Testing framework for Collaborative Filtering
Python
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
conf
docs [FIX] Jun 5, 2014
src
.travis.yml [FIX] Doc building to "after success" Jun 5, 2014
AUTHORS
LICENSE restructuring of the project Jan 23, 2014
MANIFEST.in
README.md [MINOR] Give a little emphasis to documentation in README Jun 5, 2014
compile.py [FIX] Fix c evaluator and tune python evaluator to produce comparable… Jun 20, 2014
setup.py

README.md

Build Status

Introduction

Test.fm is (yet another) testing framework for Collaborative Filtering models. It integrates well with pandas as the default data manipulation library and gives an easy way to investigate how well your models perform and why. You can build a model using okapi and then check how it performs on the testing data. Or if you have only a little data set, you can use it directly.

Example of using the Test.fm framework

    import pandas as pd
    import testfm
    from testfm.models.baseline_model import Popularity, RandomModel
    from testfm.models.tensorcofi import TensorCoFi
    from testfm.evaluation.evaluator import Evaluator

    evaluator = Evaluator()

    # Prepare the data
    df = pd.read_csv(..., names=["user", "item", "rating", "date", "title"])
    training, testing = testfm.split.holdoutByRandom(df, 0.9)

    # Tell me what models we want to evaluate
    models = [
        RandomModel(),
        Popularity(),
        TensorCoFi()
        ]

    # Evaluate
    items = training.item.unique()
    for m in models:
        m.fit(training)
        print m.getName().ljust(50),
        print evaluator.evaluate_model(m, testing, all_items=items)

See other examples here...

Installation

You can check the official documentation here.

  1. download and extract the sources.
  2. check the dependencies in conf/requirements.txt
  3. run #sudo python setup.py install
  4. if you are a developer of test.fm better do python setup.py develop
  5. enjoy and contribute
  6. Check travis for the latest builds...
  7. Check yaml for the build script.

Nosetests

$ nosetests -w src/ -vv --with-cover --cover-tests --cover-erase --cover-html --cover-package=testfm --with-doctest --doctest-tests tests testfm/evaluation testfm/models testfm/fmio testfm/splitter

Build Documentation

$ sphinx-build -b html source_folder doc_folder

Similar Projects

  1. mrec from Mendeley. Good at building models. (python, ?)
  2. okapi from Telefonica Research. Good at distributed model building using Apache Giraph (java, giraph, apache2).
  3. graphlab from CMU. Probably the richest library of modern algorithms (c++, apache2).
  4. mymedialite from Uni Hildesheim. Has ranking implementations. (c#, GPL).
  5. mahout of apache. Uses hadoop to build the models. (java, hadoop, apache2)
  6. lenskit Grouplens (java, GPL2.1)