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摘要 

    基因的結構可以使我們了解其功能，它可以透過如 Augustus 等模型的預測來

獲得。這些模型為了註解 DNA序列，需事先對其特徵組成進行分析並設計多個

子模型來偵測。深度學習不需要事先分析其特徵組成並可以學習它所需要的特

徵，使之容易應用在多個領域。本研究的目的為建立一個深度學習模型來對阿拉

伯芥 DNA序列上編碼基因的基因結構進行預測。本研究藉由 global run-on 

sequencing和 Poly (A)-Test RNA-sequencing的資料來清洗與重新註解現有的轉錄

資料，並得到含有 977編碼基因的註解。本研究提出一個全新的深度學習模型和

新的損失函數。結果顯示深度學習在 macro F-score的中位數為 0.969，而在

Augustus的結果為 0.957，且統計結果顯示深度學習在 macro F-score 顯著優於

Augustus。本研究提出兩種後處理方法，一種名為邊界後處理方法（boundary 

post-processing method）來處理內含子的邊界，另一種名為長度過濾方法（length 

filtering method）來處理短片段。深度學習的預測結果經處理後在 16個評分中有

9個評分有顯著進步。深度學習的預測結果經後處理方法處理後顯示在 16個評分

中有 6個顯著好於 Augustus和 5個顯著落後於 Augustus。這些結果顯示深度學習

模型結合後處理方法可以和 Augustus匹敵。另外，經後處理方法處理的深度學習

預測結果可以在部分基因體上預測出平均為 18642個含有已知蛋白質結構域的基

因結構。整體來講，深度學習模型結合後處理方法可以成為在阿拉伯芥 DNA序

列上預測編碼基因的基因結構的替代方法。 

 

關鍵字：阿拉伯芥、資料清洗、基因註解、深度學習、資料後處理  
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Abstract 

The structure of the gene can help us to have a better understanding of its 

function, and it can be predicted by models such as Augustus. In order to annotate the 

DNA sequence by these models, the feature composition of annotation needed to be 

analyzed, and many submodels would be designed to detect these features. The deep 

learning does not need to analyze the feature composition and can learn the features it 

needs, and this makes it easily be applied in many fields. The purpose of the thesis is to 

build a deep-learning-based model to directly predict gene structures of coding genes in 

DNA sequences of Arabidopsis thaliana. Annotation with 977 coding gene structures 

was created by using data from global run-on sequencing and Poly (A)-Test RNA-

sequencing to reannotate and filter the existed transcripts. A new deep learning model 

and loss were proposed. The median macro F-score of the deep learning model was 

0.969, and the value of Augustus was 0.957. The statistical result showed that the result 

of the deep learning model in the macro F-score was significantly better than Augustus. 

Two post-processing methods were proposed, one named boundary post-processing 

method handled the boundary of the intron, and the other named length filtering method 

filtered out the region with short length. The revised result of the deep learning model 

showed that there were 9 out of 16 metrics performances were significantly improved. 

The revised result of the deep learning model showed that 6 out of 16 metrics were 

significantly better than Augustus, and 5 out of 16 metrics were significantly worse than 

Augustus. These results show that the deep learning model with the post-processing 

procedure is competitive to Augustus. Furthermore, the revised result of the deep 

learning model on the part of the genome showed that it could predict an average of 

18642 gene structures that contained existed protein domains. Overall, the proposed 
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deep learning model with the post-processing procedure can be an alternative method to 

predict gene structures of coding genes on DNA sequences of Arabidopsis thaliana. 

 

Keywords: Arabidopsis thaliana, data cleaning, gene annotation, deep learning, post-

processing  
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 Introduction 

In order to understand the genes of a species, the most direct method is 

extracting its transcripts, using sequencing to get their sequences, and mapping them to 

its genome. Thanks to the growing number of sequencing data, the annotations of these 

transcripts were available at recent annotations, such as an annotation of Arabidopsis 

thaliana called Araport11 [1]. These annotations are hard to cover full transcriptome 

because it is hard to extract all the transcripts from different conditions. Besides, 

traditional RNA sequencing often gets fragments of RNA and cannot get the exact 

locations of the start sites and end sites of transcripts. There are two kinds of methods to 

improve the coverage of annotation. One is using the existed transcript structure on a 

similar DNA region from the same or related species to inference the transcript 

structure. The other one is to train a mathematical model with known transcript 

structures. Then, the model is used to predict the transcript annotation on the whole 

genome. Although it is almost impossible to gather all transcripts of one gene, we can 

indeed generate all “hypothetical transcripts” from “gene structure,” which includes all 

splicing pairs in transcripts of the gene. If we can predict gene structure correctly, then 

we can generate all “hypothetical transcripts” by these splicing pairs. These 

“hypothetical transcripts” can be further studied their existence, their translation 

potential, and their potential function. 

There was a hidden Markov model (HMM) called Augustus that could predict 

transcripts of eukaryotes [2]. The feature composition of annotation was first analyzed, 

and many submodels were carefully designed to detect these features. The model was 

used to predict transcript structure, not the gene structure. Recently, a technology called 

deep learning was widely used to the classification of the image [3], prediction of gene 

function [4], prediction of protein-coding potential of RNA [5], and prediction of 
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antimicrobial potential of peptide [6]. These results showed improvement from the 

traditional methods. Many studies tried to use deep learning model to annotate the 

genome of eukaryotes, like predicting the existence of cleavage sites [7] and splicing 

sites [8, 9]. Nevertheless, they could not predict the complete annotation directly. 

Recently, a deep learning model named DeepAnnotator [10] was proposed to predict 

gene structure on the genome of prokaryotes. However, DeepAnnotator was three 

separate models that predict part of gene structure, and then the result of these three 

models was merged into one gene structure. The models were trained separately, so they 

could not learn feature between the models. 

Currently, there is no deep-learning-based model can directly predict gene 

structure of coding genes of eukaryotes. The purpose of this thesis is to build a deep-

learning-based model to directly predict the gene structure of coding genes only by their 

DNA sequences, using Arabidopsis thaliana as an example. The overall workflow is 

shown in Figure 1. The first part is to use the existed data to create datasets of high 

confidence gene annotation, as shown in Figure 1a and section 3.2. Section 3.3 

describes the methods of inference methods, losses, and deep learning models. The 

second part is to use the part of training datasets to get the best hyperparameters by 

hyperparameter optimization, as shown in Figure 1b and section 3.4. The third part is 

to use models with the best hyperparameters to do cross-validation and testing, as 

shown in Figure 1c, Figure 1d, and section 3.5. The fourth part is to get the best 

reviser to revise the predicted result on the training dataset, as shown in Figure 1e and 

section 3.6. The fifth part is to predict gene annotation on potential transcript regions 

and revise it by the best reviser, as shown in Figure 1f, section 3.5, and section 3.6. 

Section 3.7 describes the procedures of training and testing Augustus. All the names 

and versions of the main software and packages are shown in Table S1. 
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Figure 1. The workflow of the thesis  
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 The Literature Review 

 Annotation identification on Arabidopsis thaliana ecotype Col-0 

A plant called Arabidopsis thaliana is often used as a model organism to study 

plant genome. Human experts or machines annotate genes and transcripts of 

Arabidopsis with experimental datasets and annotations from the model prediction. 

TAIR10 [11] was the previous annotation of Arabidopsis thaliana ecotype Col-0. It 

used tools such as TopHat [12] with RNA-mapping results to identify transcripts. After 

filtering transcript annotation and adding peptide-mapping results, Augustus [13] was 

trained with these initial annotation. The trained model was used to predict transcripts 

on the genome. Then, human experts manually curated these results. Currently, the 

newest annotation of Arabidopsis thaliana ecotype Col-0 was Araport11 [1]. Araport11 

used TopHat [12], Trinity [14], and 113 RNA datasets from 11 tissues to construct 

transcript annotation. Then, peptide datasets with tools such as MAKER-P [15] were 

used to augment the TAIR10 dataset. Finally, the tool named PASA [16] was used to 

update the augmented TAIR10 dataset. 

 Transcription and splicing in eukaryotes 

Transcription is a process to transcribe the information on DNA sequence to 

RNA sequence named transcript. First, general transcription factors (GTFs) and RNA 

polymerase (RNAP) bound to the promoter, then RNAP moved to the transcription start 

site (TSS) and starts to synthesized RNA [17]. The location of the promoter might be 

located in the region from -500 nucleotides (nts) from TSS to TSS based on the single 

nucleotide polymorphism (SNP) density profile in the previous study [18]. Based on the 

other research [19] in Arabidopsis, about 63% of transcription factor binding sites 

(TFBSs) were located in -400 nts to +200 nts from annotated TSSs, and these sites had 
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passed conservation test in Arabidopsis lyrata, Brassica oleracea, and Brassica rapa. 

The RNA was then cleaved at the cleavage site (CS) and was added hundreds of 

adenines [20]. The cis-regulatory elements that participated in cleavage and 

polyadenylation were elements such as AAUAAA hexamer, CS, and downstream 

element (DSE) [20]. The cleavage and polyadenylation specificity factor (CPSF), which 

bound to AAUAAA hexamer, and cleavage stimulation factor (CstF), which was bound 

DSE, involved in cleavage [20]. Then, CPSF, polyadenylation polymerase (PAP), and 

polyadenylation binding protein (PABP) involved in polyadenylation [20]. Based on 

nucleotide composition profiles of around CS of Arabidopsis in the previous study [21], 

the U-rich DSEs of most preferred CSs were located within the region downstream of 

CS to downstream 60 nts. The transcript needs to be spliced to become a mature 

transcript. Splicing had multiple elements involved like donor site (DS), acceptor site 

(AS), and branch point, and it also had factors like small nuclear ribonucleoproteins 

(snRNPs) that involved in splicing and bound to these elements [22]. Briefly, 2’OH of 

branch point attacked to DS of the RNA, and it caused RNA to be spliced at DS [22]. 

Then 3’OH of spliced RNA attacked to AS of RNA, and it caused RNA to be spliced at 

AS caused spliced RNAs to be joined [22]. 

 Alternative TSSs and alternative CSs 

One gene can be transcribed into multiple isoforms based on different 

conditions. These conditions affect cell to choose different sites to start transcription, 

different sites to be cleavaged, different sites to act as splicing sites, and different sites 

to be spliced. Alternative TSSs can act as a regulatory mechanism or change its peptide 

product. It had been reported that alternative TSSs occurred in Arabidopsis when it was 

exposed by blue light [23] and that alternative TSSs occurred in mice during cerebellar 
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development [24]. The paired-end analysis of transcription start sites protocol (PEAT 

protocol) could reveal the location distribution of TSSs [25]. The previous study [26] in 

Arabidopsis showed only a minority of TSS tag clusters had narrow and sharp 

distribution, and most TSS tag clusters had broad and flat shapes. Another technology 

called global run-on sequencing (GRO-seq) was also invented to show the location and 

strength of TSS [27]. Alternative CSs can also act as a regulatory mechanism or change 

their peptide products. Direct RNA sequencing (DRS) could provide locations and 

strengths of CSs [28]. The previous study [21] in Arabidopsis showed about 90% of 

DRS read were mapped on coding genes, and 8.2% of DRS reads were mapped on 

intergenic regions. Nearly half of these intergenic-DRS reads were located directly 

downstream of the annotated gene within 300 nts, and the reverse transcriptase-

polymerase chain reaction (RT-PCR) experiment showed that DRS could reveal the 

position of the true cleavage site [21]. After extending the end of the gene to the 

location of DRS reads, about 94% of DRS reads were mapped on coding genes, and 

74.9% of protein-coding genes had alternative CSs [21]. There was also a method called 

Poly (A)-Test RNA-sequencing (PAT-seq) that had been invented [29]. It could also 

provide locations and strengths of CSs. Both DRS and PAT-seq could avoid the internal 

priming problem and reveal locations of true CSs [21, 29]. 

 Ab initio transcript structure prediction 

Ab initio transcript structure prediction is often predicted by the HMM. 

Annotation with the carefully cleaning procedure can be used to train the models and 

evaluate the performance of the models. The post-processing can be applied to the 

predicted result to correct the mistakes the models made. Many studies focused on the 

annotation of prokaryotes because the lengths of their genes are shorter than eukaryotes, 
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and annotations of eukaryotes are much more complicated because of the existence of 

intron and alternative splicing. Most of the existed HMMs focused on annotation 

between the start codon and stop codon and treated untranslated regions (UTRs) and 

introns between UTRs as intergenic regions. 

In the early study [30], HMMs were proposed to predict coding genes in E.coli. 

The “gene” region in this study was defined as the sequence between the start codon 

and the stop codon. The model was composited by the start codon model, coding gene 

model, stop codon model, intergenic regions model, and long intergenic regions model. 

The model would be trained and predicted on each strand of the sequences 

independently. The post-processing would be applied to the prediction of trained 

models. 

The model called Genie was proposed to predict coding genes in Homo sapiens 

[31]. The “gene” in this study was also defined as the sequence between the start codon 

and the stop codon. Genie was a generalized HMM-based model. The generalized 

HMM, unlike HMM, could generate sequence but not the character of each state, so it 

could generate sequences which their lengths were arbitrary distribution. Genie also 

integrated the intron model, exon model, and splicing site detectors. It also included 

frame constraints to make sure the length of the coding region was multiple of three. 

Augustus [2, 13, 32, 33] was used to predict the annotation of the coding gene. 

The model was similar to Genie but with a complicated intron model. The intron model 

was composed of two submodels for long intron and short intron so that it could have 

better results. The model was further expanded to include hints. The expansion could 

improve its prediction and predict UTR and UTR related intron. By training multiple 

models and using a sampling algorithm, the model could also predict alternative 

transcripts. 
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Some tools tried to combine many different models to get a better prediction. 

MAKER2 [34] was a pipeline that used results of SNAP [35], GeneMark [36], and 

Augustus to predict annotation. Seqping [37] was also a pipeline that used results of 

GlimmerHMM [38], Augustus, and MAKER2 to predict the annotation of the plant. 

 Deep learning related techniques 

Convolution neural network (CNN) had been widely used at object classification 

[39] and object detection [40]. The most often used function after the convolution layer 

was the rectified linear unit (ReLU), and its formula is shown in Equation 1 [41]. The 

other functions are standard logistic function, tanh, and softmax [42], and their formulas 

are shown in Equation 2. The x indicates input value, xi indicates the input value at 

dimension i, the s indicates the standard logistic function, the K indicates the number of 

output dimension, and e indicates Euler's number. The ReLU is often used because its 

largest gradient is one, so the gradient passes by will not be easily decreased. Recently, 

the stacked CNN architecture named ResNet [43] was proposed. Its main idea was to 

use a shortcut connection like 𝑥𝑖 = F𝑖(𝑥𝑖−1) + 𝑥𝑖−1 to construct model. The F𝑖 means 

any neural network at layer i and 𝑥𝑖 means value after layer i. The shortcut connection 

made the layer could directly copy its input and add it to output of the layer. The 

shortcut connection made ResNet could train and backpropagate its gradient more 

efficiently while the model had many layers. Most of the experiment results showed that 

the model could achieve lower loss value when its layer number increased. A stacked 

CNN architecture named DenseNet [3] was proposed. It used shortcut connection like 

𝑥𝑖 = Concat(F𝑖(𝑥𝑖−1), 𝑥𝑖−1) to construct model, so a layer could reuse all outputs of its 

previous layers. The F𝑖 means any kind of neural network at layer i, 𝑥𝑖 means value 

after layer i, and Concat means operator to concatenate all its inputs. Most of its 
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experiment results also showed that the model could achieve lower loss value when its 

layer number increased. DenseNet could get lower loss than ResNet did while using 

fewer parameters. 

Recurrent neural network (RNN) had been widely used in jobs with spatial or 

temporal data such as audio tagging and time series classification [8, 10, 44, 45]. 

Equation 3 shows the primitive RNN formula [46]. The 𝑥𝑡 means the input at timestep 

t, and the ℎ𝑡 means the hidden state at timestep t. The 𝑈 and 𝑊 are weights matrix, and 

𝑏 is a bias vector. The function σ is any activation function. The simple RNN has some 

severe issues during training. The weights 𝑈 are shared by all timesteps. During 

backpropagation in the long sequence, if one of the values in weights 𝑈 is larger than 

one, then the gradient will exponentially growth and causes a problem called gradient 

exploding problem, it makes the training procedure being unstable. During 

backpropagation in the long sequence, if one of its values is smaller than one, then the 

gradient will exponentially decay to zero, it causes a problem called vanishing gradient 

problem, it makes the weights hard to be updated. The more advanced RNN called 

gated recurrent unit (GRU) had been proposed [47]. It had reset gate 𝑟 and update gate 

𝑧. Equation 4 shows the formula of the GRU. The 𝑥𝑡 means the input at timestep t, and 

the ℎ𝑡 means the hidden state at timestep t. The 𝑈𝑖 and 𝑊𝑖 are weights matrixes for 

value i, and 𝑏𝑖 is a bias vector for value i. The GRU could use its gate mechanism to 

relieve the vanishing gradient problem. If gate 𝑧𝑡 is one, then the gradient will direct 

copy the previous gradient. 

The range of gradient of each parameter may be large, and it is hard to set the 

learning rate for each parameter. An optimizer called Adam [48] was proposed to 

handle this issue. Adam would consider the square values of previous and current 
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gradients of each parameter and use them to adjust the learning rate of each parameter. 

It also used the momentum to accelerate the training procedure. 

The batch normalization layer (BN layer) was a kind of layer that normalized the 

input data, so the mean of each output feature was close to zero, and its variance was 

close to one [49]. During training over the mini-batch data, the mean and variance of 

each feature were used to normalization the input feature. During the testing phase, the 

mean and variance that were used to normalization the input feature were calculated by 

using the moving average of the means (𝜇𝛽) and variances (𝜎𝛽
2) of mini-batch data. The 

formulas are showed in Equation 5, Equation 6, and Equation 7. The M indicates the 

batch size, and 𝜖 indicates an arbitrarily small positive number. The main benefit of 

batch normalization was to accelerate the training speed by smoothing its optimization 

landscape [50]. 

Dropout [51] was a simple method to prevent model overfitting the training data. 

It randomly dropped out some outputs of hidden units by probability 1 − 𝑝 to generate 

submodels during training phase and used all the hidden units during the testing phase. 

The large model tends to overfit the data, so using the dropout could let the model be 

thinner and prevent overfitting. The hidden units in the model would work together, and 

they would highly dependent on each other. The co-adaption might decrease the ability 

of each hidden unit to produce useful information by itself. The dropout could break the 

co-adaption so that every hidden unit could generate useful information by itself. The 

experiments showed that the dropout in CNN could break the co-adaption between 

hidden units and archive better results when the data was large enough [51]. The 

experiments also showed the dropout rate around 0.5 in CNN could generate the best 

performance and had a similar result of the Monte-Carlo model average method [51]. 

The previous study [52] showed the dropout could be applied in a feed-forward 
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connection in RNN to prevent overfitting and archive a better performance. The average 

outputs of hidden units during the training phase and the testing phase should be similar, 

but the dropout could lower the average of the outputs. So, the scaling must be applied 

to make them similar between the two phases. The dropout implementation of PyTorch 

[53] would scale the outputs of hidden units by 
1

1−𝑝
 during the training phase and would 

use the origin outputs during the testing phase. 

Hyperparameter optimization is a process to find hyperparameters that may 

achieve the best result. There are three kinds of methods to find hyperparameters. One is 

called grid search, and it tries all combinations in hyperparameter space. The advantage 

of this method is that it can find the best hyperparameter set. The disadvantage of this 

method is that the number of combinations is too huge, so the time to explore all 

combinations is large. Another method is called random search. It randomly uses some 

hyperparameter sets. The advantage is that it reduces the time, and the disadvantage is 

that it cannot efficiently find a good hyperparameter set. The other was Bayesian 

optimization with the Gaussian process [54]. It used all the previous results to find the 

next hyperparameters to be used. The advantage was that it could efficiently find a good 

hyperparameter set. 

 

ReLU(𝑥) = {
𝑥 if 𝑥 ≥ 0

0 if 𝑥 < 0
 

 Equation 1. ReLU formula 

 

 



doi:10.6342/NTU202002143

 

12 

 

s(𝑥) =
1

1 + 𝑒−𝑥

tanh(𝑥) = 2𝑠(2𝑥) − 1

softmax(𝑥)i =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑘K
𝑘=1

 

Equation 2. Sigmoid, tanh, and softmax 

 

ℎ𝑡 = σ(𝑈ℎ𝑡−1 +𝑊𝑥𝑡 + 𝑏) 

Equation 3. Simple RNN formula 

 

𝑟𝑡 = s(𝑈𝑟ℎ𝑡−1 +𝑊𝑟𝑥𝑡 + 𝑏𝑟)

𝑧𝑡 = s(𝑈𝑧ℎ𝑡−1 +𝑊𝑧𝑥𝑡 + 𝑏𝑧)

𝑥̃𝑡 = tanh(𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) +𝑊ℎ𝑥𝑡 + 𝑏ℎ)

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + (1 − 𝑧𝑡) ∘ 𝑥̃𝑡

 

Equation 4. GRU formula 

 

𝜇𝛽 =
1

M
∑𝑥𝑖

M

𝑖=1

𝜎𝛽
2 =

1

M
∑(𝑥𝑖 − 𝜇𝛽)

2

M

𝑖=1

𝑦𝑖 =
𝑥𝑖 − 𝜇𝛽

√𝜎𝛽
2 + 𝜖

 

Equation 5. Batch normalization formula without affine during the training phase 

 

Ε[𝑥]new = (1 −momentum) × Ε[𝑥] + momentum × 𝜇𝛽

Var[𝑥]new = (1 −momentum) × Var[𝑥] + momentum ×
M

M− 1
𝜎𝛽
2
 

Equation 6. Calculating mean and variance for the testing phase 
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y =
𝑥 − Ε[𝑥]

√Var[𝑥] + 𝜖
 

Equation 7. Batch normalization formula without affine during the testing phase 

 Deep learning applications related to sequence annotation 

The DeepPolyA was a CNN model that predicted whether the 161-nt RNA 

sequence included the cleavage site or not [7]. The metrics like the F-score and 

accuracy of DeepPolyA were better than the traditional approaches like support vector 

machine (SVM) and random forest. 

The COSSMO was a CNN-RNN model that predicted the percentage selected 

indices of splicing sites [8]. Given an RNA sequence around the constitutive DS, 

multiple RNA sequences around alternative ASs, multiple spliced RNA sequences, and 

lengths between DS and ASs, COSSMO could predict the percentage selected indices of 

these ASs. The accuracy and coefficient of determination (R2) of COSSMO were better 

than the traditional model, such as MaxEntScan [55]. 

The SpliceAI was a CNN model that predicted whether the 10001-nt DNA 

sequence on the human genome was centered at DS or AS [9]. The result showed that 

the top-k accuracy of SpliceAI was better than the traditional method like MaxEntScan 

[55]. The predicted locations of splicing sites on the mutation sequences were agreed 

with the experimental data. 

The model named DeepAnnotator was proposed to predict the gene structures of 

prokaryotes [10]. The DeepAnnotator was composited of three separate models. The 

first one predicted whether the center of RNA sequence was translation start site or not, 

and the second one predicted whether the RNA sequence was centered by the 

translation stop site or not, and the third one predicted whether the RNA sequence was 

centered by coding nucleotide or not. The integrated prediction of the three models was 
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the predicted result of gene structures. The F-score of the DeepAnnotator was 94%, 

which was higher than the F-score-score of the Glimmer [56].  
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 Materials and Methods 

 The data preparation 

The genome of Arabidopsis thaliana ecotype Col-0 named GCF_000001735.3 

[11] was used as a reference genome. Transcriptome in nuclear chromosomes named 

Araport11 was used as annotation data [1]. 5’ GRO-seq dataset and GRO-seq datasets 

from the previous study [57] were first mapped on the genome by STAR [58], then it 

was used to find locations of GRO-seq signals by HOMER [59]. The PAT-seq clusters 

in the dataset named SRP089899 were used as evidence of CSs [60]. The data source 

summary is showed in Table S2. The GRO-seq signals and PAT-seq clusters were 

treated as TSS evidence and CS evidence. 

The preprocessing of the annotation is described below. The miRNAs in the 

transcriptome were removed. The left transcriptome was named as background 

transcripts. If any gene in background transcripts had inconsistent data, then it and all 

its transcripts would be removed. The left transcriptome was named as consistent 

transcripts. 

 The workflow of creating annotation datasets 

There were three steps to generate the annotation datasets from the genome, 

transcriptome, TSS evidence, and CS evidence. 

The first step used experimental data and consistent transcripts to get the 

reannotated transcripts. For every transcript, TSS evidence was considered related if it 

was located on the region from upstream u nts of its TSS to its CS. For every transcript, 

CS evidence was considered related if it was located on the region from the TSS to the 

downstream d nt of its CS. For every transcript, the strongest TSS evidence must locate 

on external 5’ UTR, and the strongest CS evidence must locate on external 3’ UTR; 
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otherwise, the transcript failed to be reannotated and was discarded. For every 

transcript, its TSS would be reannotated by its strongest TSS evidence, and its CS 

would be reannotated by its strongest CS evidence. The example of the reannotating 

transcript is shown in Figure 2. Figure S1 shows examples of transcripts that fail to be 

reannotated. If all transcripts of a gene had the same boundary, then they would be 

preserved; otherwise, they were discarded. The left transcriptome was named as 

reannotated transcripts.  

Reannotated transcripts must pass five filters. The score filter would remove the 

gene and all its transcripts if the gene had any transcript which its score was worse than 

T2. The overlapped filter would remove the gene and all its transcripts if one of its 

transcripts were overlapped with the transcript of other genes on the same strand. The 

alternative-splicing-site filter would remove the gene and all its transcripts if the gene 

had any alternative splicing site. The coding filter would remove the gene all its 

transcript if the gene had a non-coding transcript. The hypothetical-protein filter 

would remove the gene and all its transcripts if the protein of gene belonged to 

hypothetical protein. The left transcriptome was named as filtered transcripts. If the 

gene name of the transcript in background transcripts and reannotated transcripts did not 

exist in gene names of filtered transcripts, then these transcripts would be added to the 

dataset named discarded transcripts. The filtered transcripts would be treated as 

preserved transcripts. The recursive cleaning procedure would recursively remove 

preserved transcript and add it to discarded transcripts if the region around its gene was 

overlapped with the discarded transcripts. The procedure would be stopped until the 

number of preserved transcripts stopped decreasing. Algorithm 1 shows the 

pseudocode of the recursive cleaning procedure. Figure 3 shows the simple examples of 

discarding preserved transcript. 



doi:10.6342/NTU202002143

 

17 

 

The second step used the genome and the preserved transcripts to create gene 

annotation. The boundary was extended from upstream u nts to downstream d nts of the 

preserved transcript. The double-strand region in the boundary would be selected. The 

selected region was discarded if it had any nucleotide not belonging to nucleotide A, T, 

C, or G, or the number of genes that it covered was larger than one. The left selected 

regions were called clean selected regions. Figure 4 shows examples of creating clean 

selected regions. The UTR and CDS were merged as exon, and then gene annotation 

was created by using locations of TSSs, CSs, and splicing sites of transcripts. All the 

regions that were not annotated were annotated as the intergenic region. The example in 

Figure 5 shows the example of creating gene annotation of multiple-exon gene. 

The third step split these regions, transcript annotation, and gene annotation into 

many datasets. The data located on all five chromosomes was named DataWhole. The 

regions and their annotation were then be split according to their belonging 

chromosomes and strands. The data located on chromosomes 1, 2, 3, and 5 were named 

DataTrain. Train1 ~ Train8 would be used to be training datasets for 8-fold cross-

validation of the deep learning model. Val1 ~ Val8 would be used to be validation 

datasets for 8-fold cross-validation of the deep learning model. DataTest would be a 

testing dataset of the deep learning model. The region could be classified into three 

types. One was “region without exon,” another was “region with single-exon,” and the 

other was “region with multiple-exon.”. TrainSmall, which is a training dataset for the 

hyperparameter optimization procedure, was created by using regions that were the first 

half shortest lengths of each region type in Train3. ValSmall, which is the validation 

dataset for hyperparameter optimization procedure, was created by using regions that 

were the first half shortest lengths of each region type in Val3. The splitting result is 

shown in Table S3.  
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Figure 2. Find evidence related to each transcript and use the strongest evidence 

located on external UTR to redefine the boundary 

 

 

Figure 3. The example of getting discarded transcript and removing preserved 

transcript 
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Algorithm 1. The recursive cleaning procedure 

Required: 

    P: The set of preserved transcripts 

    D: The set of discarded transcripts 

    u: The upstream distance from a transcript 

    d: The downstream distance from a transcript 

 

flag  true 

while flag do 

    discaredNames  empty set 

    num  GetGeneNumber(P) 

    for each p ∈ P do 

        region  CreateRegion(p,u,d) 

        if region is overlapped with transcripts in D then 

            name  GetGeneName(p) 

            discaredNames.add(name) 

    for each p ∈ P do 

        if GetGeneName(p) ∈ discaredNames then 

            D.add(p) 

            P.remove(p) 

    if num = GetGeneNumber(P) then 

        flag  false 

return P 
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Figure 4. The examples of creating clean selected regions 

 

 

Figure 5. The demo of constructing gene annotation of a multiple-exon gene 

(Notes: the intergenic region is not drawn in the figure.) 
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 Label inference methods, loss functions, and model architectures 

 

Figure 6. The schematic diagram of a) the model prediction demo, b) basic 

inference demo, and c) hierarchy inference demo 

 

Figure 6a shows the schematic diagram of the model and its prediction 

example. The model would use a single-strand DNA sequence in a forward direction to 

predict gene annotation. The goal of the training process was to make its prediction as 

close to its answer as possible. 

There were two types of inference methods. One method called the basic 

inference method predicted the probability of exon, intron, and the intergenic region at 

each position. The example is shown in Figure 6b. Equation 8 shows the formula of 

the basic inference method. The other method that called the hierarchy inference 
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method predicted the probability of gene and intron at each location. The example is 

shown in Figure 6c. Equation 9 shows the formula of the hierarchy inference method. 

There were also two types of losses. The basic loss was the mean categorical cross-

entropy, and the hierarchy loss was the mean of gene loss and intron loss. Equation 11 

shows the formula of the basic loss. Equation 12 shows the formula of the hierarchy 

loss. Equation 10 shows the formulas of the cross-entropy. The 𝑐𝑖 indicated the 

predicted label type in position i. The 𝑦𝑖,𝑗
′  indicated the predicted value in position i and 

label j, and the 𝑦𝑖,𝑗 indicated the true value in position i and label j. The C indicated the 

number of label types. The L indicated the number of labels. 

The deep learning model was composed of three different kinds of layers or 

blocks, one is a batch normalization layer, another is the feature block, and the other is 

the relation block. Figure 6a shows the model architecture of the deep learning model. 

The basic building block of the feature block was CNN-ReLU-BN block (CRB block). 

The output and the input of the CRB block were concatenated as a concatenated CRB 

block. Many concatenated CRB blocks were stacked together as a feature block. Figure 

7 shows the architectures of the CRB block, concatenated CRB block, and feature 

block. There were three types of relation blocks. The first one is the basic relation block 

(BR block), and the kernel size and output dimension of its CNN were one and three. 

The second one is the basic hierarchy relation block (BHR block), and the kernel size 

and output dimension of its CNN were one and two. The third one is the hierarchy 

relation block (HR block), which is composed of two BHR blocks in which the output 

dimension of each block is one. The first BHR block predicted gene probability, and the 

second BHR block predicted intron probability. Figure 8 shows the architectures of the 

three types of relation blocks. The model which used the BR block used the basic loss 

and basic inference method. The model which used the BHR block and HR block used 
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the hierarchy loss and hierarchy inference method. The weights and bias initialization 

are described in Table S4. Models were built and trained by PyTorch, and all the other 

parameter initialization was set to the default value of PyTorch. 

 

𝑐𝑖 =

{
 
 

 
 
 exon arg  max

𝑗
𝑦𝑖,𝑗
′ = 0

intron arg  max
𝑗

𝑦𝑖,𝑗
′ = 1

intergenic region arg  max
𝑗

𝑦𝑖,𝑗
′ = 2

 

Equation 8. Basic inference method 

 

𝑐𝑖 =

{
 
 

 
 
intergenic region 𝑦′

𝑖,0
< thresholdgene 

exon 𝑦′
𝑖,0
≥ thresholdgene  and 𝑦

′
𝑖,1
< thresholdintron

intron 𝑦′
𝑖,0
≥ thresholdgene  and 𝑦

′
𝑖,1
≥ thresholdintron

 

Equation 9. Hierarchy inference method 

 

BCE(𝑦′𝑖, 𝑦𝑖) = −(𝑦𝑖 × ln 𝑦′𝑖 + (1 − 𝑦𝑖) × ln(1 − 𝑦′𝑖))

CE(𝑦′𝑖, 𝑦𝑖) = −∑𝑦𝑖,𝑗 × ln 𝑦′𝑖,𝑗

C−1

𝑗=0

 

Equation 10. Binary cross-entropy (BCE) and categorical cross-entropy (CE) 

 

Lossbasic(𝑦′, 𝑦) =
1

L
∑CE(𝑦′𝑖, 𝑦𝑖)

L−1

𝑖=0

 

Equation 11. Basic loss 
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Lossgene (𝑦′, 𝑦) =
1

L
∑BCE(𝑦′𝑖,0, 𝑦𝑖,0)

L−1

𝑖=0

Lossintron(𝑦′, 𝑦) =
1

∑ 𝑦𝑖,0
L−1
𝑖=0

∑𝑦𝑖,0 × BCE(𝑦′𝑖,1, 𝑦𝑖,1)

L−1

𝑖=0

Losshierarchy(𝑦′, 𝑦) =
Lossgene (𝑦′, 𝑦) + Lossintron(𝑦′, 𝑦)

2

 

Equation 12. Gene loss, intron loss, and hierarchy loss 

 

 

Figure 7. The architectures of the a) CRB block, b) concatenated CRB block, and 

c) feature block 

 

 

Figure 8. The schematic diagrams of the relation blocks 
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 Hyperparameter optimization procedure, cross-validation, testing, and 

augmentation 

Hyperparameter optimization procedure first used a random search to generate 

40 hyperparameter sets and using them to create 40 models. These models were trained, 

and the macro F-scores of the lowest validation losses were recorded. Then, Bayesian 

optimization with the Gaussian process used all its previous results to generated a 

hyperparameter set that may achieve the highest validation macro F-score. If the 

Bayesian optimization found there was no improvement in five trials, then the 

optimization procedure would stop. The hyperparameter set that achieved the highest 

validation macro F-score was used for cross-validation. The hyperparameter space is 

described in Table 1, and the total space size is 3072. The hyperparameter optimization 

procedure was implemented with a python package called Optuna [61]. Adam optimizer 

was used due to its ability to accelerate the training procedure. During training, if the 

largest gradient was larger than one, then all the gradients were rescaled so that the 

largest gradient was one. The batch size was 16, so the model could fit the memory 

limitation of the graphics processing unit. The learning rate started at 0.001, as 

suggested by Kingma’s study [48]. The epoch of the training procedure was 50, and the 

training procedure would stop earlier if the validation loss were not decreasing for ten 

epochs. The DNA sequence and gene annotation would be converted to numeric vectors 

by one-hot-encoding. 

The settings of the cross-validation of the deep learning model were similar to 

the hyperparameter optimization procedure. There were only four differences. The first 

one was that the epochs were extended to 100. The second one was that the training 

procedure was stopped when validation loss stopped decreasing for 20 epochs. The third 

one was that the batch size would decrease until it could fit the GPU memory. The 
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fourth one was that the dropout was used with a dropout rate of 0.5, and the dropout was 

applied between layers of the relation block and after batch normalization layers in the 

feature block. The deep learning models were created based on the best hyperparameter 

set. For each model, the weights of the lowest validation loss were saved. The trained 

deep learning models were then tested on DataTest. 

In order to help deep learning model be useful in real-world scenarios, data must 

be augmented during training. During training, the regions would first be randomly 

truncated. If the region included gene had the upstream region with u nts, then the 

region would be truncated randomly from zero to u/10 nts from the 5’ of the region. If 

the region included gene had the downstream region with d nts, then the region would 

be truncated randomly from zero to d/10 nts from the 3’ of the region. If the origin 

region with length l did not include any gene, then the region was first truncated 

randomly from zero to l/2 from the 5’ of the region. Then the truncated region with 

length r was truncated randomly from zero to r/2 from the 3’ of the region. After the 

regions were truncated randomly, three regions would be randomly merged into one 

region. If there were two regions left, then they would stay the same or be randomly 

merged into one region. If there were one region left, then it would stay the same. 

Figure 9 shows an augmentation example. During validating or testing, the origin 

dataset would be used. 
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Table 1. The hyperparameter space of the model 

 Hyperparameter Values or type 

Feature 

block 

 

Layer number of concatenated CRB blocks 4, 8, 12, and 16 

The output channel number of the CRB 

block 

4, 8, 12, and 16 

Kernel size of CNN 513, 1025, 1537, and 

2049 

Relation 

block  

 

Relation block type BR, BHR, HR 

Hidden size of each layer in each direction 64, 96, 128, and 160 

Layer number 1, 2, 3, and 4 

 

 

Figure 9. Augmentation example (Notes: The direction of every region is 5’ to 3’.) 

 Comparison of results on the testing dataset and potential transcript regions 

There were several metrics to evaluate the performance of prediction. The base-

level metrics simply considered the performance on the base level. There was an F-

score for each kind of label. There was a macro F-score for overall performance. These 
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formulas are shown in Equation 13 and Equation 14. The TP indicates the number of 

true-positive, the FP indicates the number of false-positive, the FN indicates the number 

of false-negative, and the N indicates the number of classes. 

There also had other metrics that consider different levels like block-level and 

chain-block-level. The block-level F-scores considered the performance on the block 

level like exon block and intron block. The predicted block was considered accurate if 

the boundary of the predicted block was the same as the boundary of the annotated 

block. The chain-block-level F-score considered the performance on the chain-block 

levels like gene and chained introns. The building blocks of the gene were all the exons 

in the same gene. The building blocks of the chained introns were all the introns in the 

same gene. The chained blocks were considered as correct if all the blocks were correct. 

Figure S2 shows examples of annotation and its performance. 

There were also metrics to evaluate the performance of site prediction. Equation 

15 shows formulas about the distance of sites. The t indicates the target site, s indicates 

the source site, n indicates the number of source sites, m indicates the number of target 

sites, p indicates predicted site, and a indicates the answer site. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝒔,𝒕,𝒋 is the 

distance between the closest source site to target sites j. If there were no source sites 

around the target site j, the distance would be assigned as NaN. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝒔,𝒕 is 

mean distance between the closest source site to target sites, and the mean method 

named nanmean would ignore the NaN. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝐦𝐞𝐚𝐧 is the mean distance 

between predicted sites and answer sites. The F-score of each kind of site could also be 

calculated, and it indicated how well the locations of prediction and answer were 

matched. Figure S3 shows the examples of annotation at the block level, their gene 

boundaries, and metrics of distance and site prediction. Table 2 shows a summary of 

metrics to be compared. 
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The number of data to be compared is too small to use parametric tests like 

Students’ t-test [62], so the Wilcoxon rank-sum test [63] was used. It assigned each 

observation a rank and got the rank sum of each group, and then it calculated the 

probability of a statistic called U to get the p-value. Equation 16 shows the equation of 

the Wilcoxon rank-sum test. The ri is the rank of the data i, and the R is the sum of ri. 

The ni is the number of data in dataset i. The Ui is the statistic value U of the dataset i. 

The smaller U was used to calculate the probability of observation. If the medians of the 

two datasets were not equal, the one-tailed test was used. Otherwise, the two-tailed was 

used. The test was calculated by a module named exactRankTests [64]. 

In order to get the gene annotation on the whole genome and to reduce time 

consumption, the potential transcript regions were selected from the genome. First of 

all, the regions around the existed transcriptome of Araport11 on both strands were 

selected. Secondly, the region which has nucleotide other than A, T, C, and G, was 

discarded. Thirdly, the regions were merged if they were overlapped to each other. The 

merged region was called the potential transcript region. Figure 10 shows the 

example of creating potential transcript regions. The models were used to predict gene 

annotation on potential transcript regions. The three peptide sequences of each gene 

were generated by transeq from EMBOSS [65]. The HMMER3 [66] and pfam_scan.pl 

[67] were used to scanning the peptide sequence to domains in Pfam-A (version 32.0) 

[68]. If any of the peptide sequences of the gene had at least one domain existed in 

Pfam-A, then the gene was viewed as the domain-including gene. 
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Recall =  
TP

TP + FN

Precision =  
TP

TP + FP

F1 =
2 ∙ recall ∙ precision

recall + precision

 

Equation 13. Recall formula, precision formula, and F-score formula 

 

macro recall =
1

N
∑recall𝑖

N

𝑖

macro precision =
1

N
∑precision 𝑖

N

𝑖

macro F1 =
2 ∙ macro recall ∙ macro precision 

macro recall + macro precision 

 

Equation 14. Formulas of macro recall, macro precision, and macro F-score  

 

distance𝑠,𝑡,𝑗 = {
min
𝑖∈[1,𝑛]

|𝑑𝑠,𝑖 − 𝑑𝑡,𝑗| if 𝑛 > 0

NaN if 𝑛 = 0

distance𝑠,𝑡 = nanmean
𝑗∈[1,𝑚]

(distance𝑠,𝑡,𝑗)

distancemean =
distance𝑝,𝑎 + distance𝑎,𝑝

2

 

Equation 15. The mean distance between predicted sites and answer sites 

 

𝑅 =∑𝑟𝑖
𝑖

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = min (𝑈1, 𝑈2)

 

Equation 16. The Wilcoxon rank-sum test 
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Figure 10. The examples of data related to potential transcript region 

 

Table 2. The metrics to evaluate the performance 

Metric type Details 

F-score Exon, intron, and intergenic region 

Macro F-score Base level 

F-score of block-level Exon block and intron block 

F-score of chain-block-level Gene and chained introns 

Mean distance TSS, CS, DS, and AS 

F-score of site prediction TSS, CS, DS, and AS 

 The post-processing procedure 

There were two kinds of problems in the predicted annotation. The one called 

boundary problem was a problem that the boundary of the predicted intron could not 

perfectly match the true intron. The other called fragment problem was a problem that 

there were regions that their lengths were too short. The boundary post-processing 



doi:10.6342/NTU202002143

 

32 

 

method would relieve the boundary problem. The length filtering method would relieve 

the fragment problem. The post-processing procedure using these two methods was 

applied to the predicted result of deep learning to relieve these two problems. Figure 11 

shows the schematic diagram of revising the predicted result of the deep learning model. 

Before deciding the length threshold of fragments, the distribution of regions has 

to be measured and fitted by the model. The log-length of the exon, intron, and gene 

was assumed could be fit by the Gaussian mixture model with two components. The 

outlier boundary for each component of the Gaussian model was set to be three standard 

deviations lower to the mean value. The smallest outlier boundary of the components 

would be the threshold to decide whether the region was fragment or not. The log-

length distribution of the predicted intergenic regions was used to be fit by the Gaussian 

mixture model with four components. The smallest mean of four components was used 

to be the threshold. Figure 12 shows the example of the log-length distribution of the 

intergenic region and the example of the Gaussian model and the log-length distribution 

of the predicted intergenic region. The blue line in Figure 12b indicates the summation 

of all models, and the other lines indicate each component of the Gaussian model. 

The following describes the length filtering method. If the lengths of the exon, 

intron, or intergenic region were smaller than the threshold, then they would be tagged 

as fragments. Then, the shortest fragment was chosen to be processed. If there were 

multiple shortest fragments, the most upstream one was chosen to be processed. If the 

neighbors of the shortest fragment had the same kind of label, then the label of the 

shortest fragment was assigned as the label of neighbors, and they were merged into one 

block. Otherwise, the label of the shortest fragment was assigned as the label of longer 

neighbor, and they were merged into one block. The block was retagged as fragment if 

it were smaller than its threshold. The whole procedure was repeated until there was no 
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fragment of exon, intron, or intergenic region left. After that, the neighboring exons and 

introns were grouped into the gene. If the gene were smaller than its length threshold, 

then it would be retagged as the intergenic region. The exons and introns on it would be 

retagged as part of the intergenic region. 

The following described the boundary post-processing method. First of all, the 

locations of canonical motifs of the splicing sites must be found. For every predicted 

splicing site, the region around r nts was selected, and the location of its nearest 

canonical motif was recorded if it existed. The radius r nts were decided by the scaled 

Distancea, p. If there were two nearest canonical motifs, the most upstream one was 

chosen. If the canonical motif was indeed around the predicted splicing site and was 

inside the gene, then the splicing site was tagged as valid. If the splicing donor site and 

splicing acceptor site of the intron were valid, then the boundary of the intron was 

modified by the location of their nearest motifs. Otherwise, the intron would be 

discarded. If there were introns overlapped, then they were merged into one intron. 

Figure 13 shows examples of boundary post-processing procedure. 

The prediction results on Val1 to Val8 were merged into one dataset named 

PredictedVal. The grid search was used to find the best hyperparameters of the post-

processing procedure to create the best reviser to revise PredictedVal. The best reviser 

would revise the predicted results of deep learning. Table 3 shows the hyperparameter 

settings in the hyperparameter space of the post-processing procedure. Equation 17 

shows the Lossrevision to evaluate the performances of the hyperparameter sets. The eb, 

ib, g, and ci in Equation 17 indicate exon block, intron block, gene, chained introns, 

and. The t, c, d, and a in Equation 17 indicate TSS, CS, DS, and AS.  
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Figure 11. Prediction and revision of deep learning model 

 

 

Figure 12. Examples of the log-length distribution of the intergenic region and the 

Gaussian model and the log-length distribution of the predicted intergenic region  
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Figure 13. The examples of the boundary post-processing procedure (The red 

block indicates exon, and yellow block indicates intron) 

 

Table 3. Hyperparameter settings of the post-processing procedure  

ID Procedure The scale of Distancea, p 

1 Length filtering method  NaN 

2, 3, 4, and 5 Boundary post-processing method 0, 1, 2, and 3 

6, 7, 8, and 9 Length filtering method 

Boundary post-processing method 

0, 1, 2, and 3 

10, 11, 12, and 13 Boundary post-processing method 

Length filtering method 

0, 1, 2, and 3 
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Scoreblock = ∑ F1,𝑘
𝑘∈{eb,ib,g,ci}

Scoresite = ∑ F1,𝑘
𝑘∈{t,c,d,a}

Scoredistance = ∑
1

distancemean,𝑘 + 1
𝑘∈{t,c,d,a}

Lossrevision = 13 −
Scoreblock + Scoresite + Scoredistance +macro F1,base

13

 

Equation 17. The formula of the Lossrevision (Notes: The macro F1, base indicates the 

macro F-score of the base level.) 

 Training and testing procedure of Augustus 

Augustus was used to comparing the deep learning model. Figure 14 shows the 

schematic diagram of gene annotation prediction by Augustus. The Augustus directly 

used double-strand DNA to predict transcript annotation. Then the predicted transcript 

annotation was converted to gene annotation. The following describes the procedure of 

training and testing Augustus, which took the previous study [69] as a reference. First of 

all, the configuration file was created by “new_species.pl.” The parameters were 

updated by using the “etraining” to train on DataTrain. After that, the hyperparameters 

were updated by “optimize_augustus.pl.” The parameters were updated again by using 

the “etraining.” Finally, the updated model was tested on the DataTest. The whole 

procedure was repeated eight times. 

The predicted transcripts of Augustus have multiple TSSs, multiple CSs, and 

alternative splicing sites. The transcripts with most often TSS were preserved. If there 

were many TSSs, then the transcripts with most upstream TSS were preserved. Then, 

the transcripts with most often CS were preserved. If there still were many CSs, then the 

transcripts with most upstream CS were preserved. For each kind of splicing site, the 
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most often site was selected. If there were multiple sites, then the most upstream site 

was selected. Then the gene annotation was derived by these transcripts.  

 

 

Figure 14. The schematic diagram of gene annotation prediction by Augustus  
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 Results 

 The different settings of the boundary around the gene 

The nucleotide composition profiles of the previous study [21] showed that the 

DSEs were located within the region downstream of CS to downstream 100 nts. So, the 

downstream distance from CS was set to be 100 nts. The locations of TFBS, 

chromosome immunoprecipitation sites (ChIP sites), and DNase I hypersensitive sites 

(DHSs) from Yu’s study were used as experimental data of the transcription [19]. The 

numbers of genes that have transcription evidence located around it are showed in 

Table 4. By analyzing Yu’s data, the distributions of the most positive location 

difference between specific sites to each TSS of the gene are shown in Figure 15. 

Figure 16 shows the percentage of genes supported by evidence and the number of data 

of different settings of upstream distance. The result with 1000-nt upstream distance had 

about 98% of genes that had evidence supported, and had a suitable number of regions 

to be used. So, the upstream distance from TSS was set to be 1000 nts. 

 

Table 4. The number of genes which have at least one data located around it 

Type Number Type Number 

TFBS 15657 DHS 26224 

ChIP site 15021 Any 28412 
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Figure 15. The percentage plot of genes which have evidence within the range 

 

 

Figure 16. The plots of the percentages of genes supported by evidence and the 

numbers of data of different upstream distance settings 

 The statistic result of the experimental data and transcripts 

The high-quality data was created by using the procedures described in section 

3.2 and the distance setting in section 4.1. The numbers of the GRO-seq signals and the 

PAT-seq clusters are shown in Table 5 and Table 6. The numbers and ratios of the 

locations of the strongest evidence are shown in Table 7 and Table 8. The ratios of the 

GRO-seq signals and the PAT-seq clusters are shown in Table 9. The mode location 

0%
10%
20%
30%
40%
50%
60%
70%
80%

0
 ~

-5
0

0
 ~

 -
1

-1
0

0
0

 ~
 -

5
0

1

-1
5

0
0

 ~
 -

1
0

0
1

-2
0

0
0

 ~
 -

1
5

0
1

 ~
 -

2
0

0
1

TFBS

Chip site

DHS

Any



doi:10.6342/NTU202002143

 

40 

 

differences between locations of the reference site and the experimental site are shown 

in Table 10. The statistic result of distances and the location difference between TSSs 

and CSs before and after reannotated is showed in Table 11. The numbers about 

background transcripts, consistent transcripts, reannotated transcripts are shown in 

Figure 17. 

 

Table 5. The number of GRO-seq signal 

Data Number 

Raw data 14863 

Data located on external 5' UTR of transcript 8870 

The strongest data located on external 5' UTR of transcript 8362 

 

Table 6. The number of PAT-seq cluster 

Data Number 

Raw data 112226 

Data located on external 3' UTR of transcript 45927 

The strongest data located on external 3' UTR of transcript 21260 

 

Table 7. The number and ratio of the locations of the strongest GRO-seq signal 

Location Number Ratio 

External 5' UTR of transcript 8362 68% 

The region on the transcript but not on external 5' UTR 2624 21% 

The region upstream of transcript 1335 11% 

 

 

 



doi:10.6342/NTU202002143

 

41 

 

Table 8. The number and ratio of locations of the strongest PAT-seq cluster 

Location Number Ratio 

External 3' UTR of transcript 21260 78% 

The region on the transcript but not on external 3' UTR 3396 13% 

The region downstream of the transcript 2457 9% 

 

Table 9. The ratios of the GRO-seq signals and the PAT-seq clusters 

 TSS evidence CS evidence 

The percentages of evidence located in 

corresponding external UTR among all evidence 

59.7% 40.9% 

The percentage of evidence located in 

corresponding external UTR is the strongest 

94.3% 46.3% 

 

Table 10. The mode location difference between reference and experimental site 

 
TSS CS 

The closest reference location to the experimental location 0 1 

The closest experimental location to the reference location 0 -1 

 

Table 11. The statistic result of distances between the reference and redefined site 

  Min Median Mode 

TSS 0 81 0 

CS 0 83 0 
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 The statistic result of transcripts and regions after filtering and cleaning 

The summary of the numbers of the transcripts is shown in Figure 17. The Venn 

diagram of the transcripts passed filters is shown in Figure S4. Table S6 shows the 

statistic result of each kind of region. The percentages of each label are displayed in 

Figure 18. The number of regions on each dataset is shown in Table S5. Figure 19 

shows the nucleotide composition and motif around each kind of site. The zero in 

Figure 19 indicates the location after TSS, location before the CS, location after DS, 

and location before the AS. Table 12 shows the numbers of the splicing site motifs and 

their percentage in the whole dataset. Table S7 shows the motifs and their percentages 

of the splicing site in DataTrain.  

 

 

Figure 17. The numbers and percentages of transcripts after each preprocessing 
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Figure 18. The ratios of each kind of label in different datasets 

 

Table 12. The data of the splicing site motifs in gene annotation 
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Figure 19. The nucleotide composition (a~d) and motif (e~h) of each site in gene 

annotation (Notes: The motifs are generated by WebLogo3 [70].)  
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 Hyperparameter searching result on the small dataset 

The hyperparameter sets were created based on the method described in section 

3.4. The first 40 trials were created based on the random search, and the left trials were 

created based on the Bayesian optimization. The total number of trials was 53. The 

Bayesian optimization had executed 13 times. The optimization was early stopped 

because there was no improvement in these five trials after the trial47. Trial47 had the 

best macro F-score, which was 0.95. Table 13 shows the base performance of trial47. 

Table 14 shows the settings with the highest count in the top ten trials. Table 15 shows 

the best top ten trials of 53 trials. 

 

Table 13. The base performance of the trial47 

Validation 

metric 

Exon F-score Intron F-score Intergenic 

region F-score 

Macro F-

score 

Value 0.94192 0.9338 0.98299 0.95343 

 

Table 14. The settings with the highest count in the top ten trials 

Block type Hyperparameter Setting with the 

highest count 

Feature block Layer number of concatenated CRB blocks 12 

The output channel number of the CRB block 4 

Kernel size of CNN 2049 

Relation block  Relation block type HR 

Hidden size of each layer in each direction 160 

Layer number 4 
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Table 15. Top 10 Macro F-score and their hyperparameters in decreasing order 

 Feature block Relation block  

Id Layer 

number 

Output number 

of each layer 

Kernel 

size 

Relation 

type 

Hidden 

number 

Layer 

number 

Macro 

F-score 

47 16 4 2049 HR 160 4 0.95343 

43 12 4 2049 HR 64 4 0.95014 

1 12 4 2049 HR 160 3 0.94427 

18 8 4 1025 BHR 160 4 0.94379 

15 12 4 1025 HR 96 2 0.94210 

24 12 4 2049 BR 64 3 0.93873 

45 16 4 2049 BHR 160 4 0.93653 

46 16 4 2049 BHR 160 4 0.93312 

52 4 4 2049 HR 64 4 0.93191 

49 4 4 2049 BHR 160 4 0.93105 

 

 Result comparison of deep learning model and Augustus on the testing dataset 

Based on the setting of trial47, the eight-fold cross-validation was executed, as 

depicted in section 3.4. The batch size was slightly decreased from 16 to 14 to fit the 

memory of the GPU. The eight Augustus models were trained based on the method in 

section 3.7. Figure 20 shows the comparison plots of performances between Augustus 

and the deep learning model on the DataTest. Wilcoxon rank-sum test was used to test 

their significance. If its p-value is less than 0.05, then it was considered as statistically 

significant, and it has a superscript with one star (*). The performances between 

Augustus and the deep learning model are shown in Table 16. The tick  in the table, 
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means the result of the deep learning model was significantly better than the result of 

Augustus. The triangle  in the table, means the results have no statistical significance. 

The cross  in the table, means the result of the deep learning model was significantly 

worse than the result of Augustus. Table 17 shows the statistic result of Distancea, p on 

PredictedVal. Figure 21 and Figure 22 show the distributions and the Gaussian models 

of log-lengths of exons, introns, genes, and intergenic regions in DataTrain and 

PredictedVal. 
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Figure 20. The comparison plots between Augustus and deep learning (DL) 

Table 16. The performances between Augustus and the DL on the testing dataset 
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Median Augustus DL Compare P-value Status 

Exon F-score 0.934 0.958 Greater 0.00008*  

Intron F-score 0.939 0.959 Greater 0.00016*  

Intergenic region F-score 0.997 0.987 Less 0.00008*  

Macro F-score 0.957 0.969 Greater 0.00233*  

Intron block F-score 0.900 0.844 Less 0.00008*  

Exon block F-score 0.588 0.524 Less 0.00008*  

Chained introns F-score 0.611 0.526 Less 0.00008*  

Gene F-score 0.000 0.000 Equal 1.00000  

TSS F-score 0.016 0.011 Less 0.29417  

CS F-score 0.019 0.016 Less 0.42782  

DS F-score 0.933 0.907 Less 0.00008*  

AS F-score 0.943 0.892 Less 0.00008*  

Mean distance of TSS 123.4 135.3 Greater 0.25268  

Mean distance of CS 81.9 283.7 Greater 0.00521*  

Mean distance of DS 17.6 15.7 Less 0.22090  

Mean distance of AS 11.6 19.8 Greater 0.00008*  

 

Table 17. The Distancea, p about the splicing sites on the PredictedVal 

Distancea, p Splicing donor site Splicing acceptor site 

Value 21.3 23.4 
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Figure 21.The distribution and the Gaussian model of the log-length (nt) of the 

exon and intron on the DataTrain and PredictedVal (x-axis: log 10 of length, y-axis: 

density) (Notes: The blue line in the figures means the summation of all models, 

and the others mean components of the Gaussian model.) 



doi:10.6342/NTU202002143

 

51 

 

 

Figure 22. The distribution and the Gaussian model of the log-length (nt) of the 

gene and intergenic region on the DataTrain and PredictedVal (x-axis: log 10 of 

length, y-axis: density) (Notes: The blue line in the figures means the summation of 

all models, and the others mean components of the Gaussian model.) 

 

 The revised result of deep learning model on the testing dataset 

The post-processing procedure introduced in section 3.6 was applied to 

PredictedVal. Table S8 shows the hyperparameters of revision settings and their 

Lossrevision on PredictedVal. The Reviser8 and Reviser9 had the lowest values, and the 

values are 0.502. The Reviser8 was chosen to be the best reviser to revise the predicted 

result of deep learning. Table 18 shows the details of the Reviser8. The Reviser8 was 
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applied to the predicted results on PredictedVal. Figure 23 shows the comparison plots 

of performances between the origin result and the revised result of the deep learning 

model. The performances between the origin result and the revised result of the deep 

learning model are shown in Table 19. The intergenic region F-score in origin and 

revised, which estimated at the fifth decimal places, are 0.98705 and 0.98714. The F-

score of the CS prediction in origin and revised, which estimated at the fifth decimal 

places, are 0.01566 and 0.01563. 

 

Table 18. The detail of the Reviser8 

Method (in order) Type Value 

Length filtering method Exon length 22.2 

Intron length 37.9 

Intergenic region length 2.8 

Gene length 333.1 

Boundary post-processing method DS distance 42.7 

AS distance 46.8 
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Figure 23. The comparison plots between origin result and the revised result of the 

deep learning model   
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Table 19. The performances between origin result and the revised result of the 

deep learning model 

Median Origin Revised Status P-value Status 

Exon F-score 0.958 0.957 Less 0.32269  

Intron F-score 0.959 0.955 Less 0.32269  

Intergenic region F-score 0.987 0.987 Greater 0.56076  

Macro F-score 0.969 0.967 Less 0.25268  

Intron block F-score 0.844 0.886 Greater 0.00148*  

Exon block F-score 0.524 0.566 Greater 0.00521*  

Chained introns F-score 0.526 0.600 Greater 0.00521*  

Gene F-score 0.000 0.000 Equal 1.00000  

TSS F-score 0.011 0.013 Greater 0.34957  

CS F-score 0.016 0.016 Less 0.62922  

DS F-score 0.907 0.936 Greater 0.00148*  

AS F-score 0.892 0.930 Greater 0.00008*  

Mean distance of TSS 135.3 52.6 Less 0.00016*  

Mean distance of CS 283.7 55.8 Less 0.00016*  

Mean distance of DS 15.7 11.7 Less 0.00031*  

Mean distance of AS 19.8 13.1 Less 0.00016*  
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 Comparison of the revised result of deep learning model and the result of 

Augustus on the testing dataset and potential transcript regions 

Figure 24 shows the comparison plot of performances between the result of 

Augustus and the revised result of the deep learning model on DataTest. The 

performances between the result of Augustus and the revised result of the deep learning 

model on DataTest are shown in Table 20. 

For each transcript in Araport11, a DNA region was selected from upstream 

1000 nts of its TSS to downstream 100 nts of its CS. Only the DNA region with 

nucleotide A, T, C, and G was preserved, and the preserved regions were merged as 

potential transcript regions, as describes in section 3.5. The gene structure was created 

from transcripts in potential transcript regions. For each gene, three peptides derived 

from it were search against domains in Pfam-A, and the gene was viewed as a domain-

support gene if any peptide included any domain. The genes derived from transcripts of 

Araport11, Augustus, and revised prediction of deep learning model on these regions 

were extracted and were evaluated by the above methods. Figure 25, Figure 26, and 

Figure 27 show the boxplot of the results. Table 21 shows the average number of genes 

that match any domain in Pfam-A. 
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Figure 24. The comparison plots between Augustus and DL with revision  
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Table 20. The performances between the result of Augustus and the revised result 

of deep learning model on the testing dataset 

Median Augustus DL 

with 

revision  

Status P-value Status 

Exon F-score 0.934 0.957 Greater 0.00008*  

Intron F-score 0.939 0.955 Greater 0.00093*  

Intergenic region F-score 0.997 0.987 Less 0.00008*  

Macro F-score 0.957 0.967 Greater 0.00093*  

Intron block F-score 0.900 0.886 Less 0.00093*  

Exon block F-score 0.588 0.566 Less 0.00140*  

Chained introns F-score 0.611 0.600 Less 0.36962  

Gene F-score 0.000 0.000 Equal 1.00000  

TSS F-score 0.016 0.013 Less 0.34934  

CS F-score 0.019 0.016 Less 0.31057  

DS F-score 0.933 0.936 Greater 0.24382  

AS F-score 0.943 0.930 Less 0.00016*  

Mean distance of TSS 123.4 52.6 Less 0.00008*  

Mean distance of CS 81.9 55.8 Less 0.00008*  

Mean distance of DS 17.6 11.7 Less 0.00016*  

Mean distance of AS 11.6 13.1 Greater 0.02494*  
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Figure 25. The boxplot of the number of genes 

 

 

Figure 26. The boxplot of the ratio of genes that match any domain in Pfam-A 

 

 

Figure 27. The boxplot of the number of genes that match any domain in Pfam-A 

 

Table 21. The average number of genes that match any domain in Pfam-A 

The deep learning model with revision Augustus Araport 11 

18642.1 21961.3 27343 
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 Discussion 

 Different kinds of evidence can affect the percentage of the genes that have 

evidence supported 

Figure 16 shows that the percentages of the TFBS are higher than the 

percentages of the DHS and the ChIP site. The reason behind this might be that the 

TFBS was predicted by searching its similarity to existed motifs, and the DHS and the 

ChIP site were from the experimental data. The experiment might lose some locations 

related to transcription. The percentages of DHSs are higher than the percentages of the 

ChIP sites, and this may be caused by the experimental property they had. DHSs are the 

location that lacks chromatin on DNA sequence, so the DNase I can hydrolyze that parts 

of DNA. It is less specific than the result of the ChIP site because the ChIP site is from 

the ChIP-seq, which captures transcription factors (TFs) by using the TF-specific 

antibody. So, the DHS is expected to be less specific than the ChIP site. The percentage 

of the gene which has any evidence in it is slightly lower than the percentage of TFBS 

at settings of 2000-nucleotide and 1500-nucleotide upstream distance, as depicted in 

Figure 16. It is because only the DNA region from -2000 nts to +200 nts was used to 

search TFBSs, but the experimental data did not have this restrain [19]. The same 

reason causes the problem in the setting of 1500-nucleotide upstream distance. 

 The transcripts have transcription-related evidence around their TSSs 

The previous study showed that 63% of predicted TFBSs were located -400 nts 

to +200 nts and that 86% of predicted TFBSs were located -1000 nts to +200 nts [19]. It 

showed most of the TFBSs located within the region around TSS. Figure 15 shows that 

most of the genes have at least one evidence of transcription located directly on the gene 

body. Figure 16 shows the percentage of genes that have at least one evidence located 
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within the region with specific upstream distances. The percentages in Figure 16 are 

pretty high because the gene had averagely 5.4 TFBSs [19], so one gene likely has at 

least one TFBS in the setting of 1000-nt upstream distance. The previous study [71] 

showed that some elements located on the gene (especially on introns) could indeed 

affect transcription initialization. The result in Figure 15 agrees with the previous study 

that elements downstream of TSS might relate to transcription. 

 Different upstream distances can have a massive impact on the number of data 

and the percentage of genes supported by transcription evidence 

As shown in Figure 16, the settings of the upstream distance have a massive 

impact on the number of data. The result with 500-nt upstream distance has the most 

significant number of data, but the percentage of genes that have transcription evidence 

supported is the lowest. The result with 2000-nt upstream distance has the most 

significant percentage of genes that have transcription evidence supported, but the 

number of data is the lowest. The larger upstream distance is used, the fewer data are 

included. This situation is the opposite of the percentage of genes that have transcription 

evidence supported. The larger upstream distance is used, the larger percentage of genes 

have transcription related evidence supported. Because the larger upstream distance is, 

there are more chances of covering the low confidence transcript, and the region covers 

the low confidence transcript will be discarded.  

 Most locations of evidence are near external UTRs 

About 60% of GRO-seq signal locations are located in external 5' UTR of the 

consistent transcripts, and 41% of PAT-seq cluster locations are located in external 3' 

UTR of the consistent transcripts, as shown in Table 9. There are many GRO-seq 

signals and PAT-seq clusters located outside the existed transcript. There may be three 
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reasons behind this. The first possible reason is that these signals are not filtered by the 

threshold so that they might be noise generated by background. The second possible 

reason is that many transcripts have not been annotated. The low expression or specific 

expression situation of these transcripts might be the reason that they are not annotated. 

The third possible reason is that some transcript annotation lacks UTR or its UTRs are 

not annotated correctly, so the evidence cannot locate on their external UTRs correctly. 

Table 7 shows that most of the strongest GRO-seq signals are located on external 5’ 

UTR, it indicates that the GRO-seq signals can indeed capture location around the TSS. 

Table 8 shows that most of the strongest PAT-seq clusters are located on external 3’ 

UTR, it shows that the PAT-seq clusters can indeed capture location around the CS. 

Table 9 shows that 94% of GRO-seq signals located on external 5’ UTR of the 

consistent transcripts are the strongest signal and that 46% of PAT-seq signals located 

on external 3’ UTR of the consistent transcripts are the strongest signal. The percentage 

of GRO-seq signals is twice as large as the percentage of PAT-seq signals. It seems that 

the 5’ UTR that has GRO-seq signals will likely have about one GRO-seq signals on it 

and that 3’ UTR that has PAT-seq clusters will likely have about two PAT-seq clusters 

located on it. 

 The boundary of the reannotated transcript is close to the existed boundary 

Table 10 shows that the mode location differences between the reference TSSs 

and experimental TSSs are zero nts, and this indicates that the TSS evidence can match 

the locations of existed TSSs. Table 11 shows that the mode location difference of 

TSSs before and after redefined is zero nts, and this indicates that the location of the 

strongest experimental TSSs has no bias to reference. Table 10 shows the most often 

locations of the experimental CSs are 1-nt upstream from reference CSs, and this 



doi:10.6342/NTU202002143

 

62 

 

indicates that the location of experimental CSs has a bias to reference CSs. Table 11 

shows that the mode location difference of CSs before redefined and after redefined is 

zero nucleotides. There might be a reason behind the difference. The experimental CSs 

are locations defined by PAT-seq clusters, but the redefined CSs are locations defined 

by the strongest PAT-seq cluster in the transcript. So, the PAT-seq clusters are likely to 

be 1-nt upstream from reference CSs, but the strongest PAT-seq clusters have no bias to 

reference CSs and that locations of the experimental CSs agree with locations of the 

reference CSs. 

 The nucleotide compositions around different kinds of sites agree with the 

previous studies 

The previous study that used full-length cDNA to get nucleotide compositions 

on Arabidopsis showed that 60% of nucleotides at TSS were nucleotide A and that there 

were peaks of nucleotide T and a peak of nucleotide C before the TSS, and it also 

showed AT-rich region was upstream 30 nts from TSS [72]. The previous study which 

used the GRO-seq signal to define TSS showed that the nucleotide A was the most 

dominant nucleotide on the TSS, the nucleotide T or nucleotide C was upstream from 

TSS, and AT-rich region was upstream 30 nts from TSS [57]. Figure 19a and Figure 

19e also shows similar results to these previous studies [57, 72]. The previous studies 

also showed that there was a peak of nucleotide A, followed by a peak of nucleotide T, 

and then followed by a peak of nucleotide A around the CS, and they also showed the 

T-rich region was downstream 20~100 nts of the CS [21, 72, 73]. The previous result 

studied element around the CS showed the last nucleotide before the CS is dominated 

by nucleotide A [73]. Figure 19b and Figure 19f also shows similar results to the 

previous studies [21, 72, 73]. As shown in Table 12, 99% of DS motifs in gene 
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annotation are GT, and 100% of AS motifs in gene annotation are AG. The previous 

result also showed that the motif of canonical DS was GT, and the motif of the 

canonical AS was AG [72], So the canonical motif in Table 12 agrees with the previous 

result [72].  

 There is a tradeoff between the quality of annotation and the number of 

transcripts, and the number of high-quality data is rare 

The numbers of transcripts are shown in Figure 17. It shows that 99.7% of 

background transcripts are consistent, and it means the data is reliable. Only 12.2% of 

consistent transcripts can be reannotated by the evidence. It is the most significant 

bottleneck of data cleaning, and it shows only little data have evidence supported on 

their boundary. About 41.4% of reannotated transcripts can pass five transcript filters. 

Only 24.4% of filtered transcripts have no discarded transcripts nearby and can be 

preserved, and it is the second significant bottleneck of data cleaning. 89.5% of 

transcripts are in clean selected regions. The number of the consistent transcripts is 

93720, and the number of transcripts in the clean selected regions is 1031. It shows that 

there are only about 1% of the consistent transcript left in the data. There is a tradeoff 

between the quality of annotation and the number of transcripts. Although the data is 

clean, the number of transcripts is too small, and it makes models hard to recover the 

whole transcriptome. 

 The hyperparameter optimization can find well hyperparameters in a few trials 

The best trial is trial47, and its macro F-score is 0.953, as shown in Table 15. 

The settings with the highest count in Table 14 similar to the best trial, trial47, except 

the number of layers in feature block is 12, not 16. The F-scores of the exon, intron, and 

the intergenic region are 0.942, 0.934, and 0.983, as shown in Table 13. The label order 



doi:10.6342/NTU202002143

 

64 

 

of the biggest F-score to the smallest F-score is the intergenic region, exon, and intron. 

The label order of the largest portion to the smallest portion is the intergenic region, 

exon, and intron, as shown in Figure 18. These two orders are the same, and it shows 

that the higher portion the label number has, the higher its F-score is. The layer number 

of the concatenated CRB block in the feature block tends to be as large as 12. It is 

because as the number of layers increase, it can learn more abstract features. The 

phenomenon is similar to ResNet, Wide Residual Networks, DenseNet, and 

EfficientNet, which showed a deeper layer could have better performance [3, 43, 74, 

75]. The output number of concatenated CRN blocks in the feature block tends to be as 

small as 4. The phenomenon is a contradiction with the observation in the previous 

researches that showed that the larger output number of each block could increase 

performance [3, 27, 75]. Although the DenseNet can have very thin layers due to its 

ability to reuse features of all previous layers, the research showed that the larger output 

number of each block could increase performance [3]. The phenomenon might be 

caused by the overfitting when the model parameters are too many, and the data is not 

sufficient to make a model generalize well on unseen data. So, the dropout would be 

used during cross-validation to prevent overfitting. The kernel size in the feature block 

tends to be as large as 2049. The phenomenon is expected because the larger kernel size 

can increase the receptive field. So, it can capture a larger feature. The number of 

hidden units in each RNN layer tends to be as large as 160. The phenomenon is 

expected because the more hidden unit can increase the memory and their parameters to 

learn more features. The previous research showed that RNN with more hidden units 

could achieve better results [76]. The number of RNN layers tends to be as large as 4. 

As mentioned before, it is because as the number of layers increase, it can learn more 

abstract features. The models that used the hierarchy inference method have better 
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macro F-score than the models that used the basic inference method. Among the model 

used the hierarchy inference method, the five out of ten of the relation block type are 

hierarchy relation block; the four out of ten are basic hierarchy relation block. It seems 

the hierarchy relation block is slightly better than the basic hierarchy relation block. 

 The result of deep learning and result of Augustus have their strength and 

weakness 

Augustus and deep learning have their strength and weakness, as shown in 

Table 16. The exon F-score, intron F-score, and macro F-score of the deep learning 

model are significantly better than Augustus. Intergenic region F-score of deep learning 

model is significantly worse than Augustus. Besides the base-level metrics, the 

additional metrics were also be used to test these two kinds of models. Both block-level 

performances of the deep learning model are significantly worse than Augustus. One of 

the two chain-block-level performances, two of the four distance performances, and two 

of the four site prediction of the deep learning model are significantly worse than 

Augustus. Although the overall base-level performances of the deep learning model are 

significantly better than Augustus, the additional performances show the opposite 

situation. The design of the loss function and hyperparameter optimization procedure 

might cause this problem. The loss function is designed to minimize the difference 

between answer and prediction on the base level, and the optimized target of 

hyperparameter optimization is macro F-score of the base level. It is hard to design the 

loss function on these additional metrics. So, the post-processing procedure would be 

applied to the predicted result of deep learning to improve the overall performance. 
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 The result of deep learning has fragment problem and boundary problem, 

and the data in DataTrain and PredictedVal can provide information for post-

processing procedure 

The log-length distributions of the exon, intron, and gene on DataTrain and 

PredictedVal are similar, and the only difference is there are some predicted regions 

shorter than most regions of each type, as shown in from Figure 21, Figure 22a, and 

Figure 22b. The distributions of the log-length of the intergenic region on DataTrain and 

PredictedVal are similar, as shown in Figure 22c and Figure 22d. The log-length 

distributions around 2 and 3 are the lengths of downstream intergenic regions and 

upstream intergenic regions, and the log-length distribution around 3.5 is the lengths of 

regions with no exon. The only difference is the log-length distribution around 0.5, 

which is the length distribution of fragments of the predicted intergenic region. The 

values of Gaussian models will be used in the length filtering method, and the fragment 

problem can be relieved, as described in section 3.6.  

Table 17 shows the Distancea, p of DS is 21 nts, and the Distancea, p of AS is also 

23 nts. These indicate the answer site is nearby the predicted site. The problem can be 

relieved by the boundary post-processing method, as described in section 3.6. The 

boundary post-processing method needs canonical motifs on the DataTrain. Table S7 

shows that the canonical motifs of the DS on the DataTrain are GT, and it also shows 

that the canonical motif of the AS on the DataTrain is AG. As expected, these canonical 

motifs on DataTrain are the same as canonical motifs on Datawhole, as shown in Table 

12. The canonical motifs GT and AT are used for the boundary post-processing method 

to relieved the boundary problem, as described in section 3.6. 
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 The post-processing procedure can improve the result of the deep learning 

model 

As shown in Table 18, reviser8, which is the best reviser, treats region which its 

length is small than its threshold as a fragment and removes it by the length filtering 

method. Then it uses the boundary post-processing method to fix the intron boundary. 

The exon F-score, intron F-score, macro F-score, and F-score of CS prediction are 

worse after reviser8 is used, as shown in Figure 23a, Figure 23b, and Figure 23e. 

Fortunately, as shown in Table 19, the statistic result shows no significant difference in 

these metrics after reviser8 is used. As shown in Figure 23d and Table 19, the gene F-

score has not changed after the reviser8 is used. The F-score of TSS prediction and 

intergenic region F-score are better after reviser8 is used, as shown in Figure 23a and 

Figure 23e. Unfortunately, as shown in Table 19, the statistic result shows no 

significant difference after reviser8 is used. All the other metrics are better after the 

post-processing procedure, as shown in Figure 23. They are all significantly better after 

the post-processing procedure, as shown in Table 19. It shows the post-processing 

procedure can indeed improve almost all the metrics and without any significant loss of 

performances. 

 The deep learning model with the post-processing procedure is competitive 

to Augustus in many places 

The deep learning model with the post-processing procedure has been compared 

again to Augustus. The result is shown in section 4.7. As shown in Table 20, two of the 

three base-level F-scores, and macro F-score on the base level, and three of the four 

distance performances of the deep learning model with the post-processing procedure 

are significantly better than Augustus. The p-values of the tests in chain-block-level 
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performances do not reach the statistical significance, as shown in Table 20. As shown 

in Table 20, one of the three base-level F-scores, both block-level performances, one of 

the four distance performances, and one of the four site prediction of the deep learning 

model with the post-processing procedure are significantly worse than Augustus. 

Overall, the base-level performances and distances of the deep learning model with the 

post-processing procedure are better than Augustus. The block-level performances of 

the deep learning model with the post-processing procedure are worse than Augustus. 

The chain-base-level performances and site prediction of the deep learning model with 

the post-processing procedure are similar to Augustus. As shown in Table 20, the 6 out 

of 16 metrics in the revised result of deep learning are significantly better than 

Augustus, the 5 out of 16 metrics in the revised result of deep learning are significantly 

worse than Augustus, and 5 out of 16 metrics have no statistical significance. These 

results show that the deep learning model with the post-processing procedure is 

competitive to Augustus. 

 The difficulty of getting a good result in each metric 

As shown in Figure 24, the mean distances in the DS and AS are smaller than 

mean distances in TSS and CS, and the site-prediction F-scores of DS and AS are far 

higher than site-prediction F-scores of TSS and CS. This phenomenon might be because 

the motifs of the DS and AS are more conserved than motifs of the TSS and CS, as 

shown in Figure 19. There are 3415 DSs and 3415 ASs in DataTrain, as shown in Table 

S7. As shown in Table S5, there are 1636 regions in DataTrain, so there are 818 

transcripts in DataTrain. It indicates that there are 818 TSSs and 818 CSs in DataTrain. 

So, the other possible reason is that there are more DSs and ASs than TSSs and 

cleavages sites, so it makes the performance s of the splicing site could be better.  
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As shown in Figure 24, different types of metrics have some interesting trends. 

The performances of base-level metrics are higher than performances of block-level 

metrics because a correct block needs all its bases to be correct, and all its bases to be 

correct are hard. The block-level metrics are higher than chain-block-level metrics 

because correct chained blocks need all their blocks to be correct, and all their blocks to 

be correct are very hard. The intron block F-scores are higher than the exon block F-

score because the boundary sites of the intron, which are DS and AS, have higher 

performances than TSS and CS, which are the two boundary sites of the exon. The 

chain-intron F-scores are higher than the gene F-score because the performance of the 

intron block is better than the performance of exon block. It seems the site prediction 

performance of the TSS and CS is a key point in the overall performance. If the site 

prediction performance of the TSS and CS can be improved, then the mean distance of 

them, exon block F-score, and gene F-score can all be improved. As mentioned above, 

the number of TSS and CS is very low. So, increasing the number of them or designing 

some loss for them would be the possible solutions. 

 The deep learning model with the post-processing procedure can predict 

domain-including genes in potential transcript regions 

As shown in Figure 26, the percentage of genes derived from Araport11 has at 

least one domain in Pfam-A is very low. It is because genes in Araport11 were derived 

from all kinds of transcripts. It included transcripts like non-coding transcripts. The 

number of Araport11 protein-coding genes was 27655 [1]. It is similar to the number of 

domain-including genes in potential transcript regions, which is 27343, as shown in 

Figure 27 and Table 21. As shown in Figure 25 and Figure 26, the numbers of genes 

from the result of Augustus and the revised result of deep learning model are similar, 



doi:10.6342/NTU202002143

 

70 

 

but the ratio of domain-including genes from the deep learning model with revision is 

less than the ratio from Augustus. The poor performance of the revised result of deep 

learning on the exon block and the intron block might be the reason. The performance 

on the exon block and the intron block should be improved, so the predicted result on 

the potential transcript regions would be better. The numbers of domain-supported 

genes from the deep learning model with revision and Augustus are lower than the 

number of domain-supported genes from Araport11, as shown in Figure 27. There are 

two possible reasons. One is that only a few genes are used to train both models, so 

these two kinds of models cannot predict all the domain-supported genes in the potential 

transcription regions. The other reason is that the number of domain-supported genes of 

Araport11 may be overestimated, and the actual number of domain-supported genes is 

not that much. 

 The comparison of other annotation applications 

The proposed deep learning model has some advantages over some existed 

methods. Unlike DeepAnnotator [10] that trained multiple submodels independently to 

accomplish the task, the submodels of the proposed deep learning model can be trained 

together. The transcript-related basic hierarchy block in the hierarchy block can learn 

features from the feature block. The intron-related basic hierarchy block in the hierarchy 

block can learn features from the feature block and transcript-related basic hierarchy 

block. Unlike SpliceAI [9] could only predict the splicing site and DeepPolyA [7] could 

only predict the CS, the proposed model can predict full annotation. The proposed 

architecture of the deep learning model does not need to analyze the feature 

composition and can learn the features it needs, unlike Augustus [2], which needed to 
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analyze the feature composition of annotation, and needed to design many submodels to 

detect these features. 

 Future work on improving model 

Currently, the proposed deep learning model cannot be significantly better than 

Augustus in all the metrics. Although the overall base-level metrics and overall distance 

metrics have better results than the results of Augustus, the other metrics still need to be 

improved. One possible solution is to change the target of hyperparameter optimization 

from macro F-score to Lossrevision. The other possible solution is to incorporate the 8362 

experimental TSSs and 21260 experimental CSs to existed data, as shown in Table 5 

and Table 6. So, the model can have more data to use. The deep learning model needs a 

large number of data to achieve a better result due to its high number of parameters. 

Currently, the number of high-quality data is far smaller than the number of coding 

genes. There is indeed a tradeoff between the quality of data and the number of data, so 

one way to get more data is to increase the tolerance of the preprocessing procedure to 

the low-quality data. As discussed in section 5.3, the upstream distance can affect the 

number of data. The larger the upstream distance is, the lower the percentage of genes 

that have evidence supported is. The result with the 1000-nt upstream distance has 98% 

of genes with transcription evidence supported, 977 genes, 1031 transcripts, and 1954 

regions. In order to get more data, the upstream distance can be reduced to 500 nts, so 

the result with 500-nt upstream distance has 95% of genes with transcription evidence 

supported, 1593 genes, 1678 transcripts, and 3186 regions. The number of data will 

have a significant increment, while the percentage of genes with transcription evidence 

supported will slightly decrease. As discussed in section 5.7, only about 12.2% of 

transcripts can be reannotated, and 24.4% of transcripts can pass the recursive cleaning 
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procedure. In order to increase the data, more evidence should be collected, so the 

number of transcripts can be reannotated can increase. The recursive cleaning procedure 

will filter out transcripts that have any discarded transcripts nearby so that the 

annotation can be clean. The increased number of data by collecting more evidence can 

decrease the number of discarded transcripts, so the number of transcripts passed the 

recursive cleaning procedure will be increased. There is another method to increase the 

number of transcripts. In this method, the low-quality transcript will be used, but the 

loss of deep learning model will be redesign, so the high-quality transcript has higher 

weights than the low-quality transcripts. So, the deep learning model can focus on 

predicting the high-quality transcript and also learn some useful features from low-

quality transcripts.  

The transcript structure is mostly derived from short reads. Lacking sufficient 

reads might cause problems like merging multiple kinds of transcripts of the same gene 

into one transcript, and this might mislead us the combination of splicing sites. Gene 

structure, a reduced structure, is created from sites like canonical TSS, canonical CS, 

and all canonical splicing sites of transcripts. Although the gene structure can derive the 

transcript structures, it cannot provide a real combination of sites and cannot derive 

transcripts with multiple TSSs, multiple CSs, and alternative splicing sites. Currently, 

the deep learning model can only predict gene structure. In order to predict transcript 

data when there is sufficient high-quality transcriptome, some modification of the model 

needs to be done.  

The deep learning model shows it can predict genes of the Arabidopsis, but it 

has not shown its ability to be applied to other species. There are two problems when 

applied to other species. The first problem is that many species do not have 

transcriptome data. The second problem is that only a few species that have boundary 
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evidence. The solution to the first problem is to use the existed transcriptome of closely 

related species to predict the transcriptome of species that have not to be annotated. A 

solution to the second problem is to treat the regions that start with its first translation 

start site to its first translation stop site as genes and treat other regions as intergenic 

regions. This solution will make the model focus on coding regions and introns that 

surrounded by coding regions and treat any noncoding part as intergenic regions, so the 

boundary evidence will not be needed anymore. Another solution to the second problem 

is to train the model by transcripts supported by boundary evidence of closely related 

species. So, the model could be applied to species that lack boundary evidence.  



doi:10.6342/NTU202002143

 

74 

 

 Conclusion 

The thesis showed the procedures to clean and reannotate coding transcripts of 

Arabidopsis thaliana by using multiple filters and data from Araport11 [1], genome, 

GRO-seq, and PAT-seq. The results showed there was a tradeoff between the quality of 

annotation and the number of data, and the high-quality coding transcripts were very 

rare. The methods to create gene annotation, to build the deep-learning-based model, 

and to revise the result were proposed. The median macro F-score of the deep learning 

was 0.969, and the median macro F-score of Augustus was 0.957. The Wilcoxon rank-

sum test showed that the macro F-score of the deep learning model was significantly 

better than Augustus. The post-processing procedure could significantly improve the 

performance of the deep learning model. The revised results showed that the overall 

base-level metrics and the overall distance metrics of the deep learning model were 

significantly better than Augustus [2]. The model could directly predict gene structures 

of coding genes on potential transcript regions only by the DNA sequences of 

Arabidopsis thaliana. The result showed that these genes included domain sequences, 

which made them more reliable. The architecture of the proposed model was more 

straightforward than the architecture of Augustus. Unlike DeepPolyA [7] predicted the 

CS and SpliceAI [9] predicted the splicing site, the proposed model could predict the 

full gene structure. Unlike DeepAnnotator [10], which used separate models to 

accomplish the task, the proposed model could accomplish the task by one model. 

Overall, the proposed deep learning model with a post-processing procedure could be an 

alternative method to annotate the gene structure of the coding gene on the DNA 

sequence of Arabidopsis thaliana. The performance of the proposed model still needs to 

be improved, and the problems of predicting annotations of other species that lack 

enough data are still a challenge that needs to be overcome.  
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Figure S1. Examples of transcripts failed to be reannotated (Assumed all the 

evidence related to the transcript) 
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Figure S2. The examples of annotation at every level, their gene boundaries, 

and metric results on the base level, the block level, and chain-block level  
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Figure S3. The examples of annotation and metrics of distances and site 

predictions  
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Figure S4. The Venn diagram of the transcripts passed filters 
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Supplementary Tables 
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Table S1. The version of tools 

Name Version Name Version 

AUGUSTUS [2, 13, 32, 33] 3.3.2 PyTorch [53] 1.4.0 

bedtools [77] 2.25.0 SAMtools [78] 0.1.19-96b5f2294a 

exactRankTests [64] 0.8-31 Scikit-Learn [79] 0.22.2.post1 

HMMER3 [66] 3.3 Scikit-Optimize [80] 0.5.2 

HOMER [59] 4.10 Scipy [81] 1.4.1 

Matplotlib [82] 3.0.3 Seaborn [83] 0.9.1 

NumPy[84] 1.18.5 STAR [58] 2.6.1a 

Optuna [61] 1.2.0 transeq [65] 6.6.0 

Pandas[85] 0.24.0 venn [86] 0.1.3 

pfam_scan.pl [67] 1.6   

 

Table S2. Data source summary 

Type Name or Id 

Genome  GCF_000001735.3 [11] 

Transcriptome  Araport11 [1]. 

5’ GRO-seq  SRR3647033 [57] 

GRO-seq datasets  SRR3647034 [57] and SRR3647035 [57] 

PAT-seq processed dataset  SRP089899 [60] 
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Table S3. The names and sources of the datasets (The number mean 

chromosome) 

Name Source  Name Source Name Source 

Train1 1+, 2, 3, and 5 Val1 1- DataWhole 1, 2, 3, 4, and 5 

Train2 1-, 2, 3, and 5 Val2 1+ DataTrain 1, 2, 3, and 5 

Train3 1, 2 +, 3, and 5 Val3 2- DataTest 4 

Train4 1, 2-, 3, and 5 Val4 2+ TrainSmall Train3 

Train5 1, 2, 3+, and 5 Val5 3- ValSmall Val3 

Train6 1, 2, 3-, and 5 Val6 3+   

Train7 1, 2, 3, and 5+ Val7 5-   

Train8 1, 2, 3, and 5- Val8 5+   

 

Table S4. Weights and bias initialization (Notes: The fan_in means the number 

of input channel) 

Block Layer  Method Method Formula 

Feature 

block 

CNN Kaiming 

initialization 

[87] 

𝐖𝐞𝐢𝐠𝐡𝐭𝐬 ∈ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦(−𝒙, 𝒙),𝐰𝐡𝐞𝐫𝐞 𝒙

= √
𝟔

𝐟𝐚𝐧_𝐢𝐧
 

𝐁𝐢𝐚𝐬 = 𝟎 

Relation 

block 

RNN Xavier 

initialization 

[88] 

𝐖𝐞𝐢𝐠𝐡𝐭𝐬 ∈ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦(−𝒙, 𝒙),𝐰𝐡𝐞𝐫𝐞 𝒙

= √
𝟑

𝐟𝐚𝐧_𝐢𝐧
 

CNN 𝐁𝐢𝐚𝐬 = 𝟎 
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Table S5. The number of regions on each dataset 

 

Table S6. The summary of regions with single exon, regions with multiple 

exons, regions with no exon (no gene), and all regions 

Region type Count Length 

Min Median Max 

Regions with single exon 220 1411 2276 5005 

Regions with multiple exons 757 1723 3466 9580 

Regions with no exon (no gene) 977 1411 3129 9580 

All 1954 1411 3129 9580 

 

Table S7. The statistical result of DS and AS in gene annotation on DataTrain 

Splicing donor site Splicing acceptor site 

Motif Count Percentage (%) Motif Count Percentage (%) 

GT 3391 99.297% AG 3415 100 

GC 23 0.673%    

TT 1 0.029%    

 

Dataset Number  Dataset Number Dataset Number  Dataset Number  

Train1 1382 Train5 1450 Val1 254 Val5 186 

Train2 1382 Train6 1450 Val2 254 Val6 186 

Train3 1498 Train7 1396 Val3 138 Val7 240 

Train4 1498 Train8 1396 Val4 138 Val8 240 

DataTrain 1636 DataTest 318     



doi:10.6342/NTU202002143

 

95 

 

Table S8. Hyperparameter setting and Lossrevision of the post-processing 

procedures (L indicates Length filtering and B indicates Boundary post-

processing) 

Id Methods Distance scale Lossrevision 

Origin NaN NaN 0.52156 

Reviser1 L method NaN 0.50812 

Reviser2 B method 0 0.51764 

Reviser3 B method 1 0.51008 

Reviser4 B method 2 0.50984 

Reviser5 B method 3 0.50999 

Reviser6 L method and then the B method 0 0.51292 

Reviser7 L method and then the B method 1 0.50220 

Reviser8 L method and then the B method 2 0.50196 

Reviser9 L method and then the B method 3 0.50196 

Reviser10 B method and then the L method 0 0.51374 

Reviser11 B method and then the L method 1 0.50247 

Reviser12 B method and then the L method 2 0.50225 

Reviser13 B method and then the L method 3 0.50240 

 

 




