are four normalization forms:
a) Normalization Form D (NFD),
b) Normalization Form C (NFC),
c) Normalization Form KD (NFKD),
d) Normalization Form KC (NFKC).

NOTE 1 - The result of applying any of these normalization forms onto a code unit sequence is intended to stay stable over time. It means that the normalized representation of a code unit sequence consisting of characters assigned in this version of the standard remains normalized even when the standard is amended.

NOTE 2 - Some normalization forms favour composite sequences over shorter representations of text, others favour the shorter representations. The backward compatibility requirement is provided by establishing ISO/IEC 10646-1:2000 (2 ${ }^{\text {nd }}$ Edition) and ISO/IEC 10646-2:2001 ($1^{\text {st }}$ Edition) as the reference versions for the definition of the shorter representation of text. The union of their repertoire is identical to the fixed collection UNICODE 3.2 (see A.6.3).

NOTE 3 - The goal of normalization is to provide a unique nor malized result for any given code unit sequence to facilitate, among other things, identity matching. A normalized form does not necessarily represent the optimal sequence from a linguistic point of view.
NOTE 4 - In all four normalization forms, CJK Compatibility Ideographs are replaced with the corresponding CJK Unified Ideographs. Normalization, however, does not alter variation selectors, and variation sequences are preserved. Because of this, the use of standardized variation sequences for CJK Unified Ideographs over the CJK Compatibility Ideographs is preferred in the context of normalization (see 16.6).

22 Special features of individual scripts and symbol repertoires

22.1 Hangul syllable composition method

In rendering, a sequence of Hangul Jamo (from HANGUL JAMO block: 1100 to 11FF, HANGUL JAMO EXTENDED-A block: A960 to A97F , and H ANGUL JAMO EXTENDED-B block: D7B0 to D7FF) is displayed as a series of syllable blocks. Jamo can be classified into three classes: Choseong (syllable-initial characters or initial consonants), Jungseong (syllable-peak characters or medial vowels), and Jongseong (syllable-final characters or final consonants). A complete syllable block is composed of a Choseong and a Jungseong, and optionally a Jongseong.

An incomplete syllable is a string of one or more characters which does not constitute a complete syllable (for example, a Choseong alone, a Jungseong alone, a Jongseong alone, or a Jungseong followed by a Jongseong). An incom plete syllable which starts with a Jungseong shall be preceded by a CHOSEONG FILLER (115F). An incomplete syllable composed of a J ongseong alone shall be preceded by a CHOSEONG FILLER (115F) and JUNGSEONG FILLER (1160). An incomplete syllable composed of a Choseong alone shall be followed by a JUNGSEONG FILLER (1160).

NOTE 1 - Hangul Jamo are not combining characters.
NOTE 2 - When a combining character such as HANGUL SINGLE DOT TONE MARK (302E) is intended to apply to a sequence of Hangul Jamo it should be placed at the end of the sequence, after the Hangul Jamo character which completes the syllable block.
NOTE 3 - Hangul text can be represented in several different ways in this standard. Korean Standard KS X 1026-1: Information Technology - Universal Multiple-Octet Coded Character set (UCS) - Hangul - Part 1, Hangul processing guide for information interchange, provides guidelines on how to ensure interoperability in information interchange.

22.2 Features of scripts used in India and some other South Asian countries

In the code charts for Rows 09 to OD and OF, and for the MYANMAR block in Row 10, of the BMP (see Clause 31) the graphic symbols shown for some characters appear to be formed as compounds of the graphic symbols for two other characters in the same table.

EXAMPLE 1 Row 09 Devanagari

The graphic symbol for 0906 DEVANAGARI LETTER AA appears as if it is constructed from the graphic symbols for 0905 DEVANAGARI LETTER A and 093E DEVANAGARI VOWEL SIGN AA
EXAMPLE 2 Row OD Malayalam
The graphic symbol for 0 D08 MALAYALAM LETTER II appears as if it is constructed from the graphic symbols for 0D07 MALAYALAM LETTER I and OD57 MALAYALAM AU LENGTH MARK
In such cases a single coded character may appear to the user to be equivalent to the sequence of two coded characters whose graphic symbols, when combined, are visually similar to the graphic symbol of that single character, as in a composite sequence (see 4.17).

A "unique-spelling" rule is defined as follows. According to this rule, no coded character from a table for Rows 09 to 0D or 0F, or f or the MYANMAR block in Row 10, with the list of exceptions mentioned below, shall be regarded as equivalent to a sequence of two or more other coded characters taken from the same table.

- Two-part dependent vowel signs,
- Independent vowel 1025 MYANMAR LETTER UU,
- Consonants including a nukta sign.

NOTE - All these characters have canonical mapping consisting of a sequence of two characters.

22.3 Byzantine musical symbols

The Byzantine Musical Notation System makes use of the so-called 'three-stripe' effect. There are signs that appear in the Upper, Middle or Lower stripes. Other signs are known as musical characters and appear in the textual part of the notation system. Multiple signs can be stacked together in their appropriate stripe.

22.4 Source references for pictographic symbols

Some symbols are associated by reference with various industrial sources. Unlike CJK Unified ideographs, these references do not establish character identity. These sources may be associated with either single code points or sequences of code points.

The symbol sources are:

- DoCoMo Shift-JIS code
- KDDI Shift-JIS code
- SoftBank Shift-JIS code

The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark, that specifies, after a 6 -lines header and a variable number of comment lines (starting with '\#'), source reference lines; each line containing the following information organized in fields delimited by ';':

- $1^{\text {st }}$ field: UCS code point or s equence, in the format (hhhh | hhhhh) (<space> (hhhh | hhhhh)) *
- $\quad 2^{\text {nd }}$ field: DoCoMo Shift-JIS code, in the format (hhhh)
- $3^{\text {rd }}$ field: KDDI Shift-JIS code, in the format (hhhh)
- $4^{\text {th }}$ field: SoftBank Shift-JIS code, in the format (hhhh)

The format definition uses ' h ' as a hex adecimal unit an d <space> as the SP ACE character. An ASTERISK indicates zero, one, or more iteration of the preceding pattern.

Click on this highlighted text to access the reference file.

NOTE 1 - The content is also available as a separate viewable file in the same file directory as this document. The file is named "EmojiSrc.txt". The content is for reference only and is not intended for cross mapping between vendor sets.
NOTE 2 - This content provides mappings between UCS code points and sequences on one hand and Shift-JIS codes for cell phone carrier symbols on the other hand. Each mapping is symmetric ("round trip"), for equivalent UCS and carrier symbols or sequences. It does not include best-fit ("fallback") mappings to similar but not equivalent symbols in either mapping direction.

23 Source references for CJK Ideographs

23.1 List of source references

A CJK Ideograph is always referenced by at least one source reference. These source references are provided in a machine-readable format that is accessible as links to this document. The content pointed by these links is also normative.

NOTE 1 - The referenced files are only available to users who obtain their copy of the standard in a machine-readable format. However, the file format makes them printable.
The source reference information establishes the character identity for CJK Ideographs. A source reference is established by associating a CJK Ideograph code point with one or several values in the source standards listed below. Such a source standard originates from the following categories:

- Hanzi G sources,
- Hanzi H sources,
- Hanzi M sources,

ISO／IEC 10646：2014（E）
－Hanzi T sources，
－Kanji J sources，
－Hanja K sources，
－Hanja KP sources，
－ChuNom V sources，and
－Unicode U sources
For a given code point，only one source reference can be created for each of the source standard catego－ ry（G，H，M，T，J，K，KP，V，and U）．In order to provide a comprehensive coverage for a source standard category，when a source standard is referenced，all its unique associations with existing CJK Ideographs are documented．

The following list identifies all sources referenced by the CJK Ideographs in both the BMP and the SIP．
NOTE 2 －Even if there is a new version of the source publication，the existing source reference information in the data files will not be updated．The updated source may only identify characters not previously covered by the older version．
The Hanzi G sources are

G0	GB2312－80
G1	GB12345－90
G3	GB7589－87 unsimplified forms
G5	GB7590－87 unsimplified forms
G7	General Purpose Hanzi List for Modern Chinese Language，and General List of Simplified Hanzi
GS	Singapore Characters
G8	GB8565－88
G9	GB18030－2000
GE	GB16500－95
GH	GB15564－1995 Code of Chinese Ideogram set for teltext broadcasting Hong Kong subset
GK	GB12052－89 Korean Character Coded Character Set for Information Interchange
G4K	Siku Quanshu（四庫全書）
GBK	Chinese Encyclopedia（中國大百科全書）
GCH	Ci Hai（ 辞海）
GCY	Ci Yuan（辭源）
GCYY	Chinese Academy of Surveying and Mapping Ideographs（中国测绘科学研究院用字）
GDZ	Geographic Publishing House Ideographs（ 地质出版社用字）
GFZ	Founder Press System（ 方正排版系统）
GGH	Gudai Hanyu Cidian（古代汉语词典）
GHC	Hanyu Dacidian（漢語大詞典）
GHZ	Hanyu Dazidian ideographs（ 漢語大字典）
GIDC	ID system of the Ministry of Public Security of China， 2009
GJZ	Commercial Press Ideographs（商务印书馆用字）
GKX	Kangxi Dictionary ideographs（康熙字典）9th edition（1958）including the addendum （康熙字典）補遺
GRM	People＇s Daily Ideographs（ 人民日报用字）
GXC	Xiandai Hanyu Cidian（现代汉语词典）
GXH	Xinhua Zidian（新华字典）
GWZ	Hanyu Dacidian Publishing House Ideographs（ 漢語大詞典出版社用字）
GZFY	Hanyu Fangyan Dacidian（汉语方言大辞典）
GZH	Zhonghua Zihai（中华字海）
GZJW	Yinzhou Jinwen Jicheng Yinde（ 殷周金文集成引得）

Note 3 －The graphic symbol shown on the code charts for a character referenced by a Kangxi Dictionary（GKX）are in modern Chinese style which may differ slightly from the corresponding graphic symbol used in the dictionary．
The Hanzi H sources are

H	Hong Kong Supplementary Character Set－2008
HB0	Big－5：Computer Chinese Glyph and Character Code Mapping Table，Technical Report C－
	26，電腦用中文字型與字碼對照表，技術通報 C－26，1984，Symbols
HB1	Big－5，Level 1
HB2	Big－5，Level 2

The Hanzi M source is
MAC Macao Information System Character Set（澳門資訊系統字集）
The Hanzi T sources are
T1 TCA－CNS 11643－1992 1st plane
T2 TCA－CNS 11643－1992 2nd plane
T3 TCA－CNS 11643－1992 3rd plane with some additional characters
T4 TCA－CNS 11643－1992 4th plane
T5 TCA－CNS 11643－1992 5th plane
T6 TCA－CNS 11643－1992 6th plane
T7 TCA－CNS 11643－1992 7th plane
TB TCA－CNS 11643－2007 11th plane
TC TCA－CNS 11643－2007 12th plane
TD TCA－CNS 11643－2007 13th plane
TE TCA－CNS 11643－2007 14th plane
TF TCA－CNS 11643－2007 15th plane
The Kanji J sources are
JO JIS X 0208－1990
J1 JIS X 0212－1990
J3 JIS X 0213：2000 level－3
J3A JIS X 0213：2004 level－3
J4 JIS X 0213：2000 level－4
JA Unified Japanese IT Vendors Contemporary Ideographs， 1993
JH Hanyo－Denshi Program（汎用電子情報交換環境整備プログラム），2002－2009
JK Japanese KOKUJI Collection
JARIB Association of Radio Industries and Businesses（ARIB）ARIB STD－B24 Version 5．1， March 142007

The Hanja K sources are
K0 KS C 5601－1987（now known as KS X1001：2004）
K1 KS C 5657－1991（now known as KS X1002：2001）
K2 PKS C 5700－1 1994 （Reedited and standardized as KS X1027－1：2011）
K3 PKS C 5700－2 1994 （Reedited and standardized as KS X1027－2：2011）
K4 PKS 5700－3：1998（Reedited and standardized as KS X1027－3：2011）
K5 Korean IRG Hanja Character Set 5th Edition： 2001 （Reedited and standardized as KS X1027－4：2011）
The Hanja KP sources are

```
KP0 KPS 9566-97
KP1 KPS 10721:2000 and KPS 10721:2003
```

The ChuNom V sources are

```
V0 TCVN 5773:1993
V1 TCVN 6056:1995
```

ISO/IEC 10646:2014 (E)
V2 VHN 01:1998
V3 VHN 02: 1998
V4 Dictionary on Nom 2006, Dictionary on Nom of Tay ethnic 2006, Lookup Table for Nom in the South 1994

The Unicode U source is

UTC The Unicode Technical Report \#45, U-source Ideographs, September 2012

23.2 Source references file for CJK Ideographs

The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark that specifies the sources references data for all CJK Ideographs. The file also contains information concerning Radical-Stroke index, the corresponding CJK unified ideograph code point value for each CJK compatibility ideograph entry, and information about the IICORE collection (see A.4.1) for characters belonging to that collection. Each line in the text file contains the following information organized in three fields:

- $\quad 1^{\text {st }}$ field: UCS code point in the format (U+hhhh) or (U+hhhhh)
- $2^{\text {nd }}$ field: Tag indicating the type of information in the third field (kIRG_GSource, kIRG_HSource, kIRG_MSource, kIRG_TSource, kIRG_JSource, kIRG_KSource, kIRG_KPSource, kIRG_VSource, kIRG_USource, kIICore, kCompatibilityVariant, kRSUnicode)
- $3^{\text {rd }}$ field: Information corresponding to the tag value specified by the second field. The Table 5 provides the format details.

The format definition for the first field uses ' h ' as a hexadecimal unit. The three fields are delimited by a LINE TABULATION control character (000B). Comment lines, starting with a NUMBER SIGN ('\#') are informational only. Comment lines and blank lines in the text file should be ignored by any automatic process which parses the data file to extract the source reference information.

Table 5: Format details of the tags used in the source reference file for CJK ideographs

Tag Value	Tag description	Third field format
kIRG_GSource	Hanzi G source	```(G0-hhhh), (G1-hhhh), (G3-hhhh), (G5-hhhh), (G7-hhhh), (GS-hhhh), (G8-hhhh), (G9-hhhh), (GE-hhhh), (GH-hhhh), (GK-hhhh), (G4K), (GBK), (GBK-dddd.dd), (GCH), (GCH-dddd.dd), (GCY), (GCY-dddd.dd), (GCYY-ddddd), (GDZ-dddd.dd), (GFZ), (GFZ-ddddd), (GGH-ddddd.dd), (GHC), (GHC-dddd.dd), (GHZ-ddddd.dd), (GIDC-ddd), (GJZ-ddddd), (GKX-dddd.dd), (GRM-dddd.dd), (GXC-dddd.dd), (GXH-dddd.dd), (GWZ-dddd.dd), (GZFY-ddddd), (GZH-dddd.dd), or (GZJW-ddddd)```
kIRG_HSource	$\begin{aligned} & \text { Hanzi } \\ & \text { source } \end{aligned}$	(H-hhhh), (HB0-hhhh), (HB1-hhhh), or (HB2-hhhh)
kIRG_MSource	$\begin{aligned} & \text { Hanzi } \quad \mathrm{M} \\ & \text { source } \end{aligned}$	(MAC-ddddd)
kIRG_TSource	$\begin{aligned} & \text { Hanzi } \\ & \text { source } \end{aligned}$	```T1-hhhh), (T2-hhhh), (T3-hhhh), (T4-hhhh), (T5-hhhh), (T6-hhhh), (T7-hhhh), (TB-hhhh), (TC-hhhh), (TD-hhhh), (TE-hhhh), or (TF-hhhh)```
kIRG_JSource	Kanji source	(J0-hhhh), (J1-hhhh), (J3-hhhh), (J3A-hhhh), (J4-hhhh), (JA-hhhh), (JH-xxxxxx), (JH-xxxxxxS), (JK-ddddd), or (JARIB-hhhh)
kIRG_KSource	$\begin{aligned} & \text { Hanja } \\ & \text { source } \end{aligned}$	(K0-hhhh), (K1-hhhh), (K2-hhhh), (K3-hhhh), (K4-hhhh), or (K5-hhhh)

Tag Value	Tag description	Third field format
kIRG_KPSource	Hanja KP source	(KP0-hhhh) or (KP1-hhhh)
kIRG_VSource	ChuNom V source	(V0-hhhh), (V1-hhhh), (V2-hhhh), (V3-hhhh), or (V4-hhhh)
kIRG_USource	Unicode source	(UTC-ddddd) or (UCI-ddddd)
kIICore	IICORE info	([ABC]\{1\}[GTJHKMP]\{1,7\})
kCompatibility Variant	Compatibility info	(U+hhhh), or (U+hhhhh)
kRSUnicode	Radical Stroke index	((d\{1,3\}'.d\{1,2\})) (<space> (d\{1,3\}'.d\{1,2\}))*

The format definition uses ' d ' as a decimal unit, ' h ' as a hexadecimal unit, ' x ' as an alphanumerical unit (0 to 9 and A to Z), and <space> as the SPACE character. Uppercase characters, digits and all other symbols between parentheses appear as shown. An ASTERISK indicates zero, one, or more iteration of the preceeding pattern.

The IICORE value ($[A B C]\{1\}[G T J H K M P]$) is a field starting with one of the letters A, B, or C indicating a decreasing order of priority, followed by one or several letters (G,T,J,H,K,M,P) indicating usage from the Hanzi G source, Hanzi T source, Kanji J source, Hanzi H source, Hanja K source, Hanzi M source, and Hanja KP source respectively. The presence of an IICORE tag for a given CJK ideograph indicates that the character is part of the IICORE collection.

The Compatibility information is a field specified for all CJK compatibility ideographs that provides the code point of the corresponding CJK unified ideograph.

The Radical-Stroke index ($\left(d\{1,3\} '^{\prime} . \mathrm{d}\{1,2\}\right)$) ($\left.\operatorname{space}\left(\mathrm{d}\{1,3\} \mathrm{'}^{\prime} . \mathrm{d}\{1,2\}\right)\right)^{*}$ is an informative field contains one or more of the following space separated construct: a radical index (one to three digits), optionally followed by an apostrophe for simplified radicals, followed by a full stop, and ending by one or two digits for the stroke count. Only the first Radical-Stroke is displayed in the code charts.

NOTE 1 - Concerning JIS X 0213:2000 and 2004 sources, level-4 references correspond to the second plane; other level references correspond to the first plane.
NOTE 2 - The original source references in the Hanja K4 and K5 sources are described using a single decimal index without section or position values. For better consistency with the other sources, those indexes have been converted into hexadecimal values in the source reference file. Unlike K0-K3 indexes, K4 and K5 indexes do not decompose in section, position values.

NOTE 3 - Characters using the reference type UCI-ddddd (U-source) have no identified source reference. The UCI value is simply a place holder.
NOTE 4 - The UCS code points are using the U+ prefix for UCS short identifiers in the format included in the source reference file to be identical to the similar file included in the Unicode Standard.

The following examples shows file entries for the CJK ideographs 3687, 4E00, 4E07, and F928. The three first definitions correspond to CJK unified ideographs, with 4E00 and 4E07 part of the IICORE collection, while the fourth definition corresponds to a CJK compatibility ideograph.

EXAMPLES

$\mathrm{U}+3687$	kIRG_GSource	G3-3A36
$\mathrm{U}+3687$	kIRG_KPSource	KP1-3C87
$\mathrm{U}+3687$	kIRG_KSource	K3-2339
$\mathrm{U}+3687$	kIRG_TSource	T4-2861
$\mathrm{U}+3687$	kRSUnicode	35.666 .6
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_GSource	G0-523B
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_HSource	HB1-A440
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_JSource	J0-306C

ISO/IEC 10646:2014 (E)

$\mathrm{U}+4 \mathrm{E} 00$	kIRG_KPSource	KP0-FCD6
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_KSource	K0-6C69
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_TSource	T1-4421
$\mathrm{U}+4 \mathrm{E} 00$	kIRG_VSource	V1-4A21
$\mathrm{U}+4 \mathrm{E} 00$	kRSUn̄icode	1.0
$\mathrm{U}+4 \mathrm{E} 00$	kIICore	AGTJHKMP
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_GSource	G0-4D72
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_HSource	HB2-C945
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_JSource	J0-4B7C
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_KPSource	KP0-DAB9
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_KSource	K0-5832
$\mathrm{U}+4 \mathrm{E} 07$	kIRG_TSource	T2-2126
$\mathrm{U}+4 \mathrm{E} 07$	kIRG ${ }^{-}$VSource	V1-4A24
$\mathrm{U}+4 \mathrm{E} 07$	kRSUnicode	1.2
$\mathrm{U}+4 \mathrm{E} 07$	kIICore	AGJKP
U+F928	kIRG_JSource	J3-742E
U+F928	kIRG_KSource	K0-5227
U+F928	kRSUnicode	53.9
U+F928	kCompatibility	U+5ECA

Click on this highlighted text to access the reference file.
NOTE - The content is also available as a separate viewable file in the same file directory as this document. The file is named: "CJKSrc.txt".

23.3 Source reference presentation for CJK Unified Ideographs

23.3.1 General

Unlike many other character repertoires which only show one graphic symbol per character, the code charts for CJK Unified Ideographs show one graphic symbol per source reference with additional information related to their identity such as radical, stroke count, and numeric value of the various source references.

NOTE - The presentation of the twelve CJK Unified Ideographs included in the CJK COMPATIBILITY block follows a different model described in 23.4.

The graphic representation for the radical is shown immediately below the code point, along with the radical number and the stroke count. That stroke count does not include the radical itself.

The code chart for the CJK UNIFIED IDEOGRAPHS block (4E00-9FFF) uses a fixed column format (i.e. source references from a given source always appear in the same column) while the code charts for the other CJK Unified blocks show graphic symbols per the following order of appearance: G, T, J, K, KP, V, H, M , and U .

23.3.2 Source reference presentation for CJK UNIFIED IDEOGRAPHS block

For the presentation of the CJK UNIFIED IDEOGRAPH block, the graphic representations for the Hanzi G, H, and T sources, the Kanji J source, the Hanja K source, and the ChuNom V source are shown in that order when present. Unicode U sources are shown in the second column (instead of the Hanzi H source). No characters in this block have both a H and U source.

The figure 2 shows an example for characters 4E00-4E09 and 4E14-4E1D.

Figure 2 －Chart presentation for CJK UNIFIED IDEOGRAPHS

23．3．3 Source reference presentation for CJK UNIFIED IDEOGRAPHS EXTENSION A

For the presentation of the CJK UNIFIED IDEOGRAPH EXTENSION A block，up to three sources per characters are represented in a single row．If more than three sources exist，an additional row is used．

The figure 3 shows an example for characters 41C9－41CC，41DB－41DD，and 41EE－41F0．

$\begin{gathered} \text { 41C9 } \\ \text { 立 } 117.5 \end{gathered}$	$\frac{\vdots}{\text { GHZ-42707.25 }}$	$\frac{1+}{T 3}$		41DB 竹 118.4	$\frac{\text { ث三 }}{\stackrel{1}{\text { G1x-0879.12 }}}$			41EE 竹 118.6			$\underset{J A-254 D}{\sim}$
$\begin{array}{r} \text { 41CA } \\ \text { 立 } 117.5 \end{array}$		立)			$\frac{\text { た }}{\text { 世 }}$						
41CB 立 117.6	GKX－0871．06	$\underset{\text { T5-3446 }}{1+5}$		41DC $\text { 竹 } 118.4$	$\stackrel{F}{\widehat{F}}$		$\underset{K 3-2 E 2 D}{\Gamma}$	41EF 竹 118.6			
$\underset{\text { 4立 }}{1177.7}$	GKX－0871．17	$\frac{1}{1} \int_{T 3}^{1 /-3 D 6 F}$		41DD 竹 118.4		$\frac{\mathrm{F}_{\mathrm{T}}^{2}-2 \mathrm{E} 72}{\mathrm{E}}$		41F0 竹 118.6	$\frac{\mathrm{F} \mathrm{C}}{\mathrm{7} \sqrt{5}}$		

Figure 3 －Chart presentation for CJK UNIFIED IDEOGRAPHS EXTENSION A

23．3．4 Source reference presentation for CJK UNIFIED IDEOGRAPHS EXTENSION B

For the presentation of the CJK UNIFIED IDEOGRAPH EXTENSION B block，the first graphic symbol shows the glyph used for the first and second edition of this International Standard（2003 and 2011 re－
spectively) referenced by a 'UCS2003' notation. Up to two sources per characters are represented in a single row. If more than two sources exist, an additional row is used.

The figure 4 shows an example for characters 200E8-200EB, 200FC-200FF, and 2010E-20110.

Figure 4 - Chart presentation for CJK UNIFIED IDEOGRAPHS EXTENSION B

23.3.5 Source reference presentation for CJK UNIFIED IDEOGRAPHS EXTENSION C, D and E

For the presentation of the CJK UNIFIED IDEOGRAPH EXTENSION C, D and E blocks, up to two sources per characters are represented in a single row. If more than two sources exist, an additional row is used.

The figure 5 shows an example for characters 2A7A0-2A7A2, 2A7B4-2A7B6, 2A7C8-2A7CA, and 2A7DC2A7DE.

Figure 5 - Chart presentation for CJK UNIFIED IDEOGRAPHS EXTENSION C, D and E

23.4 Source references presentation for CJK Compatibility Ideographs

Similarly to CJK Unified Ideographs, the code charts for CJK Compatibility Ideographs show one graphic symbol per source reference with additional information related to their identity such as radical, stroke count, and numeric value of the various source references.

The graphic representation for the radical is also shown immediately below the code point, along with the radical number and the stroke count. That stroke count does not include the radical itself.

Additional information, corresponding to informative items described in 31.3, such as decomposition mapping, may also appear in the presentation.

[^1]The figure 6 shows an example for characters FA0C-FA0E, FA19-FA1D, and FA28-FA2C.

Figure 6 - Chart presentation for CJK COMPATIBILITY IDEOGRAPHS

24 Character names and annotations

24.1 Entity names

This standard specifies names for the following entity types

- Characters, as character names and character name aliases
- named UCS sequences identifiers (see Clause 25)
- blocks (see Clause 14 and A.2)
- collections (see A.1)

The names given by this standard to these entities shall follow the rules for name formation and name uniqueness specified in Clause 24. This specification applies to the entity names in the English language version of this standard.

NOTE 1 - In a version of such a standard in another language a) these rules may be amended to permit names to be generated using words and syntax that are considered appropriate within that language; b) the entity names from this version of the standard may be replaced by equivalent unique names constructed according to the rules amended as in a) above.
NOTE 2 - Additional guidelines for constructing entity names are given in Annex L for information.

24.2 Name formation

An entity name shall consist only of the following characters

- LATIN CAPITAL LETTER A through LATIN CAPITAL LETTER Z,
- DIGIT ZERO through DIGIT NINE,
- SPACE,
- HYPHEN-MINUS, and
- FULL STOP if the entity being named is a collection

The first character in an entity name shall be a Latin capital letter. The last character in an entity name shall be either a Latin capital letter or a Digit.

An entity name shall not contain two or more consecutive SPACE characters or consecutive HYPHENMINUS characters. Furthermore, except for collection names, an entity name shall not contain a digit
(DIGIT ZERO through DIGIT NINE) preceded by a SPACE character. A collection name shall not contain two or more consecutive FULL STOP characters.

A sequence of a SPACE followed by a HYPHEN-MINUS or a sequence of a HYPHEN-MINUS followed by a SPACE may appear only in character names or named UCS sequence identifiers.

EXAMPLE 1 Each of the following two character names contains a consecutive SPACE and HYPHEN-MINUS:
TIBETAN LETTER -A
TIBETAN MARK BKA- SHOG YIG MGO
FULL STOP may appear only in between two alpha-numeric characters (LATIN CAPITAL LETTER A through LATIN CAPITAL LETTER Z, DIGIT ZERO through DIGIT NINE) in a collection name.

EXAMPLE 2 The following collection name contains FULL STOP in between two Digits, DIGIT FOUR and DIGIT ONE:
UNICODE 4.1
EXAMPLE 3 The following collection name contains FULL STOP in between one Latin letter, LATIN CAPITAL LETTER D, and a Digit, DIGIT SEVEN:

BMP-AMD. 7

24.3 Single name

Each entity named in this standard shall be given only one name. However, one or more character name aliases may also be associated with a character.

NOTE - This does not preclude the informative use of name aliases or acronyms for the sake of clarity. However, the normative entity name will be unique. These informative aliases should not be confused with character name aliases which share the same name space as character names and are normative.

24.4 Name immutability

Some entity names cannot be changed by future versions of this standard. This applies to character name and character name aliases. See Clause 7.

24.5 Name uniqueness

Each entity name shall also be unique within an appropriate name space, as specified here.

24.5.1 Block names

Block names constitute a name space. Each block name shall be unique and distinct from all other block names specified in the standard.

24.5.2 Collection names

Collection names constitute a name space. Each collection name shall be unique and distinct from all other collection names specified in the standard.

24.5.3 Character names, character name aliases, and named UCS sequence identifiers

Character names, character name aliases and named UCS sequence identifiers, taken together, constitute a name space. Each character name, character name aliases, or named UCS sequence identifier shall be unique and distinct from all other character names, character name aliases, or named UCS sequence identifiers.

24.5.4 Determining uniqueness

For block names and collection names, two names shall be considered unique and distinct if they are different even when SPACE and medial HYPHEN-MINUS characters are ignored in comparison of the names. A medial HYPHEN-MINUS is a HYPHEN-MINUS character that occurs immediately after a character other than SPACE and immediately before a character other than SPACE.

EXAMPLE 1 The following hypothetical block names would be unique and distinct:
LATIN-A
LATIN-B

EXAMPLE 2 The following hypothetical block names would not be unique and distinct:
LATIN-A
LATIN A
LATINA
For character names, character name aliases, and named UCS sequence identifiers, two names shall be considered unique and distinct if they are different even when SPACE and medial HYPHEN-MINUS characters are ignored and even when the words "LETTER", "CHARACTER", and "DIGIT" are ignored in comparison of the names.

EXAMPLE 3 The following hypothetical character names would not be unique and distinct:
MANICHAEAN CHARACTER A
MANICHAEAN LETTER A
EXAMPLE 4: The following two actual character names are unique and distinct, because they differ by a HYPHEN-MINUS that is not a medial HYPHEN-MINUS:

TIBETAN LETTER A
TIBETAN LETTER -A
The following two character names shall be considered unique and distinct:
HANGUL JUNGSEONG OE
HANGUL JUNGSEONG O-E
NOTE - These two character names are explicitly handled as an exception, because they were defined in an earlier version of this International Standard before the introduction of the name uniqueness requirement. This pair is, has been, and will be the only exception to the uniqueness rule in this International Standard.

24.6 Character names for CJK Ideographs

For CJK Ideographs the names are algorithmically constructed by appending their coded representation in hexadecimal notation to "CJK UNIFIED IDEOGRAPH-" for CJK Unified Ideographs and "CJK COMPATIBILITY IDEOGRAPH-" for CJK Compatibility Ideographs.

For CJK Ideographs within the BMP, the coded representation is their two-octet value expressed as four hexadecimal digits. For e xample, the first CJK Ideograph character in the BMP has the name "CJK UNIFIED IDEOGRAPH-3400".

For CJK Ideographs within the SIP, the coded representation is their five hexadecimal digit value. For example, the first CJK Ideograph character in the SIP has the name "CJK UNIFIED IDEOGRAPH-20000".

24.7 Character names for Hangul syllables

Names for the Hangul syllable characters in code points AC00-D7A3 are derived from their code point values by the numerical procedure described below. Lists of names for these characters are not provided in the code charts.
a) Obtain the code point of the Hangul syllable character. It is of the form $h_{1} h_{2} h_{3} h_{4}$ where h_{1}, h_{2}, h_{3}, and h_{4} are hexadecimal digits representing the number $h_{1} h_{2} h_{3} h_{4}$ lying within the range AC00 to D7A3.
b) Derive the decimal numbers $d_{1}, d_{2}, d_{3}, d_{4}$ that are numerically equal to the hexadecimal digits h_{1}, h_{2}, h_{3}, h_{4} respectively.
c) Calculate the character index C from the formula $C=4096 \times\left(d_{1}-10\right)+256 \times\left(d_{2}-12\right)+16 \times d_{3}+d_{4}$
d) Calculate the syllable component indices I, P, F from the following formulae
$I=C / 588 \quad($ Note: $0 \leq I \leq 18)$
$P=(C \% 588) / 28 \quad$ (Note: $0 \leq P \leq 20)$
$F=C \% 28 \quad$ (Note: $0 \leq F \leq 27$)
where " $/$ " indicates integer division (i.e. x / y is the integer quotient of the division), and "\%" indicates the modulo operation (i.e. $x \% y$ is the remainder after the integer division x / y).
e) Obtain the Latin character strings that correspond to the three indices I, P, F from columns 2, 3, and 4 respectively of table 1 below (for $I=11$ and for $F=0$ the corresponding strings are null). Concatenate these three strings in left-to-right order to make a single string, the syllable-name.
f) The character name for the character code point $h_{1} h_{2} h_{3} h_{4}$ is then HANGUL SYLLABLE s-n where "s-n" indicates the syllable-name string derived in step e.

EXAMPLE

For the character with code point D4DE:
$d_{1}=13, d_{2}=4, d_{3}=13, d_{4}=14$.
C $=10462$
$I=17, P=16, F=18$.
The corresponding Latin character strings are P, WI, BS. The syllable-name is PWIBS, and the character name is HANGUL SYLLABLE PWIBS.

For each Hangul syllable character, a short annotation is also defined. This annotation consists of an alternative transliteration of the Hangul syllable into Latin characters. They are also derived from their code point values by a similar numerical procedure described below.
g) Carry out steps a to d as described above.
h) Obtain the Latin character strings that correspond to the three indices I, P, F from columns 5, 6, and 7 respectively of Table 6 below (for $I=11$ and for $F=0$ the corresponding strings are null). Concatenate these three strings in left-to-right order to make a single string.
EXAMPLE
For the character with code point D4DE:
$d_{1}=13, d_{2}=4, d_{3}=13, d_{4}=14$.
$C=10462$
$I=17, P=16, F=18$.
The corresponding Latin character strings are ph, wi, ps;and the annotation is phwips.
The Annex R provides the names and annotation of Hangul syllables through a linked file.
Table 6: Elements of Hangul syllable names and annotation

Index number	Syllable name elements			Annotation elements		
	string	P string	F string	I string	P string	F string
	G	A		k	a	
1	GG	AE	G	kk	ae	k
2	N	YA	GG	n	ya	kk
3	D	YAE	GS	t	yae	ks
4	DD	EO	N	tt	eo	n
5	R	E	NJ	r	e	nc
6	M	YEO	NH	m	yeo	nh
7	B	YE	D	p	ye	t
8	BB	O	L	pp	o	I
9	S	WA	LG	s	wa	Ik
10	SS	WAE	LM	ss	wae	Im
11		OE	LB		oe	Ip
12	J	YO	LS	c	yo	Is
13	JJ	U	LT	cc	u	Ith
14	C	WEO	LP	ch	weo	Iph
15	K	WE	LH	kh	we	Ih
16	T	WI	M	th	wi	m
17	P	YU	B	ph	yu	p
18	H	EU	BS	h	eu	ps
19		YI	S		yi	s
20		I	SS		i	ss
21			NG			ng
22			J			c
23			C			ch

24			K			kh
25			T			th
26			P			ph
27			H			h

NOTE 1 - The I and F strings in Syllable name elements of Table 5 correspond to the Hangul Jamo short names shown in annotations in the code chart after the names of the Hangul Jamo characters in the ranges 1100 to 1112 (except 110B) and 11A8 to 11C2. The short names are transliterations of these Hangul characters.
NOTE 2 - The I and F strings in Syllable name elements are based on Method I of ISO/TR 11941:1996 Information and documentation -- Transliteration of Korean script into Latin characters. The I and F strings in Annotation elements of the same Table 5 are based on Method II of ISO/TR 11941. P strings in Syllable name elements and in A nnotation elements are based on ISO/TR 11941. ISO/TR 11941 is different from Revised Romanization of Korean script released on 4 July 2000 by the Ministry of Culture and Tourism, Republic of Korea.

25 Named UCS Sequence Identifiers

A Named UCS Sequence Identifier (NUSI) is a USI associated to a name following the same construction rules as for character names. These rules are given in 24.

NOTE 1 - The purpose of these named USIs is to specify sequences of characters that may be treated as single units, either in particular types of processing, in reference by standards, in listing of repertoires (such as for fonts or keyboards).

The USI value corresponding to each NUSI is written using the coded representation determined by the Normalization Form C (NFC) (see Clause 21). Each named UCS sequence has a unique code representation. All allowed named UCS sequence identifiers for use with this International Standard are specified in the content linked below. All other such named sequences are undefined.

The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark that specifies Named UCS Sequence Identifiers. Each line in the text file contains the following information organized in two fields:

- $\quad 1^{\text {st }}$ field: Name of the NUSI (following rules given in 24)
- $\quad 2^{\text {nd }}$ field: The USI associated with that Name (using a modified syntac for the USI, omitting commas and angle brackets)
The two fields are delimited by a SEMICOLON (';') followed optionally by zero or more SPACE characters. Comment lines, starting with a NUMBER SIGN ('\#') are informational only. Comment lines and blank lines in the text file should be ignored by any automatic process which parses the data file to extract the normative list of NUSIs.

Click on this highlighted text to access the reference file.

NOTE 2 - The content is also available as a separate viewable file in the same file directory as this document. The file is named "NUSI.txt".
NOTE 3 - All the allowed Named UCS Sequence Identifiers for use with this International Standard are al so listed in the Unicode character database: http://www.unicode.org/Public/UNIDATA/NamedSequences.txt.

ISO/IEC 10646:2014 (E)

26 Structure of the Basic Multilingual Plane

An overview of the Basic Multilingual Plane is shown in figure 7 and a more detailed overview of Rows 00 to 33 is shown in figure 8. The Basic Multilingual Plane includes characters in general use in alphabetic, syllabic, and ideographic scripts together with various symbols and digits.

Figure 7 - Overview of the Basic Multilingual Plane

Row

${ }^{\text {a }}$ New Tai Lue is also known as Xishuang Banna Dai
NOTE - Vertical boundaries within rows are indicated in approximate positions only. Block names in the figure may be abbreviated due to space limitations. See A. 2 for unabrievated names.

Figure 8 - Overview of Rows 00 to 33 of the Basic Multilingual Plane

27 Structure of the Supplementary Multilingual Plane for scripts and symbols (SMP)

Because another supplementary plane is reserved for additional CJK Ideographs, the SMP (plane 01) is not used to date for encoding CJK Ideographs. Instead, the SMP is used for encoding graphic characters used in other scripts of the world that are not encoded in the BMP. Most, but not all, of the scripts encoded to date in the SMP are not in use as living scripts by modern user communities.

NOTE - The following subdivision of the SMP has been proposed:
Alphabetic scripts,
Hieroglyphic, ideographic and syllabaries,
Non CJK ideographic scripts,
Newly invented scripts,
Symbol sets
An overview of the Supplementary Multilingual Plane for scripts and symbols is shown in figure 9 and a more detailed overview of Rows 00 to 7F is shown in figure 10.

NOTE - Vertical boundaries within rows are indicated in approximate positions only. Block names in the figure may be abbreviated due to space limitations. See A. 2 for unabrievated names.

Figure 9 - Overview of the Supplementary Multilingual Plane for scripts and symbols

$=$ reserved for future standardization
NOTE - Vertical boundaries within rows are indicated in approximate positions only. Block names in the figure may be abbreviated due to space limitations. See A. 2 for unabrievated names.

Figure 10 - Overview of the Rows 00 to 7F of the Supplementary Multilingual Plane for scripts and symbols

28 Structure of the Supplementary Ideographic Plane (SIP)

The SIP (plane 02) is used for CJK unified ideographs (unified East Asian ideographs) that are not encoded in the BMP. The procedures for the unification and the rules for their arrangement are described in Annex S.

The SIP is also used for CJK compatibility ideographs. These ideographs are compatibility characters as specified in Clause 18.

The figure 11 shows an overview of the Supplementary Ideographic Plane.

NOTE - Vertical boundaries within rows are indicated in approximate positions only. Block names in the figure may be abbreviated due to space limitations. See A. 2 for unabrievated names.

Figure 11 - Overview of the Supplementary Ideographic Plane

29 Structure of the Tertiary Ideographic Plane (TIP)

The TIP (plane 03) is used for ancient ideographic scripts that are related to but not classified as CJK unified ideographs. No characters are currently encoded in the TIP.

NOTE - The TIP may contain scripts such as Oracle Bone or Bronze in future editions of this International Standard.

30 Structure of the Supplementary Special-purpose Plane (SSP)

The SSP (plane 0E) is used for special purpose use graphic characters and format characters. The figure 12 shows an overview of the Supplementary Special-purpose Plane.

NOTE - Unassigned code points in this range should be ignored in normal processing and display.

Row-octet		
00	Tags	
01	Variation Selectors Supplement	
02		
FF		

NOTE - Vertical boundaries within rows are indicated in approximate positions only.
Figure 12 - Overview of the Supplementary Special-purpose Plane

31 Code charts and lists of character names

31.1 General

Detailed code charts and lists of character names for the BMP, SMP, SIP and SSP are shown on the following pages. Code charts are arranged by blocks which may span several pages.

Each code chart is followed by a corresponding character names list, except blocks for the CJK ideographs and Hangul syllables.

NOTE - A block code chart and name list may be arranged in a single page if their contents allow it.

31.2 Code chart

Code charts are presented in arrays of graphic symbols representing the characters organized in one to sixteen columns of sixteen symbols each. The lower digit of the coded representation is indicated in the left margin while the remaining upper digits are indicated in the top margin. The full coded representation for each character is also indicated under each representative graphic symbol. Code charts for CJK ideographs have different formats. See Clause 23.

NOTE - Graphic symbols corresponding to the representation of graphic characters are informative. See Clause 13.

31.3 Character names list

The character names lists contain both normative and informative information. The following information items are normative:

- Character code point,
- Associated character name,
- Character name alias (one preceded by ' $※$ ').

All other information is informative and may contain:

- Graphic symbol associated with the character,
- Subheads grouping various parts of a given block. For example, the LATIN-1 SUPPLEMENT block contain "Latin-1 punctuation and symbols", "Letters", and "Mathematical operator",
- Explanatory text describing context for a subhead or a whole block,
- Informative aliases, preceded by ' $=$ ’, indicating alternate names for characters,
- Cross references, preceded by ' \rightarrow ', indicating a related character of interest,
- Information about languages, preceded by ' \cdot ', indicating a non exhaustive list of languages using that character. For bicameral scripts, the information is only provided for the lower case form of the character,
- Case mappings, also preceded by ' \cdot ', only when it cannot be derived simply from the names,
- Other information about a character, also preceded by ' \bullet ', describing name peculiarity, historical consideration, or any noteworthy aspect of a character,
- Decomposition mappings, preceded by ' \equiv ' for canonical mappings, and by ' \approx ' for compatibility mappings,
NOTE - The decomposition mappings syntax is described in more details in section 24.1 of the Unicode Standard Version 7.0.
- Standardized variation sequences preceded by U+2053 ~ SWUNG DASH, when this character is used as a base character in such a variation sequence.
The following example describes various fragments of name lists including these informative items.

EXAMPLE

Latin-1 punctuation and symbols

Based on ISO/IEC 8859-1 (aka Latin-1) from here.

ISO/IEC 10646:2014 (E)

```
00B5 \mu MICRO SIGN
    \approx 03BC }\mu\mathrm{ greek small letter mu
O0B6 | PILCROW SIGN
    = paragraph sign
    - section sign in some European usage
    ~204B 『 reverse pilcrow sign
    ->2761 curve stern paragraph sign ornament
Letters
...
00E5 å LATIN SMALL LETTER A WITH RING ABOVE
    - Danish, Norwegian, Swedish, Walloon
    \equiv0061 a 030A*
00E6 æ LATIN SMALL LETTER AE
    = latin small ligature (1.0)
    = ash (from Old English æsc)
    - Danish, Norwegian, Icelandic, Faroese, Old English, French, IPA
    0153 œ latin small ligature oe
    \rightarrow 0 4 D 5 ~ æ ~ c y r i l l i c ~ s m a l l ~ l i g a t u r e ~ a ~ i e
01C9 lj LATIN SMALL LETTER LJ
    O459 љ cyrillic small letter lje
    \approx006C 1006A j
2268 \lessgtr LESS-THAN BUT NOT EQUAL TO
    ~ 2268 FE00 \leqq with vertical stroke
..
FE18 ~ PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRAKCET
    ※ PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRACKET
    - misspelling of "BRACKET" in character name is a known defect
    \approx  3017 \]
```


31.4 Summary of standardized variation sequences

A summary of standardized variation sequences (see 16.6.2) are presented after each block in which they appear for the following categories:

- Mathematical symbols
- Mongolian characters
- Phags-pa characters
- Manichaean characters

NOTE - The summaries of standardized variation sequences corresponding to Pictographic symbols and CJK unified ideographs may be included in a future edition of this International Standard.

31.5 Pointers to code charts and lists of character names

Access to the code charts and lists of character names is provided by clicking on the a ppropriate highlighted text below.

- Basic Latin to Yijing Hexagram Symbols (0000-4DFF)
- CJK Unified Ideographs (4E00-9FFF)
- Yi Syllables to Alchemical Symbols (A000-1FFFF)
- CJK Unified Ideographs Extension B Part 1 of 2 (20000-25333)
- CJK Unified Ideographs Extension B Part 2 of 2 (25334-2A6FF)
- CJK Unified Ideographs Extensions C to Variation Selectors Supplement (2A700-10FFFF)

NOTE - To preserve the odd-even layout of the code charts, a page from the previous block may be inserted before the actual start of a block.

	10C8	10C9	10CA	10CB	10CC	OCD	10CE	10CF
0		$\underset{10 c 90}{ }$		$\underset{\substack{10 с в о}}{Y}$	$\begin{gathered} 4 \\ 10 c c 0 \end{gathered}$		$\begin{gathered} \boldsymbol{y} \\ 10 C E 0 \end{gathered}$	$\underset{\text { 10CF0 }}{\boldsymbol{Y}}$
1	$\begin{gathered} \boldsymbol{Y} \\ 10 c 81 \end{gathered}$	$\underset{10 c 91}{\boldsymbol{T}_{1}}$	$\underset{10 C A 1}{ }$	N 10CB1	$\begin{gathered} 4 \\ 10 c c 1 \end{gathered}$	$\underset{10 \mathrm{CD} 1}{\mathbf{T}}$	脊 10CE1	$\begin{aligned} & \text { Na } \\ & \text { 10CF1 } \end{aligned}$
2	X $10 \subset 82$	$10 \mathrm{C} 92$	10CA2		X	$\boldsymbol{1}_{10 \mathrm{CD} 2}$		$\begin{gathered} 10 \\ 10 c F 2 \end{gathered}$
3	\mathcal{S}	$\underset{10 c 93}{ }$	10CA3		3 10CC3		10CE3	
4	$\begin{gathered} \uparrow \\ 10 C 84 \\ \hline \end{gathered}$				\uparrow 10CC4	$\boldsymbol{q}_{10 \mathrm{CD} 4}$		
5	$\underset{10 \mathrm{C} 85}{\boldsymbol{N}}$	$\underset{\substack{10 c 95 \\ \hline}}{\substack{2}}$	10CA5		\downarrow 10CC5	$\underset{10 c 05}{\mathcal{X}}$	10CE5	
6	$\underset{10 c 86}{ }$	$\lambda_{10 c 96}$	$\begin{gathered} Y \\ \text { 10СА } \\ \hline \end{gathered}$		ロ 10CC6	A 10CD6	$\begin{gathered} \mathbf{Y} \\ 10 \mathrm{CE} 6 \\ \hline \end{gathered}$	
7	$\underset{10087}{\underset{1}{+}}$		$\Psi^{10 C A 7}$		t 10CC7	$\bigotimes_{10 C D 7}$	Ψ 10CE7	
8	$\underset{10 c 88}{\not K}$	$\underset{10 c 98}{\triangleleft}$	$\underset{\text { 10САв }}{X}$		＊ 10CC8	$\begin{gathered} 8 \\ 10 \mathrm{CD8} \end{gathered}$	X 10CE8	
9	$\begin{gathered} \text { X } \\ \text { 10c89 } \end{gathered}$	$\begin{gathered} 2 \\ 10 c 99 \end{gathered}$	$\underset{\text { 10сА9 }}{\searrow}$		x 10CC9	$\begin{gathered} \text { Y } \\ 10 \mathrm{CD} 9 \end{gathered}$	$\underset{\text { 10СЕ } 9}{8}$	
A	$\begin{gathered} \text { X } \\ 10 \mathrm{C} 8 \mathrm{~A} \end{gathered}$	$\underset{10 \mathrm{C} 9 \mathrm{~A}}{\boldsymbol{D}}$	$10 \mathrm{CAA}$			$\begin{gathered} D \\ 10 \mathrm{CDA} \end{gathered}$		10CFA
B	$\sum_{10 c 8 B}$	$\begin{gathered} \gamma \\ 10 C 9 B \end{gathered}$	$\underset{\substack{10 С А В \\ \hline}}{\substack{2}}$		$\begin{gathered} \sum_{10 C C B} \\ \hline \end{gathered}$			$\underset{10 C F B}{\bigvee}$
C		$\underset{10 c 9 C}{\nu}$				∂ 10CDC		X
D	λ 10C8D	$\sum_{10 C 9 D}$			λ 10CCD	\rangle	4 10CED	$\underset{10 C F D}{ }$
E	\neq 10C8E	$\underset{10 \mathrm{C} 9 \mathrm{E}}{\mathbf{K}}$	10CAE		f 10CCE			$\underset{\text { 10CFE }}{\mathbf{X}}$
F	$10 \mathrm{C} 8 \mathrm{~F}$	$10 \mathrm{C} 9 \mathrm{~F}$	$10 \mathrm{CAF}$		$\begin{gathered} \mathbf{X} \\ 10 \mathrm{CCF} \end{gathered}$	ふ 10CDF		

Uppercase letters

The use of uppercase letters is a modern innovation $10 C 804$ OLD HUNGARIAN CAPITAL LETTER A
10C81 4 OLD HUNGARIAN CAPITAL LETTER AA ＝Á
10 C 82 X OLD HUNGARIAN CAPITAL LETTER EB ＝B
10 C 83 O OLD HUNGARIAN CAPITAL LETTER AMB
$10 \mathrm{C} 84 \uparrow$ OLD HUNGARIAN CAPITAL LETTER EC

$$
=C
$$

$10 \mathrm{C} 85 \uparrow$ OLD HUNGARIAN CAPITAL LETTER ENC
10 C 86 U OLD HUNGARIAN CAPITAL LETTER ECS ＝Cs
10 C 87 ＋OLD HUNGARIAN CAPITAL LETTER ED ＝D
$10 C 88 *$ OLD HUNGARIAN CAPITAL LETTER AND
$10 C 89$ OLD HUNGARIAN CAPITAL LETTER E
10C8A \searrow OLD HUNGARIAN CAPITAL LETTER CLOSE E $=\ddot{E}$
\rightarrow 10C8F \Varangle old hungarian capital letter eh
10C8B ？OLD HUNGARIAN CAPITAL LETTER EE ＝É
10C8C \otimes OLD HUNGARIAN CAPITAL LETTER EF $=F$
10C8D \wedge OLD HUNGARIAN CAPITAL LETTER EG ＝G
10C8E \ddagger OLD HUNGARIAN CAPITAL LETTER EGY ＝Gy
10C8F \Varangle OLD HUNGARIAN CAPITAL LETTER EH $=\mathrm{H}$
\rightarrow 10C8A \varnothing old hungarian capital letter close e
$10 C 90$ † OLD HUNGARIAN CAPITAL LETTER I
10C91 T OLD HUNGARIAN CAPITAL LETTER II ＝I
$10 C 921$ OLD HUNGARIAN CAPITAL LETTER EJ ＝J
10C93 $\diamond ~ O L D ~ H U N G A R I A N ~ C A P I T A L ~ L E T T E R ~ E K ~$ $=\mathrm{K}$
10C94 1 OLD HUNGARIAN CAPITAL LETTER AK
10 C95 χ OLD HUNGARIAN CAPITAL LETTER UNK
10C96 A OLD HUNGARIAN CAPITAL LETTER EL $=$ L
$10 C 97$ OLD HUNGARIAN CAPITAL LETTER ELY ＝Ly
10C98 \varangle OLD HUNGARIAN CAPITAL LETTER EM ＝M
$10 C 99$ ）OLD HUNGARIAN CAPITAL LETTER EN $=\mathrm{N}$
10C9A D OLD HUNGARIAN CAPITAL LETTER ENY ＝Ny
10C9B ノ OLD HUNGARIAN CAPITAL LETTER O ＝ 0
10C9C っ OLD HUNGARIAN CAPITAL LETTER OO ＝Ó
10C9D ২ OLD HUNGARIAN CAPITAL LETTER NIKOLSBURG OE ＝Ö
10C9E K OLD HUNGARIAN CAPITAL LETTER RUDIMENTA OE $=0 ̈$
10C9F OLD HUNGARIAN CAPITAL LETTER OEE ＝O with double acute
10CAO λ OLD HUNGARIAN CAPITAL LETTER EP $=P$

```
10CA1 㑒 OLD HUNGARIAN CAPITAL LETTER EMP
10CA2 H OLD HUNGARIAN CAPITAL LETTER ER
    = R
10CA3 - OLD HUNGARIAN CAPITAL LETTER SHORT ER
10CA4 \(\wedge\) OLD HUNGARIAN CAPITAL LETTERES
    \(=\mathrm{S}\)
10CA5 | OLD HUNGARIAN CAPITAL LETTER ESZ
    = Sz
10CA6 Y OLD HUNGARIAN CAPITAL LETTER ET
    = T
10CA7 \(\psi\) OLD HUNGARIAN CAPITAL LETTER ENT
    - also used for Ant and Int
10CA8 X OLD HUNGARIAN CAPITAL LETTER ETY
    \(=\) Ty
10CA9 ヌ OLD HUNGARIAN CAPITAL LETTER ECH
10CAA \(\downarrow\) OLD HUNGARIAN CAPITAL LETTER U
10CAB \(\bowtie\) OLD HUNGARIAN CAPITAL LETTER UU
    = Ú
10CAC 0 OLD HUNGARIAN CAPITAL LETTER
    NIKOLSBURG UE
    = Ü
    - also used for Ö
    - used for U with double acute in Sándor Forrai's
        orthography
10CAD 4 OLD HUNGARIAN CAPITAL LETTER
    RUDIMENTA UE
    = Ü, U with double acute
    - used for Ü in Sándor Forrai's orthography
10CAE M OLD HUNGARIAN CAPITAL LETTER EV
        \(=\mathrm{V}\)
10CAF 目 OLD HUNGARIAN CAPITAL LETTER EZ
        \(=\mathrm{Z}\)
10CB0 \(\Psi\) OLD HUNGARIAN CAPITAL LETTER EZS
    = Zs
```



```
    SHAPED SIGN
10CB2 (1) OLD HUNGARIAN CAPITAL LETTER US
```


Lowercase letters

10CC0 4 OLD HUNGARIAN SMALL LETTER A
10CC1 4 OLD HUNGARIAN SMALL LETTER AA
= á
10CC2 \times OLD HUNGARIAN SMALL LETTER EB
$=b$
10CC3 x OLD HUNGARIAN SMALL LETTER AMB
10CC4 \uparrow OLD HUNGARIAN SMALL LETTER EC
= C
10CC5 \downarrow OLD HUNGARIAN SMALL LETTER ENC
10CC6 日 OLD HUNGARIAN SMALL LETTER ECS
= CS
$10 C C 7$ + OLD HUNGARIAN SMALL LETTER ED
= d
10CC8 * OLD HUNGARIAN SMALL LETTER AND
10CC9 ¥ OLD HUNGARIAN SMALL LETTERE
10CCA OLD HUNGARIAN SMALL LETTER CLOSE E
= ё
\rightarrow 10CCF $¥$ old hungarian small letter eh
10CCB ? OLD HUNGARIAN SMALL LETTER EE
= é
10CCC \otimes OLD HUNGARIAN SMALL LETTER EF
= f
10CCD \wedge OLD HUNGARIAN SMALL LETTER EG
= g
10CCE \ddagger OLD HUNGARIAN SMALL LETTER EGY
= gy

```
10CCF ` OLD HUNGARIAN SMALL LETTER EH
    = h
     10CCA \ old hungarian small letter close e
10CD0 + OLD HUNGARIAN SMALL LETTERI
10CD1 〒 OLD HUNGARIAN SMALL LETTER II
    = i
10CD2 }1\mathrm{ OLD HUNGARIAN SMALL LETTER EJ
    = j
10CD3 \diamond OLD HUNGARIAN SMALL LETTER EK
    =k
10CD4 \imath OLD HUNGARIAN SMALL LETTER AK
10CD5 ^ OLD HUNGARIAN SMALL LETTER UNK
10CD6 \ OLD HUNGARIAN SMALL LETTER EL
    = I
10CD7 @ OLD HUNGARIAN SMALL LETTER ELY
    = ly
10CD8 & OLD HUNGARIAN SMALL LETTER EM
    =m
10CD9 ) OLD HUNGARIAN SMALL LETTER EN
    =n
10CDA D OLD HUNGARIAN SMALL LETTER ENY
    = ny
10CDB 〕 OLD HUNGARIAN SMALL LETTER O
10CDC ১ OLD HUNGARIAN SMALL LETTER OO
    =ó
10CDD < OLD HUNGARIAN SMALL LETTER NIKOLSBURG
    OE
    =0̈
    - also used for ü
10CDE k OLD HUNGARIAN SMALL LETTER RUDIMENTA
    OE
    =0
10CDF ※ OLD HUNGARIAN SMALL LETTER OEE
    = O with double acute
10CEO & OLD HUNGARIAN SMALL LETTER EP
    = p
10CE1 OLD HUNGARIAN SMALL LETTER EMP
10CE2 H OLD HUNGARIAN SMALL LETTER ER
    = r
10CE3 - OLD HUNGARIAN SMALL LETTER SHORT ER
10CE4 ^ OLD HUNGARIAN SMALL LETTER ES
    = S
10CE5 | OLD HUNGARIAN SMALL LETTER ESZ
    = sz
10CE6 y OLD HUNGARIAN SMALL LETTER ET
    = t
10CE7 }\psi OLD HUNGARIAN SMALL LETTER ENT
    - also used for ant and int
10CE8 x OLD HUNGARIAN SMALL LETTER ETY
    = ty
10CE9 又 OLD HUNGARIAN SMALL LETTER ECH
10CEA ^ OLD HUNGARIAN SMALL LETTER U
10CEB ^ OLD HUNGARIAN SMALL LETTER UU
    = ú
10CEC \ OLD HUNGARIAN SMALL LETTER NIKOLSBURG
    UE
    = ü
    - also used for ö
    - used for u with double acute in Sándor Forrai's
        orthography
10CED 4 OLD HUNGARIAN SMALL LETTER RUDIMENTA
    UE
    = ü, u with double acute
    - used for ü in Sándor Forrai's orthography
```


Annex A
 (normative)
 Collections of graphic characters for subsets

A. 1 Collections of coded graphic characters

The collections listed below are ordered by collection number. An * in the "code points" column indicates that the collection is a fixed collection.

Collection number and name		Code points	35	COMBINING DIACRITICAL MARKS FOR SYMBOLS	20D0-20FF
1	BASIC LATIN	0020-007E *			
2	LATIN-1 SUPPLEMENT	00A0-00FF *	36	LETTERLIKE SYMBOLS	2100-214F *
3	LATIN EXTENDED-A	0100-017F *	37	NUMBER FORMS	2150-218F
4	LATIN EXTENDED-B	0180-024F *	38	ARROWS	2190-21FF *
5	IPA EXTENSIONS	0250-02AF *	39	MATHEMATICAL OPERATORS	2200-22FF *
6	SPACING MODIFIER LETTERS	02B0-02FF *	40	MISCELLANEOUS TECHNICAL	2300-23FF
7	COMBINING DIACRITICAL MARKS	0300-036F *	4142	CONTROL PICTURES	2400-243F
8	BASIC GREEK	0370-03CF		OPTICAL CHARACTER RECOGNITION	2440-245F
9	GREEK SYMBOLS AND COPTIC	03D0-03FF			
10	CYRILLIC	0400-04FF *	43	ENCLOSED ALPHANUMERICS	2460-24FF *
11	ARMENIAN	0530-058F	44	BOX DRAWING	$2500-257 \mathrm{~F}$ $2580-259 \mathrm{~F}$
12	BASIC HEBREW	05D0-05EA *	45	BLOCK ELEMENTS	$\begin{aligned} & 2580-259 \mathrm{~F} * \\ & 25 \mathrm{AO}-25 \mathrm{FF} * \end{aligned}$
13	HEBREW EXTENDED	0590-05CF	46	GEOMETRIC SHAPES	
		05EB-05FF	47	MISCELLANEOUS SYMBOLS	2600-26FF *
14	BASIC ARABIC	0600-065F	48	DINGBATS	2700-27BF *
15	ARABIC EXTENDED	0660-06FF *	49	CJK SYMBOLS AND PUNCTUATION	3000-303F *
16	DEVANAGARI	$\begin{aligned} & \text { 0900-097F * } \\ & \text { 200C, 200D } \end{aligned}$	5051	HIRAGANA	3040-309F
				KATAKANA	30A0-30FF *
17	BENGALI	0980-09FF 200C, 200D	52	BOPOMOFO	$\begin{aligned} & 3100-312 \mathrm{~F} \\ & 31 \mathrm{~A} 0-31 \mathrm{BF} \end{aligned}$
18	GURMUKHI	0A00-0A7F 200C, 200D	5354	HANGUL COMPATIBILITY JAMO CJK MISCELLANEOUS	$\begin{aligned} & 3130-318 \mathrm{~F} \\ & 3190-319 \mathrm{~F} \end{aligned}$
19	GUJ ARATI	$\begin{aligned} & \text { OA80-OAFF } \\ & 200 \mathrm{C}, 200 \mathrm{D} \end{aligned}$	55	ENCLOSED CJK LETTERS AND MONTHS	3200-32FF
20	ORIYA	$\begin{aligned} & \text { OB00-0B7F } \\ & \text { 200C, 200D } \end{aligned}$	56	CJK COMPATIBILITY	3300-33FF *
21	TAMIL	0B80-0BFF 200C, 200D	57,58,59 (These collection numbers shall not be used see Note 2.)		
			60	CJK UNIFIED IDEOGRAPHS	4E00-9FFF
22	TELUGU	$\begin{aligned} & 0 C 00-0 C 7 F \\ & 200 \mathrm{C}, 200 \mathrm{D} \end{aligned}$	61	PRIVATE USE AREA	E000-F8FF
23	KANNADA	$\begin{aligned} & \text { 0C80-0CFF } \\ & 200 \mathrm{C}, 200 \mathrm{D} \end{aligned}$	62	CJK COMPATIBILITY IDEOGRAPHS F900-FAFF	
			63	(Collection specified as union of other collections)	
24	MALAYALAM	$\begin{aligned} & \text { 0D00-0D7F } \\ & \text { 200C, 200D } \end{aligned}$	64	ARABIC PRESENTATION FORMS-A	$\begin{aligned} & \text { FB50-FDCF } \\ & \text { FDFO-FDFF } \end{aligned}$
25	THAI	0E00-0E7F	65	COMBINING HALF MARKS	FE20-FE2F
26	LAO	0E80-0EFF	66	CJK COMPATIBILITY FORMS	FE30-FE4F *
27	BASIC GEORGIAN	10D0-10FF	67	SMALL FORM VARIANTS	FE50-FE6F
28	GEORGIAN EXTENDED	10A0-10CF	68	ARABIC PRESENTATION FORMS-B	FE70-FEFE
29	HANGUL JAMO	1100-11FF *	69	HALFWIDTH AND FULLWIDTHFORMS	FF00-FFEF
30	LATIN EXTENDED ADDITIONAL	1E00-1EFF *			
31	GREEK EXTENDED	1F00-1FFF	70	SPECIALS	FFF0-FFFD
32	GENERAL PUNCTUATION	2000-206F	71	HANGUL SYLLABLES	AC00-D7A3 *
33	SUPERSCRIPTS AND SUBSCRIPTS	2070-209F	72	BASIC TIBETAN	0F00-0FBF
34	CURRENCY SYMBOLS	20A0-20CF	73	ETHIOPIC	1200-137F

	$74 \begin{aligned} & \text { UNIFIED CANADIAN ABORIGINAL } \\ & \text { SYLLABICS } \\ & \text { l }\end{aligned}$			ETIC EXTENSIONS SUPPLEMENT	
75	CHEROKEE	13A0-13FF	117	COMBINING DIACRITICAL MARKS	SUPPLEMENT 1DC0-1DFF
76	YI SYLLABLES	A000-A48F			
77	YI RADICALS	A490-A4CF	118	GLAGOLITIC	2C00-2C5F
78	KANGXI RADICALS	2F00-2FDF	119	COPTIC	$\begin{aligned} & \text { 03E2-03EF } \\ & \text { 2C80-2CFF } \end{aligned}$
79	CJK RADICALS SUPPLEMENT	2E80-2EFF		GEORGIAN SUPPLEMENT	
80	BRAILLE PATTERNS	2800-28FF	120		2D00-2D2F
81	CJK UNIFIED IDEOGRAPHS EXTENSION A		121	TIFINAGH	2D30-2D7F
		3400-4DBF	122	ETHIOPIC EXTENDED	2D80-2DDF
		FA1F, FA23	123	SUPPLEMENTAL PUNCTUATION	2E00-2E7F
82	OGHAM	1680-169F	124	CJK STROKES	31C0-31EF
83	RUNIC	16A0-16FF	125	MODIFIER TONE LETTERS	A700-A71F *
84	SINHALA	0D80-0DFF	126	SYLOTI NAGRI	A800-A82F
85	SYRIAC	0700-074F	127	VERTICAL FORMS	FE10-FE1F
86	THAANA	0780-07BF	128	NKO	07C0-07FF
87	BASIC MYANMAR	$\begin{aligned} & \text { 1000-104F * } \\ & 200 \mathrm{C}, 200 \mathrm{D} \end{aligned}$	$\begin{aligned} & 129 \\ & 130 \end{aligned}$	BALINESE LATIN EXTENDED-C	1B00-1B7F
					2C60-2C7F *
88	KHMER	$\begin{aligned} & \text { 1780-17FF } \\ & 200 \mathrm{C}, 200 \mathrm{D} \end{aligned}$	131	LATIN EXTENDED-D	A720-A7FF
	MONGOLIAN	1800-18AF	132	PHAGS-PASUNDANESE	A840-A87F
90	EXTENDED MYANMAR	1050-109F *	133		1880-1BBF *
91	TIBETAN	OFO0-0FFF	134	SUNDANESE LEPCHA	1C00-1C4F
92	CYRILLIC SUPPLEMENT	0500-052F	135	LEPCHA OL CHIKI	1C50-1C7F *
93	TAGALOG	1700-171F	136	VAI	A500-A63F
94	HANUNOO	1720-173F	137	SAURASHTRA	A880-A8DF
94	HANUNOO	1720-173F $1740-175 \mathrm{~F}$	138	KAYAH LIREJANG	A900-A92F *
95	BUHID	1740-175F	139		A930-A95F
96	TAGBANWA	1760-177F	140	REJANG	
97	MISCELLANEOUS MATHEMATICAL SYMBOLS-A	27C0-27EF *	141	CYRILLIC EXTENDED-B	2DE0-2DFF A640-A69F
98	SUPPLEMENTAL ARROWS-A	27F0-27FF *	142	CHAM	AA00-AA5F
99	SUPPLEMENTAL ARROWS-B	2900-297F *	143	TAI THAM	1A20-1AAF
100	MISCELLANEOUS MATHEMATICAL SYMBOLS-B		$\begin{aligned} & 144 \\ & 145 \end{aligned}$	HANGUL JAMO EXTENDED-ATAI VIET	A960-A97F
		2980-29FF *			AA80-AADF
101	SUPPLEMENTAL MATHEMATICAL OPERATORS	2A00-2AFF *	$\begin{aligned} & 146 \\ & 147 \end{aligned}$	HANGULJAMO EXTENDED-B SAMARITAN	$\begin{aligned} & \text { D7B0-D7FF } \\ & \text { 0800-083F } \end{aligned}$
102	KATAKANA PHONETIC EXTENSIONS	31F0-31FF *	148	UNIFIED CANADIAN ABORIGINAL SYLLABICS EXTENDED	18B0-18FF
103	VARIATION SELECTORS	FE00-FEOF *	$\begin{aligned} & 149 \\ & 150 \\ & 151 \end{aligned}$	VEDIC EXTENSIONS	1CD0-1CFF
104	LTR ALPHABETIC PRESENTATION FORMS	FB00-FB1C		LISUBAMUM	$\begin{aligned} & \text { A4D0-A4FF * } \\ & \text { A6AO-A6FF } \end{aligned}$
105	RTL ALPHABETIC PRESENTATION FORMS	FB1D-FB4F	152	COMMON INDIC NUMBER FORMS	A830-A83F
106	LIMBU	1900-194F	153	DEVANAGARI EXTENDED	A8E0-A8FF
107	TAI LE		154155	JAVANESE	A980-A9DFAA60-AA7F *
108	KHMER SYMBOLS	1950-197F		MYANMAR EXTENDED-A	
109	PHONETIC EXTENSIONS	$\begin{aligned} & \text { 19E0-19FF * } \\ & \text { 1D00-1D7F * } \end{aligned}$	156	MEETEI MAYEKMANDAIC	ABCO-ABFF
110	MISCELLANEOUS SYMBOLS AND ARROWS	1D00-1D7F *	157		0840-085F
		2B00-2BFF	158	BATAK	1BC0-1BFF
111	YIJING HEXAGRAM SYMBOLS	4DC0-4DFF *	159	ETHIOPIC EXTENDED-A	AB00-AB2F
112	ARABIC SUPPLEMENT	0750-077F *	160	ARABIC EXTENDED-A	08A0-08FF
113	ETHIOPIC SUPPLEMENT	1380-139F	161	SUNDANESE SUPPLEMENT	1CC0-1CCF
114	NEW TAI LUE	1980-19DF	162	MEETEI MAYEK EXTENSIONS	AAEO-AAFF
115	BUGINESE	1A00-1A1F			

163 COMBINING DIACRITICAL MARKS
EXTENDED
164 MYANMAR EXTENDED-B A9E0-A9FF
165 LATIN EXTENDED-E AB30-AB6F
1001 OLD ITALIC
1002 GOTHIC
1003 DESERET
1004 BYZANTINE MUSICAL SYMBOLS
1005 MUSICAL SYMBOLS
1006 MATHEMATICAL ALPHANUMERIC SYMBOLS
1007 LINEAR B SYLLABARY
1008 LINEAR B IDEOGRAMS
1009 AEGEAN NUMBERS
1010 UGARITIC
1011 SHAVIAN
1012 OSMANYA
1013 CYPRIOT SYLLABARY
1014 TAI XUAN JING SYMBOLS
1015 ANCIENT GREEK NUMBERS
1016 OLD PERSIAN
1017 KHAROSHTHI
1018 ANCIENT GREEK MUSICAL NOTATION
1D200-1D24F
10900-1091F
12000-123FF

12400-1247F
1D360-1D37F
101D0-101FF
10280-1029F
102A0-102DF
10920-1093F
10190-101CF
1F000-1F02F
1F030-1F09F
10B00-10B3F
13000-1342F
10840-1085F
10A60-10A7F
10B40-10B5F 10B60-10B7F
10C00-10C4F
10E60-10E7F 11080-110CF

1F100-1F1FF

1F200-1F2FF
11000-1107F 1B000-1B0FF 16800-16A3F

1044 PLAYING CARDS 1FOAO-1F0FF
1045 MISCELLANEOUS SYMBOLS AND PICTOGRAPHS

1046 EMOTICONS 1F600-1F64F
1047 TRANSPORT AND MAP SYMBOLS 1F680-1F6FF
1048 ALCHEMICAL SYMBOLS 1F700-1F77F
1049 MEROITIC HIEROGLYPHS 10980-1099F *
1050 MEROITIC CURSIVE 109A0-109FF
1051 SORA SOMPENG 110D0-110FF
1052 CHAKMA 11100-1114F
1053 SHARADA 11180-111DF
1054 TAKRI 11680-116CF
1055 MIAO 16F00-16F9F
1056 ARABIC MATHEMATICAL ALPHABETIC SYMBOLS

1EE00-1EEFF
1057 COPTIC EPACT NUMBERS 102E0-102FF
1058 ELBASAN 10500-1052F
1059 LINEAR A 10600-1077F
1060 PALMYRENE 10860-1087F *
1061 NABATAEAN 10880-108AF
1062 OLD NORTH ARABIAN 10A80-10A9F *
1063 MANICHAEAN 10AC0-10AFF
1064 SINHALA ARCHAIC NUMBERS 111E0-111FF
1065 KHOJ KI 11200-1124F
1066 KHUDAWADI 112B0-112FF
1067 TIRHUTA 11480-114DF
1068 PAU CIN HAU 11AC0-11AFF
1069 MRO 16A40-16A 6F
1070 BASSA VAH 16AD0-16AFF
1071 DUPLOYAN 1BC00-1BC9F
1072 SHORTHAND FORMAT CONTROLS 1BCA0-1BCAF
1073 ORNAMENTAL DINGBATS 1F650-1F67F *
1074 GEOMETRIC SHAPES EXTENDED 1F780-1F7FF
1075 SUPPLEMEMENTAL ARROWS-C 1F800-1F8FF
1076 OLD PERMIC 10350-1037F
1077 CAUCASIAN ALBANIAN 10530-1056F
1078 PSALTER PAHLAVI 10B80-10BAF
1079 MAHAJANI 11150-1117F
1080 GRANTHA 11300-1137F
1081 SIDDHAM 11580-115FF
1082 MODI 11600-1165F
1083 WARANG CITI 118A0-118FF
1084 PAHAWH HMONG 16B00-16B8F
1085 MENDE KIKAKUI 1E800-1E8DF
1086 HATRAN 108E0-108FF

1087 OLD HUNGARIAN 10C80-10CFF
1088 MULTANI 11280-112AF
1089 AHOM
11700-1173F
12480-1254F
14400-1467F
1D800-1DAAF

ISO/IEC 10646:2014 (E)

2001	CJK UNIFIED IDEOGRAPHS		2004	CJK UNIFIED IDEOGRAPHS	
	EXTENSION B	20000-2A6DF		EXTENSION D	2B740-2B81F
2002	CJK COMPATIBILITY IDEOGRAPHS		2005	CJK UNIFIED IDEOGRAPHS	
	SUPPLEMENT	2F800-2FA1F		EXTENSION E	2B820-2CEAF
2003	CJK UNIFIED IDEOGRAPHSEXTENSION C		3001	TAGS	E0000-E007F
		2A700-2B73F	3003	VARIATION SELECTORS	
				SUPPLEMENT	E0100-E01EF *

The following collections specify characters used for alternate formats and script-specific formats. See Annex F for more information.

200	ZERO-WIDTH BOUNDARY INDICATORS	$200 \mathrm{~B}-200 \mathrm{FEFF}$
201	FORMAT SEPARATORS	$2028-2029$
202	BI-DIRECTIONAL FORMAT MARKS	$200 \mathrm{E}-200 \mathrm{~F}$
203	BI-DIRECTI ONAL FORMAT EMBEDDINGS	$202 \mathrm{~A}-202 \mathrm{E}$
204	HANGUL FI LL CHARACTERS	$115 \mathrm{~F}-11603164$ FFA0
205	CHARACTER SHAPING SELECTORS	$206 A-206 \mathrm{D}$
206	NUMERIC SHAPE SELECTORS	$206 E-206 F$
207	IDEOGRAPHIC DESCRIPTION CHARACTERS	$2 F F 0-2 F F F$
208	CONTROL CHARACTERS	$0000-001 F 0007 F-009 F$
3002	ALTERNATE FORMAT CHARACTERS	E0000-E0FFF

The following specify collections that represented the whole UCS when they were created

299	(This collection number shal	A.3.3) *
301	BMP-AMD. 7	see A.3.2 *
302	BMP SECOND EDITION	see A.3.4*
303	UNICODE 3.1	see A.6.2 *
304	UNICODE 3.2	see A.6.3 *
305	UNICODE 4.0	see A.6.4*
306	UNICODE 4.1	see A.6.5 *
307	UNICODE 5.0	see A.6.6 *
308	UNICODE 5.1	see A.6.7*
309	UNICODE 5.2	see A.6.8*
310	UNICODE 6.0	see A.6.9 *
311	UNICODE 6.1	see A.6.10 *
312	UNICODE 6.2	see A.6.11 *
313	UNICODE 6.3	see A.6.12 *
314	UNICODE 7.0	see A.6.13 *
340	COMBINED FIRST EDITION	see A.3.5 *
10646	UNICODE	0000-FDCF FDF0-FFFD 10000-1FFFD 20000-2FFFD 30000-3FFFD 40000-4FFFD 50000-5FFFD 60000-6FFFD 70000-7FFFD 80000-8FFFD 90000-9FFFD A0000-AFFFD B0000-BFFFD C0000-CFFFD D0000-DFFFD E0000-EFFFD F0000-FFFFD 100000-10FFFD

NOTE 1 - The UNICODE collection incorporates all characters currently encoded in the standard
The following collections only contain CJK ideographs.

370	IICORE	see A.4.1*
371	JIS2004 IDEOGRAPHICS EXTENSION	see A.4.2*
372	JAPANESE IDEOGRAPHICS SUPPLEMENT	see A.4.3 *
380	CJK UNIFIED IDEOGRAPHS-2001	$3400-4 D B 5$ 4E00-9FA5 FA0E-FA0F FA11 FA13-FA14 FA1F *

381	CJK COMPATIBILITY IDEOGRAPHS-2001	```F900-FA0D FA10 FA12 FA15-FA1E FA20 FA22 FA25-FA26 * FA2A-FA6A 2F800-2FA1D```
382	CJK UNIFIED IDEOGRAPHS-2005	Collection 380* 9FA6-9FBB
383	CJK COMPATIBILITY IDEOGRAPHS-2005	$\begin{aligned} & \text { Collection } 381 \text { * } \\ & \text { FA70-FAD9 } \end{aligned}$
384	CJK UNIFIED IDEOGRAPHS-2007	$\begin{aligned} & \text { Collection } 382 \text { * } \\ & \text { 9FBC- } 9 \text { FC3 } \end{aligned}$
385	CJK UNIFIED IDEOGRAPHS-2008	$\begin{aligned} & \text { Collection } 384 \text { * } \\ & \text { 9FC4-9FC6 2A700-2B734 } \end{aligned}$
386	CJK COMPATIBILITY IDEOGRAPHS-2008	$\begin{aligned} & \text { Collection } 383 \text { * } \\ & \text { FA6B-FA6D } \end{aligned}$
387	CJK UNIFIED IDEOGRAPHS-2009	$\begin{aligned} & \text { Collection } 385 \text { * } \\ & \text { 9FC7-9FCB } \\ & \text { 2B740-2B81D } \end{aligned}$
388	CJK UNIFIED IDEOGRAPHS-2014	$\begin{aligned} & \text { Collection } 387 \text { * } \\ & \text { 2B820-2CEA1 } \end{aligned}$

The following specify other collections, including extended collections.

270	COMBINING CHARACTERS	BMP characters specified in 4.14
271	(This collection number shall not be used, see Note 2) *	
281	MES-1	see A.5.2 *
282	MES-2	see A.5.3 *
283	MODERN EUROPEAN SCRIPTS	see A.5.4*
284	CONTEMPORARY LITHUANIAN LETTERS	see A.5.5 *
285	BASIC JAPANESE	see A.5.6 *
286	JAPANESE NON IDEOGRAPHICS EXTENSION	see A.5.7 *
287	COMMON JAPANESE	see A.5.8*
288	MULTILI NGUAL LATIN SUBSET	see A.5.9 *
300	BMP	0000-D7FF E000-FFFD
400	(This collection number shall not be used, see Note 3.)	
401	PRIVATE USE PLANES-0F-10	Planes OF and 10
500	(This collection number shall not be used, see	e Note 3.)
1000	SMP	10000-1FFFD
1900	SMP COMBINING CHARACTERS	SMP characters specified in 4.14
2000	SIP	20000-2FFFD
3000	SSP	E0000-EFFFD

The following specify collections which are the union of particular collections defined above.

63	ALPHABETIC PRESENTATION FORMS	Collections 104-105
250	GENERAL FORMAT CHARACTERS	Collections 200-203
251	SCRIPT-SPECIFIC FORMAT CHARACTERS	Collections 204-206
4000	UCS PART-2	Collections 1000, 2000, 3000

NOTE 2 - Collections numbered 57, 58, and 59 were specified in the First Edition of ISO/IEC 10646-1 but have now been deleted. Collections numbered 400 and 500 were s pecified in the First and Second Editions of ISO/IEC 10646-1 but have now been deleted. The collection numbered 271 was specified in the first edition of this International Standard but has now been deleted.
NOTE 3 - The principal terms (keywords) used in the collection names shown above are listed below in alphabetical order. The entry for a term shows the collection number of every collection whose name includes the term. These terms do not provide a complete cross-reference to all the collections where characters sharing a particular attribute, such as script name, may be found. Although most of the terms identify an attribute of the characters within the collection, some characters that possess that attribute may be present in other collections whose numbers do not appear in the entry for that term.

Aegean numbers	1009	Anatolian Hieroglyphs	1091
Ahom	1089	Ancient Greek	10151018
Alphabetic	63	Arabic	141564681121601056
Alphanumeric	43	Armenian	11

ISO/IEC 10646:2014 (E)

Arrows	3898991101075	Kharoshthi	1017
Avestan	1030	Khmer	88108
Balinese	129	Khojki	1065
Bamum	1511043	Khudawadi	1066
Bassa Vah	1070	Lao	26
Batak	158	Latin	123430130131165
Bengali	17	Lepcha	134
Bidirectional	202203	Letter	365510391040
Block elements	45	Limbu	106
BMP	300301302 (299)	Linear A	1059
Box drawing	44	Linear B ideograms	1008
Bopomofo	52	Linear B syllabary	1007
Brahmi	1041	Lisu	150
Braille patterns	80	Lycian	1024
Buginese	115	Lydian	1026
Buhid	95	Mahajani	1079
Byzantine musical symbols	1004	Malayalam	24
Canadian Aboriginal	74148	Mandaic	157
Carian	1025	Manichaean	1063
Caucasian Albanian	1077	Mathematical alphanumeric	
Chakma	1052	symbols	10061056
Cham	142	Mathematical operators	39101
Cherokee	75	Mathematical symbols	97100
CJ K	4954555660626678	Meetei Mayek	156162
	8112420012002	Mende Kikakui	1085
Combining	73565117270271	Meroitic	10491050
Compatibility	53566266	MES	281282
Control pictures	41	Miao	1055
Coptic	91191057	Modi	1082
Counting Rod numerals	1022	Mongolian	89
Cuneiform	102010211090	Months	55
Currency	34	Mro	1069
Cypriot syllabary	1013	Multani	1088
Cyrillic	1092140141	Musical notation	1018
Deseret	1003	Musical symbols	10041005
Devanagari	16153	Myanmar	8790155164
Diacritical marks	735117163	Nabataean	1061
Dingbats	481073	New Tai Lue	114
Duployan	1071	NKo	128
Elbasan	1058	Number	3715210091015
Enclosed	4355	Ogham	82
Egyptian hieroglyphs	1031	Ol Chiki	135
Ethiopic	73113122159	Old Hungarian	1087
Format	201202203250251	Old Italic	1001
	1072	Old North Arabian	1062
Fullwidth	69	Old Permic	1076
Game tiles	10281029	Old Persian	1016
Geometric shapes	461074	Old South Arabian	1033
Georgian	2728120	Old Turkic	1036
Glagolitic	118	Optical character	
Gothic	1002	recognition	42
Grantha	1080	Oriya	20
Greek	8931	Osmanya	1012
Gujarati	19	Pahawh Hmong	1084
Gurmukhi	18	Palmyrene	1060
Half (marks, width)	6569	Pau Cin Hau	1068
Hangul	295371144146204	Phags-pa	132
Hanunoo	94	Phaistos Disc	1023
Hatran	1086	Phoenician	1019
Hebrew	1213	Phonetic extensions	109116
Hiragana	501042	Presentation forms	636468104105
I deographs	606281207 380-388	Private use	61401
I mperial Aramaic	1032	Psalter Pahlavi	1078
Inscriptional Pahlavi	1035	Punctuation	3249123
Inscriptional Parthian	1034	Radicals	777879
IPA extensions	5	Rejang	139
Jamo	2953144146	Rumi numeral symbols	1037
Javanese	154	Runic	83
Kaithi	1038	Samaritan	147
Kangxi	78	Saurashtra	137
Kannada	23	Shape, shaping	205206
Katakana	511021042	Sharada	1053
Kayah Li	138	Shavian	1011

Siddham	1081
Sinhala	841064
Small form	67
Sora Sompeng	1051
Spacing modifier	6125
Specials	70
Strokes	124
Subscripts, superscripts	33
Sundanese	133161
Sutton SignWriting	1092
Syllables, syllabics	717476
Syloti Nagri	126
Symbols	9343536474997100
	1027104410451046
Syriac	10471048
Tagalog	85
Tagbanwa	93
Tags	96
Tai Tham	3001
Tai Viet	143
Tai Xuan Jing symbols	145
	1014

Tail Le	107
Takri	1054
Tamil	21
Technical	40
Telugu	22
Thaana	86
Thai	25
Tibetan	7291
Tifinagh	121
Tirhuta	1067
Ugaritic	1010
Unicode	303304305306307308
Vai	30931010646
Variation selectors	136
Vedic	1033003
Vertical form	149
Warang Citi	127
Yi	1083
Yijing hexagram symbols	7677
Zero-width	111
	200

A. 2 Blocks lists

A.2.1 Blocks in the BMP

The following blocks are specified in the Basic Multilingual Plane. They are ordered by code point.

Block name	from to
BASIC LATIN	0020-007E
LATIN-1 SUPPLEMENT	00A0-00FF
LATIN EXTENDED-A	0100-017F
LATIN EXTENDED-B	0180-024F
IPA EXTENSIONS	0250-02AF
SPACING MODIFIER LETTERS	02B0-02FF
COMBINING DIACRITICAL MARKS	0300-036F
GREEK AND COPTIC	0370-03FF
CYRILLIC	0400-04FF
CYRILLIC SUPPLEMENT	0500-052F
ARMENIAN	0530-058F
HEBREW	0590-05FF
ARABIC	0600-06FF
SYRIAC	0700-074F
ARABIC SUPPLEMENT	0750-077F
THAANA	0780-07BF
NKO	07C0-07FF
SAMARITAN	0800-083F
MANDAIC	0840-085F
ARABIC EXTENDED-A	08A0-08FF
DEVANAGARI	0900-097F
BENGALI	0980-09FF
GURMUKHI	OA00-0A7F
GUJ ARATI	0A80-0AFF
ORIYA	OB00-0B7F
TAMIL	0B80-0BFF
TELUGU	0C00-0C7F
KANNADA	0C80-0CFF
MALAYALAM	0D00-0D7F
SINHALA	0D80-0DFF
THAI	0E00-0E7F
LAO	0E80-0EFF
TIBETAN	OFO0-0FFF
MYANMAR	1000-109F
GEORGIAN	10A0-10FF
HANGUL JAMO	1100-11FF
ETHIOPIC	1200-137F

ETHIOPIC SUPPLEMENT	1380-139F
CHEROKEE	13A0-13FF
UNIFIED CANADIAN ABORIGINAL	
SYLLABICS	1400-167F
OGHAM	1680-169F
RUNIC	16A0-16FF
TAGALOG	1700-171F
HANUNOO	1720-173F
BUHID	1740-175F
TAGBANWA	1760-177F
KHMER	1780-17FF
MONGOLIAN	1800-18AF
UNIFIED CANADIAN ABORIGINAL	
SYLLABICS EXTENDED	18B0-18FF
LIMBU	1900-194F
TAI LE	1950-197F
NEW TAI LUE (Xishuang Banna Dai)	1980-19DF
KHMER SYMBOLS	19E0-19FF
BUGINESE	1A00-1A1F
TAI THAM	1A20-1AAF
COMBINING DIACRITICAL MARKS	
EXTENDED	1AB0-1AFF
BALINESE	1B00-1B7F
SUNDANESE	1880-1BBF
BATAK	1BCO-1BFF
LEPCHA	1C00-1C4F
OL CHIKI	1C50-1C7F
SUNDANESE SUPPLEMENT	1CC0-1CCF
VEDIC EXTENSIONS	1CD0-1CFF
PHONETIC EXTENSIONS	1D00-1D7F
PHONETIC EXTENSIONS SUPPLEMENT	1D80-1DBF
COMBINING DIACRITICAL MARKS	
SUPPLEMENT	1DC0-1DFF
LATIN EXTENDED ADDITIONAL	1E00-1EFF
GREEK EXTENDED	1F00-1FFF
GENERAL PUNCTUATION	2000-206F
SUPERSCRIPTS AND SUBSCRIPTS	2070-209F
CURRENCY SYMBOLS	20A0-20CF

ISO/IEC 10646:2014 (E)

COMBINING DIACRITICAL MARKS FOR SYMBOLS
LETTERLIKE SYMBOLS
NUMBER FORMS
ARROWS
MATHEMATICAL OPERATORS
MISCELLANEOUS TECHNICAL
CONTROL PICTURES
OPTICAL CHARACTER RECOGNITION
ENCLOSED ALPHANUMERICS
BOX DRAWING
BLOCK ELEMENTS
GEOMETRIC SHAPES
MISCELLANEOUS SYMBOLS
DI NGBATS
MISCELLANEOUS MATHEMATICAL SYMBOLS-A
SUPPLEMENTAL ARROWS-A
BRAI LLE PATTERNS
SUPPLEMENTAL ARROWS-B
MISCELLANEOUS MATHEMATICAL SYMBOLS-B
SUPPLEMENTAL MATHEMATICAL OPERATORS
MI SCELLANEOUS SYMBOLS AND ARROWS
GLAGOLITIC
LATIN EXTENDED-C
COPTIC
GEORGIAN SUPPLEMENT
TIFINAGH
ETHIOPIC EXTENDED
CYRILLIC EXTENDED-A
SUPPLEMENTAL PUNCTUATION
CJK RADICALS SUPPLEMENT
KANGXI RADICALS
IDEOGRAPHIC DESCRIPTION CHARACTERS
CJK SYMBOLS AND PUNCTUATION
HIRAGANA
KATAKANA
BOPOMOFO
HANGUL COMPATIBILITY JAMO
KANBUN (CJK miscellaneous)
BOPOMOFO EXTENDED
CJK STROKES

20D0-20FF
2100-214F
2150-218F
2190-21FF
2200-22FF
2300-23FF
2400-243F
2440-245F
2460-24FF
2500-257F
2580-259F
25A0-25FF
2600-26FF 2700-27BF

27C0-27EF
27F0-27FF
2800-28FF
2900-297F
2980-29FF
2A00-2AFF
2B00-2BFF
2C00-2C5F
2C60-2C7F
2C80-2CFF
2D00-2D2F
2D30-2D7F
2D80-2DDF
2DE0-2DFF 2E00-2E7F
2E80-2EFF 2F00-2FDF

2FF0-2FFF
3000-303F 3040-309F 30A0-30FF 3100-312F 3130-318F 3190-319F 31A0-31BF 31C0-31EF

KATAKANA PHONETIC EXTENSIONS	31F0-31FF
ENCLOSED CJK LETTERS AND MONTHS	3200-32FF
CJK COMPATIBILITY	3300-33FF
CJK UNIFIED IDEOGRAPHS EXTENSION A	3400-4DBF
YIJING HEXAGRAM SYMBOLS	4DC0-4DFF
CJK UNIFIED IDEOGRAPHS	4E00-9FFF
YI SYLLABLES	A000-A48F
YI RADICALS	A490-A4CF
LISU	A4D0-A4FF
VAI	A500-A63F
CYRILLIC EXTENDED-B	A640-A69F
BAMUM	A6A0-A6FF
MODIFIER TONE LETTERS	A700-A71F
LATIN EXTENDED-D	A720-A7FF
SYLOTI NAGRI	A800-A82F
COMMON INDIC NUMBER FORMS	A830-A83F
PHAGS-PA	A840-A87F
SAURASHTRA	A880-A8DF
DEVANAGARI EXTENDED	A8E0-A8FF
KAYAH LI	A900-A92F
REJ ANG	A930-A95F
HANGUL JAMO EXTENDED-A	A960-A97F
JAVANESE	A980-A9DF
MYANMAR EXTENDED-B	A9E0-A9FF
CHAM	AA00-AA5F
MYANMAR EXTENDED-A	AA60-AA7F
TAI VIET	AA80-AADF
MEETEI MAYEK EXTENSIONS	AAE0-AAFF
ETHIOPIC EXTENDED-A	AB00-AB2F
LATIN EXTENDED-E	AB30-AB6F
MEETEI MAYEK	ABCO-ABFF
HANGUL SYLLABLES	AC00-D7A3
HANGUL JAMO EXTENDED-B	D7B0-D7FF
PRIVATE USE AREA	E000-F8FF
CJK COMPATIBILITY IDEOGRAPHS	F900-FAFF
ALPHABETIC PRESENTATION FORMS	FB00-FB4F
ARABIC PRESENTATI ON FORMS-A	FB50-FDFF
VARIATION SELECTORS	FE00-FE0F
VERTICAL FORMS	FE10-FE1F
COMBINING HALF MARKS	FE20-FE2F
CJK COMPATIBILITY FORMS	FE30-FE4F
SMALL FORM VARIANTS	FE50-FE6F
ARABIC PRESENTATI ON FORMS-B	FE70-FEFE
HALFWIDTH AND FULLWIDTH FORMS	FF00-FFEF
SPECIALS	FFF0-FFFD

RAPHS EXTENSION A
YIJING HEXAGRAM SYMBOLS 4DC0-4DFF 4E00-9FFF A000-A48F A490-A4CF A4D0-A4FF A500-A63F A640-A6FF A700-A71F A720-A7FF A800-A82F A840-A87F A880-A8DF A8E0-A8FF A90 A92F A960-A97F A980-A9DF -A9F AA60-AA7F AA80-AADF AAEO-AAFF AB00-AB2F B30-AB6F AC00-D7A3 D7B0-D7FF 000-F8FF FB00-FB4F FB50-FDFF FE00-FEOF FE20-FE2 FE30-FE4F FE50-FE6F FF00-FFEF FFFO-FFFD

NOTE - The parenthetical annotation located in some block names is not part of these names.

A.2.2 Blocks in the SMP

The following blocks are specified in the Supplementary Multilingual Plane for scripts and symbols. They are ordered by code point.

Block name	from to
LINEAR B SYLLABARY	$10000-1007 \mathrm{~F}$
LINEAR B IDEOGRAMS	$10080-100 \mathrm{FF}$
AEGEAN NUMBERS	$10100-1013 \mathrm{~F}$
ANCIENT GREEK NUMBERS	$10140-1018 \mathrm{~F}$
ANCIENT SYMBOLS	$10190-101 \mathrm{CF}$
PHAISTOS DISC	$101 D 0-101 \mathrm{FF}$
LYCIAN	$10280-1029 \mathrm{~F}$
CARIAN	$102 A 0-102 D F$
COPTIC EPACT NUMBERS	$102 E 0-102 \mathrm{FF}$
OLD ITALIC	$10300-1032 \mathrm{~F}$
GOTHIC	$10330-1034 \mathrm{~F}$

OLD PERMIC	$10350-1037 \mathrm{~F}$
UGARITIC	$10380-1039 \mathrm{~F}$
OLD PERSIAN	$103 A 0-103 D F$
DESERET	$1040-1044 \mathrm{~F}$
SHAVIAN	$10450-1047 \mathrm{~F}$
OSMANYA	$10480-104 \mathrm{AF}$
ELBASAN	$10500-1052 \mathrm{~F}$
CAUCASIAN ALBANIAN	$10530-1056 \mathrm{~F}$
LINEAR A	$10600-1077 \mathrm{~F}$
CYPRIOT SYLLABARY	$10800-1083 \mathrm{~F}$
IMPERIAL ARAMAIC	$10840-1085 \mathrm{~F}$
PALMYRENE	$10860-1087 \mathrm{~F}$

NABATAEAN	10880-108AF
HATRAN	108E0-108FF
PHOENICIAN	10900-1091F
LYDIAN	10920-1093F
MEROITIC HIEROGLYPHS	10980-1099F
MEROITIC CURSIVE	109A0-109FF
KHAROSHTHI	10A00-10A5F
OLD SOUTH ARABIAN	10A60-10A7F
OLD NORTH ARABIAN	10A80-10A9F
MANICHAEAN	10AC0-10AFF
AVESTAN	10B00-10B3F
INSCRIPTIONAL PARTHIAN	10B40-10B5F
INSCRIPTIONAL PAHLAVI	10B60-10B7F
PSALTER PAHLAVI	10B80-10BAF
OLD TURKIC	10C00-10C4F
OLD HUNGARIAN	10C80-10CFF
RUMI NUMERAL SYMBOLS	10E60-10E7F
BRAHMI	11000-1107F
KAITHI	11080-110CF
SORA SOMPENG	110D0-110FF
CHAKMA	11100-1114F
MAHAJ ANI	11150-1117F
SHARADA	11180-111DF
SINHALA ARCHAIC NUMBERS	111E0-111FF
KHOJ KI	11200-1124F
MULTANI	11280-112AF
KHUDAWADI	112B0-112FF
GRANTHA	11300-1137F
TIRHUTA	11480-114DF
SIDDHAM	11580-115FF
MODI	11600-1165F
TAKRI	11680-116CF
AHOM	11700-1173F
WARANG CITI	118A0-118FF
PAU CIN HAU	11AC0-11AFF
CUNEIFORM	12000-123FF
CUNEIFORM NUMBERS AND	
PUNCTUATION	12400-1247F

EARLY DYNASTIC CUNEIFORM	12480-1254F
EGYPTIAN HIEROGLYPHS	13000-1342F
ANATOLIAN HIEROGLYPHS	14400-1467F
BAMUM SUPPLEMENT	16800-16A3F
MRO	16A40-16A6F
BASSA VAH	16AD0-16AFF
PAHAWH HMONG	16B00-16B8F
MIAO	16F00-16F9F
KANA SUPPLEMENT	1B000-1B0FF
DUPLOYAN	1BC00-1BC9F
SHORTHAND FORMAT CONTROL	1BCA0-1BCAF
BYZANTINE MUSICAL SYMBOLS	1D000-1D0FF
MUSICAL SYMBOLS	1D100-1D1FF
ANCIENT GREEK MUSICAL NOTATION	1D200-1D24F
TAI XUAN JING SYMBOLS	1D300-1D35F
COUNTING ROD NUMERALS	1D360-1D37F
MATHEMATICAL ALPHANUMERIC	
SYMBOLS	1D400-1D7FF
SUTTON SIGNWRITING	1D800-1DAAF
MENDE KIKAKUI	1E800-1E8DF
ARABIC MATHEMATICAL ALPHABETICAL	
SYMBOLS	1EE00-1EEFF
MAHJ ONG TILES	1F000-1F02F
DOMINO TILES	1F030-1F09F
PLAYING CARDS	1FOAO-1FOFF
ENCLOSED ALPHANUMERIC	
SUPPLEMENT	1F100-1F1FF
ENCLOSED IDEOGRAPHIC	
SUPPLEMENT	1F200-1F2FF
MISCELLANEOUS SYMBOLS AND	
PICTOGRAPHS	1F300-1F5FF
EMOTICONS	1F600-1F64F
ORNAMENTAL DINGBATS	1F650-1F67F
TRANSPORT AND MAP SYMBOLS	1F680-1F6FF
ALCHEMICAL SYMBOLS	1F700-1F77F
GEOMETRIC SHAPES EXTENDED	1F780-1F7FF
SUPPLEMENTAL ARROWS-C	1F800-1F8FF

A.2.3 Blocks in the SIP

The following blocks are specified in the Supplementary Ideographic Plane. They are ordered by code point.
Block name
CJK UNIFIED IDEOGRAPHS EXTENSION B CJK UNIFIED IDEOGRAPHS EXTENSION C CJK UNIFIED IDEOGRAPHS EXTENSION D CJK UNIFIED IDEOGRAPHS EXTENSION E from to
20000-2A6DF
2A700-2B73F
2B740-2B81F
CJK COMPATIBILITY IDEOGRAPHS SUPPLEMENT
2B820-2CEAF
2F800-2FA1F

A.2.4 Blocks in the SSP

The following blocks are specified in the Supplementary Special-purpose Plane. They are ordered by code point.

```
Block name
from to
TAGS E0000-E007F
VARIATION SELECTORS SUPPLEMENT
E0100-E01EF
```


A. 3 Fixed collections of the whole UCS (except Unicode collections)

A.3.1 General

The following fixed collections (see 4.26) contain the whole UCS assigned character content as it was when they were created. The Unicode collections are described in A.6.

ISO/IEC 10646:2014 (E)

A.3.2 301 BMP-AMD. 7

The fixed collection 301 BMP-AMD. 7 is specified below. It comprises only those coded characters that were in the BMP after amendments up to, but not after, AMD. 7 were applied to the First Edition of ISO/IEC 10646-1. Accordingly the repertoire of this collection is not subject to change if new characters are added to the BMP by any subsequent amendments.

301 BMP-AMD. 7 is specified by the following ranges of code points as indicated for each row or contiguous series of rows.

Plane 00

Row	Values within row	OF	00-47 49-69 71-8B 90-95 97 99-AD B1-B7 B9
00	20-7E A0-FF	10	A0-C5 D0-F6 FB
01	00-F5 FA-FF	11	00-59 5F-A2 A8-F9
02	00-17 50-A8 B0-DE EO-E9	1 E	00-9B A0-F9
03	00-45 60-61 74-75 7A 7E 84-8A 8C 8E-A1 A3CE D0-D6 DA DC DE E0 E2-F3	$1 F$	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4
04	01-0C 0E-4F 51-5C 5E-86 90-C4 C7-C8 CB-CC		F6-FE
	D0-EB EE-F5 F8-F9	20	00-2E 30-46 6A-70 74-8E A0-AB DO-E1
05	31-56 59-5F 61-87 89 91-A1 A3-B9 BB-C4 D0-	21	00-38 53-82 90-EA
	EA F0-F4	22	00-F1
06	OC 1B 1F 21-3A 40-52 60-6D 70-B7 BA-BE C0-	23	00 02-7A
	CE D0-ED FO-F9	24	00-24 40-4A 60-EA
09	01-03 05-39 3C-4D 50-54 58-70 81-83 85-8C	25	00-95 A0-EF
	8F-90 93-A8 AA-B0 B2 B6-B9 BC BE-C4 C7-C8	26	00-13 1A-6F
	CB-CD D7 DC-DD DF-E3 E6-FA	27	01-04 06-09 0C-27 29-4B 4D 4F-52 56 58-5E
OA	02 05-0A 0F-10 13-28 2A-30 32-33 35-36 38-		61-67 76-94 98-AF B1-BE
	39 3C 3E-42 47-48 4B-4D 59-5C 5E 66-74 81-	30	00-37 3F 41-94 99-9E A1-FE
	83 85-8B 8D 8F-91 93-A8 AA-B0 B2-B3 B5-B9	31	05-2C 31-8E 90-9F
	BC-C5 C7-C9 CB-CD D0 E0 E6-EF	32	00-1C 20-43 60-7B 7F-BO CO-CB DO-FE
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 36-39	33	00-76 7B-DD EO-FE
	3C-43 47-48 4B-4D 56-57 5C-5D 5F-61 66-70	4E-9F	4E00-9FA5
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-	AC-D7	AC00-D7A3
	A4 A8-AA AE-B5 B7-B9 BE-C2 C6-C8 CA-CD	E0-F8	E000-F8FF
	D7 E7-F2	F9-FA	F900-FA2D
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3E-44	FB	00-06 13-17 1E-36 38-3C 3E 40-41 43-44 46-
	46-48 4A-4D 55-56 60-61 66-6F 82-83 85-8C		B1 D3-FF
	8E-90 92-A8 AA-B3 B5-B9 BE-C4 C6-C8 CA-CD	FC	00-FF
	D5-D6 DE E0-E1 E6-EF	FD	00-3F 50-8F 92-C7 F0-FB
OD	02-03 05-0C 0E-10 12-28 2A-39 3E-43 46-48	FE	20-23 30-44 49-52 54-66 68-6B 70-72 74 76-
	4A-4D 57 60-61 66-6F		FC FF
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-	FF	01-5E 61-BE C2-C7 CA-CF D2-D7 DA-DC E0-
	9 F A1-A3 A5 A7 AA-AB AD-B9 BB-BD C0-C4 C6		

A.3.3 299 BMP FIRST EDITION

The fixed collection 299 BMP FIRST EDITION has been reserved to identify all of the coded characters that were in the BMP in the First Edition of ISO/IEC 10646-1. This collection is not now in conformity with this International Standard.

> NOTE - The specification of collection 299 BMP FIRST EDITION consisted of the specification of collection 301 BMP-AMD. 7 except for the replacement of the corresponding entries in the list above with the entries shown below:

Row	Values within row
05	31-56 59-5F 61-87 89 B0-B9 BB-C3 D0-EA F0-F4
OF	[no values]
1E	00-9A A0-F9
20	00-2E 30-46 6A-70 74-8E A0-AA D0-E1
AC-D7	[no values]
and by including an additional entry:	
Row	Values within row
34-4D	3400-4DFF

for the code point values of three collections $(57,58,59)$ of coded characters which have been deleted from this International Standard since the First Edition of ISO/IEC 10646-1.

A.3.4 302 BMP SECOND EDITION

The fixed collection 302 BMP SECOND EDITION comprises only those coded characters that are in the BMP in the Second Edition of ISO/IEC 10646-1. The repertoire of this collection is not subject to change if new characters are added to the BMP by any subsequent amendments.

302 BMP SECOND EDITION is specified by the following ranges of code points as indicated for each row or contiguous series of rows.

Plane 00

Row	Values within row	13	00-0E 10 12-15 18-1E 20-46 48-5A 61-7C A0-
00	20-7E A0-FF		F4
01	00-FF	14-15	1401-15FF
02	00-1F 22-33 50-AD B0-EE	16	00-76 80-9C A0-F0
03	00-4E 60-62 74-75 7A 7E 84-8A 8C 8E-A1 A3-	17	80-DC E0-E9
	CE D0-D7 DA-F3	18	00-0E 10-19 20-77 80-A9
04	00-86 88-89 8C-C4 C7-C8 CB-CC D0-F5 F8-F9	1 E	00-9B A0-F9
05	31-56 59-5F 61-87 89-8A 91-A1 A3-B9 BB-C4 DO-EA FO-F4	1 F	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F- 7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4
06	OC 1B 1F 21-3A 40-55 60-6D 70-ED F0-FE		F6-FE
07	00-0D 0F-2C 30-4A 80-B0	20	00-46 48-4D 6A-70 74-8E A0-AF D0-E3
09	01-03 05-39 3C-4D 50-54 58-70 81-83 85-8C	21	00-3A 53-83 90-F3
	8F-90 93-A8 AA-B0 B2 B6-B9 BC BE-C4 C7-C8	22	00-F1
	CB-CD D7 DC-DD DF-E3 E6-FA	23	00-7B 7D-9A
OA	02 05-OA 0F-10 13-28 2A-30 32-33 35-36 38-	24	00-26 40-4A 60-EA
	39 3C 3E-42 47-48 4B-4D 59-5C 5E 66-74 81-	25	00-95 A0-F7
	83 85-8B 8D 8F-91 93-A8 AA-B0 B2-B3 B5-B9	26	00-13 19-71
	BC-C5 C7-C9 CB-CD D0 E0 E6-EF	27	01-04 06-09 0C-27 29-4B 4D 4F-52 56 58-5E
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 36-39		61-67 76-94 98-AF B1-BE
	3C-43 47-48 4B-4D 56-57 5C-5D 5F-61 66-70	28	00-FF
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-	2 E	80-99 9B-F3
	A4 A8-AA AE-B5 B7-B9 BE-C2 C6-C8 CA-CD	2 F	00-D5 FO-FB
	D7 E7-F2	30	00-3A 3E-3F 41-94 99-9E A1-FE
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3E-44	31	05-2C 31-8E 90-B7
	46-48 4A-4D 55-56 60-61 66-6F 82-83 85-8C	32	00-1C 20-43 60-7B 7F-B0 C0-CB D0-FE
	8E-90 92-A8 AA-B3 B5-B9 BE-C4 C6-C8 CA-CD	33	00-76 7B-DD E0-FE
	D5-D6 DE E0-E1 E6-EF	34-4D	3400-4DB5
OD	02-03 05-0C 0E-10 12-28 2A-39 3E-43 46-48	$4 \mathrm{E}-9 \mathrm{~F}$	4E00-9FA5
	4A-4D 57 60-61 66-6F 82-83 85-96 9A-B1 B3-	A0-A3	A000-A3FF
	BB BD C0-C6 CA CF-D4 D6 D8-DF F2-F4	A4	00-8C 90-A1 A4-B3 B5-C0 C2-C4 C6
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-	AC-D7	AC00-D7A3
	9 F A1-A3 A5 A7 AA-AB AD-B9 BB-BD C0-C4 C6	E0-F8	E000-F8FF
	C8-CD D0-D9 DC-DD	F9-FA	F900-FA2D
OF	00-47 49-6A 71-8B 90-97 99-BC BE-CC CF	FB	00-06 13-17 1D-36 38-3C 3E 40-41 43-44 46-
10	00-21 23-27 29-2A 2C-32 36-39 40-59 A0-C5		B1 D3-FF
	D0-F6 FB	FC	00-FF
11	00-59 5F-A2 A8-F9	FD	00-3F 50-8F 92-C7 F0-FB
12	00-06 08-46 48 4A-4D 50-56 58 5A-5D 60-86	FE	20-23 30-44 49-52 54-66 68-6B 70-72 74 76-
	88 8A-8D 90-AE B0 B2-B5 B8-BE C0 C2-C5		FC FF
	C8-CE D0-D6 D8-EE F0-FF	FF	01-5E 61-BE C2-C7 CA-CF D2-D7 DA-DC E0E6 E8-EE F9-FD

A.3.5 340 COMBINED FIRST EDITION

The fixed collection 340 COMBINED FIRST EDITION is specified below. It comprises only those coded characters that were in the First Edition of this International Standard and consists of collections from A. 1 and A. 3 and several ranges of code points. The collection list is arranged by planes as follows.

```
Plane 00
Collection number and name
302 BMP SECOND EDITION
98 SUPPLEMENTAL ARROWS-A
99 SUPPLEMENTAL ARROWS-B
100 MISCELLANEOUS MATHEMATICAL SYMBOLS-B
101 SUPPLEMENTAL MATHEMATICAL OPERATORS
102 KATAKANA PHONETIC EXTENSIONS
```


ISO/IEC 10646:2014 (E)

103	VARIATION SELECTORS
108	KHMER SYMBOLS
111	YIJING HEXAGRAM SYMBOLS

Row	Values within row
02	20-21 34-36 AE-AF EF-FF
03	4F-57 5D-5F 63-6F D8-D9 F4-FB
04	8A-8B C5-C6 C9-CA CD-CE
05	00-0F
06	00-03 0D-15 56-58 6E-6F EE-EF FF
07	2D-2F 4D-4F B1
09	04 BD
OA	0103 8C E1-E3 F1
OB	3571 F3-FA
OC	BC-BD
10	F7-F8
17	00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73
	DD F0-F9
19	00-1C 20-2B 30-3B 40 44-4F 50-6D 70-74
1D	00-6B
20	47 4E-54 57 5F-63 71 B0-B1 E4-EA

```
3B 3D-4B F4-FF
F2-FF
7C 9B-D0
EB-FF
96-9F F8-FF
14-17 72-7D 80-91 A0-A1
68-75 DO-EB
00-0D
3B-3D 95-96 9F-A0 FF
1D-1E 50-5F 7C-7D B1-BF CC-CF
77-7A DE-DF FF
A2-A3 B4 C1 C5
30-6A
FC-FD
45-4873
5F-60
```

Plane 01
Collection number and name
1003 DESERET

1011 SHAVIAN
Row Values within row
$00 \quad 00-0 B$ 0D-26 28-3A 3C-3D 3F-4D 50-5D 80-FA
01 00-02 07-33 37-3F
03 80-9D 9F
04 80-9D A0-A9
$08 \quad 00-05080 A-35$ 37-38 3C 3F
DO 00-F5
D1 00-26 2A-DD
D3 00-56
D4 00-54 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB BD-C3 C5-FF
D5 00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44 46 4A-50 52-FF
D6 $00-\mathrm{A} 3 \mathrm{~A} 8-\mathrm{FF}$
D7 00-C9 CE-FF
Plane 02
Row Values within row
00-A6 0000-A6D6
F8-FA F800-FA1D

Plane 0E

Collection number and name
3003 VARIATION SELECTORS SUPPLEMENT
Row Values within row
$00 \quad 01$ 20-7F
Plane 0F
Row Values within row
00-FF 0000-FFFD
Plane 10
Row Values within row
00-FF 0000-FFFD

A. 4 CJK collections

A.4.1 370 IICORE

The fixed collection 370 IICORE is the International Core subset of the CJK UNIFIED IDEOGRAPHS2001 collection.

NOTE 1 - Given its large size (9810 c haracters) and the large number of sparse ranges, the collection is not specified by code point ranges in this document but instead by a linked content.

The content linked is the same file as the one used for the source references for the CJK ideographs. The presence of an IICORE tag (kIICORE) for a given CJK ideograph indicates that the character is part of the IICORE collection. See 23.2 for further details and access to the linked content.

A.4.2 371 JIS2004 IDEOGRAPHICS EXTENSION

The fixed collection 371 JIS2004 IDEOGRAPHICS EXTENSION consists of all level 3 and level 4 CJK characters defined in JIS X 0213:2004.

NOTE 1 - Given its large size (3 695 c haracters) and the large number of sparse ranges, the collection is not specified by code point ranges in this document but instead by a linked content.

The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark, that specifies, after a 3-lines header, as many lines as characters in the collection; each containing the following information in fixed length field:

- BMP or SIP code point (0hhhh), (2hhhh), normative.

The format definition uses ' h ' as a hexadecimal unit. Digits between parentheses appear as shown.

Click on this highlighted text to access the reference file.

NOTE 2 - The content is also available as a separate viewable file in the same file directory as this document. The file is named: "JIExt.txt".

A.4.3 $\quad 372$ JAPANESE IDEOGRAPHICS SUPPLEMENT

The fixed collection 372 JAPANESE IDEOGRAPHICS SUPPLEMENT consists of all CJK characters defined in JIS X 0212:1990. It contains 5801 characters.

NOTE - 2742 characters are common between the collections 371 and 372 .
The code points of this collection are identified by the J 1 Kanji J sources in the Source Reference file for CJK Unified Ideographs (CJKU_SR.txt). See 23.1 for further details.

A. 5 Other collections

A.5.1 General

The collections specified within A. 5 address the referencing need of users community. Characters may be from different writing systems and may be coded in different planes. It includes collection for users community from Lithuania, Japan and Europe as a whole.

NOTE - The acronym MES used in collection names below indicates Multilingual European Subset.

A.5.2 281 MES-1

The fixed collection 281 MES-1 is specified by the following ranges of code points as indicated for each row.

Plane 00

Row Values within row
00 20-7E A0-FF
$01 \quad 00-1316-2 B 2 E-4 D 50-7 E$
02 C7 D8-DB DD
$20 \quad 15$ 18-19 1C-1D AC
212226 5B-5E 90-93

ISO/IEC 10646:2014 (E)
26 6A

A.5.3 282 MES-2

The fixed collection 282 MES-2 is specified by the following ranges of code points as indicated for each row.

```
Plane 00
Row Values within row
00 20-7E A0-FF
01 00-7F 8F 92 B7 DE-EF FA-FF
02 18-1B 1E-1F 59 7C 92 BB-BD C6-C7 C9 D8-DD EE
03 74-75 7A 7E 84-8A 8C 8E-A1 A3-CE D7 DA-E1
04 00-5F 90-C4 C7-C8 CB-CC D0-EB EE-F5 F8-F9
1E 02-03 0A-0B 1E-1F 40-41 56-57 60-61 6A-6B 80-85 9B F2-F3
1F 00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F-7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4 F6-FE
20 13-15 17-1E 20-22 26 30 32-33 39-3A 3C 3E 44 4A 7F 82 A3-A4 A7 AC AF
21 05 16 22 26 5B-5E 90-95 A8
22 00 02-03 06 08-09 0F 11-12 19-1A 1E-1F 27-2B 48 59 60-61 64-65 82-83 95 97
23 02 10 20-21 29-2A
25 00 02 0C 10 14 18 1C 24 2C 34 3C 50-6C 80 84 88 8C 90-93 A0 AC B2 BA BC C4 CA-CB D8-D9
26 3A-3C 40 426063 65-66 6A-6B
FB 01-02
FF FD
```


A.5.4 283 MODERN EUROPEAN SCRIPTS

The collection 283 MODERN EUROPEAN SCRIPTS is specified by the following collections:

Collection number and name		34	CURRENCY SYMBOLS
1	BASIC LATIN	35	COMBINING DIACRITICAL MARKS FOR
2	LATIN-1 SUPPLEMENT		SYMBOLS
3	LATIN EXTENDED-A	36	LETTERLIKE SYMBOLS
4	LATIN EXTENDED-B	37	NUMBER FORMS
5	IPA EXTENSIONS	38	ARROWS
6	SPACING MODIFIER LETTERS	39	MATHEMATICAL OPERATORS
7	COMBINING DIACRITICAL MARKS	40	MISCELLANEOUS TECHNICAL
8	BASIC GREEK	42	OPTICAL CHARACTER RECOGNITION
9	GREEK SYMBOLS AND COPTIC	44	BOX DRAWING
10	CYRILLIC	45	BLOCK ELEMENTS
11	ARMENIAN	46	GEOMETRIC SHAPES
27	BASIC GEORGIAN	47	MISCELLANEOUS SYMBOLS
30	LATIN EXTENDED ADDITIONAL	65	COMBINING HALF MARKS
31	GREEK EXTENDED	70	SPECIALS
32	GENERAL PUNCTUATI ON	92	CYRILLIC SUPPLEMENT
33	SUPERSCRIPTS AND SUBSCRIPTS	104	LTR ALPHABETIC PRESENTATION FORMS

A.5.5 284 CONTEMPORARY LITHUANIAN LETTERS

The fixed extended collection 284 CONTEMPORARY LITHUANIAN LETTERS is defined as follows.

Plane 00

Row	Values within row
00	41-50 52-56 59-5A 61-70 72-76 79-7A C0-C1 C3 C8-C9 CC-CD D1-D3 D5 D9-DA DD E0-E1 E3 E8-E9 F1F3 F5 F9-FA FD
01	04-05 OC-0D 16-19 28 2E-2F 60-61 68-6B 72-73 7D-7E
1E	BC-BD F8-F9

UCS Sequence Indentifiers

<0104, 0301> <0105, 0301> <0104, 0303> <0105, 0303> <0118, 0301> <0119, 0301> <0118, 0303> <0119, 0303> <0116, 0301> <0117, 0301> <0116, 0303> <0117, 0303> <0069, 0307, 0300> <0069, 0307, 0301> <0069, 0307, 0303> <012E, 0301> <012F, 0307, 0301> <012E, 0303> <012F, 0307, 0303> <004A, 0303> <006A, 0307, 0303> <004C, 0303> <006C, 0303> <004D, 0303> <006D, 0303> <0052, 0303> <0072, 0303> <0172, $0301><0173,0301><0172,0303><0173,0303><016 A, 0301><016 \mathrm{~B}, 0301><016 \mathrm{~A}, 0303><016 \mathrm{~B}$, 0303>

A.5.6 285 BASIC JAPANESE

The fixed collection 285 BASIC JAPANESE is a core Japanese subset. Its 6884 characters are identified by:

- All JO Kanji J sources in the Source Reference file for CJK Unified Ideographs (CJKU_SR.txt). See 23.1 for further details.
- Ranges of code points arranged by planes:

Plane 00

Row	Values within row	22	00 02-03 07-08 0 B 12 1A 1D-1E 20 27-2C 34
00	20-7E A2 A3 A5 A7-A8 AC B0-B1 B4 B6 D7 F7		35 3D 52 60-61 66-67 6A-6B 82-83 86-87 A5
03	91-A1 A3-A9 B1-C1 C3-C9	23	12
04	01 10-4F 51	25	00-03 0C 0F-10 13-14 17-18 1B-1D 20 23-25
20	101416 18-19 1C-1D 20-21 25-26 30 32-33		28 2B-2C 2F-30 33-34 37-38 3B-3C 3F 42 4B
	3B 3E		A0-A1 B2-B3 BC-BD C6-C7 CB CE-CF EF
21	03 2B 90-93 D2 D4	26	05-06 4042 6A 6D 6F
		30	00-03 05-15 1C 41-93 9B-9E A1-F6 FB-FE

A.5.7 286 JAPANESE NON IDEOGRAPHICS EXTENSION

The fixed collection 286 JAPANESE NON IDEOGRAPHICS EXTENSION is a Japanese subset which completes JIS X 0213 non-ideographic repertoire in combination with either 285 BASIC JAPANESE or 287 COMMON JAPANESE. Its 631 characters are identified by the following ranges of code points arranged by planes:

Plane 00

Row	Values within row	22	050913 1F 25-26 2E 43454862 76-77 84-
00	A0-A1 A4 A6 A9-AB AD-AF B2-B3 B7-D6 D8-F6		85 8A-8B 95-97 BF DA-DB
	F8-FF	23	05-0618 BE-CC CE
01	00-09 0C-0F 11-13 18-1D 24-25 27 2A-2B 34-	24	23 60-73 D0-E9 EB-FE
	35 39-3A 3D-3E 41-44 47-48 4B-4D 50-55 58-	25	B1 B6-B7 C0-C1 C9 D0-D3 E6
	65 6A-71 79-7E 93 C2 CD-CE D0-D2 D4 D6 D8	26	00-03 0E 16-17 1E 60-69 6B-6C 6E
	DA DC F8-F9 FD	27	1356 76-7F
02	50-5A 5C 5E-61 64-68 6C-73 75 79-7B 7D-7E	29	34-35 BF FA-FB
	81-84 88-8E 90-92 94-95 98 9D A1-A2 C7-C8	30	16-19 1D 1F-20 33-35 3B-3D 94-96 9A 9F-A0
	CC D0-D1 D8-D9 DB DD-DE E5-E9		F7-FA FF
03	00-04 0608 OB-0C 0F 18-1A 1C-20 24-25 29-	31	F0-FF
	2A 2C 2F-30 34 39-3D 61 C2	32	31-32 39 51-5F A4-A8 B1-BF D0-E3 E5 E9 EC-
1E	3E-3F		ED FA
1 F	70-73	33	03 OD 1418 22-23 26-27 2B 36 3B 49-4A 4D
20	1322 3C 3F 42 47-49 51 AC		5157 7B-7E 8E-8F 9C-9E Al C4 CB CD
21	OF 1316212735 53-55 60-6B 70-7B 94 96-	FE	45-46
	99 C4 E6-E9	FF	5F-60

A.5.8 287 COMMON JAPANESE

The fixed collection 287 COMMON JAPANESE is a core Japanese subset containing 7493 characters. It includes a fixed collection from A. 5 and several ranges of code points.
$\frac{\frac{\text { Planes } 00}{\text { Collection number and name }}}{285 \quad \text { BASIC JAPANESE }}$

Plane 00

Row	Values within row	4E	28 E1 FC
20	15	4F	00033956 8A 9294 9A C9 CD FF
21	1621 60-69 70-79	50	1E 224042467094 D8 F4
22	11 1F 25 2E BF	51	4A 64 9D BE EC
24	60-73	52	15 9C A6 AF C0 DB
30	1D 1F	53	0007247293 B2 DD
32	31-32 39 A4-A8	54	8A 9C A9 FF
33	030 l 1418 22-23 26-27 2B 36 3B 49-4A 4D	55	86
	5157 7B-7E 8E-8F 9C-9E A1 C4 CD	57	5965 AC C7-C8

ISO/IEC 10646:2014 (E)

58	9E B2	7B	9E
59	0B 53 5B 5D 63 A4 BA	7D	48 5C A0 B7 D6
5B	56 C0 D8 EC	7E	52 8A
5C	1E A6 BA F5	7F	47 A1
5D	274253 6D B8-B9 D0	83	0162 7F C7 F6
5F	21344567 B7 DE	84	48 B4 DC
60	5D 85 8A D5 DE F2	85	5359 6B B0
61	1120303798	88	07 F5
62	13 A6	89	1C
63	F5	8A	123779 A7 BE DF F6
64	60 9D CE	8B	53 7F
65	4E	8C	F0 F4
66	000915 1E 24 2E 31 3B 5759657399 A0	8D	1276
	B2 BF FA-FB	8E	CF
67	0E 66 BB C0	90	67 DE
68	014452 C8 CF	91	1527 D7 DA DE E4-E5 ED-EE
69	6898 E2	92	06 0A 10 39-3A 3C 40 4E 515967 77-78 88
6A	3046 6B 73 7E E2 E4		A7 D0 D3 D5 D7 D9 E0 E7 F9 FB FF
6B	D6	93	02 1D-1E 2125485770 A4 C6 DE F8
6C	3F 5C 6F 86 DA	94	314548
6D	04 6F 8796 AC CF F2 F8 FC	95	92
6E	2739 3C 5C BF	96	9D AF
6F	88 B5 F5	97	33 3B 43 4D 4F 5155
70	05072885 AB BB	98	5765
71	04 OF 46-47 5C C1 FE	99	27 9E
72	B1 BE	9A	4E D9 DC
73	2477 BD C9 D2 D6 E3 F5	9B	7275 8F B1 BB
74	0726 29-2A 2E 6289 9F	9C	00
75	01 2F 6F	9D	6B 70
76	82 9B-9C 9E A6	9E	19 D1
77	46	F9	29 DC
78	21 4E 64 7A	FA	0E-2D
79	3094 9B	FF	01-5E 61-9F E0-E5
7A	D1 E7 EB		

A.5.9 288 MULTILINGUAL LATIN SUBSET

The fixed collection 288 MULTILINGUAL LATIN SUBSET is an international Latin subset. It is specified by the following ranges of code points as indicated for each row.

NOTE - The collection 288 MULTILINGUAL LATIN SUBSET does not provide an exhaustive coverage of all languages using Latin-based orthographies. It is referenced by ISO/IEC 9995-3:2010 Keyboard layouts for text and office systems - Part 3: Complementary layouts of the alphanumeric zone of the alphanumeric section.

Plane 00

Row	Values within row
00	20-7E A0-FF
01	00-80 8F 97 9A-9B 9D-A1 AF-B0 B5-B7 CD-DC DE-F0 F4-F5 F8-FF
02	00-1B 1E-20 22-23 26-33 3A-3E 41-44 46-49 4C-4F 59687275 7C 899294 B7 B9-BC BE-C1 C7-C8 CCCD D8-DB DD
03	00-04 06-11 1315 1B 23-29 2D-2E 31-32 353844 47-48 5C-61
1D	7D CD
1E	00-19 1C-2B 2E-73 76-99 9B 9E A0-F9
20	0C 11 13-15 18-1A 1C-1E 26 2F 32-33 39-3A 4A A5 AC
21	2226 4D 5B-5E 90-93 9A-9B
22	121560 64-65 6E-71
23	00
26	6A
2C	63 65-66
A7	88 8B-8C

A. 6 Unicode collections

A.6.1 General

These collections correspond to various versions of the Unicode Standard. They include characters from the BMP as well as Supplementary planes.

NOTE - Unicode 2.0 corresponds to collection 301. Unicode 2.1 adds the code points 20AC EURO SIGN and FFFC OBJECT REPLACEMENT CHARACTER to the collection 301. Unicode 3.0 corresponds to collection 302.

A.6.2 303 UNICODE 3.1

The fixed collection 303 UNICODE 3.1 consists of collections from A. 3 and several ranges of code points. The collection list is arranged by planes as follows.

Plane 00
Collection number and name
302 BMP SECOND EDITION
$\frac{\text { Row }}{03} \quad \frac{\text { Values within row }}{\text { F4-F5 }}$
Plane 01

Row	Values within row	D4	00-54 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB
03	00-1E 20-23 30-4A		BD-C0 C2-C3 C5-FF
04	00-25 28-4D	D5	00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44
D0	00-F5		46 4A-50 52-FF
D1	00-26 2A-DD	D6	$00-\mathrm{A} 3$ A8-FF
		D7	00-C9 CE-FF

Plane 02
Row Values within row
00-A6 0000-A6D6
F8-FA F800-FA1D

Plane 0E

$\frac{\text { Row }}{00} \quad \frac{\text { Values within row }}{0120-7 \mathrm{~F}}$
Plane 0F
Row Values within row
00-FF 0000-FFFD
Plane 10
Row Values within row
00-FF 0000-FFFD

A.6.3 304 UNICODE 3.2

The fixed collection 304 UNICODE 3.2 consists of fixed collections from A. 1 and several ranges of code points arranged by planes as follows.

Planes 00-10
Collection number and name
303 UNICODE 3.1
Plane 00
Collection number and name
98 SUPPLEMENTAL ARROWS-A
99 SUPPLEMENTAL ARROWS-B
100 MISCELLANEOUS MATHEMATICAL SYMBOLS-B
101 SUPPLEMENTAL MATHEMATICAL OPERATORS
102 KATAKANA PHONETIC EXTENSIONS
103 VARIATION SELECTORS

ISO/IEC 10646:2014 (E)

Row	Values within row	23	7C 9B-CE
02	20	24	EB-FE
03	4F 63-6F D8-D9 F6	25	96-9F F8-FF
04	8A-8B C5-C6 C9-CA CD-CE	26	16-17 72-7D 80-89
05	00-0F	27	68-75 D0-EB
06	6E-6F	30	3B-3D 95-96 9F-A0 FF
07	B1	32	51-5F B1-BF
10	F7-F8	A4	A2-A3 B4 C1 C5
17	00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73	FA	30-6A
20	47 4E-52 57 5F-63 71 B0-B1 E4-EA	FE	45-46 73
21	3D-4B F4-FF	FF	5F-60
22	F2-FF		

A.6.4 305 UNICODE 4.0

The fixed collection 305 UNICODE 4.0 is identical to the fixed collection 340 COMBINED FIRST EDITION.

A.6.5 306 UNICODE 4.1

The fixed collection 306 UNICODE 4.1 consists of a fixed collection from A. 1 and several ranges of code points. The collection list is arranged by planes as follows.

Plane 00-10
Collection number and name
305 UNICODE 4.0
Plane 00

Row	Values within row	21	3 C 4 C
02	37-41	23	D1-DB
03	58-5C FC-FF	26	18 7E-7F 92-9C A2-B1
04	F6-F7	27	C0-C6
05	A2 C5-C7	2B	0E-13
06	OB 1E 59-5E	2 C	00-2E 30-5E 80-EA F9-FF
07	50-6D	2D	00-25 30-65 6F 80-96 A0-A6 A8-AE B0-B6 B8-
09	7D CE		BE C0-C6 C8-CE D0-D6 D8-DE
OB	B6 E6	2 E	00-17 1C-1D
0 F	D0-D1	31	CO-CF
10	F9-FA FC	32	7E
12	074787 AF CF EF	9 F	A6-BB
13	OF 1F 47 5F-60 80-99	A7	00-16
19	80-A9 B0-C9 D0-D9 DE-DF	A8	00-2B
1A	00-1B 1E-1F	FA	70-D9
1 D	6C-C3	FE	10-19
20	55-56 58-5E 90-94 B2-B5 EB		
Plane 01			
Row	Values within row	OA	00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47
01	40-8A		50-58
03	A0-C3 C8-D5	D2	00-45
		D6	A4-A5

A.6.6 307 UNICODE 5.0

The fixed collection 307 UNICODE 5.0 consists of a fixed collection from A. 1 and several ranges of code points. The collection list is arranged by planes as follows.

Plane 00-10
Collection number and name
306 UNICODE 4.1
Plane 00

Row	Values within row	09	7B-7C 7E-7F
02	42-4F	OC	E2-E3 F1-F2
03	7B-7D	1B	00-4B 50-7C
04	CF FA-FF	1D	C4-CA FE-FF
05	10-13 BA	20	EC-EF
07	CO-FA	21	4D-4E 84

23	DC-E7	2C	$60-6 C$ 74-77
26	B2	A7	$17-1 A 20-21$
27	C7-CA	A8	$40-77$
$2 B$	14-1A 20-23		
Plane 01			
Row Values within row 09 $00-191 F$ $20-22$ $2000-22 F F$ 23 $00-6 E$	24	$00-6270-73$	

A.6.7 308 UNICODE 5.1

The fixed collection 308 UNICODE 5.1 is arranged by planes as follows.

Plane 00

Row	Values within row	1 E	00-FF
00	20-7E A0-FF	1F	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F-
01-02	0100-02FF		7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4
03	00-77 7A-7E 84-8A 8C 8E-A1 A3-FF		F6-FE
04	00-FF	20	00-64 6A-71 74-8E 90-94 A0-B5 D0-F0
05	00-23 31-56 59-5F 61-87 89-8A 91-C7 D0-EA	21	00-4F 53-88 90-FF
	F0-F4	22	00-FF
06	00-03 06-1B 1E-1F 21-5E 60-FF	23	00-E7
07	00-0D 0F-4A 4D-B1 C0-FA	24	00-26 40-4A 60-FF
09	01-39 3C-4D 50-54 58-72 7B-7F 81-83 85-8C	25	00-FF
	8F-90 93-A8 AA-B0 B2 B6-B9 BC-C4 C7-C8	26	00-9D A0-BC C0-C3
	CB-CE D7 DC-DD DF-E3 E6-FA	27	01-04 06-09 0C-27 29-4B 4D 4F-52 56 58-5E
OA	01-03 05-0A 0F-10 13-28 2A-30 32-33 35-36		61-94 98-AF B1-BE C0-CA CC D0-FF
	38-39 3C 3E-42 47-48 4B-4D 51 59-5C 5E 66-	28-2A	2800-2AFF
	75 81-83 85-8D 8F-91 93-A8 AA-B0 B2-B3 B5-	2B	00-4C 50-54
	B9 BC-C5 C7-C9 CB-CD D0 E0-E3 E6-EF F1	2 C	00-2E 30-5E 60-6F 71-7D 80-EA F9-FF
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39	2D	00-25 30-65 6F 80-96 A0-A6 A8-AE B0-B6 B8-
	3C-44 47-48 4B-4D 56-57 5C-5D 5F-63 66-71		BE C0-C6 C8-CE D0-D6 D8-DE E0-FF
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-	2E	00-30 80-99 9B-F3
	A4 A8-AA AE-B9 BE-C2 C6-C8 CA-CD D0 D7	2 F	00-D5 F0-FB
	E6-FA	30	00-3F 41-96 99-FF
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3D-44	31	05-2D 31-8E 90-B7 C0-E3 F0-FF
	46-48 4A-4D 55-56 58-59 60-63 66-6F 78-7F	32	00-1E 20-43 50-FE
	82-83 85-8C 8E-90 92-A8 AA-B3 B5-B9 BC-C4	33	00-FF
	C6-C8 CA-CD D5-D6 DE E0-E3 E6-EF F1-F2	$34-4 \mathrm{C}$	3400-4CFF
OD	02-03 05-0C 0E-10 12-28 2A-39 3D-44 46-48	4D	00-B5 CO-FF
	4A-4D 57 60-63 66-75 79-7F 82-83 85-96 9A-	4E-9F	4E00-9FC3
	B1 B3-BB BD C0-C6 CA CF-D4 D6 D8-DF F2-F4	A0-A3	A000-A3FF
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-	A4	00-8C 90-C6
	9 F A1-A3 A5 A7 AA-A8 AD-B9 BB-BD C0-C4 C6	A5	00-FF
	C8-CD D0-D9 DC-DD	A6	00-2B 40-5F 62-73 7C-97
OF	00-47 49-6C 71-8B 90-97 99-BC BE-CC CE-D4	A7	00-8C FB-FF
10	00-99 9E-C5 DO-FC	A8	00-2B 40-77 80-C4 CE-D9
11	00-59 5F-A2 A8-F9	A9	00-53 5F
12	00-48 4A-4D 50-56 58 5A-5D 60-88 8A-8D	AA	00-36 40-4D 50-59 5C-5F
	90-B0 B2-B5 B8-BE C0 C2-C5 C8-D6 D8-FF	AC-D7	AC00-D7A3
13	00-10 12-15 18-5A 5F-7C 80-99 A0-F4	E0-F8	E000-F8FF
14-15	1401-15FF	F9	00-FF
16	00-76 80-9C A0-F0	FA	00-2D 30-6A 70-D9
17	00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73 80-DD E0-E9 FO-F9	FB	```00-06 13-17 1D-36 38-3C 3E 40-41 43-44 46- B1 D3-FF```
18	00-0E 10-19 20-77 80-AA	FC	00-FF
19	00-1C 20-2B 30-3B 40 44-6D 70-74 80-A9 B0-	FD	00-3F 50-8F 92-C7 F0-FD
	C9 D0-D9 DE-FF	FE	00-19 20-26 30-52 54-66 68-6B 70-74 76-FC
1A	00-1B 1E-1F		FF
1B	00-4B 50-7C 80-AA AE-B9	FF	01-BE C2-C7 CA-CF D2-D7 DA-DC E0-E6 E8-
1 C	00-37 3B-49 4D-7F		EE F9-FD

Plane 01

Row	Values within row	24
00	00-0B 0D-26 28-3A 3C-3D 3F-4D 50-5D 80-FA	D0
01	00-02 07-33 37-8A 90-9B D0-FD	D1
02	80-9C A0-D0	D2
03	00-1E 20-23 30-4A 80-9D 9F-C3 C8-D5	D3
04	00-9D A0-A9	D4
08	00-05 08 0A-35 37-38 3C 3F	
09	00-19 1F-39 3F	D5
0A	00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47	
	50-58	D6
20-22	2000-22FF	D7
23	00-6E	F0

00-62 70-73

00-F5
00-26 29-DD
00-45
00-56 60-71
00-54 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB
BD-C3 C5-FF
00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44
46 4A-50 52-FF
00-A5 A8-FF
00-CB CE-FF
00-2B 30-93

Plane 02
$\begin{array}{ll}\frac{\text { Row }}{00-A 6} & \text { Values within row } \\ \text { O000-A6D6 } \\ \text { F8-FA } & \text { F800-FA1D }\end{array}$
Plane 0E
Row Values within row
0120-7F
01 00-EF

Plane 0F

Row Values within row

Plane 10

$\frac{\text { Row }}{00-\text { FF }} \frac{\text { Values within row }}{0000-\text { FFFD }}$
NOTE - The collection 308 UNICODE 5.1 can also be determined by using another fixed collection from A. 1 and several ranges of code points.
Plane 00-10
Collection number and name
308 UNICODE 5.0

Plane 00

Row	Values within row	20	64 F0
03	70-73 76-77 CF	21	4F 85-88
04	87	26	9D B3-BC C0-C3
05	14-23	27	CC EC-EF
06	06-0A 16-1A 3B-3F	2B	1B-1F 24-4C 50-54
07	6E-7F	2C	6D-6F 71-73 78-7D
09	71-72	2D	E0-FF
OA	5175	2E	18-1B 1E-30
OB	44 62-63 D0	31	2D D0-E3
OC	3D 58-59 62-63 78-7F	9F	BC-C3
OD	3D 44 62-63 70-75 79-7F	A5	00-FF
OF	6B-6C CE D2-D4	A6	00-2B 40-5F 62-73 7C-97
10	2228 2B 33-35 3A-3F 5A-8A	A7	1B-1F 22-8C FB-FF
18	AA	A8	80-C4 CE-D9
1B	80-AA AE-B9	A9	00-53 5F
1C	00-37 3B-49 4D-7F	AA	00-36 40-4D 50-59 5C-5F
1D	CB-E6	FE	24-26
1E	9C-9F FA-FF		
Plane 01			
Row	Values within row	D1	29
01	90-9B D0-FD	F0	00-2B 30-93
02	80-9C A0-D0		
09	20-39 3F		

A.6.8 309 UNICODE 5.2

The fixed collection 309 UNICODE 5.2 is arranged by planes as follows.

Plane 00

Row	Values within row	1E	00-FF
00	20-7E A0-FF	1F	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F-
01-02	0100-02FF		7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4
03	00-77 7A-7E 84-8A 8C 8E-A1 A3-FF		F6-FE
04	00-FF	20	00-64 6A-71 74-8E 90-94 A0-B8 D0-F0
05	00-25 31-56 59-5F 61-87 89-8A 91-C7 D0-EA	21	00-89 90-FF
	F0-F4	22	00-FF
06	00-03 06-1B 1E-1F 21-5E 60-FF	23	00-E8
07	00-0D 0F-4A 4D-B1 C0-FA	24	00-26 40-4A 60-FF
08	00-2D 30-3E	25	00-FF
09	00-39 3C-4E 50-55 58-72 79-7F 81-83 85-8C	26	00-CD CF-E1 E3 E8-FF
	8F-90 93-A8 AA-B0 B2 B6-B9 BC-C4 C7-C8	27	01-04 06-09 0C-27 29-4B 4D 4F-52 56-5E 61-
	CB-CE D7 DC-DD DF-E3 E6-FB		94 98-AF B1-BE C0-CA CC D0-FF
OA	01-03 05-0A 0F-10 13-28 2A-30 32-33 35-36	28-2A	2800-2AFF
	38-39 3C 3E-42 47-48 4B-4D 51 59-5C 5E 66-	2B	00-4C 50-59
	75 81-83 85-8D 8F-91 93-A8 AA-B0 B2-B3 B5-	2C	00-2E 30-5E 60-7F 80-F1 F9-FF
	B9 BC-C5 C7-C9 CB-CD D0 E0-E3 E6-EF F1	2D	00-25 30-65 6F 80-96 A0-A6 A8-AE B0-B6 B8-
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39		BE C0-C6 C8-CE D0-D6 D8-DE E0-FF
	3C-44 47-48 4B-4D 56-57 5C-5D 5F-63 66-71	2E	00-31 80-99 9B-F3
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-	2F	00-D5 F0-FB
	A4 A8-AA AE-B9 BE-C2 C6-C8 CA-CD D0 D7	30	00-3F 41-96 99-FF
	E6-FA	31	05-2D 31-8E 90-B7 C0-E3 F0-FF
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3D-44	32	00-1E 20-FE
	46-48 4A-4D 55-56 58-59 60-63 66-6F 78-7F	33	00-FF
	82-83 85-8C 8E-90 92-A8 AA-B3 B5-B9 BC-C4	34-4C	3400-4CFF
	C6-C8 CA-CD D5-D6 DE E0-E3 E6-EF F1-F2	4D	00-B5 C0-FF
OD	02-03 05-0C 0E-10 12-28 2A-39 3D-44 46-48	4E-9F	4E00-9FC6
	4A-4D 57 60-63 66-75 79-7F 82-83 85-96 9A-	A0-A3	A000-A3FF
	B1 B3-BB BD C0-C6 CA CF-D4 D6 D8-DF F2-F4	A4	00-8C 90-C6 D0-FF
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-	A5	00-FF
	9 F A1-A3 A5 A7 AA-A8 AD-B9 BB-BD C0-C4 C6	A6	00-2B 40-5F 62-73 7C-97 A0-F7
	C8-CD D0-D9 DC-DD	A7	00-8C FB-FF
OF	00-47 49-6C 71-8B 90-97 99-BC BE-CC CE-D8	A8	00-2B 30-39 40-77 80-C4 CE-D9 E0-FB
10	00-C5 D0-FC	A9	00-53 5F-7C 80-CD CF-D9 DE-DF
11	00-FF	AA	00-36 40-4D 50-59 5C-7B 80-C2 DB-DF
12	00-48 4A-4D 50-56 58 5A-5D 60-88 8A-8D	AB	C0-ED F0-F9
	90-B0 B2-B5 B8-BE C0 C2-C5 C8-D6 D8-FF	AC-D6	AC00-D6FF
13	00-10 12-15 18-5A 5F-7C 80-99 A0-F4	D7	00-A3 B0-C6 CB-FB
14-15	1400-15FF	E0-F8	E000-F8FF
16	00-9C A0-FO	F9	00-FF
17	00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73	FA	00-2D 30-6D 70-D9
	80-DD E0-E9 F0-F9	FB	00-06 13-17 1D-36 38-3C 3E 40-41 43-44 46-
18	00-0E 10-19 20-77 80-AA B0-F5		B1 D3-FF
19	00-1C 20-2B 30-3B 40 44-6D 70-74 80-AB B0-	FC	00-FF
	C9 D0-DA DE-FF	FD	00-3F 50-8F 92-C7 F0-FD
1A	00-1B 1E-5E 60-7C 7F-89 90-99 A0-AD	FE	00-19 20-26 30-52 54-66 68-6B 70-74 76-FC
1B	00-4B 50-7C 80-AA AE-B9		FF
1 C	00-37 3B-49 4D-7F D0-F2	FF	01-BE C2-C7 CA-CF D2-D7 DA-DC E0-E6 E8-
1D	00		EE F9-FD

Plane 01

$\frac{\text { Row }}{00} \quad \frac{\text { Values within row }}{00-0 B \text { OD-26 28-3A 3C-3D 3F-4D 50-5D 80-FA }}$
01 00-02 07-33 37-8A 90-9B D0-FD
OA
00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47
50-58 60-7F
00-35 39-55 58-72 78-7F
00-48
60-7E
80-C1
22 2000-22FF
00-6E
00-62 70-73

$30-34$	$3000-342 \mathrm{E}$	D5
D0	$00-\mathrm{F5}$	
D1	$00-26$ 29-DD	D6
D2	$00-45$	D7
D3	$00-56$ 60-71	F0
D4	$00-54$ 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB	F1
	BD-C3 C5-FF	
		F2

00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44 46 4A-50 52-FF
00-A5 A8-FF
00-CB CE-FF
00-2 B 30-93
00-0A 10-2E 31 3D 3F 4246 4A-4E 57 5F 79
7B-7C 7F 8A-8D 90
00 10-31 40-48

Plane 02

$\frac{\text { Row }}{\text { 00-A6 }}$	
A7-B7 Values within row A700-A6D6 F8-FA F800-FA1D	

Plane 0E

$\frac{\text { Row }}{00}$	
01	Values within row
$0120-7 F$	
$00-E F$	

Plane 0F

Row Values within row
00-FF 0000-FFFD

Plane 10

Row Values within row
00-FF 0000-FFFD

NOTE - The collection 309 UNICODE 5.2 can also be determined by us ing another fixed collection from A. 1 and several ranges of code points.			
Plane 00-10			
Collection number and name			
308 UNICODE 5.1			
Plane 00			
Row	Values within row	26	9E-9F BD-BF C4-CD CF-E1 E3 E8-FF
05	24-25	27	57
08	00-2D 30-3E	2B	55-59
09	00 4E 55 79-7A FB	2C	70 7E-7F EB-F1
OF	D5-D8	2D	E0-FF
10	9A-9D	2E	31
11	5A-5E A3-A7 FA-FF	32	44-4F
14	00	9F	C4-C6
16	77-7F	A4	D0-FF
18	B0-F5	A6	A0-F7
19	AA-AB DA	A8	30-39 E0-FB
1A	20-5E 60-7C 7F-89 90-99 A0-AD	A9	60-7C 80-CD CF-D9 DE-DF
1C	D0-F2	AA	60-7B 80-C2 DB-DF
1D	FD	AB	C0-ED F0-F9
20	B6-B8	D7	B0-C6 CB-FB
21	50-52 89	FA	6B-6D
23	E8		
Plane 01			
Row	Values within row	10	80-C1
08	40-55 57-5F	30-34	3000-342E
09	1A-1B	F1	00-0A 10-2E 31 3D 3F 4246 4A-4E 57 5F
0A	60-7F		79 7B-7C 7F 8A-8D 90
OB	00-35 39-55 58-72 78-7F	F2	00 10-31 40-48
OC	00-48		
OE	60-7E		

Plane 02

Row Values within row

A7-B7 A700-B734

A.6.9 310 UNICODE 6.0

The fixed collection 310 UNICODE 6.0 is arranged by planes as follows.

Plane 00

Row	Values within row	1E	00-FF
00	20-7E A0-FF	1F	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F-
01-02	0100-02FF		7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4
03	00-77 7A-7E 84-8A 8C 8E-A1 A3-FF		F6-FE
04	00-FF	20	00-64 6A-71 74-8E 90-9C A0-B9 D0-F0
05	00-27 31-56 59-5F 61-87 89-8A 91-C7 D0-EA	21	00-89 90-FF
	F0-F4	22	00-FF
06	00-03 06-1B 1E-FF	23	00-F3
07	00-0D 0F-4A 4D-B1 C0-FA	24	00-26 40-4A 60-FF
08	00-2D 30-3E 40-5B 5E	25	00-FF
09	00-77 79-7F 81-83 85-8C 8F-90 93-A8 AA-B0	26	00-FF
	B2 B6-B9 BC-C4 C7-C8 CB-CE D7 DC-DD DF-	27	01-CA CC CE-FF
	E3 E6-FB	28-2A	2800-2AFF
OA	01-03 05-0A 0F-10 13-28 2A-30 32-33 35-36	2B	00-4C 50-59
	38-39 3C 3E-42 47-48 4B-4D 51 59-5C 5E 66-	2C	00-2E 30-5E 60-7F 80-F1 F9-FF
	75 81-83 85-8D 8F-91 93-A8 AA-B0 B2-B3 B5-	2D	00-25 30-65 6F-70 7F-96 A0-A6 A8-AE B0-B6 B8-BE C0-C6 C8-CE D0-D6 D8-DE E0-FF
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39	2E	00-31 80-99 9B-F3
	3C-44 47-48 4B-4D 56-57 5C-5D 5F-63 66-77	2 F	00-D5 F0-FB
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-	30	00-3F 41-96 99-FF
	A4 A8-AA AE-B9 BE-C2 C6-C8 CA-CD D0 D7	31	05-2D 31-8E 90-BA C0-E3 F0-FF
	E6-FA	32	00-1E 20-FE
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3D-44	33	00-FF
	46-48 4A-4D 55-56 58-59 60-63 66-6F 78-7F	34-4C	3400-4CFF
	82-83 85-8C 8E-90 92-A8 AA-B3 B5-B9 BC-C4	4D	00-B5 C0-FF
	C6-C8 CA-CD D5-D6 DE E0-E3 E6-EF F1-F2	4E-9F	4E00-9FCB
OD	02-03 05-0C 0E-10 12-3A 3D-44 46-48 4A-4E	A0-A3	A000-A3FF
	57 60-63 66-75 79-7F 82-83 85-96 9A-B1 B3-	A4	00-8C 90-C6 D0-FF
	BB BD C0-C6 CA CF-D4 D6 D8-DF F2-F4	A5	00-FF
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-	A6	00-2B 40-73 7C-97 A0-F7
	9 F A1-A3 A5 A7 AA-A8 AD-B9 BB-BD C0-C4 C6	A7	00-8E 90-91A0-A9 FA-FF
	C8-CD D0-D9 DC-DD	A8	00-2B 30-39 40-77 80-C4 CE-D9 E0-FB
OF	00-47 49-6C 71-97 99-BC BE-CC CE-DA	A9	00-53 5F-7C 80-CD CF-D9 DE-DF
10	00-C5 D0-FC	AA	00-36 40-4D 50-59 5C-7B 80-C2 DB-DF
11	00-FF	AB	01-06 09-0E 11-16 20-26 28-2E C0-ED F0-F9
12	00-48 4A-4D 50-56 58 5A-5D 60-88 8A-8D	AC-D6	AC00-D6FF
	90-B0 B2-B5 B8-BE C0 C2-C5 C8-D6 D8-FF	D7	00-A3 B0-C6 CB-FB
13	00-10 12-15 18-5A 5D-7C 80-99 A0-F4	E0-F8	E000-F8FF
14-15	1400-15FF	F9	00-FF
16	00-9C AO-F0	FA	00-2D 30-6D 70-D9
17	$\begin{aligned} & \text { 00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73 } \\ & \text { 80-DD E0-E9 F0-F9 } \end{aligned}$	FB	```00-06 13-17 1D-36 38-3C 3E 40-41 43-44 46- C1 D3-FF```
18	00-0E 10-19 20-77 80-AA B0-F5	FC	00-FF
19	00-1C 20-2B 30-3B 40 44-6D 70-74 80-AB B0-	FD	00-3F 50-8F 92-C7 F0-FD
	C9 D0-DA DE-FF	FE	00-19 20-26 30-52 54-66 68-6B 70-74 76-FC
1A	00-1B 1E-5E 60-7C 7F-89 90-99 A0-AD		FF
1B	00-4B 50-7C 80-AA AE-B9 C0-F3 FC-FF	FF	01-BE C2-C7 CA-CF D2-D7 DA-DC E0-E6 E8-
1 C	00-37 3B-49 4D-7F D0-F2		EE F9-FD

00-1B 1F-39 3F
00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47 50-58 60-7F
00-35 39-55 58-72 78-7F
00-48
60-7E
00-4D 52-6F 80-C1

$20-22$	$2000-22 F F$	D5
23	$00-6 E$	D6
24	$00-62$ 70-73	D7
$30-34$	$3000-342 \mathrm{E}$	F0
$68-6 A$	$6800-6 A 38$	F1
B0	$00-01$	F2
D0	$00-$ F5	F3
D1	$00-26$ 29-DD	F4
D2	$00-45$	F5
D3	$00-56$ 60-71	F6
D4	$00-5456-9 C$ 9E-9F A2 A5-A6 A9-AC AE-B9 BB	
	BD-C3 C5-FF	F7

00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44 46 4A-50 52-FF
00-A5 A8-FF
00-CB CE-FF
00-2B 30-93 A0-AE B1-BE C1-CF D1-DF 00-0A 10-2E 30-69 70-8E 90-9A E6-FF 00-02 10-3A 40-48 50-51
00-20 30-35 37-7C 80-93 A0-C4 C6-CA E0-F0 00-3E 40 42-F7 F9-FC 00-3D 50-67 FB-FF
01-10 12-14 1618 1A 1C-1E 20-25 28-2B 2D 30-33 35-40 45-4F 80-C5 00-73

Plane 02

$\frac{\text { Row }}{00-A 6}$	
Values within row	
A7-B6	A700-A6D6
B7	$00-3440-$ FF
B8	00-1D
F8-FA	F800-FA1D

Plane 0E

$\frac{\text { Row }}{00}$	
01	Values within row $0120-7 F$ $00-E F$

Plane 0F
Row Values within row
00-FF 0000-FFFD
Plane 10
Row Values within row
00-FF 0000-FFFD
NOTE - The collection 310 UNICODE 6.0 can also be determined by using another fixed collection from A. 1 and several ranges of code points. It contains the code point 20B9 INDIAN RUPEE SIGN which is added in this edition of this International Standard.

Plane 00-10
Collection number and name
309 UNICODE 5.2

Plane 00

Row	Values within row	26	CE E2 E4-E7
05	26-27	27	05 0A-0B 28 4C 4E 53-55 5F-60 95-97 B0
08	40-5B 5E		BF CE CF
09	3A-3B 4F 56-57 73-77	2D	70 7F
OB	72-77	30	97
OD	29 3A 4E	31	B8-BA
OF	8C-8F D9-DA	9 F	C7-CB
13	5D-5E	A6	60-61
1B	C0-F3 FC-FF	A7	8D-8E 90-91 A0-A9 FA
1D	FC	AB	01-06 09-0E 11-16 20-26 28-2E
20	B9	FB	B2-C1
23	E9-F3		
Plane 01			
Row	Values within row	F1	30 32-3C 3E 40-41 43-45 47-49 4F-56 58-
10	00-4D 52-6F		5E 60-69 70-78 7A 7D-7E 80-89 8E-8F
68-6A	6800-6A38		91-9A E6-FF
B0	00-01	F2	01-02 32-3A 50-51
F0	A0-AE B1-BE C1-CF D1-DF	F3	00-20 30-35 37-7C 80-93 A0-C4 C6-CA
			E0-F0
		F4	00-3E 40 42-F7 F9-FC

F5 00-3D 50-67 FB-FF
F6 01-10 12-14 1618 1A 1C-1E 20-25 28-2B 2D 30-33 35-40 45-4F 80-C5
Plane 02

| Row | Values within row | B8 00-1D |
| :--- | :--- | :--- | :--- |
| $40-\mathrm{FF}$ | | |

F7

B8

00-73

40-FF

A.6.10 311 UNICODE 6.1

The fixed collection 311 UNICODE 6.1 is arranged by planes as follows.

Plane 00

Row	Values within row
00	20-7E A0-FF
01-02	0100-02FF
03	00-77 7A-7E 84-8A 8C 8E-A1 A3-FF
04	00-FF
05	00-27 31-56 59-5F 61-87 89-8A 8F 91-C7 D0EA F0-F4
06	00-04 06-1B 1E-FF
07	00-0D 0F-4A 4D-B1 C0-FA
08	00-2D 30-3E 40-5B 5E AO A2-AC E4-FE
09	00-77 79-7F 81-83 85-8C 8F-90 93-A8 AA-B0 B2 B6-B9 BC-C4 C7-C8 CB-CE D7 DC-DD DFE3 E6-FB
OA	01-03 05-0A 0F-10 13-28 2A-30 32-33 35-36 38-39 3C 3E-42 47-48 4B-4D 51 59-5C 5E 6675 81-83 85-8D 8F-91 93-A8 AA-B0 B2-B3 B5B9 BC-C5 C7-C9 CB-CD D0 E0-E3 E6-F1
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39 3C-44 47-48 4B-4D 56-57 5C-5D 5F-63 66-77 82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3A4 A8-AA AE-B9 BE-C2 C6-C8 CA-CD D0 D7 E6-FA
OC	01-03 05-0C 0E-10 12-28 2A-33 35-39 3D-44 46-48 4A-4D 55-56 58-59 60-63 66-6F 78-7F 82-83 85-8C 8E-90 92-A8 AA-B3 B5-B9 BC-C4 C6-C8 CA-CD D5-D6 DE E0-E3 E6-EF F1-F2
OD	02-03 05-0C 0E-10 12-3A 3D-44 46-48 4A-4E 57 60-63 66-75 79-7F 82-83 85-96 9A-B1 B3BB BD C0-C6 CA CF-D4 D6 D8-DF F2-F4
OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 999F A1-A3 A5 A7 AA-A8 AD-B9 BB-BD C0-C4 C6 C8-CD D0-D9 DC-DF
OF	00-47 49-6C 71-97 99-BC BE-CC CE-DA
10	00-C5 C7 CD D0-FF
11	00-FF
12	00-48 4A-4D 50-56 58 5A-5D 60-88 8A-8D 90-B0 B2-B5 B8-BE C0 C2-C5 C8-D6 D8-FF
13	00-10 12-15 18-5A 5D-7C 80-99 A0-F4
14-15	1400-15FF
16	00-9C A0-F0
17	$\begin{aligned} & \text { 00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73 } \\ & \text { 80-DD EO-E9 F0-F9 } \end{aligned}$
18	00-0E 10-19 20-77 80-AA B0-F5
19	00-1C 20-2B 30-3B 40 44-6D 70-74 80-AB B0C9 D0-DA DE-FF
1A	00-1B 1E-5E 60-7C 7F-89 90-99 A0-AD
1B	00-4B 50-7C 80-F3 FC-FF
1 C	00-37 3B-49 4D-7F C0-C7 D0-F6
1D	00-E6 FC-FF

Plane 01

$\frac{\text { Row }}{00}$	Values within row	
00	$00-0 B 0 D-2628-3 A ~ 3 C-3 D ~ 3 F-4 D ~ 50-5 D ~ 80-F A ~$	0
01	$00-0207-33$ 37-8A 90-9B D0-FD	

$1 \mathrm{E} \quad 00-\mathrm{FF}$

00-9D A0-A9

ISO/IEC 10646:2014 (E)

08	00-05 08 0A-35 37-38 3C 3F-55 57-5F	D3	00-56 60-71
09	00-1B 1F-39 3F 80-B7 BE-BF	D4	00-54 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB
0A	00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47		BD-C3 C5-FF
	50-58 60-7F	D5	00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44
OB	00-35 39-55 58-72 78-7F		46 4A-50 52-FF
OC	00-48	D6	00-A5 A8-FF
OE	60-7E	D7	00-CB CE-FF
10	00-4D 52-6F 80-C1 D0-E8 F0-F9	EE	00-03 05-1F 21-22 2427 29-32 34-37 39 3B
11	00-34 36-43 80-C8 D0-D9		424749 4B 4D-4F 51-52 545759 5B 5D 5F
16	80-B7 C0-C9		61-62 64 67-6A 6C-72 74-77 79-7C 7E 80-89
20-22	2000-22FF		8B-9B A1-A3 A5-A9 AB-BB F0-F1
23	00-6E	F0	00-2B 30-93 A0-AE B1-BE C1-CF D1-DF
24	00-62 70-73	F1	00-0A 10-2E 30-6B 70-8E 90-9A E6-FF
30-34	3000-342E	F2	00-02 10-3A 40-48 50-51
68-6A	6800-6A38	F3	00-20 30-35 37-7C 80-93 A0-C4 C6-CA E0-F0
6 F	00-44 50-7E 8F-9F	F4	00-3E 40 42-F7 F9-FC
B0	00-01	F5	00-3D 40-43 50-67 FB-FF
D0	00-F5	F6	00-40 45-4F 80-C5
D1	00-26 29-DD	F7	00-73
D2	00-45		

Plane 02

Row Values within row
00-A6 0000-A6D6
A7-B6 A700-B6FF
B7 00-34 40-FF
B8 00-1D
F8-FA F800-FA1D
Plane 0E
$\frac{\text { Row }}{00} \quad \frac{\text { Values within row }}{0120-7 \mathrm{~F}}$
01 00-EF

Plane 0F

$\frac{\text { Row }}{00-F F} \quad \frac{\text { Values within row }}{0000-\text { FFFD }}$

Plane 10

$\frac{\text { Row }}{00-\text { FF }} \frac{\text { Values within row }}{0000-\text { FFFD }}$
NOTE - The collection 311 UNICODE 6.1 can also be determined by using another fixed collection from A. 1 and several ranges of code points.
Plane 00-10
Collection number and name
310 UNICODE 6.0
Plane 00

Row	Values within row	2C	F2-F3
05	8F	2D	27 2D 66-67
06	04	2E	32-3B
08	A0 A2-AC E4-FE	9F	CC
OA	F0	A6	74-7B 9F
OE	DE-DF	A7	92-93 AA F8-F9
10	C7 CD FD-FF	AA	E0-F6
1B	AB-AD BA-BF	FA	2E-2F
1 C	C0-C7 F3-F6		
27	CB CD		

Plane 01

Row	Values within row	11	00-34 36-43 80-C8 D0-D9
09	80-B7 BE-BF	16	80-B7 C0-C9
10	D0-E8 F0-F9	6F	00-44 50-7E 8F-9F

EE 00-03 05-1F 21-22 2427 29-32 34-37 39
F5 40-43 3B 424749 4B 4D-4F 51-52 545759 5B

A.6.11 312 UNICODE 6.2

The fixed collection 312 UNICODE 6.2 consists of a fixed collection from A. 1 and a single code point. The collection list is arranged by planes as follows.

Plane 00-10
Collection number and name
311 UNICODE 6.1
Plane 00
$\frac{\text { Row }}{20} \frac{\text { Values within row }}{\text { BA }}$

A.6.12 313 UNICODE 6.3

The fixed collection 313 UNICODE 6.3 consists of a fixed collection from A. 1 and six code points. The collection list is arranged by planes as follows.

Plane 00-10
Collection number and name
311 UNICODE 6.1
Plane 00
Row Values within row
06 1C
20 66-69 BA

A.6.13 314 UNICODE 7.0

The fixed collection 314 UNICODE 7.0 consists of a fixed collection from A. 1 and six code points. The collection list is arranged by planes as follows.

Plane 00

Row	Values within row	OD	01-03 05-0C 0E-10 12-3A 3D-44 46-48 4A-4E
00	20-7E A0-FF		57 60-63 66-75 79-7F 82-83 85-96 9A-B1 B3-
01-02	0100-02FF		BB BD C0-C6 CA CF-D4 D6 D8-DF E6-EF F2-F4
03	00-77 7A-7F 84-8A 8C 8E-A1 A3-FF	OE	01-3A 3F-5B 81-82 84 87-88 8A 8D 94-97 99-
04	00-FF		9F A1-A3 A5 A7 AA-A8 AD-B9 BB-BD C0-C4 C6
05	00-2F 31-56 59-5F 61-87 89-8A 8D-8F 91-C7		C8-CD D0-D9 DC-DF
	DO-EA FO-F4	OF	00-47 49-6C 71-97 99-BC BE-CC CE-DA
06	00-1C 1E-FF	10	00-C5 C7 CD D0-FF
07	00-0D 0F-4A 4D-B1 C0-FA	11	00-FF
08	00-2D 30-3E 40-5B 5E A0-B2 E4-FF	12	00-48 4A-4D 50-56 58 5A-5D 60-88 8A-8D
09	00-83 85-8C 8F-90 93-A8 AA-B0 B2 B6-B9 BC C4 C7-C8 CB-CE D7 DC-DD DF-E3 E6-FB	13	$\begin{aligned} & \text { 90-B0 B2-B5 B8-BE C0 C2-C5 C8-D6 D8-FF } \\ & 00-10 \text { 12-15 18-5A 5D-7C 80-99 AO-F4 } \end{aligned}$
OA	01-03 05-0A 0F-10 13-28 2A-30 32-33 35-36	14-15	1400-15FF
	38-39 3C 3E-42 47-48 4B-4D 51 59-5C 5E 66-	16	00-9C A0-F8
	75 81-83 85-8D 8F-91 93-A8 AA-B0 B2-B3 B5-	17	00-0C 0E-14 20-36 40-53 60-6C 6E-70 72-73 80-DD E0-E9 F0-F9
OB	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39	18	00-0E 10-19 20-77 80-AA B0-F5
	3C-44 47-48 4B-4D 56-57 5C-5D 5F-63 66-77	19	00-1E 20-2B 30-3B 40 44-6D 70-74 80-AB B0-
	82-83 85-8A 8E-90 92-95 99-9A 9C 9E-9F A3-		C9 D0-DA DE-FF
	A4 A8-AA AE-B9 BE-C2 C6-C8 CA-CD D0 D7	1A	00-1B 1E-5E 60-7C 7F-89 90-99 A0-AD B0-BE
	E6-FA	1B	00-4B 50-7C 80-F3 FC-FF
OC	00-03 05-0C 0E-10 12-28 2A-39 3D-44 46-48	1 C	00-37 3B-49 4D-7F C0-C7 D0-F6 F8-F9
	4A-4D 55-56 58-59 60-63 66-6F 78-7F 81-83	1 D	00-F5 FC-FF
	85-8C 8E-90 92-A8 AA-B3 B5-B9 BC-C4 C6-C8	1E	00-FF

ISO/IEC 10646:2014 (E)

1F	00-15 18-1D 20-45 48-4D 50-57 59 5B 5D 5F-	4E-9F	4E00-9FCC
	7D 80-B4 B6-C4 C6-D3 D6-DB DD-EF F2-F4	A0-A3	A000-A3FF
	F6-FE	A4	00-8C 90-C6 D0-FF
20	00-64 66-71 74-8E 90-9C A0-BD D0-F0	A5	00-FF
21	00-89 90-FF	A6	00-2B 40-9D 9F-F7
22	00-FF	A7	00-8E 90-AD B0-B1 F7-FF
23	00-FA	A8	00-2B 30-39 40-77 80-C4 CE-D9 E0-FB
24	00-26 40-4A 60-FF	A9	00-53 5F-7C 80-CD CF-D9 DE-FE
25	00-FF	AA	00-36 40-4D 50-59 5C-C2 DB-F6
26	00-FF	AB	01-06 09-0E 11-16 20-26 28-2E 30-5F Co-ED
27	00-FF		F0-F9
28-2A	2800-2AFF	AC-D6	AC00-D6FF
2B	00-73 76-95 98-B9 BD-C8 CA-D1	D7	00-A3 B0-C6 CB-FB
2 C	00-2E 30-5E 60-7F 80-F3 F9-FF	E0-F8	E000-F8FF
2D	00-25 27 2D 30-67 6F-70 7F-96 A0-A6 A8-AE	F9	00-FF
	B0-B6 B8-BE C0-C6 C8-CE D0-D6 D8-DE E0-FF	FA	00-6D 70-D9
2E	00-42 80-99 9B-F3	FB	00-06 13-17 1D-36 38-3C 3E 40-41 43-44 46-
2 F	00-D5 F0-FB		C1 D3-FF
30	00-3F 41-96 99-FF	FC	00-FF
31	05-2D 31-8E 90-BA C0-E3 F0-FF	FD	00-3F 50-8F 92-C7 F0-FD
32	00-1E 20-FE	FE	00-19 20-2D 30-52 54-66 68-6B 70-74 76-FC
33	00-FF		FF
34-4C	3400-4CFF	FF	01-BE C2-C7 CA-CF D2-D7 DA-DC E0-E6 E8-
4D	00-B5 C0-FF		EE F9-FD
Plane 01			
Row	Values within row	68-69	6800-69FF
00	00-0B 0D-26 28-3A 3C-3D 3F-4D 50-5D 80-FA	6A	00-38 40-5E 60-69 6E-6F D0-ED F0-F5
01	00-02 07-33 37-8C 90-9B A0 D0-FD	6B	00-45 50-59 5B-61 63-77 7D-8F
02	80-9C A0-D0 E0-FB	6F	00-44 50-7E 8F-9F
03	00-1F 20-23 30-4A 50-7A 80-9D 9F-C3 C8-D5	B0	00-01
04	00-9D A0-A9	BC	00-6A 70-7C 80-88 90-99 9C-A3
05	00-27 30-63 6F	D0	00-F5
06	00-FF	D1	00-26 29-DD
07	00-36 40-55 60-67	D2	00-45
08	00-05 08 0A-35 37-38 3C 3F-55 57-9E A7-AF	D3	00-56 60-71
09	00-1B 1F-39 3F 80-B7 BE-BF	D4	00-54 56-9C 9E-9F A2 A5-A6 A9-AC AE-B9 BB
OA	00-03 05-06 0C-13 15-17 19-33 38-3A 3F-47		BD-C3 C5-FF
	50-58 60-9F C0-E6 EB-F6	D5	00-05 07-0A 0D-14 16-1C 1E-39 3B-3E 40-44
OB	00-35 39-55 58-72 78-81 99-9C A9-AF		46 4A-50 52-FF
OC	00-48	D6	00-A5 A8-FF
OE	60-7E	D7	00-CB CE-FF
10	00-4D 52-6F 7F-C1 D0-E8 F0-F9	E8	00-C4 C7-D6
11	00-34 36-43 50-76 80-C8 CD D0-DA E1-F4	EE	00-03 05-1F 21-22 2427 29-32 34-37 39 3B
12	00-11 13-3D B0-EA FO-F9		424749 4B 4D-4F 51-52 545759 5B 5D 5F
13	01-03 05-0C 0F-10 13-28 2A-30 32-33 35-39		61-62 64 67-6A 6C-72 74-77 79-7C 7E 80-89
	3C-44 47-48 4B-4D 57 5D-63 66-6C 70-74		8B-9B A1-A3 A5-A9 AB-BB F0-F1
14	80-C7 D0-D9	F0	00-2B 30-93 A0-AE B1-BF C1-CF D1-F5
15	80-B5 B8-C9	F1	00-0C 10-2E 30-6B 70-8E 90-9A E6-FF
16	00-44 50-59 80-B7 C0-C9	F2	00-02 10-3A 40-48 50-51
18	A0-F2 FF	F3	00-2C 30-35 37-7D 80-CE D4-F7
1A	CO-F8	F4	00-FE
20-22	2000-22FF	F5	00-4A 50-79 7B-A3 A5-FF
23	00-98	F6	00-42 45-7F 80-CF E0-EC F0-F3
24	00-6E 70-74	F7	00-73 80-D4
30-34	3000-342E	F8	00-0B 10-47 50-59 60-87 90-AD

Plane 02

Row	Values within row
00-A6	$\underline{0000-A 6 D 6}$
A7-B6	A700-B6FF
B7	$00-3440-$ FF
B8	$00-1 D$
F8-FA	F800-FA1D

Plane 0E

$\frac{\text { Row }}{00}$	Values within row $0120-7 F$ 01
$00-\mathrm{EF}$	

Plane 0F

Row Values within row
00-FF 0000-FFFD
Plane 10
Row Values within row
00-FF 0000-FFFD
NOTE - The collection 314 UNICODE 7.0 can also be determined by using another fixed collection from A. 1 and several ranges of code points.
Plane 00-10
Collection number and name

311 UNICODE 6.1

Plane 00

Row	Values within row	20	66-69 BB-BD
03	7F	23	F4-FA
05	28-2F 8D-8E	27	00
06	051 C	2B	4D-4F 5A-73 76-95 98-B9 BD-C8 CA-D1
08	A1 AD-B2 FF	2E	3C-42
09	7880	A6	98-9D
OC	003481	A7	94-9F AB-AD B0-B1 F7
OD	$01 \mathrm{E6-EF}$	A9	EO-FE
16	F1-F8	AA	7C-7F
19	1D-1E	AB	30-5F 64-65
1A	B0-BE	FE	27-2D
1 C	F8-F9		

Plane 01

Row	Values within row	16	00-44 50-59
01	8B-8C A0	18	A0-F2 FF
02	E0-FB	1A	CO-F8
03	1F 50-7A	23	6F-98
05	00-27 30-63 6F	24	63-6E 74
06	00-FF	6A	40-5E 60-69 6E-6F DO-ED FO-F5
07	00-36 40-55 60-67	6B	00-45 50-59 5B-61 63-77 7D-8F
08	60-9E A7-AF	BC	00-6A 70-7C 80-88 90-99 9C-A3
OA	80-9F C0-E6 EB-F6	E8	00-C4 C7-D6
OB	80-91 99-9C A9-AF	F0	BF E0-F5
10	7F DO-E8 F0-F9	F1	OB-OC
11	50-76 CD DA E1-F4	F3	21-2C 36 7D 94-9F C5 CB-CE D4-DF F1-F7
12	00-11 13-3D B0-EA F0-F9	F4	$3 \mathrm{~F} 41 \mathrm{F8}$ FD-FE
13	01-03 05-0C 0F-10 13-28 2A-30 32-33	F5	3E-3F 44-4A 68-79 7B-A3 A5-FA
	35-39 3C-44 47-48 4B-4D 57 5D-63 66-	F6	41-42 50-7F C6-CF E0-EC F0-F3
	6C 70-74	F7	80-D4
14	80-C7 D0-D9	F8	00-0B 10-47 50-59 60-87 90-AD
	80-B5		

ISO/IEC 10646:2014 (E)

Annex B
 (normative)
 List of combining characters

[^2]Annex C
(normative)
Transformation format for planes 01 to 10 of the UCS (UTF-16)
NOTE - Incorporated in main body text, see UCS UTF-16 encoding form in 9 and UCS UTF-16 based encoding schemes in 10.

ISO/IEC 10646:2014 (E)

Annex D
 (normative)
 UCS Transformation Format 8 (UTF-8)

NOTE - Incorporated in main body text, see UCS UTF-8 encoding form in 9 and UCS UTF-8 encoding schemes in 10.

Annex E
 (normative)
 Mirrored characters in bidirectional context

NOTE - Replaced by formal character class definition for mirrored character, see 15.1.

Annex F
 (informative)
 Format characters

There is a special class of characters, called Format characters, the primary purpose of which is to affect the layout or processing of characters around them. With few exceptions, these characters do not ha ve printable graphic symbols and, like the space characters, are represented in the character code charts by dotted boxes.

The function of most of these characters is to indicate the correct presentation of a code unit sequence. For any text processing other than presentation (such as sorting and searching), the format characters, except for ZWJ and ZWNJ described in F.1.1, can be ignored by filtering them out. The format characters are not intended to be used in conjunction with bidirectional control functions from ISO/IEC 6429.

F. 1 General format characters

F.1.1 Hyphen boundary indicator

SOFT HYPHEN (00AD): SOFT HYPHEN (SHY) is a format character that indicates a preferred intra-word line-break opportunity. If the line is broken at that point, then whatever mechanism is appropriate for intraword line-breaks should be invoked, just as if the line break had been triggered by another mechanism, such as a dictionary lookup. Depending on the language and the word, that may produce different visible results, such as:

- inserting a graphic symbol indicating the hyphenation and breaking the line after it,
- inserting a graphic symbol indicating the hyphenation, breaking the line after the symbol and changing spelling in the divided word parts,
- not showing any visible change and simply breaking the line at that point.

The inserted graphic symbol, if any, can take a wide variety of shapes, such as H YPHEN (2010), ARMENIAN HYPHEN (058A), MONGOLIAN TODO SOFT HYPHEN (1806), as appropriate for the situation.

When encoding text that includes explicit line breaking opportunities, including actual hyphenations, characters such as HYPHEN, ARMENIAN HYPHEN, and MONGOLIAN TODO SOFT HYPHEN may be used, depending on the language.

When a SOFT HYPHEN is inserted into a code unit sequence to encode a possible hyphenation point (for example: "tug\{00AD\}gumi"), the character representation remains otherwise unchanged. When encoding a code unit sequence that includes characters encoding hard line breaks, including actual hyphenations, the character representation of the text sequence should reflect any changes due to hyphenation (for example: "tugg\{2010\}" / "gumi", where / represents the line break).

NOTE - The notations \{00AD\} and \{2010\} indicate the inclusion of the corresponding code points: 00AD and 2010 into the code unit sequences. The curly brackets "\{\}" are not part of the code unit sequences.

F.1.2 Word boundary indicators

ZERO WIDTH SPACE (200B): This character behaves like a SPACE in that it indicates a word boundary, but unlike SPACE it has no presentational width. For example, this character could be used to indicate word boundaries in Thai, which does not use visible gaps to separate words.

WORD JOINER (2060) and ZERO WIDTH NO-BREAK SPACE (FEFF): These characters behave like a NO-BREAK SPACE in that they indicate the absence of word boundaries, but unlike NO-BREAK SPACE they have no presentational width. For example, these characters could be inserted after the fourth character in the text "base+delta" to indicate that there is to be no word break between the "e" and the " + ".

NOTE - For additional usages of the ZERO WIDTH NO-BREAK SPACE for "signature", see Clause 10.

F.1.3 Cursive joiners

The characters described in this sub-clause are used to indicate whether or not the adjacent characters are joined together in rendering (cursive joiners).

ZERO WIDTH NON-JOINER (200C): This character indicates that the adjacent characters are not joined together in cursive connection even when the y would normally join together as cursive letter forms. For example, ZERO WIDTH NON-JOINER between ARABIC LETTER NOON and ARABIC LETTER MEEM indicates that the characters are not rendered with the normal cursive connection.

MONGOLIAN VOWEL SEPARATOR (180E): This character acts in a similar fashion to the ZERO WIDTH NON-JOINER by suppressing the cursive connection between adjacent characters but only in the context of Mongolian vowels.

ZERO WIDTH JOINER (200D): This character indicates that the adjacent characters are represented with joining forms in cursive connection even when they would not normally join together as cursive letter forms. For example, in the sequence SPACE followed by ARABIC LETTER BEH followed by SPACE, ZERO WIDTH JOINER can be inserted between the first two characters to display the final form of the ARABIC LETTER BEH.

F.1.4 Format separators

The characters described in this sub-clause are used to indicate formatting boundaries between lines or paragraphs.

LINE SEPARATOR (2028): This character indicates where a new line starts; although the text continues to the next line, it does not start a new paragraph; e.g. no inter-paragraph indentation might be applied.

PARAGRAPH SEPARATOR (2029): This character indicates where a new paragraph starts; e.g. the text continues on the next line and inter-paragraph line spacing or paragraph indentation might be applied.

F.1.5 Bidirectional text formatting

The characters described in this sub-clause are used in formatting bidirectional text. If the specification of a subset includes these characters, then texts containing right-to-left characters are to $b e$ rendered with an implicit bidirectional algorithm.

An implicit algorithm uses the directional character properties to determine the correct display order of characters on a horizontal line of text.

The following three characters are format characters that act exactly like right-to-left or left-to-right characters in terms of affecting ordering (Bidirectional format marks). They have no visible graphic symbols, and they do not have any other semantic effect.

Their use can be more convenient than the explicit embeddings or overrides, since their scope is more local.

LEFT-TO-RIGHT MARK (200E): In bidirectional formatting, this character acts like a left-to-right character (such as LATIN SMALL LETTER A).

ARABIC LETTER MARK (061C): In bidirectional formatting, this character acts like a right-to-left Arabic character (such as ARABIC LETTER NOON).

RIGHT-TO-LEFT MARK (200F): In bidirectional formatting, this character acts like a generic right-to-left character (such as NKO LETTER A).

The following five format characters indicate that a piece of text is to be treated as embedded, and is to have a particular ordering attached to it (Bidirectional format embeddings). For example, an English quotation in the middle of an Arabic sentence can be marked as being an embedded left-to-right string. These format characters nest in blocks, with the embedding and override characters initiating (pushing) a block, and the pop character terminating (popping) a block.

The function of the embedding and override characters are very similar; the main difference is that the embedding characters specify the implicit direction of the text, while the override characters specify the explicit direction of the text. When text has an explicit direction, the normal directional character properties are ignored, and all of the text is assumed to have the ordering direction determined by the override character.

LEFT-TO-RIGHT EMBEDDING (202A): This character is used to indicate the start of a left-to-right implicit embedding.

RIGHT-TO-LEFT EMBEDDING (202B): This character is used to indicate the start of a right-to-left implicit embedding.

LEFT-TO-RIGHT OVERRIDE (202D): This character is used to indicate the start of a left-to-right explicit embedding.

RIGHT-TO-LEFT OVERRIDE (202E): This character is used to indicate the start of a right-to-left explicit embedding.

POP DIRECTIONAL FORMATTING (202C): This character is used to indicate the termination of an implicit or explicit directional embedding initiated by one of the four characters above.

The following four format characters, commonly called isolate characters, can be applied to a text segment to reduce its effect on the bidirectional ordering of its surroundings to that of a neutral character. This is in contrast to the existing embedding formatting characters (LEFT-TO-RIGHT EMBEDDING, RIGHT-TO-LEFT EMBEDDING, POP DIRECTIONAL FORMATTING) which have the effect of a strong character on their surroundings. Otherwise, isolate characters are similar to embedding characters: they declare a direction for the text inside it, and can be nested inside another isolate or embedding (and vice-versa.

LEFT-TO-RIGHT ISOLATE (2066): This character is used to indicate the start of a left-to-right isolate.
RIGHT-TO-LEFT ISOLATE (2067): This character is used to indicate the start of a right-to-left isolate.
FIRST STRONG ISOLATE (2068): This character is used to indicate the start of a first-strong isolate, i.e. one whose direction is determined by applying specific Unicode Bidi Algorithm (see Clause 3) paragraph level rules to the isolate's content as if it were a separate paragraph.

POP DIRECTIONAL ISOLATE (2069): This character is used to indicate the end of an isolate.

F. 2 Script-specific format characters

F.2.1 Symmetric swapping format characters

The following two characters are used in conjunction with the class of left/right handed pairs of mirrored characters described in Clause 15. The following format characters indicate whether the interpretation of the term LEFT or RIGHT in the character names is OPENING or CLOSING respectively. The following characters do not nest.

The default state of interpretation may be set by a higher level protocol or standard, such as ISO/IEC 6429. In the absence of such a protocol, the default state is as established by ACTIVATE SYMMETRIC SWAPPING.

INHIBIT SYMMETRIC SWAPPING (206A): Between this character and the following ACTIVATE SYMMETRIC SWAPPING format character (if any), the mirrored characters described in Clause 15 are interpreted and rendered as LEFT and RIGHT, and the processing specified in that clause is not performed.

ACTIVATE SYMMETRIC SWAPPING (206B): Between this character a nd the f ollowing INHIBIT SYMMETRIC SWAPPING format character (if any), the mirrored characters described in Clause 15 are interpreted and rendered as OPENING and CLOSING characters as specified in that clause.

F.2.2 Character shaping selectors

The following two characters are used in conjunction with Arabic presentation forms. During the presentation process, certain characters may be joined together in cursive connection or ligatures. The following characters indicate that the character shape determination process used to achieve this presentation effect is either activated or inhibited. The following characters do not nest.

INHIBIT ARABIC FORM SHAPING (206C): Between this character and the following ACTIVATE ARABIC FORM SHAPING format character (if any), the character shaping determination process is inhibited. The stored Arabic presentation forms are presented without shape modification. This is the default state.

ACTIVATE ARABIC FORM SHAPING (206D): Between this character and the following INHIBIT ARABIC FORM SHAPING format character (if any), the stored Arabic presentation forms are presented with shape modification by means of the character shaping determination process.

> NOTE - These characters have no effect on characters that are not presentation forms: in particular, Arabic nominal characters as from 0600 to 06FF are always subject to character shaping, and are unaffected by these formatting characters.

F.2.3 Numeric shape selectors

The following two characters allow the selection of the shapes in which the digits from 0030 to 0039 are rendered. The following characters do not nest.

NATIONAL DIGIT SHAPES (206E): Between this character and the following NOMINAL DIGIT SHAPES format character (if any), digits from 0030 to 0039 are rendered with the appropriate national digit shapes as specified by means of appropriate agreements. For example, they could be displayed with shapes such as the ARABIC-INDIC digits from 0660 to 0669.

NOMINAL DIGIT SHAPES (206F): Between this character and the following NATIONAL DIGIT SHAPES format character (if any), the digits from 0030 to 0039 are rendered with the shapes as those shown in the code charts for those digits. This is the default state.

F. 3 Interlinear annotation characters

The following three characters are used to indicate that an identified character string (the annotation string) is regarded as providing an annotation for another identified character string (the base string).

INTERLINEAR ANNOTATION ANCHOR (FFF9): This character indicates the beginning of the base string.
INTERLINEAR ANNOTATION SEPARATOR (FFFA): This character indicates the end of the base string and the beginning of the annotation string.

INTERLINEAR ANNOTATION TERMINATOR (FFFB): This character indicates the end of the annotation string.

The relationship between the annotation string and the base string is defined by agreement between the user of the originating device and the user of the receiving device. For example, if the base string is rendered in a visible form the annotation string may be rendered on a different line from the base string, in a position close to the base string.

If the interlinear annotation characters are filtered out during processing, then all characters between the Interlinear Annotation Separator and the Interlinear Annotation Terminator should also be filtered out.

F. 4 Subtending format characters

The following nine characters are used to subtend a sequence of subsequent characters:

```
0600 ARABIC NUMBER SIGN
0601 ARABIC SIGN SANAH
0602 ARABIC FOOTNOTE MARKER
0603 ARABIC SIGN SAFHA
0604 ARABIC SIGN SAMVAT
```

06DD ARABIC END OF AYAH
070F SYRIAC ABBREVIATION MARK
110BD KAITHI NUMBER SIGN
The scope of these characters and more details about their usage can be found in the Unicode Standard (see Annex M for referencing information).

F. 5 Shorthand format characters

The use of overlapping letters to indicate abbreviations and initialisms is found in many shorthand systems. The following two characters are used to control such overlap.

SHORTHAND FORMAT LETTER OVERLAP (1BCA0): This character indicates a single letter overlap, with the text continuing to flow as if that overlapping character did not exist.

SHORTHAND FORMAT CONTINUING OVERLAP (1BCA1): This character indicates a continuing overlap where the text flow proceeds from the overlapping character.

In some shorthand systems certain set of word endings are indicated by letters following not in the default direction of text flow - to the right, but above or below the word. The following two characters are used to control such behaviours.

SHORTHAND FORMAT DOWN STEP (1BCA2): This character indicates that a following character should be rendered below the previous character, with any subsequent joined characters proceeding relative to the lowered glyph. . At word boundaries, this causes the next word (or stenographic period) to be lowered.

SHORTHAND FORMAT UP ST EP (1BCA3): This character indicates that a following word (or ste nographic period) is to be raised.

F. 6 Invisible mathematical operators

In mathematics, some operators and punctuation are often implied but not displayed. Special format control characters known as invisible operators can be used to make such operators explicit for use in machine interpretation of mathematical expressions.

FUNCTION APPLICATION (2061): This character indicates the application of a function.
INVISIBLE TIMES (2062): This character indicates a multiplication.
INVISIBLE SEPARATOR (2063): This character indicates that adjacent mathematical symbols form a list, e.g. when no visible COMMA is used between multiple indices.

INVISIBLE PLUS (2064): This character indicates an addition.

F. 7 Western musical symbols

This international standard does not specify an encoding solution for musical scores or musical pitch. Solutions for these needs would require another description layer on top of the encoding definition of the characters specified in this standard. However, even without that additional layer, these characters can be used as simple musical reference symbols for general purposes in text descriptions of musical matters.

Extended beams are used frequently in music notation between groups of notes having short values. The format characters 1D173 MUSICAL SYMBOL BEGIN BEAM and 1D174 MUSICAL SYMBOL END BEAM can be used to indicate the extents of beam groupings. In some exceptional cases, beams are unclosed on one end. This can be indicated with a "null note" (MUSICAL SYMBOL NULL NOTEHEAD) character if no stem is to appear at the end of the beam.

Similarly, other format characters have been provided for other connecting structures. The characters

1 D175 MUSICAL SYMBOL BEGIN TIE
1 D176 MUSICAL SYMBOL END TIE
1 D177 MUSICAL SYMBOL BEGIN SLUR
1 D178 MUSICAL SYMBOL END SLUR
1D179 MUSICAL SYMBOL BEGIN PHRASE
1D17A MUSICAL SYMBOL END PHRASE
indicate the extent of these features.
These pairs of characters modify the layout and grouping of notes and phrases in full music notation. When musical examples are written or rendered in plain text without special software, the start/end control characters may be rendered as brackets or left un-interpreted. More sophisticated in-line processes may interpret them, to the extent possible, in their actual control capacity, rendering ties, slurs, beams, and phrases as appropriate.

For maximum flexibility, the character set includes both pre-composed note values as well as primitives from which complete notes are constructed. Due to their ubiquity, the pre-composed versions are provided mainly for convenience.

Coding convenience notwithstanding, notes built up from alternative noteheads, stems and flags, and articulation symbols are necessary for complete implementations and complex scores. Examples of their use include American shape-note and modern percussion notations. For example,

MUSICAL SYMBOL SQUARE NOTEHEAD BLACK + MUSICAL SYMBOL COMBINING STEM
MUSICAL SYMBOL X NOTEHEAD + MUSICAL SYMBOL COMBINING STEM
Augmentation dots and articulation symbols may be appended to e ither the pre-composed or built-up notes.

In addition, augmentation dots and articulation symbols may be repeated as necessary to build a complete note symbol. For example,

```
MUSICAL SYMBOL EIGHTH NOTE + M USICAL SYMBOL COMBINING AUGMENTATION DOT + M USICAL SYMBOL
COMBINING AUGMENTATION DOT + MUSICAL SYMBOL COMBINING ACCENT
```


F. 8 Language tagging using Tag characters

F.8.1 General

The purpose of Tag characters is to associate a text attribute with a point or range of a text string. The value of a particular tag is not generally considered to be part of the content of the text. For example, tagging could be used to m ark the language or the f ont applied to a port ion of text. Outside of that usage, these characters are ignorable.

These tag characters can be used to spell out a character string in any ASCII-based tagging scheme that needs to be embedded into plain text. These characters can be easily identified by their code value and there is no overloading of usage for these tag characters. They can only express tag values and never textual content itself.

When characters are used within the context of a protocol or syntax containing explicit markup providing the same association, the Tag characters may be filtered out and ignored by these protocols.

For example, in SGML/XML context, an explicit language markup is specified. Therefore, the LANGUAGE TAG (E0001) a nd other tag characters should not be used to m ark a lan guage in that context. The Unicode Consortium and the W3C have co-written a technical report: Unicode in XML and other Markup Languages (UTR\#20), available from the Unicode web site (http://www.unicode.org/reports/), which describes these issues in detail.

The TAGS block contains 97 dedicated tag characters consisting of a clone of the BASIC LATIN graphic characters (names formed by prefixing these BASIC LATIN names with the word 'TAG', code points from

E0020 to E0 07E), as well as a language tag identification character: LANGUAGE TAG (E0001) and a cancel tag character: CANCEL TAG (E007F).

The tag identification character is used as a mechanism for identifying tags of different types. This enables multiple types of tags to coexist amicably embedded in plain text and solves the problem of delimitation if a tag is concatenated directly onto another tag. Although only one type of tag is currently specified, namely the language tag, the encoding of other tag identification characters in the future would allow for distinct types to be used.

F.8.2 Syntax for embedding tag characters

In order to embed any ASCII-derived tag in plain text, the tag is simply spelled out with the tag characters, prefixed with the relevant tag identification character. The resultant string is embedded directly in the text.

No termination character is required for a tag. A tag terminates either when the first non Special Purpose Plane character is encountered, or when the next tag identification character is encountered.

Tag arguments can only be encoded using tag characters. No other characters are valid for expressing the tag arguments.

F.8.3 Tag scope and nesting

The value of a tag continues from the point the tag is embedded in text until

- either the end of the code unit sequence is reached,
- or the tag is explicitly cancelled by the CANCEL TAG character.

Tags of the same type cannot be nested. The appearance of a new embedded language tag, for example after text which was already language-tagged, simply changes the tagged value for subsequent text to that specified in the new tag.

F.8.4 Cancelling tag values

The CANCEL TAG character is provided to allow the specific canceling of a tag value. For example to cancel a language tag, the LANGUAGE TAG should precede the CANCEL TAG character.

The usage of the CANCEL TAG character without a prefixed tag identification character cancels any tag value that may be defined.

The main function of the character is to make possible such operations as blind concatenation of strings in a tagged context without the propagation of inappropriate tag values across the string boundaries.

F.8.5 Language tags

Language tags are of general interest and may have a high degree of interoperability for protocol usage. For example, to embed a language tag for Japanese, the tag characters would be used as follows:

E0001 E006A E0061

The first value is the coded value of the LANGUAGE TAG character, the second corresponds to the TAG LATIN SMALL LETTER J, and the third corresponds to the TAG LATIN SMALL LETTER A. The sequence 'ja' corresponds to the 2-letter code representing the Japanese language in ISO 639:1988.

Annex G
 (informative)
 Alphabetically sorted list of character names

The alphabetically sorted list of character names is provided in machine-readable format that is accessible as a link to this document. The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark, that specifies, after a 4 -lines header, all the character names from this International Standard except Hangul syllables and CJK ideographs (these are characters from blocks:

HANGUL SYLLABLES,
CJK UNIFIED IDEOGRAPHS,
CJK UNIFIED IDEOGRAPHS EXTENSION A,
CJK UNIFIED IDEOGRAPHS EXTENSION B,
CJK UNIFIED IDEOGRAPHS EXTENSION C,
CJK UNIFIED IDEOGRAPHS EXTENSION D,
CJK UNIFIED IDEOGRAPHS EXTENSION E,
CJK COMPATIBILITY IDEOGRAPHS, and
CJK COMPATIBILITY IDEOGRAPHS SUPPLEMENT).
Each line contains the following information organized in fields delimited by the TAB character:

- $\quad 1^{\text {st }}$ field: UCS code point in the format (hhhh | hhhhh), ' h ' being a hexadecimal unit,
- $\quad 2^{\text {nd }}$ field: character name.

Click on this highlighted text to access the reference file.

NOTE 1 - The content is also available as a separate viewable file in the same file directory as this document. The file is named: "Allnames.txt".
NOTE 2 - The referenced files are only available to users who obtain their copy of the standard in a machine-readable format. However, the file format makes them printable.

ISO/IEC 10646:2014 (E)
Annex H
(informative)
The use of "signatures" to identify UCS
NOTE - Integrated in main body text, see Clause 10.

Annex I
 (informative)
 Ideographic description characters

I. 1 General

An Ideographic Description Character (IDC) is a graphic character, which is used with a sequence of other graphic characters to form an Ideographic Description Sequence (IDS). Such a sequence may be used to describe an ideographic character which is not specified within this International Standard.

The IDS describes the ideograph in the abstract form. It is not interpreted as a composed character and does not imply any specific form of rendering.

NOTE - An IDS is not a character and therefore is not a member of the repertoire of this International Standard.

I. 2 Syntax of an ideographic description sequence

An IDS consists of an IDC followed by a fixed number of Description Components (DC). A DC may be any one of the following:

- a coded ideograph
- a coded radical
- the character FF1F FULLWIDTH QUESTION MARK to represent an otherwise un-described DC
- a private use character (as long as the interchanging parties have agreed that the particular private use character represents a particular ideograph or component of an ideograph)
- another IDS

NOTE 1 - The above description implies that any IDS may be nested within another IDS.
Each IDC has four properties as summarized in table I. 1 below;

- the number of DCs used in the IDS that commences with that IDC,
- the definition of its acronym,
- the syntax of the corresponding IDS,
- the relative positions of the DCs in the visual representation of the ideograph that is being described in its abstract form.
The syntax of the IDS introduced by each IDC is indicated in the "IDS Acronym and Syntax" column of the table by the abbreviated name of the IDC (e.g. IDC-LTR) followed by the corresponding number of DCs, i.e. $\left(D_{1} D_{2}\right)$ or ($\left.D_{1} D_{2} D_{3}\right)$.

I. 3 Individual definitions of the ideographic description characters

IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO RIGHT (2FFO): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} on the left and D_{2} on the right.

IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO BELOW (2FF1): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} above D_{2}.

IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO MIDDLE AND RIGHT (2FF2): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} on the left of D_{2}, and D_{2} on the left of D_{3}.

IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO MIDDLE AND BELOW (2FF3): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} above D_{2}, and D_{2} above D_{3}.

ISO/IEC 10646:2014 (E)
IDEOGRAPHIC DESCRIPTION CHARACTER FULL SURROUND (2FF4): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} surrounding D_{2}.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM ABOVE (2FF5): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} above D_{2}, and surrounding D_{2} on both sides.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM BELOW (2FF6): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} below D_{2}, and surrounding D_{2} on both sides.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM LEFT (2FF7): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} on the left of D_{2}, and surrounding D_{2} above and below.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM UPPER LEFT (2FF8): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} at the top left corner of D_{2}, and partly surrounding D_{2} above and to the left.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM UPPER RIGHT (2FF9): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} at the top right corner of D_{2}, and partly surrounding D_{2} above and to the right.

IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND FROM LOWER LEFT (2FFA): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} at the bottom left corner of D_{2}, and partly surrounding D_{2} below and to the left.

IDEOGRAPHIC DESCRIPTION CHARACTER OVERLAID (2FFB): The IDS introduced by this character describes the abstract form of the ideograph with D_{1} and D_{2} overlaying each other.

Table I．1：Properties of ideographic description characters

Character Name： IDEOGRAPHIC DESCRIPTION CHARACTER ．．．	$\begin{aligned} & \text { no. of } \\ & \text { DCs } \end{aligned}$	IDS Acronym and Syntax	Relative posi－ tions of DCs	Example of IDS	IDS example represents：
LEFT TO RIGHT	2	IDC－LTR $\mathrm{D}_{1} \mathrm{D}_{2}$	D1：D2	个 目	付
ABOVE TO BELOW	2	IDC－ATB $\mathrm{D}_{1} \mathrm{D}_{2}$	［－－11－1	八 天	兮
LEFT TO MIDDLE AND RIGHT	3	$\underset{D_{3}}{\operatorname{IDC-LMR~} D_{1} D_{2}}$	b1＇D2 2 D \qquad	Пイ 言 吅	信
ABOVE TO MIDDLE AND BELOW	3	$\underset{D_{3}}{\operatorname{IDC-AMB}} \mathrm{D}_{1} \mathrm{D}_{2}$		엉ㅂ	全狊
FULL SURROUND	2	IDC－FSD $\mathrm{D}_{1} \mathrm{D}_{2}$	－－D1－－	口莫	莫
SURROUND FROM ABOVE	2	IDC－SAV $\mathrm{D}_{1} \mathrm{D}_{2}$		■門市	旦完
SURROUND FROM BELOW	2	IDC－SBL $\mathrm{D}_{1} \mathrm{D}_{2}$		आL 士	士
SURROUND FROM LEFT	2	IDC－SLT $\mathrm{D}_{1} \mathrm{D}_{2}$		■ 匚虎	虎
SURROUND FROM UPPER LEFT	2	IDC－SUL $\mathrm{D}_{1} \mathrm{D}_{2}$	p1－－－－－－	门 舞	舞
SURROUND FROM UPPER RIGHT	2	IDC－SUR $\mathrm{D}_{1} \mathrm{D}_{2}$		万去	至
SURROUND FROM LOWER LEFT	2	IDC－SLL $\mathrm{D}_{1} \mathrm{D}_{2}$			交
OVERLAID	2	IDC－OVL $\mathrm{D}_{1} \mathrm{D}_{2}$		$\text { 品 } \square$	人人

NOTE－In IDC－OVL，D_{1} and D_{2} overlap each other．This diagram does not imply that D_{1} is on the top left corner and D_{2} is on the bottom right corner．

Annex J
 (informative)
 Recommendation for combined receiving/originating devices with internal storage

Annex J is applicable to a widely-used class of devices that can store received code unit sequences for subsequent retransmission.

This recommendation is intended to ensure that loss of information is minimized between the receipt of a code unit sequence and its retransmission.

A device of this class includes a receiving device component and an originating device component as in 2.3, and can also store received code unit sequences for retransmission, with or without modification by the actions of the user on the corresponding characters represented within it. Within this class of device, two distinct types are identified here, as follows.

1) Receiving device with full retransmission capability. The originating device component will retransmit the coded representations of any received characters, including those that are outside the identified subset of the receiving device component, without change to their coded representation, unless modified by the user.
2) Receiving device with subset retransmission capability. The originating device component can retransmit only the coded representations of the characters of the subset adopted by the receiving device component.

Annex K
 (informative)
 Notations of octet value representations

Representation of octet values in this International Standard except in Clause 12 is different from other character coding standards such as ISO/IEC 2022, ISO/IEC 6429 and ISO 8859. Annex K clarifies the relationship between the two notations.

In this International Standard, the notation used to express an octet value is z, where z is a hexadecimal number in the range 00 to FF. For example, the character ESCAPE (ESC) of ISO/IEC 2022 is represented in this International Standard by 1B.

In other character coding standards, the notation used to express an octet value is x / y, where x and y are two decimal numbers in the range 00 to 15 . The correspondence between the notations of the form x/y and the octet value is as follows.

- x is the number represented by bit 8 , bit 7 , bit 6 and bit 5 where these bits are given the weights 8,4 , 2 and 1 respectively;
- y is the number represented by bit 4 , bit 3 , bit 2 and bit 1 where these bits are given the weights 8,4 , 2 and 1 respectively.
For example, the character ESC of ISO/IEC 2022 is represented by $01 / 11$.
Thus ISO/IEC 2022 (and other character coding standards) octet value notation can be converted to octet value notation used by this International Standard by converting the value of x and y to hexadecimal notation. For example; 04/15 is equivalent to 4 F .

Annex L
 (informative)
 Character naming guidelines

The Clause 24 of this standard specifies rules for name formation and name uniqueness. These rules are used in other information technology coded character set standards such as ISO/IEC 646, ISO/IEC 6937, ISO/IEC 8859, and ISO/IEC 10367. Annex L provides additional guidelines for the creation of these entity names.

These guidelines do not apply to the names of CJK Ideographs and Hangul syllables which are formed using rules specified in 24.6 and 24.7 respectively.

Guideline 1

The name of an entity wherever possible denotes its customary meaning (for example, the character name: PLUS SIGN or the block name: BENGALI).

Some entities, such as characters, may have a name describing shapes, not usage, (for example, the character name: UPWARDS ARROW).

The name on an entity is not intended to identify its properties or attributes, or to provide information on its linguistic characteristics, except as defined in guideline 4 below.

Guideline 2

An acronym consists of Latin capital letters A to Z and digits and is associated with a name.
Acronyms may be used in entity names where usage already exists and clarity requires it. For exam ple, the names of control functions are coupled with an acronym.

```
EXAMPLES
```

Name:	$\frac{\text { Acronym }}{\text { LOCKING-SHIFT TWO RIGHT }}$
SOFT HYPHEN	SHY
INTERNATIONAL PHONETIC ALPHABET	IPA

NOTE - In ISO/IEC 6429, the names of the modes have also been presented in the same way as control functions.

Guideline 3

Character names and Named UCS Sequence Identifiers (NUSI) only include digits 0 to 9 if spelling out the name of the corresponding digits(s) would be inappropriate.

NOTE - As an example the name of the character at the code point value 201A is SINGLE LOW-9 QUOTATION MARK; the symbol for the digit 9 is included in this name to illustrate the shape of the character, and has no numerical significance.

Guideline 4

Character names and NUSIs are constructed from an appropriate set of the applicable terms of the following grid and ordered in the sequence of this grid. Exceptions are specified in guidelines 9 to 11. The words WITH and AND may be included for additional clarity when needed.

1	Script	5	Attribute
2	Case	6	Designation
3	Type	7	Mark(s)
4	Language	8	Qualifier

EXAMPLES OF SUCH TERMS

Script	Latin, Cyrillic, Arabic
Case	capital, small
Type	letter, ligature, digit
Language	Ukrainian
Attribute	final, sharp, subscript, vulgar
Designation	customary name, name of letter
Mark	acute, ogonek, ring above, diaeresis
Qualifier	sign, symbol
EXAMPLES OF NAMES	
LATIN CAPITAL LETTER A WITH ACUTE	
2	367
DIGIT FIVE	
36	
LEFT CURLY BRACKET	
55	6

NOTE - A ligature is a graphic symbol in which two or more other graphic symbols are imaged as a single graphic symbol.
For character names, where a character comprises a base letter with multiple marks, the sequence of those in the name is the order in which the marks are positioned relative to the base letter. The sequence may start with the marks above the letters taken in upwards sequence, and follow with the marks below the letters taken in downwards sequence, or the reverse (below/above).

For NUSIs, where the sequence comprises a base letter with multiple marks, the name describes the individual characters in the sequence in which they are encoded in the sequence.

EXAMPLES

Ọ LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND DOT BELOW

Ḉ LATIN CAPITAL LETTER C WITH CEDILLA AND ACUTE

Ų LATIN CAPITAL LETTER U WITH OGONEK AND ACUTE

Guideline 5

The letters of the Latin script are represented within their name by their basic graphic symbols $(A, B, C$, etc.). The letters of all other scripts are represented by their transcription in the language of the first published International Standard.

```
EXAMPLES
```

K LATIN CAPITAL LETTER K
Ю CYRILLIC CAPITAL LETTER YU

Guideline 6

In principle when a character of a given script is used in more than one la nguage, no language name is specified. Exceptions are tolerated where an ambiguity would otherwise result.

```
EXAMPLES
```

И CYRILLIC CAPITAL LETTER I
I CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I

Guideline 7

Letters that are elements of more than one script are considered different even if their shape is the same; they have different names.

```
EXAMPLES
A LATIN CAPITAL LETTER A
A GREEK CAPITAL LETTER ALPHA
A CYRILLIC CAPITAL LETTER A
```


Guideline 8

Where possible, NUSIs are constructed by appending the names of the constituent elements together while eliding duplicate elements. Should this process result in a name that already exists, the name is modified suitably to guarantee uniqueness among character names and NUSIs. The words WITH and AND may be included for additional clarity when needed.

Guideline 9

A character of one script used in isolation in another script, for example as a graphic symbol in relation with physical units of dimension, is considered as a character different from the character of its native script.

EXAMPLE

$\mu \quad$ MICRO SIGN

Guideline 10

A number of characters have a traditional name consisting of one or two words. It is not intended to change this usage.

EXAMPLES

- APOSTROPHE
- COLON
(a) COMMERCIAL AT

LOW LINE
TILDE

Guideline 11

In some cases, characters of a given script, often punctuation marks, are used in another script for a different usage. In these cases the customary name reflecting the most general use is given to the character. The customary name may be annotated in the list of characters with the script name followed by the transliterated name in that script.

EXAMPLE
203F ~ UNDERTIE
= Greek Enotikon

Annex M
 (informative)
 Sources of characters

Several sources and contributions were used for constructing this coded character set. The sources are grouped by their categories. National and international standards are listed first for each category, followed by relevant publications references.

General

ISO international register of character sets to be used with escape sequences. (registration procedure ISO 2375:1985) .

ISO 8879:1986, Information processing - Text and office systems - Standard Generalized Markup Language (SGML).

ISO/IEC TR 15285:1998, Information technology - An operational model for characters and glyphs.
JIS X 0201-1976 Japanese Standards Association. Jouhou koukan you fugou (Code for Information Interchange).

Allworth, Edward. Nationalities of the Soviet East: Publications and Writing Systems. New York, London, Columbia University Press, 1971. ISBN 0-231-03274-9.

Barry, Randall K. 1997 . ALA-LC romanization tables: transliteration schemes for non-Roman scripts. Washington, DC: Library of Congress Cataloging Distribution Service. ISBN 0-8444-0940-5

Daniels, Peter T., and William Bright, eds. 1996. The world's writing systems. New York; Oxford: Oxford University Press. ISBN 0-19-507993-0

Diringer, David. 1996. The alphabet: a key to the history of mankind. New Delhi: Munshiram Manoharlal. ISBN 81-215-0780-0

Faulmann, Carl. 1990 (1880). Das Buch der Schrift. Frankfurt am Main: Eichborn. ISBN 3-8218-1720-8
Haarmann, Harald. 1990. Universalgeschichte der Schrift. Frankfurt/Main; New York: Campus. ISBN 3-593-34346-0

Imprimerie Nationale. 1990. Les caractères de I'Imprimerie nationale. Paris: Imprimerie nationale Éditions. ISBN 2-11-081085-8

Jensen, Hans. 1969. Die Schrift in Vergangenheit und Gegenwart. 3., neu bearbeitete und erweiterte Auflage. Berlin: VEB Deutscher Verlag der Wissenschaften.

Knuth, Donald E. The TeXbook. - 19th. printing, rev, - Reading, MA : Addison-Wesley, 1990.
Nakanishi, Akira. 1990. Writing systems of the world: alphabets, syllabaries, pictograms. Rutland, VT: Charles E. Tuttle. ISBN 0-8048-1654-9

Shepherd, Walter. Shepherd's glossary of graphic signs and symbols. Compiled and classified for ready reference. - New York : Dover Publications, [1971].

The Unicode Consortium The Unicode Standard. Worldwide Character Encoding Version 1.0, Volume One. - Reading, MA : Addison-Wesley, 1991.

The Unicode Consortium The Unicode Standard, Version 2.0. Reading, MA: Addison-Wesley, 1996. ISBN 0-201-48345-9

The Unicode Consortium The Unicode Standard, Version 3.0. Reading, MA: Addison-Wesley Developer's Press, 2000. ISBN 0-201-61633-5

The Unicode Consortium The Unicode standard, Version 4.0. Reading, MA: Addison-Wesley Developer's Press, 2003. ISBN 0-321-18578-1

The Unicode Consortium The Unicode Standard, Version 5.0. Reading, MA: Addison-Wesley Developer's Press, 2007. ISBN 0-321-48091-0

The Unicode Consortium. The Unicode Standard, Version 6.3. Mountain View, CA: The Unicode Consortium, 2013. ISBN 978-1-936213-08-5 http://www.unicode.org/versions/Unicode6.3.0/

The Unicode Consortium. The Unicode Standard, Version 7.0.0, Mountain View, CA: The Unicode Consortium, 2014. ISBN 978-1-936213-09-2 http://www.unicode.org/versions/Unicode7.0.0/

Alchemical Symbols

Berthelot, Marcelin. Collection des anciens alchimistes grecs. 3 vols. Paris: G. Steinheil, 1888.
Berthelot, Marcelin. La chimie au moyen âge. 3 vols. Osnabrück: O. Zeller, 1967.
Lüdy-Tenger, Fritz. Alchemistische und chemische Zeichen. Würzburg: JAL-reprint, 1973.
Schneider, Wolfgang. Lexicon alchemistisch-pharmazeutischer Symbole. Weinheim/Bergstr.: Verlag Chemie, 1962.

Arabic

ISO 233:1984, Documentation - Transliteration of Arabic characters into Latin characters.
ISO/IEC 8859, Information technology - 8-bit single-byte coded graphic character sets
Part 6: Latin/Arabic alphabet (1999)
ISO 9036:1987, Information processing - Arabic 7-bit coded character set for information interchange.
ASMO 449-1982 Arab Organization for Standardization and Metrology. Data processing - 7-bit coded character set for information interchange.

Avestan

Geldner, Karl F. Avesta: The Sacred Books of the Parsis. Stuttgart: W. Kohlhammerm, 1880. Reprinted, with an introduction in Persian by Dr. Jaleh Amouzgar. Tehran: Asatir, 2003. ISBN 964-331-126-0.

Hoffmann, Karl, and B. Forssman. Avestische Laut- und Flexionslehre. Innsbruck: Innsbrucker Beiträge zur Sprachwissenschaft, 1996. ISBN 3851246527.

Oryan, Said. Pahlavi-Pazand Glossary: Farhang \ Pahlavi. Tehran: Research Institute for Islamic Culture and Art, 1999 (1377 AP). (Language and Literature, 4). ISBN 964-471-414-8.

Reichelt, Hans. Avesta Reader: An Approach to the Zoroaster's Gathas and New Avestan Texts. Translated and annotated with Persian translation of hymns and texts by Jalil Doostkhah. Tehran: Qoqnoos Publishing, 2004 (1383 AP). ISBN 964-311-473-2.

Balinese

Medra, Nengah. Pedoman Pasang Aksara Bali. Denpasar: Dinas Kebudayaan Propinsi Bali, 2003.
Menaka, Made. Kamus Kawi Bali / olih, made Menaka. Singaraja: Yayasan Kawi Sastra Mandala, 1990. Simpen, I Wayan. Pasang Aksara Bali. Denpasar: Upada Sastra, 1992.

Bamum

Dugast, J., and M. D. W. Jeffreys. L'écriture des bamum: sa naissance, son évolution, sa valeur phonétique, son utilisation. Mémoires de l'Institut Français d'Afrique Noire, Centre du Cameroun, 1950.

Nchare, Oumarou. The Writing of King Njoya: Genesis, Evolution, Use. Foumban: Palais des Rois Bamoun, Maison de la Culture, [s.d.].

Schmitt, Alfred. Die Bamum-Schrift. Band I: Text. Wiesbaden: Harrassowitz, 1963.

Batak

Kozok, Uli. Warisan leluhur: sastra lama dan aksara Batak. Jakarta: École française d'Extrême Orient, 1999. ISBN 979-9023-33-5.

Meerwaldt, J H. Handleiding tot de beoefening der Bataksche taal. Leiden: E.J. Brill, 1904.
Tuuk, Herman Neubronner van der. A Grammar of Toba Batak. Translated by Jeune Scott-Kemball, edited by Andries Teeuw and R. Roolvink. The Hague: Nijhoff, 1971.

Brahmi

Baums, Stefan. "Towards a Computer Encoding for Brāhmī." In Script and Image: Papers on Art and Epigraphy, edited by Adalbert J. Gail, Gerd J. R. Mevissen and Richard Salomon, vol. 11.1, 111-143. Delhi: Motilal Banarsidass Publishers, 2006.

Bühler, G. "The Bhattiprolu Inscriptions." In Epigraphia Indica: A Collection of Inscriptions Supplementary to the Corpus Inscriptionum Indicarum of the Archaeological Survey, vol. 2, 323-329. Calcutta: Epigraphia Indica, 1894.

Dani, Ahmad Hasan. Indian Palaeography. 2nd edition. New Delhi: Munshiram Manoharlal Publishers, 1986.

Mahadevan, Iravatham. Early Tamil Epigraphy: From the Earliest Times to the Sixth Century A.D. Chennai, India: Cre-A, 2003. (Harvard Oriental Series, vol. 62.)

Braille

ISO 11548-1:2001. Communication aids for blind persons - identifiers, names and assignation to coded character sets for 8-dot Braille characters - Part 1: General guidelines for Braille identifiers and shift marks.

Canadian Aboriginal Syllabics

Canadian Aboriginal Syllabic Encoding Committee. Repertoire of Unified Canadian Aboriginal Syllabics Proposed for Inclusion into ISO/IEC 10646: International Standard Universal Multi-Octet Coded Character Set. [Canada]: CASEC [1994]

Carian

Adiego, Ignacio-Javier. The Carian Language. Leiden; Boston: Brill, 2007.
Melchert, H. Craig. "Carian." In The Cambridge Encyclopedia of the World's Ancient Languages, edited by Roger Woodard, 609-613. Cambridge: Cambridge University Press, 2004. ISBN-13: 978-0521562560.

Chakma

Cāṅmā, Cirajyoti and Maṅgal Cāñgmā. Cāṅmār āg pudhi= Chakma primer. Rāṅamāți: Cāṅmābhāṣā Prakāśanā Pariṣad. 1982.

Khisa, Bhagadatta. Cāñmā pattham pāt = Chakma primer. Rāñamāți: Tribal Cultural Institute, 2001.

Cham

Aymonier, Étienne, and Antoine Cabaton. Dictionnaire Čam-Français. Paris, 1906.
Bùi Khánh Thế. Từ diên Chǎm-Việt: Inālang cam-biet đam. [Hồ Chí Minh]: Nhà xuất ban Khoa Học Xã Hội, 1995.

Kōno Rokurō, Chino Eiichi, and Nishida Tatsuo. The Sanseido Encyclopaedia of Linguistics. Volume 7: Scripts and Writing Systems of the World [Gengogaku dai ziten (bekkan) sekai mozi ziten]. Tokyo: Sanseido Press, 2001. ISBN 4-385-15177-6.

Cherokee

Alexander, J. T. A Dictionary of the Cherokee Indian Language. [Sperry, Oklahoma?]: Published by the author, 1971.

Holmes, Ruth Bradley. Beginning Cherokee, by Ruth Bradley Holmes and Betty Sharp Smith. 2nd ed. Norman: University of Oklahoma Press, 1977. ISBN 0-8061-1464-9.

New Echota Letters: Contributions of Samuel A. Worcester to the Cherokee Phoenix, edited by Jack Frederick Kilpatrick and Anna Gritts Kilpatrick. Dallas: Southern Methodist University Press, [s.d.]. Includes reprint of an article by S. A. Worcester, which appeared in the Cherokee Phoenix, Feb. 21, 1828.

CJK Ideographs

GB2312-80 Code of Chinese Graphic Character Set for Information Interchange: Jishu Biaozhun Chubanshe (Technical Standards Publishing).

GBK (Guo Biao Kuo) Han character internal code extension specification: Jishu Biaozhun Chubanshe (Technical Standards Publishing, Beijing)

JIS X 0208-1990 Japanese Standards Association. Jouhou koukan you kanji fugoukei (Code of the Japanese Graphic Character Set for Information Interchange).

JIS X 0212-1990 Japanese Standards Association. Jouhou koukan you kanji fugou-hojo kanji (Code of the supplementary Japanese graphic character set for information interchange).

JIS X 0213:2000, Japanese Standards Association. 7-bit and 8-bit double byte coded extended KANJI sets for information interchange, 2000-01-20.

KS X 1001:2004 (formerly KS C 56 01-1992) Korean Industrial Standards Association. Code for Information Interchange (Hangeul and Hanja) (Jeongbo gyohwanyong buhogye).

ANSI Z39.64-1989 American National Standards Institute. East Asian character code for bibliographic use.
Mandarin Promotion Council, Ministry of Education, Taiwan. Shiangtu yuyan biauyin fuhau shoutse (The Handbook of Taiwan Languages Phonetic Alphabet). 1999.

Shinmura, Izuru. Kojien - Dai 4-han. - Tokyo : Iwanami Shoten, Heisei 3 [1991].
NOTE - For additional sources of the CJK unified ideographs in this International Standard refer to Clause 23.

Coptic

Browne, Gerald M. Old Nubian Grammar. München: Lincom Europa, 2002. (Languages of the world: Materials, 330). ISBN 3-89586-893-0 (pbk.).

Kasser, Rodolphe. "La 'Genève 1986': une nouvelle série de caractères typographiques coptes, protocoptes et vieux-coptes créée à Genève." Bulletin de la Société d'égyptologie de Genève, 12 (1988): 5960. ISSN 0255-6286.

Kasser, Rodolphe. "A standard system of Sigla for referring to the dialects of Coptic." Journal of Coptic Studies, 1 (1990): 141-151. ISSN 1016-5584.

Cypriot

See Linear B and Cypriot

Cyrillic

ISO/IEC 8859, Information technology - 8-bit single-byte coded graphic character sets
Part 5: Latin/Cyrillic alphabet (1999)
ISO 5427:1984, Extension of the Cyrillic alphabet coded character set for bibliographic information interchange.

ISO 10754:1984, Information and documentation - Extension of the Cyrillic alphabet coded character set for non-Slavic languages for bibliographic information interchange.

Deseret

Encyclopedia of Mormonism, entry for "Deseret Alphabet." New York: Macmillan, 1992. ISBN 0-02-904040-X.

Ivins, Stanley S. "The Deseret Alphabet" Utah Humanities Review 1 (1947): 223-39.
Monson, Samuel C. Representative American Phonetic Alphabets. New York: 1954. Ph.D. dissertationColumbia University.

Egyptian Hieroglyphs

Allen, James P. Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphs. Cambridge: Cambridge University Press, 1999. ISBN 0-521-77483-7.

Gardiner, Alan H. Catalogue of the Egyptian Hieroglyphic Printing Type, from Matrices Owned and Controlled by Dr. Alan H. Gardiner, in Two Sizes, 18 Point, 12 Point with Intermediate Forms. Oxford: Oxford University Press, 1928.

Gardiner, Alan H. "Additions to the New Hieroglyphic Fount (1928)." The Journal of Egyptian Archaeology, 15 (1929): 95. ISSN 03075133.

Gardiner, Alan H. "Additions to the New Hieroglyphic Fount (1931)." The Journal of Egyptian Archaeology, 17 (1931): 245-247. ISSN 03075133.

Gardiner, Alan H. Supplement to the Catalogue of the Egyptian Hieroglyphic Printing Type, Showing Acquisitions to December 1953. Oxford: Oxford University Press, 1953.

Gardiner, Alan H. Egyptian Grammar: Being an Introduction to the Study of Hieroglyphs. $3^{\text {rd }}$ edition. London: Oxford University Press, 1957. ISBN 0-900416-35-1.

Ethiopic

Armbruster, Carl Hubert. Initia Amharica: an Introduction to Spoken Amharic. Cambridge, Cambridge University Press, 1908-20.

Launhardt, Johannes. Guide to Learning the Oromo (Galla) Language. Addis Ababa, Launhardt [1973?]

Leslau, Wolf. Amharic Textbook. Weisbaden, Harrassowitz; Berkeley, University of California Press, 1968.

Glagolitic

ISO 6861, Information and documentation - Glagolitic alphabet coded character set for bibliographic information interchange.

Glagolitica: zum Ursprung der slavischen Schriftkultur, herausgegeben von Heinz Miklas, unter der Mitarbeit von Sylvia Richter und Velizar Sadovski. Wien: Verlag der Österreichischen Akademie der Wissenschaften, 2000. (Schriften der Balkan-Kommission, Philologische Abteilung, 41). ISBN 3-7001-2895-9.

Khaburgaev, Georgii Aleksandrovich. Staroslavianskii iazyk. Izd. 2-e, perer. i dop. Moskva: Prosveshchenie, 1986.

Žubrinic, Darko. Hrvatska glagoljica: biti pismen—biti svoj. Zagreb: Hrvatsko književno društvo sv. Jeronima (sv. Cirila i Metoda): Element, 1996. ISBN 953-6111-35-7.

Gothic

Ebbinghaus, Ernst. "The Gothic Alphabet." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Fairbanks, Sydney, and F. P. Magoun Jr. 1940. 'On writing and printing Gothic', in Speculum 15:313-16.

Greek

ISO 5428:1984, Greek alphabet coded character set for bibliographic information interchange.
ISO/IEC 8859, Information technology - 8-bit single-byte coded graphic character sets
Part 7: Latin/Greek alphabet (1999)

Greek Editorial Marks

Austin, Colin. Comicorum Graecorum Fragmenta in Papyris Reperta, ed. Colinus Austin. Berolini [Berlin], Novi Eboraci [New York]: de Gruyter, 1973, p. 29. ISBN 3110024012.

Homer. Iliad. Homeri Ilias, edidit Thomas W. Allen. 3 vols. Oxonii [Oxford]: e typographeo Clarendoniano [Clarendon Press], 1931, vol. 2: pp. 39, 234.

The Oxyrhynchus Papyri, Part XV, edited with translations and notes by Bernard P. Grenfell and Arthur S. Hunt. London: Egypt Exploration Society, 1921, p. 56. (Egypt Exploration Society, Graeco-Roman Memoirs, 18).

Hebrew

ISO/IEC 8859, Information technology - 8-bit single-byte coded graphic character sets
Part 8: Latin/Hebrew alphabet (1999)
ISO 8957:1996, Information and documentation - Hebrew alphabet coded character sets for bibliographic information interchange.

SI 1311.1 - 1996: Standards Institution of Israel. Information technology. ISO 8 bit coded character set with Hebrew points.

SI 1311.2 - 1996, The Standards Institution of Israel. Information Technology. ISO 8-bit coded character set for information interchange with Hebrew points and cantillation marks.

Imperial Aramaic

Driver, G. R. Semitic Writing from Pictograph to Alphabet. 3rd ed. by S. A. Hopkins. London: Oxford University Press for the British Academy, 1976. ISBN 9780197259177.

Lidzbarski, Mark. Handbuch der nordsemitischen Epigraphik nebst ausgewählten Inschriften. Hildesheim: Georg Olms Verlagsbuchhandlung, 1962. Reprint of 1898 edition.

Naveh, Joseph. Early History of the Alphabet: An Introduction to West Semitic Epigraphy and Palaeography. Jerusalem: Magnes Press, the Hebrew University, 1987. ISBN 965-223-436-2.

Porten, Bezalel, and Ada Yardeni. Textbook of Aramaic Documents from Ancient Egypt. 4 vols. Jerusalem: Hebrew University, 1986-1999. ISBN 9652220752 (v. 1), 9653500031 (v. 2), 9653500147 (v. 3), 9653500899 (v. 4).

Rosenthal, Franz. A Grammar of Biblical Aramaic. 7th rev. ed. Wiesbaden: Harrassowitz, 2006. ISBN 3-447-05251-1.

Inscriptional Parthian and Inscriptional Pahlavi

Akbarzādeh, Dāriyūš. Katibe-hā-ye Pahlavi-ye Aškāni (Pārti) = Parthian Inscriptions. Vol. 2. Tehran: Pazineh Press, 2002 (1381 AP). ISBN 964-5722-74-8.

Akbarzādeh, Dāriyūš. Katibe-hā-ye Pahlavi: sang-negāre, sekke, mohr, asar-e mohr, zarfnebešte = Pahlavi Inscriptions: Inscriptions, Coins, Seals, Sealing Impression. Vol. I. Tehran: Pazineh Press, 2003 (1382 AP). ISBN 964-5722-44-6.

Nyberg, Henrik Samuel. A Manual of Pahlavi. 2 vols. Wiesbaden: Harrassowitz, 1964-1974. ISBN 9783447015806 (vol. 2). Reprinted: Tehran: Asatir, 2003. ISBN 964-331-132-5, 964-331-131-7.

Oryan, Saeed. Rahnmā-ye katibe-hā-ye Irāni-ye miyāne Pahlavi-Pārti = Manual of Middle Iranian Inscriptions (Parthian-Pahlavi). Tehran: Iranian Cultural Heritage Organization, 2003 (1382 AP). ISBN 964-7483-71-6.

Rezai Baghbidi, Hassan. Dastur-e Zabān-e Pārti (Pahlavi-e Aškāni) = A Grammar of Parthian (Arsacid Pahlavi). Iranian Academy of Persian Language and Literature, 2002 (1381 AP). ISBN 964-7531-05-2.

Indian scripts

IS 13194:1991 Bureau of Indian Standards Indian script code for information interchange - ISCII
LTD 37(1610)-1988 Indian standard code for information interchange.

International Phonetic Alphabet

Esling, John. Computer coding of the IPA: supplementary report. Journal of the International Phonetic Association, 20:1 (1990), p. 22-26.

International Phonetic Association. The IPA 1989 Kiel Convention Workgroup 9 report: Computer Coding of IPA Symbols and Computer Representation of Individual Languages. Journal of the International Phon. Assoc., 19:2 (1989), p. 81-82.

International Phonetic Association. Handbook of the International Phonetic Association: A Guide to the Use of the International Phonetic Alphabet. Cambridge: Cambridge University Press, 1999. ISBN 0-521-65236-7; 0-521-63751-1 (pbk.).

International Phonetic Association. http://www2.arts.gla.ac.uk/IPA/ipa.html.
Journal of the International Phonetic Association, 24:2 (1994), 95-98, and 25:1 (1995), 21.
Pullum, Geoffrey K. Remarks on the 1989 revision of the International Phonetic Alphabet. Journal of the International Phonetic Association, 20:1 (1990), p. 33-40.

ISO/IEC 10646:2014 (E)

Pullum, Geoffrey K., and William A. Ladusaw. Phonetic Symbol Guide. 2nd ed. Chicago: University of Chicago Press, 1996. ISBN 0-226-68535-7; 0-226-68536-5 (pbk.).

Wells, John Christopher. Accents of English. Cambridge, New York: Cambridge University Press, 1982. Vol. 1: Introduction. ISBN 0-521-22919-7; ISBN 0-521-29719-2 (pbk.); vol. 2: The British Isles. ISBN 0-521-24224-X, ISBN 0-521-28540-2 (pbk.); vol. 3: Beyond the British Isles. ISBN 0-521-24225-8, ISBN 0-521-28541-0 (pbk.).

Javanese

Bohatta, Hanns. Praktische Grammatik der javanischen Sprache, mit Lesestücken, einem javanischdeutschen und deutsch-javanischen Wörterbuch. Wien, Pest, Leipzig: Hartleben, [1892]. (Kunst der Polyglottie, 39).

Rochadi GK, R. H., and R. L. Sadeli Erawan BK. Cacarakan aksara Sunda. Bandung: Harisma, 1984.
Roorda, T. Javaansche grammatica, benevens een leesboek tot oefening in de javaansche taal. Amsterdam: Johannes Müller, 1855.

Walbeehm, A. H. J. G. Javaansche spraakkunst: schrift, uitspraak, taalsoorten en woordafleiding. Leiden: E. J. Brill, 1905.

Kaithi

Bihar High Court of Judicature. Selection of Hindusthani Documents from the Courts of Bihar, compiled by S. K. Das. Patna, Bihar: Superintendent, Government Printing, 1939.

Grierson, George A. A Handbook to the Kaithi Character. 2nd rev. ed. Calcutta: Thacker, Spink \& Co., 1899. Revised edition of A Kaithi Handbook, 1881.

King, Christopher R. One Language, Two Scripts: The Hindi Movement in Nineteenth Century North India. Bombay: Oxford University Press, 1994.

Kayah Li

Bennett, J. Fraser. Kayah Li Script: A Brief Description. Urbana-Champaign: University of Illinois, 1993.
Karenni Literature Department. Ka ${ }^{1} \mathrm{ya}^{3} / h i^{1}-K u^{3} / a^{3}$ Nghôchozha ${ }^{3}$: The Modern Western Kayah Li-English Lexicon. [Chiang Mai]: Payap University, 1994. [without tones = Kayalhi-Kula Nghôchozha]

Solnit, David B. Eastern Kayah Li: Grammar, Texts, Glossary. Honolulu: University of Hawai'i Press, 1997. ISBN 0-8248-1743-5.

Kharoshthi

Glass, Andrew. A Preliminary Study of Kharosthi Manuscript Paleography. 2000. Thesis (M.A.), University of Washington, 2000.

Glass, Andrew. "KharoDEhG Manuscripts: A Window on GandhFran Buddhism." Nagoya Studies in Indian Culture and Buddhism, 24 (2004): 129-152. ISSN 0285-7154.

Salomon, Richard. Ancient Buddhist Scrolls from GandhZra: The British Library Kharosthi Fragments. Seattle: University of Washington Press; London: British Library, 1999. ISBN 029597768X; 0295977698 (pbk).

Latin

ISO/IEC 646:1991, Information technology - ISO 7-bit coded character set for information interchange.

ISO 5426:1983, Extension of the Latin alphabet coded character set for bibliographic information interchange.

ISO 6438:1983, Documentation - African coded character set for bibliographic information interchange.
ISO 6937:1994, Information technology - Coded graphic character set for text communication - Latin alphabet.

ISO/IEC 8859, Information technology - 8-bit single-byte coded graphic character sets
Part 1: Latin alphabet No. 1 (1998).
Part 2: Latin alphabet No. 2 (1999).
Part 3: Latin alphabet No. 3 (1999).
Part 4: Latin alphabet No. 4 (1998).
Part 9: Latin alphabet No. 5 (1999)
Part 10: Latin alphabet No. 6 (1998).
ISO/IEC 10367:1991, Information technology - Standardized coded graphic character sets for use in 8-bit codes.

ANSI X3.4-1986 American National Standards Institute. Coded character set - 7-bit American national standard code.

ANSI Z39.47-1985 American National Standards Institute. Extended Latin alphabet coded character set for bibliographic use.

LVS 18-92 Latvian National Centre for Standardization and Metrology Libiesu kodu tabula ar 191 simbolu.
Kuruch, Rimma Dmitrievna. Saamsko-russkiy slovar'. Moskva: Russkiy iazyk. 1985

Lepcha

Mainwaring, G. B. A Grammar of the Rong (Lepcha) Language as it Exists in the Dorjeling and Sikim Hills. Delhi: Daya Publishing House, 1985 (1876).

Plaisier, H. "A Brief Introduction to Lepcha Orthography and Literature." Bulletin of Tibetology 41:1 (2005), 7-24.

Plaisier H. A Grammar of Lepcha. Leiden: Brill, 2007. (Brill's Tibetan Studies Library, Languages of the Greater Himalayan Region 5).

Limbu

Bairagi Kaila, ed. Limbu-Nepali-Angreji śabdakoś. [Limbu-Nepali-English Dictionary.] Kathmandu: Royal Nepal Academy, [in press.]

Cemjonga, Imana Simha. Yakthun-Pene-Mikphula Pancheka. = Limbu-Nepali-Angareji śabdakoś. = Limbu-Nepali-English Dictionary. [Lekhaka] Imanasimha Cemajon. [Kathamandu]: Nepala Ekedemi [2018 vi., i.e., 1962]

Driem, George van. A Grammar of Limbu. Berlin, New York: Mouton de Gruyter, 1987. (Mouton grammar library, 4.) ISBN 0-89925-345-8. Appendix: Anthology of Kiranti scripts, pp. 550-558.

Shafer, Robert. Introduction to Sino-Tibetan. Wiesbaden: Harrassowitz, 1966-1974.
Sprigg, R. K. "Limbu Books in the Kiranti Script." In International Congress of Orientalists (24th: 1957: Munich). Akten des Vierundzwanzigsten Internationalen Orientalisten-Kongresses München 28. August bis 4. September 1957, hrsg. von Herbert Franke. Wiesbaden: Deutsche Morgenländische Gesellschaft, in Kommission bei Franz Steiner Verlag, 1959.

Sprigg, R. K. [Review of van Driem (1987)]. Bulletin of the School of Oriental and African Studies, University of London, 52 (1989):1.163-165.

Subba, B. B. Limbu, Nepali, English Dictionary. Gangtok: Text Book Unit, Directorate of Education, Govt. of Sikkim, 1979 [i.e. 1980]. Cover title: Yakthun-Pene-Mikphula-panchekva.

Subba, B. B. Yakthun hu?siplam ("Limbu self-teaching method") = Limbu akṣar gāiḍ ("Limbu letter guide"). Gangtok: Kwality Stores, 1991?

Yoñhāñ, Khel Rāj. Limbū Nepālī śabdakoś. [Lalitpur]: 2052 B.S. [i.e. 1995].

Linear B and Cypriot

Bennett, Emmett L. "Aegean Scripts." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Chadwick, John. The Decipherment of Linear B. 2nd ed. London: Cambridge University Press., 1967 [i.e. 1968].

Chadwick, John. Linear B and Related Scripts. Berkeley: University of California Press; [London]: British Museum, 1987. (Reading the Past, v. 1.) ISBN 0-520-06019-9.

Hooker, J. T. Linear B: An Introduction. Bristol: Bristol Classical Press, 1980. ISBN 0-906515-69-6. Corrected printing published 1983. ISBN 0-906515-69-6; 0-906515-62-9 (pbk.).

International Colloquium on Mycenaean Studies (3rd: 1961: Racine, WI). Mycenaean Studies: Proceedings of the Third International Colloquium for Mycenaean Studies held at "Wingspread," 4-8 September 1961, edited by Emmett L. Bennett, Jr. Madison: University of Wisconsin Press, 1964.

Masson, Olivier. Les Inscriptions chypriotes syllabiques: recueil critique et commenté. Réimpr. augm. Paris: E. de Boccard, 1983.

Sampson, Geoffrey. Writing Systems: A Linguistic Introduction. Stanford, CA: Stanford University Press, 1985. ISBN 0-8047-1254-9. Also published: London, Hutchinson. ISBN 0-09-156980-X; 0-09-173051-1 (pbk.).

Ventris, Michael. Documents in Mycenaean Greek. 1st ed. by Michael Ventris and John Chadwick with a foreword by Alan J. B. Wace. 2nd ed. by John Chadwick. Cambridge: Cambridge University Press, 1973. ISBN 0-521-08558-6.

Lisu

Bya, Yuliya. Li-su Tho Uh Ba Pa Pha Tso So Du (Lisu Alphabet Primer). Chiang Mai: Christian Literature Fellowship, 2000.

Xu, Lin, Yuzhang Mu, and Xingzhi Gai, eds. Lisuyu Jianzhi (A Sketch of the Lisu Language). Beijing: The Ethnic Publishing House, 1986. (Chinese Minority Language Sketch Series.)

Yunnan Minority Language Commission, and Weixi Culture and Education Bureau, eds. Li-su Tho Uh Tso So Du (Lisu Primer). Kunming: Yunnan Nationality Publishing House, 1981.

Zhu, Faqing. Li-su Be Xuh Ngo Bae Khuh Tae Du Ra (Small Lisu-Chinese Dictionary). Dehong: Dehong Nationality Publishing House, 1984.

Lycian

Carruba, O. "La scrittura licia." Annali della scuola normale superiore di Pisa, classe di letter e filosofia. 3rd series. 8 (1978):849-867.

Melchert, H. Craig. "Lycian." In The Cambridge Encyclopedia of the World's Ancient Languages, edited by Roger Woodard, 591-600. Cambridge: Cambridge University Press, 2004. ISBN-13: 978-0521562560.

Lydian

Gérard, Raphaël. Phonétique et morphologie de la langue lydienne. Louvain-la-Neuve: Peeters, 2005.
Gusmani, Roberto. Lydisches Wörterbuch mit grammatischer Skizze und Inschriftensammlung. Heidelberg: Carl Winter, 1964.

Melchert, H. Craig. "Lydian." In The Cambridge Encyclopedia of the World's Ancient Languages, edited by Roger Woodard, 601-608. Cambridge: Cambridge University Press, 2004. ISBN-13: 978-0521562560.

Mandaic

Daniels, "Aramaic Scripts for Aramaic Languages," in Daniels \& Bright, eds., The World's Writing Systems, Oxford University Press, 1996, pp. 511-513 "Mandaic."

Häberl, "Iranian Scripts for Aramaic Languages: The Origin of the Mandaic Script," Bulletin of the American Schools of Oriental Research, No. 341 (Feb., 2006), pp. 53-62.

Coulmas, The Blackwell Encyclopedia of Writing Systems, Blackwell 1999, p. 320 "Mandean script."

Mathematical Symbols

ISO 6862, Information and documentation - Mathematical coded character set for bibliographic information interchange.

ANSI Y10.20-1988 American National Standards Institute. Mathematic signs and symbols for use in physical sciences and technology.

Mathematical Markup Language (MathML) Version 2.0. (W3C Recommendation 21 February 2001). Editors: David Carlisle, Patrick Ion, Robert Miner, [and] Nico Poppolier. Latest version:
http://www.w3.org/TR/MathML2/
Selby, Samuel M. Standard mathematical tables. - 16th ed. - Cleveland, OH : Chemical Rubber Co., 1968. Shepherd, Walter.

STIPub Consortium. STIX (Scientific and Technical Information Exchange) Project.
http://www.ams.org/STIX/
Swanson, Ellen. Mathematics into Type. Updated ed. by Arlene O'Sean and Antoinette Schleyer. Providence, RI: American Mathematical Society, 1999. ISBN 0-8218-1961-5.

Meetei Mayek

Chelliah, Shobhana L. A Grammar of Meithei. Berlin and New York: Mouton de Gruyter, 1997. ISBN 978-3-11-014321-8.

Debendra Singh, N. Evolution of Manipuri Script. [Imphal]: Manipur University, Centre for Manipuri Studies, 1990. (Research Report, 5).

Meroitic

Griffith, F. LI. Karanòg: The Meroitic inscriptions of Shablûl and Karanòg. Philadelphia: University Museum, 1911.

Millet, N. B. "The Meroitic script." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

ISO/IEC 10646:2014 (E)

Rilly, Claude. La langue du royaume de Méroé: un panorama de la plus ancienne culture écrite d'Afrique subsaharienne. Paris: Librairie Honoré Champion, 2007.

Miao

Enwall, Joakim. A Myth Become Reality: History and development of the Miao written language. 2 vols. Stockholm: Institute of Oriental Languages, Stockholm University, 1994-1995. (Stockholm East Asian monographs no. 5-6.)

Xiong Yuyou. Miao zu wen hua shi = A Cultural History of the Miao Nationality. Kunming Shi: Yunnan min zu chu ban she, 2003.

Musical Symbols

ELOT 1373. The Greek Byzantine Musical Notation System. Athens, 1997 (इEП E^OT 1373: 1997).
Catholic Church. Graduale Sacrosanctae Romanae Ecclesiae de Tempore et de Sanctis SS. D. N. Pii X. Pontificis Maximi. Parisiis: Desclée, 1961. (Graduale Romanum, no. 696.)

Gazimihal, Mahmut R. Anadolu türküleri ve mûsikî istikbâlimiz [by] Mahmut Ragip. [Istanbul]: Mârifet Matbaasi, 1928.

Heussenstamm, George. Norton Manual of Music Notation. New York: W.W. Norton, 1987. ISBN 0-393-95526-5 (pbk.).

Kennedy, Michael. Oxford Dictionary of Music. Oxford, New York: Oxford University Press, 1985. ISBN 0-19-311333-3. Second ed. published 1994. ISBN 0-19-869162-9.

New Encyclopedia Britannica. 15th ed. Entry for "Music."
The New Harvard Dictionary of Music, edited by Don Michael Randel. Cambridge, MA: Belknap Press of Harvard University Press, 1986. ISBN 0-674-61525-5.

Ottman, Robert W. Elementary Harmony: Theory and Practice. 2nd ed. Englewood Cliffs, NJ: PrenticeHall, 1970. ISBN 0-13-257451-9. Fifth ed. published 1998. ISBN 0-13-281610-5.

Rastall, Richard. The Notation of Western Music: An Introduction. London: Dent, 1983. ISBN 0-460-04205-X. Also published: New York: St. Martin's Press, 1982. ISBN 0-312-57963-2.

Read, Gardner. Music Notation: A Manual of Modern Practice. Boston: Allyn and Bacon, 1964.
Stone, Kurt. Music Notation in the Twentieth Century: A Practical Guidebook. New York: W.W. Norton, 1980. ISBN 0-393-95053-0.

Understanding Music with AI: Perspectives on Music Cognition, edited by Mira Balaban, Kemal Ebcioglu, and Otto Laske. Cambridge, MA: MIT Press; Menlo Park, CA: AAAI Press, 1992. ISBN 0-262-52170-9.

Myanmar

Mranmā-Añglip abhidhān = Myanmar-English Dictionary. Rankun: Dept. of Myanmar Language Commission, Ministry of Education, Union of Myanmar, 1993. Compiled and edited by the Myanmar Language Commission.

Mranmā cālui:poṅg:satpui kyam: nhan். khwaithā:. [Rankun]: 1996. Translated title: Myanmar orthography treatise.

Okell, John. 1971. A guide to the romanization of Burmese. (James G. Forlang Fund; 27) London: Royal Asiatic Society of Great Britain and Ireland.

Roop, D. Haigh. An Introduction to the Burmese Writing System. [Honolulu]: Center for Southeast Asian Studies, University of Hawaii at Manoa, 1997. (Southeast Asia Paper, 11). Originally published: New Haven: Yale University Press, 1972. (Yale linguistic series). ISBN 0-300-01528-3.

N'Ko

Kanté, Souleymane. Méthode pratique d'écriture n'ko, 1961. Kankan, Guinea: Association de traditherapeutes et pharmacologues, 1995.

N'Ko: The Common Language of Mandens. www.nkoinstitute.com
N'Ko: The Mandingo Language Site. www.kanjamadi.com

Ogham

I. S. 434:1999, Information Technology - 8-bit single-byte graphic coded character set for Ogham = Teicneolaíocht Eolais - Tacar carachtar grafach Oghaim códaithe go haonbheartach le 8 ngiotán. National Standards Authority of Ireland.

McManus, Damian. A Guide to Ogam. Maynooth: An Sagart, 1991. (Maynooth monographs, 4). ISBN 1-87068-417-6.

Ol Chiki

Hembram, S. M., et al . Adibasi Ol script = at'ip'asi al ciki. Calcutta: Adibasi Socio-Educational \& Cultural Association, 1972.

Murmu, Raghunath. Ranar:: A Santali Grammar in Santali. Singhbhum, Bihar: Adibasi Socio-Educational \& Cultural Association, 1972.

Zide, Norman. "Scripts for Munda languages." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York; Oxford: Oxford University Press, 1996. ISBN 0-19-507993-0.

Old Italic

Bonfante, Larissa. "The Scripts of Italy." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Cristofani, Mauro. "L’alfabeto etrusco." In Lingue e dialetti dell'Italia antica, a cura di Aldo Larosdocimi. Roma: Biblioteca di storia patria, a cura dell' Ente per la diffusione e l'educazione storia, 1978. (Popoli e civiltà dell'Italia antica, VI.)

Gordon, Arthur E. Illustrated Introduction to Latin Epigraphy. Berkeley: University of California Press, 1983. ISBN 0-520-03898-3.

Marinetti, Anna. Le iscrizione sudpicene. I. Testi. Firenze: Olschki, 1985. ISBN 88-222-3331-X (v. 1).
Parlangèli, Oronzo. Studi Messapici. Milano: Istituto lombardo di scienze e lettere, 1960.

Old Persian

Schmitt, Rüdiger. The Bisitun Inscriptions of Darius the Great, Old Persian Text. London, School of Oriental and African Studies, 1991 (Corpus Inscriptionum Iranicarum, Part I: Inscriptions of ancient Iran, v.1, Text 1). ISBN 0-7286-0181-8.

Schweiger, Günter. Kritische Neuedition der achaemenidischen Keilinschriften. Taimering: Schweiger VWT-Verlag, 1998. (Studien zur Iranistik). ISBN 3-934548-00-8.

Old South Arabian

Nebes, Norbert, and Peter Stein. "Ancient South Arabian." In The Cambridge Encyclopedia of the World's Ancient Languages, edited by Roger D. Woodard. 454-487. Cambridge University Press, 2004. ISBN-13: 978-0521562560.

Ryckmans, J. "Origin and Evolution of South Arabian Minuscule Writing on Wood (1)." Arabian Archaeology and Epigraphy 12 (2001): 223-235. ISSN 0905-7196.

Smithsonian Institution. "Written in Stone: Inscriptions from the National Museum of Saudi Arabic."
http://www.mnh.si.edu/epigraphy/figs-stones/x-large/color_xl_jpeg/fig02.jpg
Stein, Peter. "The Ancient South Arabian Minuscule Inscriptions on Wood: A New Genre of Pre-Islamic Epigraphy." Jaarbericht van het Vooraziatisch-Egyptisch Genootschap "Ex Oriente Lux", 39 (2005): 181199. ISSN 0075-2118.

Old Turkic

Erdal, Marcel. A Grammar of Old Turkic. Leiden \& Boston: Brill, 2004. ISBN 9004102949.
Scharlipp, Wolfgang Ekkehard. Eski Türk run yazitlarina giri!: ders kitabi = An Introduction to the Old Turkish Runic Inscriptions: A Textbook in English and Turkish. Engelschoff: Auf dem Ruffel, 2000. ISBN 3-933847-00-X.
von Gabain, A. Alttürkische Grammatik mit Bibliographie, Lesestücken und Wörterverzeichnis, auch Neutürkisch. Leipzig: Harrassowitz, 1941. (Porta Linguarum Orientalium, 23).

Osmanya

Afkeenna iyo fartiisa: buug koowaad. Xamar: Goosanka afka iyo suugaanta Soomaalida, 1971. Translated title: Our language and its handwriting: book one.

Cerulli, Enrico. "Tentativo indigeno di formare un alfabeta somalo." Oriente moderno, 12 (1932): 212-213. ISSN 0030-5472.

Gaur, Albertine. A History of Writing. London: British Library, 1992. ISBN 0-7123-0270-0. Also published: Rev. ed. New York: Cross River Press, 1992. ISBN 1-558-59358-6.

Gregersen, Edgar A. Language in Africa: An Introductory Survey. New York: Gordon and Breach, 1977. (Library of Anthropology). ISBN: 0-677-04380-5; 0-677-04385-6 (pbk.).

Maino, Mario. "L’alfabeta 'Osmania' in Somalia." Rassegna di studi etiopici, 10 (1951): 108-121. ISSN 0390-3699.

Nakanishi, Akira. Writing Systems of the World: Alphabets, Syllabaries, Pictograms. Rutland, VT: Tuttle, 1980. ISBN 0-8048-1293-4; 0-8048-1654-9 (pbk.). Revised translation of Sekai no moji.

Phags-pa

Luo, Changpei. Basibazi yu Yuandai Hanyu [ziliao huibian] / Luo Changpei, Cai Meibiao bian zhu. Beijing: Kexue chubanshe, 1959.

Poppe, Nikolai Nikolaevich. The Mongolian Monuments in hP'ags-pa Script. Translated and edited by John R. Krueger. 2nd ed. Wiesbaden: Harrassowitz, 1957. (Göttinger asiatische Forschungen, 8).

Zhaonasitu. Menggu ziyun jiaoben / Zhaonasitu, Yang Naisi bian zhu. [Beijing]: Min zu chu ban she, 1987. Author Zhaonasitu also known as Jagunasutu or Junast.

Philippines Scripts

Doctrina Christiana: The First Book Printed in the Philippines, Manila 1593. A facsimile of the copy in the Lessing J. Rosenwald Collection, with an introductory essay by Edwin Wolf II. Washington, DC: Library of Congress, 1947.

Kuipers, Joel C., and Ray McDermott. "Insular Southeast Asian Scripts." In The World's Writing Systems. Edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Santos, Hector. The Living Scripts. Los Angeles: Sushi Dog Graphics, 1995. (Ancient Philippine scripts series, 2). User's guide accompanying Computer Fonts, Living Scripts software.

Santos, Hector. Our Living Scripts. January 31, 1997. http://www.bibingka.com/dahon/living/living.htm Part of his A Philippine Leaf.

Santos, Hector. The Tagalog Script. Los Angeles: Sushi Dog Graphics, 1994. (Ancient Philippine scripts series, 1). User's guide accompanying Tagalog Script Fonts software.

Santos, Hector. The Tagalog Script. October 26, 1996.
http://www.bibingka.com/dahon/tagalog/tagalog.htm Part of his A Philippine Leaf.

Phoenician

Branden, Albertus van den. Grammaire phénicienne. Beyrouth: Librairie du Liban, 1969. (Bibliothèque de I'Université Saint-Esprit, 2).

McCarter, P. Kyle. The Antiquity of the Greek Alphabet and the Early Phoenician Scripts. Missoula, MT: Published by Scholars Press for Harvard Semitic Museum, 1975. (Harvard Semitic Monographs; 9.) ISBN 0-89130-066-X.

Noldeke, Theodor. Beiträge zur semitischen Sprachwissenschaft. Strassburg: Karl J. Trübner, 1904. Reprinted as: vol. 1 of Beiträge und Neue Beiträge zur semitischen Sprachwissenschaft: achtzehn Aufsätze und Studien. Amsterdam: APA-Philo Press, [1982]. Also published on microfiche by the American Theological Library Association.

Powell, Barry B. Homer and the Origin of the Greek Alphabet. Cambridge, New York: Cambridge University Press, 1991. ISBN 0-521-37157-0. Reprinted, 1996. ISBN 0-521-58907-X (pbk).

Rejang

Jaspan, M. A. Folk Literature of South Sumatra: Redjang Ka-Ga-Nga Texts. Canberra: Australian National University, 1964.

Runic

Benneth, Solbritt, Jonas Ferenius, Helmer Gustavson, \& Marit Åhlén. 1994. Runmärkt: från brev till klotter. Runorna under medeltiden. [Stockholm]: Carlsson Bokförlag. ISBN 91-7798-877-9

Derolez, René. 1954. Runica manuscripta: the English tradition. (Rijksuniversiteit te Gent: Werken uitgegeven door de Faculteit van de Wijsbegeerte en Letteren; 118e aflevering) Brugge: De Tempel.

Friesen, Otto von. Runorna. Stockholm, A. Bonnier [1933]. (Nordisk kultur, 6).
Haugen, Einar Ingvald. The Scandinavian Languages: An Introduction to Their History. London: Faber, 1976. ISBN 0-571-10423-1. Also published: Cambridge, MA: Harvard University Press, 1976. ISBN 0-674-79002-2.

Musset, Lucien. Introduction à la runologie. Paris: Aubier-Montaigne, 1965.

ISO/IEC 10646:2014 (E)
Page, Raymond Ian. Runes. Berkeley: University of California Press; [London]: British Museum, 1987. (Reading the Past). ISBN 0-520-06114-4. British Museum Publications edition has ISBN 0-7141-8065-3.

Samaritan

Ben-Hayyam, Ze'ev. A Grammar of Samaritan Hebrew, Based on the Recitation of the Law in Comparison with the Tiberian and other Jewish Traditions. Jerusalem: Hebrew University Magnes Press, 2000. ISBN 1-57506-047-7.

Macuch, Rudolf. Grammatik des samaritanischan Hebräisch. Berlin: Walter de Gru yter, 1969. ISBN 9783110083767.

Murtonen, A. Materials for a Non-Masoretic Hebrew Grammar III: A Grammar of the Samaritan Dialect of Hebrew. Helsinki: Societas Orientalis Fennica, 1964. (Studia Orientalia, 29).

Saurashtra

Norihiko Učida. Language of the Saurashtrans in Tirupati. 2nd revised ed. Bangalore: Mahalaxmi Enterprises, 1991. (In Latin script.)

Norihiko Učida. Saurashtra-English Dictionary. Wiesbaden: Harrassowitz, 1990. ISBN 3 447030550. (In Latin script.)

Sharada

Deambi, Kaul and Bushan Kumar. Śāradā and Țākarī Alphabets: Origin and Development. New Delhi: Indira Gandhi National Centre for the Arts, 2008.

Grierson, George A. "On the Sharada Alphabet." The Journal of the Asiatic Society of Great Britain and Ireland, (1916): 677-708.

Shavian

ConScript Unicode Registry [by] John Cowan and Michael Everson. "E700-E72F Shavian." Included in the ConScript Registry (http://www.evertype.com/standards/csur/index.html) in 1997. Shavian was withdrawn from the ConScript Registry in 2001, because of its addition to the Unicode Standard and ISO/IEC 10646.

Crystal, David. The Cambridge Encyclopedia of Language. Cambridge, New York: Cambridge University Press, 1987. ISBN 0-521-26438-3. 2nd ed. Cambridge, New York: Cambridge University Press, 1997. ISBN 0-521-55050-5; 0-521-55967-7.

DeMeyere, Ross. About Shavian. 1997. http://www.demeyere.com/Shavian/info.html.
Shaw, George Bernard. Androcles and the Lion: An Old Fable Renovated, by Bernard Shaw, with a Parallel Text in Shaw's Alphabet to Be Read in Conjunction Showing Its Economies in Writing and Reading. Harmondsworth: Penguin Books, 1962.

Sinhala

SLS 1134:1996 Sri Lanka Standards Institution Sinhala character code for information interchange.
Gunasekara, Abraham Mendis. A comprehensive grammar of the Sinhalese language. New Delhi: Asian Educational Services, 1986(Reprint of 1891 edition).

Sora Sompeng

Mahapatra, Khageshwar. "Soraŋ Sompen': A Sora Script." Unpublished conference paper. Delhi, Mysore, 1978-1979.

Zide, Norman. "Scripts for Munda languages." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Zide, Norman. "Three Munda scripts." In Linguistics of the Tibeto-Burman Area. Vol. 22.2—Fall 1999

Sundanese

Baidillah, Idin, Cucu Komara, and Deuis Fitni. Ngalagena: Panglengkep Pangajaran Aksara Sunda pikeun Murid Sakola Dasar/Dikdas 9 Taun. [Bandung]: CV Walatra, [2002].

Hardjasaputra, A. Sobana, Tedi Permadi, Undang A. Darsa, and Edi S. Ekadjati. Rancangan Pembakuan Aksara Sunda. Bandung, 1998.

Symbols (Miscellaneous)

ISO 2033:1983, Information processing - Coding of machine readable characters (MICR and OCR).
ISO 2047:1975, Information processing - Graphical representations for the control characters of the 7-bit coded character set.

ISO/IEC 9995-7:1994, Information technology - Keyboard layouts for text and office systems - Part 7: Symbols used to represent functions.

ANSI X3.32-1973 American National Standards Institute. American national standard graphic representation of the control characters of American national standard code for information interchange.

ANSI Y14.5M-1982 American National Standard. Engineering drawings and related document practices, dimensioning and tolerances.

Syriac

Kefarnissy, Paul. Grammaire de la langue araméenne syriaque. Beyrouth, 1962.
Nöldeke, Theodor. Compendious Syriac Grammar. With a table of characters by Julius Euting. Translated from the 2nd and improved German ed., by James A. Crichton. London: Williams \& Norgate, 1904. Reprinted: Tel Aviv: Zion Pub. Co. [1970].

Robinson, Theodore Henry. Paradigms and Exercises in Syriac Grammar. 4th ed. Rev. by L. H. Brockington. Oxford: Clarendon Press; New York: Oxford University Press, 1962. ISBN 0-19-815416-X, 0-19-815458-5 (pbk.).

Tai Le
Coulmas, Florian. The Blackwell Encyclopedia of Writing Systems. Oxford, Cambridge: Blackwell, 1996. ISBN 0-631-19446-0. Dehong writing, pp. 118-119.

Lá $a i^{2}$ maum lá $a i^{2} k a v a^{3} m i^{2} t s e^{2}$ lau ya pa me na ${ }^{4}$ ka na: tá va pá na kó $m a^{6}$ sá na ${ }^{2}$ teh $m a^{6}$. Yina ${ }^{5}$ lána ${ }^{5}$ mina ${ }^{5} s u^{4}$ su 4 pána ${ }^{2} s e^{3}$ (Yunnan minzu chubanshe). 1988. ISBN 7-5367-1100-4.

Tsa va má 3 hó va ${ }^{3}$: la ta a^{6} mé ${ }^{2}$ sá $a i^{3}$ seh va ${ }^{2}$ xo ηa^{3}. Yina ${ }^{5}$ lána 5 mina ${ }^{5} s u^{4}$ su ${ }^{4}$ pána ${ }^{2}$ se ${ }^{3}$ (Yunnan minzu chubanshe). 1997. ISBN 7-5367-1455-6.

Tai Tham

Peltier, Anatole-Roger. 1996. Lanna Reader. Chiang Mai: Wat Tha Kradas.
Kasēm Siriratphiriya, and Mahāwitthayālai Sukhōthaithammāthirāt. Tūa Mueang: kānrīan phāsā Lānnā phān khrōngsāng kham. Nonthaburī: Rōngphim Mahāwitthayālai Sukhōthaithammāthirāt, 2548 [2005]. ISBN 974-9942-00-0.

ISO/IEC 10646:2014 (E)
Rungrueangsri, Udom. 2004. Pacanānukrom Lānnā-Thai: Chabaph maefāhluang. ISBN 974-685-175-9.
Baephryar phāsā Lānnā. ISBN 974-386-044-4.

Takri

Deambi, Kaul and Bushan Kumar. Śāradā and Țākarī Alphabets: Origin and Development. New Delhi: Indira Gandhi National Centre for the Arts, 2008.

Thaana

Geiger, Wilhelm. Maldivian Linguistic Studies. New Delhi: Asian Educational Services, 1996. ISBN 81-206-1201-9. Originally published: Colombo: H. C. Cottle, Govt. Printer, 1919.

Maniku, Hassan Ahmed. Say It in Maldivian (Dhivehi), [by] H. A. Maniku [and] J. B. Disanayaka. Colombo: Lake House Investments, 1990.

Tibetan

Beyer, Stephen V. The classical Tibetan language. State University of New York. ISBN 0-7914-1099-4

Ugaritic

O'Connor, M. "Epigraphic Semitic Scripts." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Walker, C. B. F. Cuneiform. London: British Museum Press, 1987. (Reading the Past, v. 3.) ISBN 0-7141-8059-9. University of California Press edition has ISBN 0-520-06115-2 (pbk.).

Thai

TIS 620-2533 Thai Industrial Standard for Thai Character Code for Computer. (1990)

Vai

Dalby, David. "A Survey of the Indigenous Scripts of Liberia and Sierra Leone: Vai, Mende, Loma, Kpelle and Bassa." African Language Studies 8 (1967):1-51.

Kandakai, Zuke, et al. Vai kpolo saikilamaa $m \varepsilon=$ The Standard Vai Script. Monrovia: University of Liberia African Studies Program, 1962.

Massaquoi, Momolu. "The Vai People and Their Syllabic Writing." Journal of the Royal African Society 10.40, July (1911), 459-466.

Singler, John. "Scripts of West Africa." In The World's Writing Systems, edited by Peter T. Daniels and William Bright. New York: Oxford University Press, 1996. ISBN 0-19-507993-0.

Stewart, Gail, and P. E. H. Hair. "A Bibliography of the Vai Language and Script." Journal of West African Languages 6.2 (1969), 124.

Yi

GB13134: Xinxi jiaohuanyong yiwen bianma zifuji (Yi coded character set for information interchange), [prepared by] Sichuansheng minzushiwu weiyuanhui. Beijing, Jishu Biaozhun Chubanshe (Technical Standards Press), 1991. (GB 13134-1991).

Nuo-su bbur-ma shep jie zzit. = Yi wen jian zi ben. Chengdu: Sichuan minzu chubanshe, 1984.
Nip huo bbur-ma ssix jie. = Yi Han zidian. Chengdu: Sichuan minzu chubanshe, 1990. ISBN 7-5409-01284.

Annex N
 (informative)
 External references to character repertoires

N. 1 Methods of reference to character repertoires and their coding

Within programming languages and other methods for defining the syntax of data objects there is commonly a need to declare a specific character repertoire from among those that are specified in this International Standard. There may also be a need to declare the corresponding coded representations applicable to that repertoire.

For any character repertoire that is in accordance with this International Standard a precise declaration of that repertoire should include the following parameters:

- identification of this International Standard,
- the adopted subset of the repertoire, identified by one or more collection numbers,
- the code unit sequence content definition,
- the adopted encoding form (UTF-8, UTF-16, or UTF-32).

One of the methods now in common use for defining the syntax of data objects is Abstract Syntax Notation 1 (ASN.1) specified in ISO/IEC 8824. The corresponding coded representations are s pecified in ISO/IEC 8825. When this method is used the forms of the references to character repertoires and coding are as indicated in the following clauses.

N. 2 Identification of ASN. 1 character abstract syntaxes

The set of all character strings that can be formed from the characters of an identified repertoire in accordance with this International Standard is defined to be a "character abstract syntax" in the terminology of ISO/IEC 8824. For each such character abstract syntax, a corresponding object identifier value is defined to permit references to be made to that syntax when the ASN. 1 notation is used.

ISO/IEC 8824-1 Annex B specifies the form of object identifier values for objects that are s pecified in an ISO standard. In such an object identifier the features and options of this International Standard are identified by means of numbers (arcs) which follow the arcs " 10646 " and " 0 " which identify the whole ISO/IEC 10646.

NOTE 1 - The arc (0) is required t o complement the arcs (1) an d (2) which represent respectively ISO/IEC 10646-1 and ISO/IEC 10646-2. These two arcs should not be used.
The first such arc following a 10646 arc identifies the code unit sequence content definition, and is referred as 'level-3 (3)'.

NOTE 2 - This version of the standard specifies a single definition for code unit sequence content. That definition was formerly known as implementation level 3 in previous editions of this standard

The second such arc identifies the repertoire subset, and is either

- all (0), or
- collections (1).

Arc (0) identifies the entire collection of characters specified in this International Standard. No further arc follows this arc.

NOTE 3 - This collection includes private planes, and is therefore not fully-defined. Its use without additional prior agreement is deprecated.

Arc (1) is followed by one or a sequence of further arcs, each of which is a collection number from Annex A, in ascending numerical order. This sequence identifies the subset consisting of the collections whose numbers appear in the sequence.

ISO/IEC 10646:2014 (E)
NOTE 4 - As an example, the object identifier for the subset comprising the collections BASIC LATIN, LATIN-1 SUPPLEMENT, and MATHEMATICAL OPERATORS is:
\{iso standard 10646 (0) level-3 (3) collections (1) 12 39\}
ISO/IEC 8824 also specifies object descriptors corresponding to object identifier values. For an unrestricted repertoire, the corresponding object descriptor is as follows:

30 : "ISO 10646 level-3 unrestricted"
For a single collection with collection name "xxx".
31 : "ISO 10646 level-3 xxx"
For a repertoire comprising more than one collection, numbered $\mathrm{m} 1, \mathrm{~m} 2$, etc.
31 : "ISO 10646 level-3 collections m1, m2, m3, .. "
NOTE 5 - All spaces are single spaces.

N. 3 Identification of ASN. 1 character transfer syntaxes

The coding method for character strings that can be formed from the characters in accordance with this International Standard is defined to be "character transfer syntax" in the terminology of ISO/IEC 8824. For each such character transfer syntax, a corresponding object identifier value is defined to permit references to be made to that syntax when the ASN. 1 notation is used.

In an object identifier in accordance with ISO/IEC 8824-1 Annex B, the coded representation form specified in this International Standard is identified by means of numbers (arcs) which follow the arcs "10646" and "0" which identify the whole ISO/IEC 10646.

The first such arc is
transfer-syntaxes (0).
The second such arc identifies the encoding form and is either
four-octet-form (4) for the UTF-32 encoding form, or
utf16-form (5) for the UTF-16 encoding form, or
utf8-form (8) for the UTF-8 encoding form.
NOTE 1 - As an example, the object identifier for the UTF-32 encoding form is:
\{iso standard 10646 (0) transfer-syntaxes (0) four-octet-form (4)\}
The following object identifier is also valid but deprecated:
\{iso standard 10646 (1) transfer-syntaxes (0) four-octet-form (4)\}
NOTE 2 - Previous versions of this standard supported a two-octet-BMP-form (2) arc which is now deprecated.
The corresponding object descriptors are:
"ISO 10646 form 4"
"ISO 10646 utf-16"
"ISO 10646 utf-8".
NOTE 3 - Previous versions of this standard supported the "ISO 10646 form 2" object descriptor which is now deprecated.

Annex P
 （informative）
 Additional information on CJK Unified Ideographs

Annex P contains additional information on CJK Unified Ideographs．
NOTE－The first edition of this International Standard（ISO／IEC 10646：2003 and amendments 1 to 5）used this annex to pro－ vide additional information on all characters．This edition of the standard includes most of that information in the code charts． Because the code charts for CJK unified ideographs do not include any name list，the information about these characters is still included here．

Each entry in the table P． 1 consists for each row of an extract of the CJK Unified Ideograph code point entry in the code chart，followed in the next column by the related additional information．Entries are ar－ ranged in ascending sequence of code point．

Table P．1：Additional information on CJK Unified Ideographs

UCS／Glyph				Additional information
9FB9	光 G9FETE			These three characters are intended to represent a component at a specific position of a full ideograph．The ideographs representing the same structure without a preferred positional preference are encod－ ed at 20509 尖，2099D 龺，and 470C 變 respectively．
$\begin{gathered} \text { 9FBA } \\ +24.6 \end{gathered}$	龺			
$\begin{aligned} & 9 \text { FBB } \\ & \text { 言 } 149.12 \end{aligned}$	䜌 G9FEAO			
$\underset{\text { 力 } 19.10}{20885}$	虔力	虔边 ตкx． 014826	$\underset{\substack{\text { 虔力 } 5369}}{ }$	T5－3669 source glyph was mistakenly unified to this code point．
22936	嘉品		$\frac{\text { 党热 }}{\text { T5-677 }}$	T5－6777 source glyph was mistakenly unified to this code point．
$\underset{\text { 手 } 648}{22 \mathrm{BA3}}$	$\frac{\pi}{\frac{\pi}{J}}$		$\underset{\substack{\text { 㐿 } \\ \text { TG492E }}}{ }$	GKX－0440．17 source gly ph was mistakenly unified to this code point．
$\begin{gathered} 23023 \\ \text { 支 } 66.16 \end{gathered}$	咸卢	咸支 GKX-0476.21	咸攵 ${ }_{T 56634}$	T5－6C34 source glyph was mistakenly unified to this code point．
$\begin{gathered} 235 \mathrm{~F} 1 \\ \text { 木 } 75.10 \end{gathered}$	$\begin{aligned} & \text { 梨下 } \\ & \text { ucs } 2003 \end{aligned}$	$\begin{aligned} & \text { 梨下 } \\ & \text { vo. } 3440 \end{aligned}$		UCS2003 glyph for this code point was mistakenly designed．
$\begin{array}{r} 2382 \mathrm{C} 75.18 \end{array}$	桼桼氺楽	栤氺水－6951		UCS2003 glyph for this code point was mistakenly designed．
$\begin{gathered} 23 \text { 水 } 85.11 \\ \hline \end{gathered}$	梳位	㨢	梳就	T7－243F source glyph was mistakenly unified to this code point．
$\begin{array}{r} 24229 \\ 火 火 86.7 \end{array}$	$\underset{\text { UCs2003 }}{\text { 差 }}$	养 Gイx．0672．02	$\underset{\text { T43273 }}{\text { 联 }}$	GKX－0672．02 source gly ph was mistakenly unified to this code point．

ISO／IEC 10646：2014（E）

UCS／Glyph				Additional information
$\begin{array}{r} 24369 \\ \text { 火 } 86.12 \end{array}$	炎光 UCS2003			UCS2003 glyph for this code point was mistakenly designed．
$\underset{\text { 火 } 86.12}{243 B E}$	$\underset{\text { UCS2003 }}{\text { 洎坒 }}$			The source glyph for T7－2F4B should have been unified with 24381政 but was allocated here by a mistake．The UCS2003 gl yph for this code point should have been based on T7－2F4B but showed different shape by a mistake．For consistency with TCA CNS stand－ ards，243BE＇s source reference to T7－2F4B is kept as in this Interna－ tional Standard．
$\begin{gathered} \text { 24A8A } \\ \text { 玉 } 96.13 \end{gathered}$	栓金 UCS2003			UCS2003 glyph for this code point was mistakenly designed．
24F15	佩哉 UCS2003	$\underset{\text { V2－705A }}{\text { 暗 }}$		UCS2003 glyph for this code point was mistakenly designed．
$\begin{array}{r} 25089 \\ \text { Ifl } 108.10 \end{array}$	$\underset{\text { UCS2003 }}{\text { 热皿 }}$	$\underset{\text { V2－706B }}{\text { 出 }}$		UCS2003 glyph for this code point was mistakenly designed．
$\begin{gathered} \text { 25B88 } \\ \text { 竹 } 1188 \end{gathered}$	年午 UCS2003	等		UCS2003 glyph for this code point was mistakenly designed．
$\begin{gathered} 27555 \\ \text { 虫 } 142.17 \end{gathered}$	䖥 UCS2003	$\frac{\text { 亳 }}{\frac{\text { GKX-1103.29 }}{\text { GK }}}$		UCS2003 glyph for this code point was mistakenly designed．
27B1F	$\begin{aligned} & \text { 言觜 } \\ & \text { UCS2003 } \end{aligned}$	$\begin{gathered} \text { 言此 } \\ \text { GHZ-64018.09 } \end{gathered}$	$\begin{aligned} & \text { 亡些 } \\ & \text { T7审 } \\ & \text { T7.5035 } \end{aligned}$	GHZ－64018．09 source gly ph was mistakenly unified to this code point．
27D41		$\frac{\text { 喜 }}{\text { TF-385F }}$		UCS2003 glyph for this code point was mistakenly designed．
$\begin{gathered} 28321 \\ \text { 車 } 159.8 \end{gathered}$	車邩 UCS2003	$\underset{\text { GKx-1244.18 }}{\text { 本則 }}$	$\underset{\text { T6．632A }}{\text { 車仰 }}$	T6－632A source glyph was mistakenly unified to this code point．
$\begin{array}{r} 28599 \\ \text { 疋 } 162.11 \end{array}$	$\underset{\text { UCS2003 }}{\text { 岩金 }}$			V4－5565 source glyph was mistakenly unified to this code point．
$\begin{array}{r} 28 B 75 \\ \text { 金 } 167.13 \end{array}$	金㑑 UCS2003			The glyph of TF－686D in TCA CNS standard has been changed after the original publication of CJK UNIFIED IDE OGRAPHS EXTENSION B in ISO／IEC 10646．For consistency with TCA CNS standard，TF－686D glyph needs to be as in this International Stand－ ard，although the glyph is not usually unified with UCS2003 glyph of this code point．
$\begin{array}{r} \text { 293FB } \\ \text { 韋 } 178.20 \end{array}$		$\underset{\substack{\text { 鴶韋 } \\ \text { GHZ-74512.13 }}}{\text { and }}$		The glyph of T5－7C22 in TCA CNS standard has been changed after the original publication of CJK UNIFIED IDEO GRAPHS EXTENSION B in ISO／IEC 10646．For consistency with TCA CNS standard，T5－7C22 glyph needs to be as in this International Stand－ ard，although the glyph is not usually unified with GHZ－74512．13 glyph and／or UCS2003 glyph of this code point．

UCS／Glyph				Additional information
$\underset{\text { 马 } 1878}{299 \mathrm{FB}}$	$\underset{\text { UCS2003 }}{\text { 马宛 }}$			The GCH glyph for this code point has been changed after the origi－ nal publication of CJK UNIFIED IDEO GRAPHS EXTENSION B in ISO／IEC 10646．The GCH glyph needs to be as in this International Standard，although the glyph is not us ually unified with UCS2003 glyph of this code point．
$\begin{array}{r} 29 \mathrm{C} 52 \\ \text { 鬲 } 193.12 \end{array}$	$\underset{\text { UCS2003 }}{\substack{\text { 古㰻 }}}$	$\underset{\text { T7.5666 }}{\text { 㝇 }}$		The glyph of T7－5666 in TCA CNS standard has been changed after the original publication of CJK UNIFIED IDEO GRAPHS EXTENSION B in ISO／IEC 10646．For consistency with TCA CNS standard，T7－5666 glyph needs to be as in this International Stand－ ard，although the glyph is not usually unified with UCS2003 glyph of this code point
2A0B8 鳥 196.9	容鳥 UCS2003	$\underset{\text { GKX-1494.15 }}{\text { 灾苗 }}$	$\underset{\text { T7.523A }}{\text { 穾自 }}$	The source glyph of T7－523A in TCA CNS standard has been changed after the original publication of CJK UNIFIED IDEOGRAPHS EXTENSION B in ISO／IEC 10646－2．For consistency with TCA CNS standard，T7－523A glyph needs to be as in this International Standard，although the glyph is not usually unified with GKX－1494．15 glyph and／or UCS2003 glyph of this code point．
$\underset{\substack{\text { 电 } 213.8}}{2 \mathrm{ACO}}$	交几 氯居 UCS2003	交几 GKX－菌 G33820		GKX－1538．20 source glyph was mistakenly unified to this code point．

Annex Q
 (informative)
 Code mapping table for Hangul syllables

NOTE - The information concerning mapping between Hangul syllables (and code points) that were specified in the first edition of ISO/IEC 10646-1 and their amended code points is available in previous editions of this standard.

Annex R
 (informative)
 Names of Hangul syllables

Annex R provides the full name and annotation of Hangul syllables through a linked file:
The content linked to is a plain text file, using ISO/IEC 646-IRV characters with CARRIAGE RETURN/ LINE FEED as end of line mark that specifies, after a 5 -lines header, as all the Hangul syllables, each line specified as follows:

- 01-04 octet: code point in hexadecimal notation,
- 05 octet: SPACE character,
- 06 octet until end of line: Hangul syllable with the annotation between parenthesis.

Click on this highlighted text to access the file containing the Hangul syllable names.

NOTE - The content is also available as a separate viewable file in the same directory as this document. The file is named: "HangulSy.txt".

Annex S
 (informative)
 Procedure for the unification and arrangement of CJK Ideographs

The graphic character collections of CJK unified ideographs in this International Standard are specified in Clause 31. They are derived from many more ideographs which are found in various different national and regional standards for coded character sets (the "sources").

Annex S describes how the ideographs in this standard are derived from the sources by applying a set of unification procedures. It also describes how the ideographs in this standard are arranged in the sequence of consecutive code points to which they are assigned.

The source references for CJK unified ideographs are specified in Clause 23.
Within the context of this International Standard a unification process is applied to the ideographic characters taken from the codes in the source groups. In this process, single ideographs from two or more of the source groups are associated together, and a single code point is assigned to them in this standard. The associations are made according to a s et of procedures that are d escribed below. Ideographs that are thus associated are described here as "unified".

NOTE - The unification process does not apply to the following collections of ideographic characters:
CJK RADICALS SUPPLEMENT (2E80-2EFF)
KANGXI RADICALS (2F00-2FDF)
CJK COMPATIBILITY IDEOGRAPHS (F900 - FAFF with the exception of FA0E, FA0F, FA11, FA13, FA14, FA1F, FA21, FA23, FA24, FA27, FA28 and FA29)
CJK COMPATIBILITY IDEOGRAPHS SUPPLEMENT (2F800-2FA1F).

S. 1 Unification procedure

S.1.1 Scope of unification

Ideographs that are unrelated in historical derivation (non-cognate characters) have not been unified.

EXAMPLE

NOTE - The difference of shape between the two ideographs in the above example is in the length of the lower horizontal line. This is considered an actual difference of shape. Furthermore these ideographs have different meanings. The meaning of the first is "Soldier" and of the second is "Soil or Earth".

An association between ideographs from different sources is made here if their shapes are sufficiently similar, according to the following system of classification.

S.1.2 Two level classification

A two-level system of classification is used to differentiate (a) between abstract shapes and (b) between actual shapes determined by particular typefaces. Variant forms of an ideograph, which can not be unified, are identified based on the difference between their abstract shapes.

S.1.3 Procedure

A unification procedure is used to determine whether two ideographs have the same abstract shape or different ones. The unification procedure has two stages, applied in the following order:
a) Analysis of component structure;
b) Analysis of component features;

S.1.3.1 Analysis of component structure

In the first stage of the procedure the component structure of each ideograph is examined. A component of an ideograph is a geometrical combination of primitive elements. Alternative ideographs can be configured from the same set of components. Components can be combined to create a new component with a more complicated structure. An ideograph, therefore, can be defined as a component tree, where the top node is the ideograph itself, and the bottom nodes are the primitive elements. This is shown in Figure S.1.

Figure S. 1 - Component structure

S.1.3.2 Analysis of component features

In the second stage of the procedure, the components located at corresponding nodes of two ideographs are compared, starting from the top level, as shown in Figure S.2.

Figure S. 2 - The most superior node of a component
The following features of each ideograph to be compared are examined:
a) the number of components,
b) the relative position of the components in each complete ideograph,
c) the structure of corresponding components.

If one or more of the features a) to c) above are different between the ideographs in the comparison, the ideographs are considered to have different abstract shapes and are therefore not unified.

If all of the features a) to c) above are the same between the ideographs, the ideographs are considered to have the same abstract shape and are therefore unified.

S.1.4 Examples of differences of abstract shapes

To illustrate rules derived from a) to c) in S.1.3.2, some typical examples of ideographs that are not unified, owing to differences of abstract shapes, are shown below.

S.1.4.1 Different number of components

The examples below illustrate rule a) since the two ideographs in each pair have different numbers of components.

S．1．4．2 Different relative positions of components

The examples below illustrate rule b）．Although the two ideographs in each pair have the same number of components，the relative positions of the components are different．

峰•峯，荊•荆

When the ideographs consists of two horizontally aligned components，a difference of the last stroke of the left－hand component going beneath the right－hand component should not warrant separate encoding，as in the case of the source glyphs for $\mathrm{U}+34 \mathrm{~F} 3$ ：

㓳•㓳

S．1．4．3 Different structure of a corresponding component

The examples below illustrate rule c）．The structure of one（or more）corresponding components within the two ideographs in each pair is different．
拡•擴，策•笛，単。炏，圣•巠，㑒•劒，区•區，夹•夾，

S．1．5 Differences of actual shapes

To illustrate the classification described in S．1．2，some typical examples of ideographs that are unified are shown below．The two or more ideographs in each group below have different actual shapes，but they are considered to have the same abstract shape，and are therefore unified on their own or as component in larger ideographs．The differences are classified according to the following examples．
a）Differences in rotated strokes／dots

b）Differences in overshoot at the stroke initiation and／or termination
身•身, 雪•雪, 拐•拐, 不•不, 非•非 周•周, 告•告
c）Differences in contact of strokes

奥•奥，西•西，児•児，査•査，奔•奔

d）Differences in protrusion at the folded corner of strokes

巨•巨，成•成

e）Differences in bent strokes

西•西

f）Differences in folding back at the stroke termination
朱•朱
g）Differences in accent at the stroke initiation
父。父, 文。女, 女。妾
h）Differences in＂rooftop＂modification
л•八, 完•穴
i）Addition or omission of a minor stroke

j）Combinations of the above differences

外扨㧅，直•直，県•県

k）Miscellaneous

NOTE－Some of the group items are unified when used as components in more complex ideographs，but are not unified themselves for other reasons，such as the source separation rule．
These differences in actual shapes of a unified ideograph are presented in the corresponding source col－ umns for each code point entry in the code charts in Clause 31 of this International Standard．

S．1．6 Source separation rule

To preserve data integrity through multiple stages of code conversion（commonly known as＂round－trip integrity＂），any ideographs that are separately encoded in any one of the source standards listed below have not been unified．

G－source：GB2312－80，GB12345－90，GB7589－87＊，GB7590－87＊，GB8565－88＊，General Purpose Hanzi List for Modern Chinese Language＊
T－source：TCA－CNS 11643－1986／1st plane，TCA－CNS 11643－1986／2nd plane， TCA－CNS 11643－1986／14th plane＊
J－source：JIS X 0208－1990，JIS X 0212－1990
K－source：KS X 1001：2004（previously KS C 5601－1989），KS X 1002：2001（previously KS C 5657－1991）
NOTE $1-\mathrm{A}$＂＊＂after the reference number of a standard indicates that some of the ideographs included in that standard are not introduced into the unified collection．

However，some ideographs encoded in two standards belonging to the same source group（e．g．GB2312－ 80 and GB12345－90）have been unified during the process of collecting ideographs from the source group．

The source separation rule described in S．1．6 only applies to the CJK UNIFIED IDEOGRAPHS block specified in the Basic Multilingual Plane．

> NOTE 2 - CJK Compatibility Ideographs are created following a rule very similar to the source separation rule. However, the end result is the combination of a single CJK Unified Ideograph and one or several CJK Compatibility Ideographs. When the source separation rule is applied, all 'similar' source CJK Ideographs result in separate CJK Unified Ideographs.

S． 2 Arrangement procedure

S．2．1 Scope of arrangement

The arrangement of the CJK UNIFIED IDEOGRAPHS in the code charts of Clause 31 of this International Standard is based on the filing order of ideographs in the following dictionaries．

Priority	Dictionary	Edition
	Kangxi Dictionary 康熙字典	Beijing $7^{\text {th }}$ edition
2	Daikanwa Jiten 大漢和辞典	$9^{\text {th }}$ edition
3	Hanyu Dazidian 漢語大字典	$1^{\text {st }}$ edition
4	Daejaweon 大字源	$1^{\text {st }}$ edition

The dictionaries are used according to the priority order given in the table above．Priority 1 is highest．If an ideograph is found in one dictionary，the dictionaries of lower priority are not examined．

S．2．2 Procedure

S．2．2．1 Ideographs found in the dictionaries

a）If an ideograph is found in the Kangxi Dictionary，it is positioned in the code chart in accordance with the Kangxi Dictionary order．
b）If an ideograph is not found in the Kangxi Dictionary but is found in the Daikanwa Jiten，it is given a position at the end of the radical－stroke group under which is indexed the nearest preceding Daikanwa Jiten character that also appears in the Kangxi dictionary．
c）If an id eograph is found in neither the Kangxi nor the Daikanwa，the Hanyu Dazidian and the Dae－ jaweon dictionaries are referred to with a similar procedure．

S．2．2．2 Ideographs not found in the dictionaries

If an ideograph is not found in any of the four dictionaries，it is given a position at the end of the radical－ stroke group（after the characters that are present in the dictionaries）and it is indexed under the same radical－stroke count．

S． 3 Source separation examples

The pairs（or triplets）of ideographs shown below are exceptions to the unification rules described in S．1． They are not unified because of the source separation rule described in S．1．6．

NOTE－The particular source group（or groups）that causes the source separation rule to apply is indicated by the letter（G，J， K ，or T ）that appears to the right of each pair（or triplet）of ideographs．The source groups that correspond to these letters are identified in S．1．6．

$\underset{H}{F} \underset{F}{F}$	T		TJK		T		
4E1F 4E22		4FC1 4FE3		514C 5151		52035204	
	GT		T		TJ	FIT $F T$	
4 E 48 5E7A		4FDE 516A		514E 5154		520A 520B	
	GTJ		T		T	$\pi[\sqrt{\pi} \\|[]$	
4E89 722D		4FF1 5036		51565157		5220 522A	
所	J		T		TJ	迢 故［］	
4EDE 4EED		5024 503C		518A 518C		5225 522B	
	T		T		G		
4F75 5002		50775078		51C0 51C8		5238 52B5	
$\uparrow \square \uparrow$	T	个台 个点	TJ		T	$\left.\left.\frac{X}{J \mid L}[] \frac{x}{r \mid c} \right\rvert\,\right]$	
4FA3 4FB6		507D 50DE		51E2 51E3		5239 524E	

阿 咭	T	$\text { ت } 4$	TJ	愼 慎		TJ	担 挸	T
5C19 5C1A		5F50 5F51		613C 614E			63FE 6435	
尤王 王	T	录 录	T	厽戋 亚戈		GT	撃 擊	TJ
5 C 2 A 5 C 2 B		5F54 5F55		6229 622C			6483 64CA	
姫 監 監	T	彙 彙	T	虚虐龙		T	敎 教	T
5C36 5C37		5F59 5F5A		622F 6231			654E 6559	
屏 升	T	旁坴 粉	J	$\rightleftarrows \stackrel{\rightharpoonup}{\rightleftarrows}$	$\bar{\Gamma}$	T	敓 兑	T
5C4F 5C5B		5F5B 5F5C		62366237	6238		6553 655A	
峥 隠	GT	悉采 类悉	T	$\stackrel{F}{\stackrel{F}{犬}}$		T	环自 白要	T
5CE5 5D22		5F5D 5F5E		623B 623E			65E2 65E3	
顛 巔	T	文 彦	T	拋拋		T	昂 昂	T
5DD3 5DD4		5F65 5F66		629B 62CB			6602 663B	
帡 帧	T	徳 德	T	抜 拢		TJ	晚 晩	T
5E21 5E32		5FB3 5FB7		629C 62D4			665A 6669	
帯 带	TJ	徵 徵	T	挩扮		T	䐴 鼻乓	T
5E2F 5E36		5FB4 5FB5		6329 635D			66A8 66C1	
亣 手午	T	恵恵	TJ	挿插	插	TJ	曾 曾	J
5E76 5E77		6075 60EO		633F 63D2	63F7		66FD 66FE	
廊 原文	T	悅 悦	T	捏 揑		TJ	枴 柺	T
5EC4 5ECF		6085 60A6		634F 63D1			67B4 67FA	
弑 弑	T	忧 悮	T	捚 排		TJ	查 査	T
5F11 5F12		609E 60AE		635C 641c			67 E 67FB	
強 强	T	息 真	T	揭 揭		T	椢 栅	T
5 F 37 5F3A		60B3 60EA		63B2 63ED			67F5 6805	
弹 弾	T	惽 悓	T	搯 搖	摇	TJ	梲 棁	T
5F39 5F3E		6120 614D		63FA 6416	6447		68B2 68C1	

相 枌	T	言	T	洨 偯	T		TJ
69616986		6C32 6C33		6EDA 6EFE		771E 771F	
根纮 柏化	T	汚 污	T	$\begin{aligned} & \text { 㭚 冼先 } \\ & \text { 白 } \end{aligned}$	GTJK	品 血	TJK
6982 69EA		6C5A 6C61		6F5B 6FF3		773E 8846	
木曰 木回	T	沼 沉	TJ	㶱召 体百	T	不开 矿	T
6985 69B2		6C92 6CA1		7028 702C		7814 784F	
脎权 脎权	T	净淨	TJ		GTJ	祿 禄	TJ
699D 6A27		6D44 6DE8		70BA 7232		797F 7984	
植 麻自	J	梼 拃	T	$\stackrel{\text { 炏 炏 }}{\text { 炇 }}$	GTJK		T
69C7 69D9		6D89 6E09		712D 7162		79BF 79C3	
嵄 樣	TJ	沇 況	T	巸 只	J	税 税	T
69D8 6A23		6D97 6D9A		71557199		7A05 7A0E	
梪 梪	T	泥 疛	T	畑 烟	T	梞 榑	TJ
6A2A 6A6B		6D99 6DDA		71747185		7A42 7A57	
$\frac{1 F}{1 /} \frac{1 F}{4}$	T	烄 冰	T	汱 岑犬	GT	$\frac{\text { 个人 }}{\text { 兮 }} \frac{\text { 个人 }}{\text { 年 }}$	GJ
		6DE5 6E0C		72B6 72C0		7B5D 7B8F	
	T	$\begin{gathered} \text { 声 凊 } \\ \text { 6DF8 6E05 } \end{gathered}$	T	$\begin{aligned} & \text { 华 空 学 } \\ & 74647476 \end{aligned}$	TJ	苹管 应年	T
		6DF8 6E05		74647476		7BB3 7C08	
$\begin{gathered} \text { 多万 多吕 } \\ \text { 6B7F 6B81 } \end{gathered}$	T	6E07 6E34	T		T	7BE1 7C12	T
$\begin{aligned} & \text { 吉几 吉几 } \\ & \text { 几部 } \end{aligned}$	GTJ		T		T	$\begin{gathered} \frac{\text { 自 }}{5} \\ \text { 7CA4 7CB5 } \\ \text { 7番 } \end{gathered}$	T
$\begin{aligned} & \text { 回几 回几 } \\ & \text { 王又 保 } \\ & \text { 6BC0 } \end{aligned}$	T	$\begin{aligned} & \text { 为 学 } \\ & \text { 6E88 6F59 } \end{aligned}$	T	痩 疸	J	$\begin{gathered} \text { 念芭 念色 } \\ \text { 7D55 7D76 } \end{gathered}$	T
䲩	T	泿先 泊年	T	白点 追点	T	慈永 緑	T
6BCE 6BCF		6E89 6F11		76A1 76A5		7DA0 7DD1	

ISO/IEC 10646:2014 (E)

頽頽	T	駄駄 se81 190	т\％			麵䴮
顏顔 gex fest	т	駢駢	тк		т	麼麼 9EBC 9EB
顛顛	J	骶骫	「	鳳凬	T	黃黄
	J	高高	「	鵣鵣	J	
餅飭	т	䯻䯻	т			

S． 4 Non－unification examples

In accordance with the unification procedures described in S .1 the pairs（or triplets）of ideographs shown below are not unified．The reason for non－unification is indicated by the reference which appears to the right of each pair（or triplet）．For＂non－cognate＂see S．1．1．

NOTE－The reason for non－unification in these examples is different from the source separation rule described in S．1．6．

$\underset{~}{\text { 寻 }}$	non cognate		S．1．4．3	問問	non cognate	机和伯	S．1．4．3
5191 80C4		5BF3 5BF6		6710 80CA		7A32 7A3B	
吅 吅号	S．1．4．3		S．1．4．1	此时报	non cognate		S．1．4．3
51B2 6C96		5EF0 5EF3		67138101		7FF1 7FF6	
外 决	S．1．4．3		S．1．4．1	视珓公	non cognate	春 省 者 者	S．1．4．3
51B3 6C7A		61D0 61F7		67188127		800780088009	
次 况	S．1．4．3	双攴 双欢	S．1．4．3	小童閏童	non cognate	日血 壬直 王直	S．1．4．1
51B5 6CC1		6560 656A		6723 81A7		8074 807C 807D	
柽䏰	S．1．4．3	日分 閏分	non cognate	行	S．1．4．3	干十斤 开「「	S．1．4．2
579B 579C		670C 80A6		67356736		8346 834A	
$\begin{gathered} \text { 曾辛 色辛 } \\ \leftrightarrows \end{gathered}$	S．1．4．2	А山 円山	non cognate	僼色 㕩售	S．1．4．3	自杂身	S．1．4．3
5B7C 5B7D		670F 80D0		70547067		8EB1 8EB2	

ISO/IEC 10646:2014 (E)

Annex T
(informative)
Language tagging using Tag Characters

NOTE - Moved to F.8.

Annex U
 (informative)
 Characters in identifiers

A common task facing an implementer of UCS is the provision of a parsing and/or lexing engine for identifiers. Each programming language standard has its own identifier syntax; different programming languages have different conventions for the use of certain characters from the ASCII (ISO 646-IRV) range (\$, @, \#, _) in identifiers. Questions as to which characters to use for syntactic purposes versus which to be allowed in identifiers, whether case-pairing should be included, normalization should be performed, and other factors enter into the picture when defining the set of permitted characters for a given identification purpose.

The Unicode Consortium publishes a document "UAX 31 - Identifier and Pattern Syntax" to assist in the standard treatment of identifiers in UCS character-based parsers. Those specifications are recommended for determining the list of UCS characters suitable for use in identifiers. The document is available at http://www.unicode.org/reports/tr31/.

[^0]: NOTE 1 - The manner in which a user is notified of either an error condition or characters not within the adopted subset is not specified by this International Standard.
 NOTE 2 - See also Annex J for receiving devices with retransmission capability.

[^1]: NOTE - The presentation of the twelve CJK Unified Ideographs included in the CJK COMPATIBILITY IDEOGRAPHS block follows this model. It does not include decomposition mapping.

[^2]: NOTE - Replaced by formal character class definition, see 4.14

