Skip to content
main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

code meta-data zenodo listed matlab compatible SWH

emgr logo emgr -- EMpirical GRamian Framework (5.9)

Website | Twitter | Feedback

Scope

  • Model Reduction / Model Order Reduction (MOR)
    • Nonlinear Model Order Reduction (nMOR)
    • Parametric Model Order Reduction (pMOR) | Robust Reduction
    • Parameter Reduction
    • Combined State and Parameter Reduction
  • Decentralized Control
  • Sensitivity Analysis
  • Parameter Identification | Structural Identifiability | Input-Output Identifiability
  • Nonlinearity Quantification
  • Uncertainty Quantification
  • System Norms | System Indices | System Invariants
  • Optimal Sensor Placement | Optimal Actuator Placement
  • Matrix Equations
  • Tau Functions

Empirical Gramians

  • Empirical Controllability Gramian
  • Empirical Observability Gramian
  • Empirical Cross Gramian
  • Empirical Linear Cross Gramian
  • Empirical Sensitivity Gramian
  • Empirical Augmented Observability Gramian (Empirical Identifiability Gramian)
  • Empirical Joint Gramian (Empirical Cross-Identifiability Gramian)

Features

  • Interfaces for:
    • custom solvers / integrators
    • custom inner products / dot products / kernels / pseudo-kernels
    • distributed / partitioned / low-rank cross Gramian
  • Configurable non-symmetric cross gramian for:
    • Empirical Cross Gramian
    • Empirical Linear Cross Gramian
    • Empirical Joint Gramian
  • Program design:
    • Implicit parallelization via vectorization of bulk matrix operations
    • Explicit parallelization via parfor hints
    • Functional design via closures

Algorithm

For a mathematical summary and technical documentation of the empirical Gramian framework (5.4), detailing most features and capabilities see:

and references therein. See also the reference lists for further theoretical backgrounds on empirical Gramians.

Compatibility

Successfully tested on:

  • Mathworks MATLAB 2017b
  • Mathworks MATLAB 2020b
  • GNU Octave 5.2.0
  • GNU Octave 6.1.0
  • Python 3.8.5 (NumPy 1.17.4)

Citation

Getting Started

Run a minimal example in a Matlab interpreter like OCTAVE or MATLAB:

RUNME

To run all tests use:

emgrTest

To run demos use:

emgrDemo(id) % with id one of 'hnm', 'isp', 'fss', 'nrc', 'rqo', 'lte', 'aps', 'fbc', 'qso'

Files and Folders

README.md Basic Information (this file)

AUTHORS Author identity and contributions

CHANGELOG Version Information

CITATION Citation Information

CODE Meta Information

LICENSE License Information

VERSION Current Version Number

RUNME.m Minimal Code Example

emgr.m Empirical Gramian Framework (main file, crc32:c136507c)

emgrTest.m Run all tests

est.m Empirical System Theory (EST) emgr frontend

estTest.m EST System Tests

estDemo.m Run demo (sample applications)

  • 'hnm' Hyperbolic Network Model
  • 'isp' Inverse Sylvester Procedure
  • 'fss' Flexible Space Structures
  • 'nrc' Nonlinear Resistor-Capacitor Cascade
  • 'rqo' Random Diagonal System with Quadratic Output
  • 'aps' All Pass System
  • 'lte' Linear Transport Equation
  • 'fbc' Five Body Choreography
  • 'qso' Quasi-Stable Orbits Inside Black Holes

estProbe.m emgr factorial comparison of singular value decays

est.scm EST tree-based documentation in Scheme

emgr-ref.pdf emgr reference cheat sheet

py/emgr.py Empirical Gramian Framework (Python variant)

py/RUNME.py Minimal Code Example (Python variant)

py/emgrProbe.py Factorial emgr.py tests

Documentation Table-of-Contents

Summary

Scope

Download

License

Disclaimer

Algorithm

Model

Usage

Arguments

Empirical Gramian Types

Option Flags

Return Values

Solver Interface

EST Frontend

Minimal Example

Tests

Demos

About

References

Contact

Cite

Links

References

Notes

Troubleshooting

Frequently Asked Questions

More information at: https://gramian.de

Follow @modelreduction for emgr news.