
doi:10.6342/NTU202002143

國立臺灣大學電機資訊學院生醫電子與資訊學研究所

碩士論文

Graduate Institute of Biomedical Electronics and Bioinformatics

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

利用深度學習來預測阿拉伯芥 DNA序列中編碼基因的

基因結構

Using deep learning to predict gene structures of the

coding genes in DNA sequences of Arabidopsis thaliana

王擎天

Ching-Tien Wang

指導教授﹕趙坤茂 教授

Advisor: Kun-Mao Chao, Professor

共同指導教授﹕林仲彥 教授

Co-advisor: Chung-Yen Lin, Professor

中華民國109年7月

July 2020

doi:10.6342/NTU202002143
i

doi:10.6342/NTU202002143
ii

論文口試委員審定書

國立臺灣大學碩士學位論文

口試委員會審定書

利用深度學習來預測阿拉伯芥 DNA序列中編碼基

因的基因結構

Using deep learning to predict gene structures of the

coding genes in DNA sequences of Arabidopsis thaliana

 本論文係王擎天君（R06945055）在國立臺灣大學

生醫電子與資訊學學系、所完成之碩士學位論文，於民國一

零九年七月三十日承下列考試委員審查通過及口試及格，特

此證明

口試委員：

 （簽名）

（指導教授）

________________ ________________

________________ ________________

________________ ________________

________________ ________________

系主任、所長 （簽名）

 （是否須簽章依各院系所規定）

doi:10.6342/NTU202002143

iii

doi:10.6342/NTU202002143

iv

謝辭

 首先，我想感謝我的指導教授-趙坤茂教授。當初是在生物序列分析演算法

的課程上認識趙坤茂教授，當時被趙教授的學識與教學風格所吸引，於是我決定

要去報考生醫電資所並找趙教授來當我碩士論文的指導教授，事後證明這果然是

個正確的選擇。這兩年多來我受到趙教授許多的協助與鼓勵，並從趙教授身上學

到做人做事的態度和做研究的方法，這些都對我的研究有著重大的幫助。再來，

我想感謝我的另一位指導教授-林仲彥教授。當初是去中研院實習時認識了林仲

彥教授，也是在當時進行了基因註解這個題目。這兩年多來我跟林教授開過無數

次的會議，這些會議使我的表達和口說能力有明顯進步，林教授的建議對我的研

究有著很大的幫助。在這兩年多來也跟林教授有聊過無數個話題，這擴大我的視

野，使我對生物資訊在學界和業界有著更多的認識。同時，我也要感謝張育榮教

授能抽空來擔任口試委員。張教授在口試時對論文提出的批評與指教讓我重新去

審視我的研究，張教授所提出了問題與建議也讓我的論文在應用層面上的改進有

了全新的方向。另外，我也要感謝實驗室的陳淑華教授在這兩年多來對於我的研

究報告和論文寫作上有非常多建議與指導，使我助益良多。我在這裡也要感謝國

立臺灣大學和中央研究院在我研究期間提供我大量的資源使我可以順利的完成研

究。我也要感謝生醫電資所的所辦在我就學期間幫助我無數次的忙也為我解決了

不少問題。另外，我也要感謝社區的朋友們給我的鼓勵與祝福使我有信心來面對

困難。我在這裡要特別感謝扶養我長大的父母-王忠祥與劉秀枝與我的妹妹們-王

婷婷與王若蘋。他們一直在我身邊給我許多鼓勵與支持，讓我有信心來克服人生

中遇到的種種困難。

doi:10.6342/NTU202002143

v

摘要

 基因的結構可以使我們了解其功能，它可以透過如 Augustus 等模型的預測來

獲得。這些模型為了註解 DNA序列，需事先對其特徵組成進行分析並設計多個

子模型來偵測。深度學習不需要事先分析其特徵組成並可以學習它所需要的特

徵，使之容易應用在多個領域。本研究的目的為建立一個深度學習模型來對阿拉

伯芥 DNA序列上編碼基因的基因結構進行預測。本研究藉由 global run-on

sequencing和 Poly (A)-Test RNA-sequencing的資料來清洗與重新註解現有的轉錄

資料，並得到含有 977編碼基因的註解。本研究提出一個全新的深度學習模型和

新的損失函數。結果顯示深度學習在 macro F-score的中位數為 0.969，而在

Augustus的結果為 0.957，且統計結果顯示深度學習在 macro F-score 顯著優於

Augustus。本研究提出兩種後處理方法，一種名為邊界後處理方法（boundary

post-processing method）來處理內含子的邊界，另一種名為長度過濾方法（length

filtering method）來處理短片段。深度學習的預測結果經處理後在 16個評分中有

9個評分有顯著進步。深度學習的預測結果經後處理方法處理後顯示在 16個評分

中有 6個顯著好於 Augustus和 5個顯著落後於 Augustus。這些結果顯示深度學習

模型結合後處理方法可以和 Augustus匹敵。另外，經後處理方法處理的深度學習

預測結果可以在部分基因體上預測出平均為 18642個含有已知蛋白質結構域的基

因結構。整體來講，深度學習模型結合後處理方法可以成為在阿拉伯芥 DNA序

列上預測編碼基因的基因結構的替代方法。

關鍵字：阿拉伯芥、資料清洗、基因註解、深度學習、資料後處理

doi:10.6342/NTU202002143

vi

Abstract

The structure of the gene can help us to have a better understanding of its

function, and it can be predicted by models such as Augustus. In order to annotate the

DNA sequence by these models, the feature composition of annotation needed to be

analyzed, and many submodels would be designed to detect these features. The deep

learning does not need to analyze the feature composition and can learn the features it

needs, and this makes it easily be applied in many fields. The purpose of the thesis is to

build a deep-learning-based model to directly predict gene structures of coding genes in

DNA sequences of Arabidopsis thaliana. Annotation with 977 coding gene structures

was created by using data from global run-on sequencing and Poly (A)-Test RNA-

sequencing to reannotate and filter the existed transcripts. A new deep learning model

and loss were proposed. The median macro F-score of the deep learning model was

0.969, and the value of Augustus was 0.957. The statistical result showed that the result

of the deep learning model in the macro F-score was significantly better than Augustus.

Two post-processing methods were proposed, one named boundary post-processing

method handled the boundary of the intron, and the other named length filtering method

filtered out the region with short length. The revised result of the deep learning model

showed that there were 9 out of 16 metrics performances were significantly improved.

The revised result of the deep learning model showed that 6 out of 16 metrics were

significantly better than Augustus, and 5 out of 16 metrics were significantly worse than

Augustus. These results show that the deep learning model with the post-processing

procedure is competitive to Augustus. Furthermore, the revised result of the deep

learning model on the part of the genome showed that it could predict an average of

18642 gene structures that contained existed protein domains. Overall, the proposed

doi:10.6342/NTU202002143

vii

deep learning model with the post-processing procedure can be an alternative method to

predict gene structures of coding genes on DNA sequences of Arabidopsis thaliana.

Keywords: Arabidopsis thaliana, data cleaning, gene annotation, deep learning, post-

processing

doi:10.6342/NTU202002143

viii

Table of Contents

論文口試委員審定書 ... ii

謝辭 .. iv

摘要 ... v

Abstract ... vi

Table of Contents.. viii

Table of Figures ... xii

Table of Tables ... xiv

Table of Equations ... xv

Table of Algorithms.. xvi

List of Abbreviations ... xvii

(Cont.) List of Abbreviations.. xviii

 Introduction ... 1

 The Literature Review ... 4

 Annotation identification on Arabidopsis thaliana ecotype Col-0 4

 Transcription and splicing in eukaryotes .. 4

 Alternative TSSs and alternative CSs ... 5

 Ab initio transcript structure prediction .. 6

 Deep learning related techniques ... 8

 Deep learning applications related to sequence annotation 13

 Materials and Methods .. 15

 The data preparation ... 15

 The workflow of creating annotation datasets .. 15

 Label inference methods, loss functions, and model architectures . 21

doi:10.6342/NTU202002143

ix

 Hyperparameter optimization procedure, cross-validation, testing,
and augmentation ... 25

 Comparison of results on the testing dataset and potential
transcript regions .. 27

 The post-processing procedure ... 31

 Training and testing procedure of Augustus .. 36

 Results ... 38

 The different settings of the boundary around the gene 38

 The statistic result of the experimental data and transcripts 39

 The statistic result of transcripts and regions after filtering and
cleaning 42

 Hyperparameter searching result on the small dataset 45

 Result comparison of deep learning model and Augustus on the
testing dataset ... 46

 The revised result of deep learning model on the testing dataset ... 51

 Comparison of the revised result of deep learning model and the

result of Augustus on the testing dataset and potential transcript regions 55

 Discussion .. 59

 Different kinds of evidence can affect the percentage of the genes
that have evidence supported .. 59

 The transcripts have transcription-related evidence around their
TSSs 59

 Different upstream distances can have a massive impact on the

number of data and the percentage of genes supported by transcription evidence
 60

 Most locations of evidence are near external UTRs 60

 The boundary of the reannotated transcript is close to the existed
boundary 61

 The nucleotide compositions around different kinds of sites agree

with the previous studies ... 62

 There is a tradeoff between the quality of annotation and the

number of transcripts, and the number of high-quality data is rare 63

 The hyperparameter optimization can find well hyperparameters in
a few trials 63

 The result of deep learning and result of Augustus have their

strength and weakness .. 65

doi:10.6342/NTU202002143

x

 The result of deep learning has fragment problem and boundary

problem, and the data in DataTrain and PredictedVal can provide information for

post-processing procedure .. 66

 The post-processing procedure can improve the result of the deep

learning model .. 67

 The deep learning model with the post-processing procedure is
competitive to Augustus in many places .. 67

 The difficulty of getting a good result in each metric 68

 The deep learning model with the post-processing procedure can
predict domain-including genes in potential transcript regions 69

 The comparison of other annotation applications 70

 Future work on improving model .. 71

 Conclusion ... 74

References ... 75

Supplementary Figures .. 86

Figure S1. Examples of transcripts failed to be reannotated (Assumed all
the evidence related to the transcript) ... 87

Figure S2. The examples of annotation at every level, their gene

boundaries, and metric results on the base level, the block level, and chain-block
level 88

Figure S3. The examples of annotation and metrics of distances and site
predictions 89

Figure S4. The Venn diagram of the transcripts passed filters 90

Supplementary Tables ... 91

Table S1. The version of tools .. 92

Table S2. Data source summary .. 92

Table S3. The names and sources of the datasets (The number mean
chromosome) 93

Table S4. Weights and bias initialization (Notes: The fan_in means the

number of input channel) .. 93

Table S5. The number of regions on each dataset.. 94

Table S6. The summary of regions with single exon, regions with

multiple exons, regions with no exon (no gene), and all regions 94

Table S7. The statistical result of DS and AS in gene annotation on
DataTrain 94

doi:10.6342/NTU202002143

xi

Table S8. Hyperparameter setting and Lossrevision of the post-processing

procedures (L indicates Length filtering and B indicates Boundary post-

processing) 95

doi:10.6342/NTU202002143

xii

Table of Figures

Figure 1. The workflow of the thesis ...3

Figure 2. Find evidence related to each transcript and use the strongest evidence located

on external UTR to redefine the boundary ..18

Figure 3. The example of getting discarded transcript and removing preserved transcript

 ...18

Figure 4. The examples of creating clean selected regions ...20

Figure 5. The demo of constructing gene annotation of a multiple-exon gene (Notes: the

intergenic region is not drawn in the figure.) ..20

Figure 6. The schematic diagram of a) the model prediction demo, b) basic inference

demo, and c) hierarchy inference demo ...21

Figure 7. The architectures of the a) CRB block, b) concatenated CRB block, and c)

feature block ..24

Figure 8. The schematic diagrams of the relation blocks ..24

Figure 9. Augmentation example (Notes: The direction of every region is 5’ to 3’.)27

Figure 10. The examples of data related to potential transcript region31

Figure 11. Prediction and revision of deep learning model ...34

Figure 12. Examples of the log-length distribution of the intergenic region and the

Gaussian model and the log-length distribution of the predicted intergenic region 34

Figure 13. The examples of the boundary post-processing procedure (The red block

indicates exon, and yellow block indicates intron) ..35

Figure 14. The schematic diagram of gene annotation prediction by Augustus37

Figure 15. The percentage plot of genes which have evidence within the range39

Figure 16. The plots of the percentages of genes supported by evidence and the numbers

of data of different upstream distance settings ..39

doi:10.6342/NTU202002143

xiii

Figure 17. The numbers and percentages of transcripts after each preprocessing42

Figure 18. The ratios of each kind of label in different datasets43

Figure 19. The nucleotide composition (a~d) and motif (e~h) of each site in gene

annotation (Notes: The motifs are generated by WebLogo3 [70].)44

Figure 20. The comparison plots between Augustus and deep learning (DL)48

Figure 21.The distribution and the Gaussian model of the log-length (nt) of the exon and

intron on the DataTrain and PredictedVal (x-axis: log 10 of length, y-axis: density)

(Notes: The blue line in the figures means the summation of all models, and the

others mean components of the Gaussian model.) ..50

Figure 22. The distribution and the Gaussian model of the log-length (nt) of the gene

and intergenic region on the DataTrain and PredictedVal (x-axis: log 10 of length, y-

axis: density) (Notes: The blue line in the figures means the summation of all

models, and the others mean components of the Gaussian model.)51

Figure 23. The comparison plots between origin result and the revised result of the deep

learning model ...53

Figure 24. The comparison plots between Augustus and DL with revision....................56

Figure 25. The boxplot of the number of genes ..58

Figure 26. The boxplot of the ratio of genes that match any domain in Pfam-A58

Figure 27. The boxplot of the number of genes that match any domain in Pfam-A58

doi:10.6342/NTU202002143

xiv

Table of Tables

Table 1. The hyperparameter space of the model ..27

Table 2. The metrics to evaluate the performance ...31

Table 3. Hyperparameter settings of the post-processing procedure35

Table 4. The number of genes which have at least one data located around it38

Table 5. The number of GRO-seq signal ...40

Table 6. The number of PAT-seq cluster ..40

Table 7. The number and ratio of the locations of the strongest GRO-seq signal40

Table 8. The number and ratio of locations of the strongest PAT-seq cluster41

Table 9. The ratios of the GRO-seq signals and the PAT-seq clusters41

Table 10. The mode location difference between reference and experimental site41

Table 11. The statistic result of distances between the reference and redefined site41

Table 12. The data of the splicing site motifs in gene annotation43

Table 13. The base performance of the trial47 ...45

Table 14. The settings with the highest count in the top ten trials45

Table 15. Top 10 Macro F-score and their hyperparameters in decreasing order46

Table 16. The performances between Augustus and the DL on the testing dataset48

Table 17. The Distancea, p about the splicing sites on the PredictedVal49

Table 18. The detail of the Reviser8 ..52

Table 19. The performances between origin result and the revised result of the deep

learning model ...54

Table 20. The performances between the result of Augustus and the revised result of

deep learning model on the testing dataset ..57

Table 21. The average number of genes that match any domain in Pfam-A58

doi:10.6342/NTU202002143

xv

Table of Equations

Equation 1. ReLU formula ..11

Equation 2. Sigmoid, tanh, and softmax ..12

Equation 3. Simple RNN formula ...12

Equation 4. GRU formula ..12

Equation 5. Batch normalization formula without affine during the training phase12

Equation 6. Calculating mean and variance for the testing phase12

Equation 7. Batch normalization formula without affine during the testing phase13

Equation 8. Basic inference method ..23

Equation 9. Hierarchy inference method ...23

Equation 10. Binary cross-entropy (BCE) and categorical cross-entropy (CE)23

Equation 11. Basic loss ..23

Equation 12. Gene loss, intron loss, and hierarchy loss ..24

Equation 13. Recall formula, precision formula, and F-score formula30

Equation 14. Formulas of macro recall, macro precision, and macro F-score30

Equation 15. The mean distance between predicted sites and answer sites30

Equation 16. The Wilcoxon rank-sum test ..30

Equation 17. The formula of the Lossrevision (Notes: The macro F1, base indicates the

macro F-score of the base level.) ...36

doi:10.6342/NTU202002143

xvi

Table of Algorithms

Algorithm 1. The recursive cleaning procedure ..19

doi:10.6342/NTU202002143

xvii

List of Abbreviations

Abbreviation Full description

AS Acceptor site

BCE Binary cross-entropy

BHR Basic hierarchy relation

BN Batch normalization

BR Basic relation

CDS Coding sequence

CE Categorical cross-entropy

ChIP Chromosome immunoprecipitation

CNN Convolution neural network

CPSF Cleavage and polyadenylation specificity factor

CRB CNN-ReLU-BN

CS Cleavage site

CstF Cleavage stimulation factor

DHS DNase I hypersensitive site

DL Deep learning

DNA Deoxyribonucleic acid

DRS Direct RNA sequencing

DS Donor site

DSE Downstream element

GRO-seq Global run-on sequencing

GRU Gated recurrent unit

GTF General transcription factor

doi:10.6342/NTU202002143

xviii

(Cont.) List of Abbreviations

Abbreviation Full description

HMM Hidden Markov model

HR Hierarchy relation

nt Nucleotide

PABP Polyadenylation binding protein

PAP Polyadenylation polymerase

PAT-seq Poly (A)-Test RNA-sequencing

PEAT Paired-end analysis of transcription start sites

ReLU Rectified linear unit

RNA Ribonucleic acid

RNAP RNA polymerase

RNN Recurrent neural network

RT-PCR Reverse transcriptase-polymerase chain reaction

SNP Single nucleotide polymorphism

snRNP Small nuclear ribonucleoprotein

SVM Support vector machine

TF Transcription factor

TFBS Transcription factor binding site

TSS Transcription start site

UTR Untranslated region

doi:10.6342/NTU202002143

xix

doi:10.6342/NTU202002143

1

 Introduction

In order to understand the genes of a species, the most direct method is

extracting its transcripts, using sequencing to get their sequences, and mapping them to

its genome. Thanks to the growing number of sequencing data, the annotations of these

transcripts were available at recent annotations, such as an annotation of Arabidopsis

thaliana called Araport11 [1]. These annotations are hard to cover full transcriptome

because it is hard to extract all the transcripts from different conditions. Besides,

traditional RNA sequencing often gets fragments of RNA and cannot get the exact

locations of the start sites and end sites of transcripts. There are two kinds of methods to

improve the coverage of annotation. One is using the existed transcript structure on a

similar DNA region from the same or related species to inference the transcript

structure. The other one is to train a mathematical model with known transcript

structures. Then, the model is used to predict the transcript annotation on the whole

genome. Although it is almost impossible to gather all transcripts of one gene, we can

indeed generate all “hypothetical transcripts” from “gene structure,” which includes all

splicing pairs in transcripts of the gene. If we can predict gene structure correctly, then

we can generate all “hypothetical transcripts” by these splicing pairs. These

“hypothetical transcripts” can be further studied their existence, their translation

potential, and their potential function.

There was a hidden Markov model (HMM) called Augustus that could predict

transcripts of eukaryotes [2]. The feature composition of annotation was first analyzed,

and many submodels were carefully designed to detect these features. The model was

used to predict transcript structure, not the gene structure. Recently, a technology called

deep learning was widely used to the classification of the image [3], prediction of gene

function [4], prediction of protein-coding potential of RNA [5], and prediction of

doi:10.6342/NTU202002143

2

antimicrobial potential of peptide [6]. These results showed improvement from the

traditional methods. Many studies tried to use deep learning model to annotate the

genome of eukaryotes, like predicting the existence of cleavage sites [7] and splicing

sites [8, 9]. Nevertheless, they could not predict the complete annotation directly.

Recently, a deep learning model named DeepAnnotator [10] was proposed to predict

gene structure on the genome of prokaryotes. However, DeepAnnotator was three

separate models that predict part of gene structure, and then the result of these three

models was merged into one gene structure. The models were trained separately, so they

could not learn feature between the models.

Currently, there is no deep-learning-based model can directly predict gene

structure of coding genes of eukaryotes. The purpose of this thesis is to build a deep-

learning-based model to directly predict the gene structure of coding genes only by their

DNA sequences, using Arabidopsis thaliana as an example. The overall workflow is

shown in Figure 1. The first part is to use the existed data to create datasets of high

confidence gene annotation, as shown in Figure 1a and section 3.2. Section 3.3

describes the methods of inference methods, losses, and deep learning models. The

second part is to use the part of training datasets to get the best hyperparameters by

hyperparameter optimization, as shown in Figure 1b and section 3.4. The third part is

to use models with the best hyperparameters to do cross-validation and testing, as

shown in Figure 1c, Figure 1d, and section 3.5. The fourth part is to get the best

reviser to revise the predicted result on the training dataset, as shown in Figure 1e and

section 3.6. The fifth part is to predict gene annotation on potential transcript regions

and revise it by the best reviser, as shown in Figure 1f, section 3.5, and section 3.6.

Section 3.7 describes the procedures of training and testing Augustus. All the names

and versions of the main software and packages are shown in Table S1.

doi:10.6342/NTU202002143

3

Figure 1. The workflow of the thesis

doi:10.6342/NTU202002143

4

 The Literature Review

 Annotation identification on Arabidopsis thaliana ecotype Col-0

A plant called Arabidopsis thaliana is often used as a model organism to study

plant genome. Human experts or machines annotate genes and transcripts of

Arabidopsis with experimental datasets and annotations from the model prediction.

TAIR10 [11] was the previous annotation of Arabidopsis thaliana ecotype Col-0. It

used tools such as TopHat [12] with RNA-mapping results to identify transcripts. After

filtering transcript annotation and adding peptide-mapping results, Augustus [13] was

trained with these initial annotation. The trained model was used to predict transcripts

on the genome. Then, human experts manually curated these results. Currently, the

newest annotation of Arabidopsis thaliana ecotype Col-0 was Araport11 [1]. Araport11

used TopHat [12], Trinity [14], and 113 RNA datasets from 11 tissues to construct

transcript annotation. Then, peptide datasets with tools such as MAKER-P [15] were

used to augment the TAIR10 dataset. Finally, the tool named PASA [16] was used to

update the augmented TAIR10 dataset.

 Transcription and splicing in eukaryotes

Transcription is a process to transcribe the information on DNA sequence to

RNA sequence named transcript. First, general transcription factors (GTFs) and RNA

polymerase (RNAP) bound to the promoter, then RNAP moved to the transcription start

site (TSS) and starts to synthesized RNA [17]. The location of the promoter might be

located in the region from -500 nucleotides (nts) from TSS to TSS based on the single

nucleotide polymorphism (SNP) density profile in the previous study [18]. Based on the

other research [19] in Arabidopsis, about 63% of transcription factor binding sites

(TFBSs) were located in -400 nts to +200 nts from annotated TSSs, and these sites had

doi:10.6342/NTU202002143

5

passed conservation test in Arabidopsis lyrata, Brassica oleracea, and Brassica rapa.

The RNA was then cleaved at the cleavage site (CS) and was added hundreds of

adenines [20]. The cis-regulatory elements that participated in cleavage and

polyadenylation were elements such as AAUAAA hexamer, CS, and downstream

element (DSE) [20]. The cleavage and polyadenylation specificity factor (CPSF), which

bound to AAUAAA hexamer, and cleavage stimulation factor (CstF), which was bound

DSE, involved in cleavage [20]. Then, CPSF, polyadenylation polymerase (PAP), and

polyadenylation binding protein (PABP) involved in polyadenylation [20]. Based on

nucleotide composition profiles of around CS of Arabidopsis in the previous study [21],

the U-rich DSEs of most preferred CSs were located within the region downstream of

CS to downstream 60 nts. The transcript needs to be spliced to become a mature

transcript. Splicing had multiple elements involved like donor site (DS), acceptor site

(AS), and branch point, and it also had factors like small nuclear ribonucleoproteins

(snRNPs) that involved in splicing and bound to these elements [22]. Briefly, 2’OH of

branch point attacked to DS of the RNA, and it caused RNA to be spliced at DS [22].

Then 3’OH of spliced RNA attacked to AS of RNA, and it caused RNA to be spliced at

AS caused spliced RNAs to be joined [22].

 Alternative TSSs and alternative CSs

One gene can be transcribed into multiple isoforms based on different

conditions. These conditions affect cell to choose different sites to start transcription,

different sites to be cleavaged, different sites to act as splicing sites, and different sites

to be spliced. Alternative TSSs can act as a regulatory mechanism or change its peptide

product. It had been reported that alternative TSSs occurred in Arabidopsis when it was

exposed by blue light [23] and that alternative TSSs occurred in mice during cerebellar

doi:10.6342/NTU202002143

6

development [24]. The paired-end analysis of transcription start sites protocol (PEAT

protocol) could reveal the location distribution of TSSs [25]. The previous study [26] in

Arabidopsis showed only a minority of TSS tag clusters had narrow and sharp

distribution, and most TSS tag clusters had broad and flat shapes. Another technology

called global run-on sequencing (GRO-seq) was also invented to show the location and

strength of TSS [27]. Alternative CSs can also act as a regulatory mechanism or change

their peptide products. Direct RNA sequencing (DRS) could provide locations and

strengths of CSs [28]. The previous study [21] in Arabidopsis showed about 90% of

DRS read were mapped on coding genes, and 8.2% of DRS reads were mapped on

intergenic regions. Nearly half of these intergenic-DRS reads were located directly

downstream of the annotated gene within 300 nts, and the reverse transcriptase-

polymerase chain reaction (RT-PCR) experiment showed that DRS could reveal the

position of the true cleavage site [21]. After extending the end of the gene to the

location of DRS reads, about 94% of DRS reads were mapped on coding genes, and

74.9% of protein-coding genes had alternative CSs [21]. There was also a method called

Poly (A)-Test RNA-sequencing (PAT-seq) that had been invented [29]. It could also

provide locations and strengths of CSs. Both DRS and PAT-seq could avoid the internal

priming problem and reveal locations of true CSs [21, 29].

 Ab initio transcript structure prediction

Ab initio transcript structure prediction is often predicted by the HMM.

Annotation with the carefully cleaning procedure can be used to train the models and

evaluate the performance of the models. The post-processing can be applied to the

predicted result to correct the mistakes the models made. Many studies focused on the

annotation of prokaryotes because the lengths of their genes are shorter than eukaryotes,

doi:10.6342/NTU202002143

7

and annotations of eukaryotes are much more complicated because of the existence of

intron and alternative splicing. Most of the existed HMMs focused on annotation

between the start codon and stop codon and treated untranslated regions (UTRs) and

introns between UTRs as intergenic regions.

In the early study [30], HMMs were proposed to predict coding genes in E.coli.

The “gene” region in this study was defined as the sequence between the start codon

and the stop codon. The model was composited by the start codon model, coding gene

model, stop codon model, intergenic regions model, and long intergenic regions model.

The model would be trained and predicted on each strand of the sequences

independently. The post-processing would be applied to the prediction of trained

models.

The model called Genie was proposed to predict coding genes in Homo sapiens

[31]. The “gene” in this study was also defined as the sequence between the start codon

and the stop codon. Genie was a generalized HMM-based model. The generalized

HMM, unlike HMM, could generate sequence but not the character of each state, so it

could generate sequences which their lengths were arbitrary distribution. Genie also

integrated the intron model, exon model, and splicing site detectors. It also included

frame constraints to make sure the length of the coding region was multiple of three.

Augustus [2, 13, 32, 33] was used to predict the annotation of the coding gene.

The model was similar to Genie but with a complicated intron model. The intron model

was composed of two submodels for long intron and short intron so that it could have

better results. The model was further expanded to include hints. The expansion could

improve its prediction and predict UTR and UTR related intron. By training multiple

models and using a sampling algorithm, the model could also predict alternative

transcripts.

doi:10.6342/NTU202002143

8

Some tools tried to combine many different models to get a better prediction.

MAKER2 [34] was a pipeline that used results of SNAP [35], GeneMark [36], and

Augustus to predict annotation. Seqping [37] was also a pipeline that used results of

GlimmerHMM [38], Augustus, and MAKER2 to predict the annotation of the plant.

 Deep learning related techniques

Convolution neural network (CNN) had been widely used at object classification

[39] and object detection [40]. The most often used function after the convolution layer

was the rectified linear unit (ReLU), and its formula is shown in Equation 1 [41]. The

other functions are standard logistic function, tanh, and softmax [42], and their formulas

are shown in Equation 2. The x indicates input value, xi indicates the input value at

dimension i, the s indicates the standard logistic function, the K indicates the number of

output dimension, and e indicates Euler's number. The ReLU is often used because its

largest gradient is one, so the gradient passes by will not be easily decreased. Recently,

the stacked CNN architecture named ResNet [43] was proposed. Its main idea was to

use a shortcut connection like 𝑥𝑖 = F𝑖(𝑥𝑖−1) + 𝑥𝑖−1 to construct model. The F𝑖 means

any neural network at layer i and 𝑥𝑖 means value after layer i. The shortcut connection

made the layer could directly copy its input and add it to output of the layer. The

shortcut connection made ResNet could train and backpropagate its gradient more

efficiently while the model had many layers. Most of the experiment results showed that

the model could achieve lower loss value when its layer number increased. A stacked

CNN architecture named DenseNet [3] was proposed. It used shortcut connection like

𝑥𝑖 = Concat(F𝑖(𝑥𝑖−1), 𝑥𝑖−1) to construct model, so a layer could reuse all outputs of its

previous layers. The F𝑖 means any kind of neural network at layer i, 𝑥𝑖 means value

after layer i, and Concat means operator to concatenate all its inputs. Most of its

doi:10.6342/NTU202002143

9

experiment results also showed that the model could achieve lower loss value when its

layer number increased. DenseNet could get lower loss than ResNet did while using

fewer parameters.

Recurrent neural network (RNN) had been widely used in jobs with spatial or

temporal data such as audio tagging and time series classification [8, 10, 44, 45].

Equation 3 shows the primitive RNN formula [46]. The 𝑥𝑡 means the input at timestep

t, and the ℎ𝑡 means the hidden state at timestep t. The 𝑈 and 𝑊 are weights matrix, and

𝑏 is a bias vector. The function σ is any activation function. The simple RNN has some

severe issues during training. The weights 𝑈 are shared by all timesteps. During

backpropagation in the long sequence, if one of the values in weights 𝑈 is larger than

one, then the gradient will exponentially growth and causes a problem called gradient

exploding problem, it makes the training procedure being unstable. During

backpropagation in the long sequence, if one of its values is smaller than one, then the

gradient will exponentially decay to zero, it causes a problem called vanishing gradient

problem, it makes the weights hard to be updated. The more advanced RNN called

gated recurrent unit (GRU) had been proposed [47]. It had reset gate 𝑟 and update gate

𝑧. Equation 4 shows the formula of the GRU. The 𝑥𝑡 means the input at timestep t, and

the ℎ𝑡 means the hidden state at timestep t. The 𝑈𝑖 and 𝑊𝑖 are weights matrixes for

value i, and 𝑏𝑖 is a bias vector for value i. The GRU could use its gate mechanism to

relieve the vanishing gradient problem. If gate 𝑧𝑡 is one, then the gradient will direct

copy the previous gradient.

The range of gradient of each parameter may be large, and it is hard to set the

learning rate for each parameter. An optimizer called Adam [48] was proposed to

handle this issue. Adam would consider the square values of previous and current

doi:10.6342/NTU202002143

10

gradients of each parameter and use them to adjust the learning rate of each parameter.

It also used the momentum to accelerate the training procedure.

The batch normalization layer (BN layer) was a kind of layer that normalized the

input data, so the mean of each output feature was close to zero, and its variance was

close to one [49]. During training over the mini-batch data, the mean and variance of

each feature were used to normalization the input feature. During the testing phase, the

mean and variance that were used to normalization the input feature were calculated by

using the moving average of the means (𝜇𝛽) and variances (𝜎𝛽
2) of mini-batch data. The

formulas are showed in Equation 5, Equation 6, and Equation 7. The M indicates the

batch size, and 𝜖 indicates an arbitrarily small positive number. The main benefit of

batch normalization was to accelerate the training speed by smoothing its optimization

landscape [50].

Dropout [51] was a simple method to prevent model overfitting the training data.

It randomly dropped out some outputs of hidden units by probability 1 − 𝑝 to generate

submodels during training phase and used all the hidden units during the testing phase.

The large model tends to overfit the data, so using the dropout could let the model be

thinner and prevent overfitting. The hidden units in the model would work together, and

they would highly dependent on each other. The co-adaption might decrease the ability

of each hidden unit to produce useful information by itself. The dropout could break the

co-adaption so that every hidden unit could generate useful information by itself. The

experiments showed that the dropout in CNN could break the co-adaption between

hidden units and archive better results when the data was large enough [51]. The

experiments also showed the dropout rate around 0.5 in CNN could generate the best

performance and had a similar result of the Monte-Carlo model average method [51].

The previous study [52] showed the dropout could be applied in a feed-forward

doi:10.6342/NTU202002143

11

connection in RNN to prevent overfitting and archive a better performance. The average

outputs of hidden units during the training phase and the testing phase should be similar,

but the dropout could lower the average of the outputs. So, the scaling must be applied

to make them similar between the two phases. The dropout implementation of PyTorch

[53] would scale the outputs of hidden units by
1

1−𝑝
 during the training phase and would

use the origin outputs during the testing phase.

Hyperparameter optimization is a process to find hyperparameters that may

achieve the best result. There are three kinds of methods to find hyperparameters. One is

called grid search, and it tries all combinations in hyperparameter space. The advantage

of this method is that it can find the best hyperparameter set. The disadvantage of this

method is that the number of combinations is too huge, so the time to explore all

combinations is large. Another method is called random search. It randomly uses some

hyperparameter sets. The advantage is that it reduces the time, and the disadvantage is

that it cannot efficiently find a good hyperparameter set. The other was Bayesian

optimization with the Gaussian process [54]. It used all the previous results to find the

next hyperparameters to be used. The advantage was that it could efficiently find a good

hyperparameter set.

ReLU(𝑥) = {
𝑥 if 𝑥 ≥ 0

0 if 𝑥 < 0

 Equation 1. ReLU formula

doi:10.6342/NTU202002143

12

s(𝑥) =
1

1 + 𝑒−𝑥

tanh(𝑥) = 2𝑠(2𝑥) − 1

softmax(𝑥)i =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑘K
𝑘=1

Equation 2. Sigmoid, tanh, and softmax

ℎ𝑡 = σ(𝑈ℎ𝑡−1 +𝑊𝑥𝑡 + 𝑏)

Equation 3. Simple RNN formula

𝑟𝑡 = s(𝑈𝑟ℎ𝑡−1 +𝑊𝑟𝑥𝑡 + 𝑏𝑟)

𝑧𝑡 = s(𝑈𝑧ℎ𝑡−1 +𝑊𝑧𝑥𝑡 + 𝑏𝑧)

𝑥̃𝑡 = tanh(𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) +𝑊ℎ𝑥𝑡 + 𝑏ℎ)

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡−1 + (1 − 𝑧𝑡) ∘ 𝑥̃𝑡

Equation 4. GRU formula

𝜇𝛽 =
1

M
∑𝑥𝑖

M

𝑖=1

𝜎𝛽
2 =

1

M
∑(𝑥𝑖 − 𝜇𝛽)

2

M

𝑖=1

𝑦𝑖 =
𝑥𝑖 − 𝜇𝛽

√𝜎𝛽
2 + 𝜖

Equation 5. Batch normalization formula without affine during the training phase

Ε[𝑥]new = (1 −momentum) × Ε[𝑥] + momentum × 𝜇𝛽

Var[𝑥]new = (1 −momentum) × Var[𝑥] + momentum ×
M

M− 1
𝜎𝛽
2

Equation 6. Calculating mean and variance for the testing phase

doi:10.6342/NTU202002143

13

y =
𝑥 − Ε[𝑥]

√Var[𝑥] + 𝜖

Equation 7. Batch normalization formula without affine during the testing phase

 Deep learning applications related to sequence annotation

The DeepPolyA was a CNN model that predicted whether the 161-nt RNA

sequence included the cleavage site or not [7]. The metrics like the F-score and

accuracy of DeepPolyA were better than the traditional approaches like support vector

machine (SVM) and random forest.

The COSSMO was a CNN-RNN model that predicted the percentage selected

indices of splicing sites [8]. Given an RNA sequence around the constitutive DS,

multiple RNA sequences around alternative ASs, multiple spliced RNA sequences, and

lengths between DS and ASs, COSSMO could predict the percentage selected indices of

these ASs. The accuracy and coefficient of determination (R2) of COSSMO were better

than the traditional model, such as MaxEntScan [55].

The SpliceAI was a CNN model that predicted whether the 10001-nt DNA

sequence on the human genome was centered at DS or AS [9]. The result showed that

the top-k accuracy of SpliceAI was better than the traditional method like MaxEntScan

[55]. The predicted locations of splicing sites on the mutation sequences were agreed

with the experimental data.

The model named DeepAnnotator was proposed to predict the gene structures of

prokaryotes [10]. The DeepAnnotator was composited of three separate models. The

first one predicted whether the center of RNA sequence was translation start site or not,

and the second one predicted whether the RNA sequence was centered by the

translation stop site or not, and the third one predicted whether the RNA sequence was

centered by coding nucleotide or not. The integrated prediction of the three models was

doi:10.6342/NTU202002143

14

the predicted result of gene structures. The F-score of the DeepAnnotator was 94%,

which was higher than the F-score-score of the Glimmer [56].

doi:10.6342/NTU202002143

15

 Materials and Methods

 The data preparation

The genome of Arabidopsis thaliana ecotype Col-0 named GCF_000001735.3

[11] was used as a reference genome. Transcriptome in nuclear chromosomes named

Araport11 was used as annotation data [1]. 5’ GRO-seq dataset and GRO-seq datasets

from the previous study [57] were first mapped on the genome by STAR [58], then it

was used to find locations of GRO-seq signals by HOMER [59]. The PAT-seq clusters

in the dataset named SRP089899 were used as evidence of CSs [60]. The data source

summary is showed in Table S2. The GRO-seq signals and PAT-seq clusters were

treated as TSS evidence and CS evidence.

The preprocessing of the annotation is described below. The miRNAs in the

transcriptome were removed. The left transcriptome was named as background

transcripts. If any gene in background transcripts had inconsistent data, then it and all

its transcripts would be removed. The left transcriptome was named as consistent

transcripts.

 The workflow of creating annotation datasets

There were three steps to generate the annotation datasets from the genome,

transcriptome, TSS evidence, and CS evidence.

The first step used experimental data and consistent transcripts to get the

reannotated transcripts. For every transcript, TSS evidence was considered related if it

was located on the region from upstream u nts of its TSS to its CS. For every transcript,

CS evidence was considered related if it was located on the region from the TSS to the

downstream d nt of its CS. For every transcript, the strongest TSS evidence must locate

on external 5’ UTR, and the strongest CS evidence must locate on external 3’ UTR;

doi:10.6342/NTU202002143

16

otherwise, the transcript failed to be reannotated and was discarded. For every

transcript, its TSS would be reannotated by its strongest TSS evidence, and its CS

would be reannotated by its strongest CS evidence. The example of the reannotating

transcript is shown in Figure 2. Figure S1 shows examples of transcripts that fail to be

reannotated. If all transcripts of a gene had the same boundary, then they would be

preserved; otherwise, they were discarded. The left transcriptome was named as

reannotated transcripts.

Reannotated transcripts must pass five filters. The score filter would remove the

gene and all its transcripts if the gene had any transcript which its score was worse than

T2. The overlapped filter would remove the gene and all its transcripts if one of its

transcripts were overlapped with the transcript of other genes on the same strand. The

alternative-splicing-site filter would remove the gene and all its transcripts if the gene

had any alternative splicing site. The coding filter would remove the gene all its

transcript if the gene had a non-coding transcript. The hypothetical-protein filter

would remove the gene and all its transcripts if the protein of gene belonged to

hypothetical protein. The left transcriptome was named as filtered transcripts. If the

gene name of the transcript in background transcripts and reannotated transcripts did not

exist in gene names of filtered transcripts, then these transcripts would be added to the

dataset named discarded transcripts. The filtered transcripts would be treated as

preserved transcripts. The recursive cleaning procedure would recursively remove

preserved transcript and add it to discarded transcripts if the region around its gene was

overlapped with the discarded transcripts. The procedure would be stopped until the

number of preserved transcripts stopped decreasing. Algorithm 1 shows the

pseudocode of the recursive cleaning procedure. Figure 3 shows the simple examples of

discarding preserved transcript.

doi:10.6342/NTU202002143

17

The second step used the genome and the preserved transcripts to create gene

annotation. The boundary was extended from upstream u nts to downstream d nts of the

preserved transcript. The double-strand region in the boundary would be selected. The

selected region was discarded if it had any nucleotide not belonging to nucleotide A, T,

C, or G, or the number of genes that it covered was larger than one. The left selected

regions were called clean selected regions. Figure 4 shows examples of creating clean

selected regions. The UTR and CDS were merged as exon, and then gene annotation

was created by using locations of TSSs, CSs, and splicing sites of transcripts. All the

regions that were not annotated were annotated as the intergenic region. The example in

Figure 5 shows the example of creating gene annotation of multiple-exon gene.

The third step split these regions, transcript annotation, and gene annotation into

many datasets. The data located on all five chromosomes was named DataWhole. The

regions and their annotation were then be split according to their belonging

chromosomes and strands. The data located on chromosomes 1, 2, 3, and 5 were named

DataTrain. Train1 ~ Train8 would be used to be training datasets for 8-fold cross-

validation of the deep learning model. Val1 ~ Val8 would be used to be validation

datasets for 8-fold cross-validation of the deep learning model. DataTest would be a

testing dataset of the deep learning model. The region could be classified into three

types. One was “region without exon,” another was “region with single-exon,” and the

other was “region with multiple-exon.”. TrainSmall, which is a training dataset for the

hyperparameter optimization procedure, was created by using regions that were the first

half shortest lengths of each region type in Train3. ValSmall, which is the validation

dataset for hyperparameter optimization procedure, was created by using regions that

were the first half shortest lengths of each region type in Val3. The splitting result is

shown in Table S3.

doi:10.6342/NTU202002143

18

Figure 2. Find evidence related to each transcript and use the strongest evidence

located on external UTR to redefine the boundary

Figure 3. The example of getting discarded transcript and removing preserved

transcript

doi:10.6342/NTU202002143

19

Algorithm 1. The recursive cleaning procedure

Required:

 P: The set of preserved transcripts

 D: The set of discarded transcripts

 u: The upstream distance from a transcript

 d: The downstream distance from a transcript

flag  true

while flag do

 discaredNames  empty set

 num  GetGeneNumber(P)

 for each p ∈ P do

 region  CreateRegion(p,u,d)

 if region is overlapped with transcripts in D then

 name  GetGeneName(p)

 discaredNames.add(name)

 for each p ∈ P do

 if GetGeneName(p) ∈ discaredNames then

 D.add(p)

 P.remove(p)

 if num = GetGeneNumber(P) then

 flag  false

return P

doi:10.6342/NTU202002143

20

Figure 4. The examples of creating clean selected regions

Figure 5. The demo of constructing gene annotation of a multiple-exon gene

(Notes: the intergenic region is not drawn in the figure.)

doi:10.6342/NTU202002143

21

 Label inference methods, loss functions, and model architectures

Figure 6. The schematic diagram of a) the model prediction demo, b) basic

inference demo, and c) hierarchy inference demo

Figure 6a shows the schematic diagram of the model and its prediction

example. The model would use a single-strand DNA sequence in a forward direction to

predict gene annotation. The goal of the training process was to make its prediction as

close to its answer as possible.

There were two types of inference methods. One method called the basic

inference method predicted the probability of exon, intron, and the intergenic region at

each position. The example is shown in Figure 6b. Equation 8 shows the formula of

the basic inference method. The other method that called the hierarchy inference

doi:10.6342/NTU202002143

22

method predicted the probability of gene and intron at each location. The example is

shown in Figure 6c. Equation 9 shows the formula of the hierarchy inference method.

There were also two types of losses. The basic loss was the mean categorical cross-

entropy, and the hierarchy loss was the mean of gene loss and intron loss. Equation 11

shows the formula of the basic loss. Equation 12 shows the formula of the hierarchy

loss. Equation 10 shows the formulas of the cross-entropy. The 𝑐𝑖 indicated the

predicted label type in position i. The 𝑦𝑖,𝑗
′ indicated the predicted value in position i and

label j, and the 𝑦𝑖,𝑗 indicated the true value in position i and label j. The C indicated the

number of label types. The L indicated the number of labels.

The deep learning model was composed of three different kinds of layers or

blocks, one is a batch normalization layer, another is the feature block, and the other is

the relation block. Figure 6a shows the model architecture of the deep learning model.

The basic building block of the feature block was CNN-ReLU-BN block (CRB block).

The output and the input of the CRB block were concatenated as a concatenated CRB

block. Many concatenated CRB blocks were stacked together as a feature block. Figure

7 shows the architectures of the CRB block, concatenated CRB block, and feature

block. There were three types of relation blocks. The first one is the basic relation block

(BR block), and the kernel size and output dimension of its CNN were one and three.

The second one is the basic hierarchy relation block (BHR block), and the kernel size

and output dimension of its CNN were one and two. The third one is the hierarchy

relation block (HR block), which is composed of two BHR blocks in which the output

dimension of each block is one. The first BHR block predicted gene probability, and the

second BHR block predicted intron probability. Figure 8 shows the architectures of the

three types of relation blocks. The model which used the BR block used the basic loss

and basic inference method. The model which used the BHR block and HR block used

doi:10.6342/NTU202002143

23

the hierarchy loss and hierarchy inference method. The weights and bias initialization

are described in Table S4. Models were built and trained by PyTorch, and all the other

parameter initialization was set to the default value of PyTorch.

𝑐𝑖 =

{

 exon arg max

𝑗
𝑦𝑖,𝑗
′ = 0

intron arg max
𝑗

𝑦𝑖,𝑗
′ = 1

intergenic region arg max
𝑗

𝑦𝑖,𝑗
′ = 2

Equation 8. Basic inference method

𝑐𝑖 =

{

intergenic region 𝑦′

𝑖,0
< thresholdgene

exon 𝑦′
𝑖,0
≥ thresholdgene and 𝑦

′
𝑖,1
< thresholdintron

intron 𝑦′
𝑖,0
≥ thresholdgene and 𝑦

′
𝑖,1
≥ thresholdintron

Equation 9. Hierarchy inference method

BCE(𝑦′𝑖, 𝑦𝑖) = −(𝑦𝑖 × ln 𝑦′𝑖 + (1 − 𝑦𝑖) × ln(1 − 𝑦′𝑖))

CE(𝑦′𝑖, 𝑦𝑖) = −∑𝑦𝑖,𝑗 × ln 𝑦′𝑖,𝑗

C−1

𝑗=0

Equation 10. Binary cross-entropy (BCE) and categorical cross-entropy (CE)

Lossbasic(𝑦′, 𝑦) =
1

L
∑CE(𝑦′𝑖, 𝑦𝑖)

L−1

𝑖=0

Equation 11. Basic loss

doi:10.6342/NTU202002143

24

Lossgene (𝑦′, 𝑦) =
1

L
∑BCE(𝑦′𝑖,0, 𝑦𝑖,0)

L−1

𝑖=0

Lossintron(𝑦′, 𝑦) =
1

∑ 𝑦𝑖,0
L−1
𝑖=0

∑𝑦𝑖,0 × BCE(𝑦′𝑖,1, 𝑦𝑖,1)

L−1

𝑖=0

Losshierarchy(𝑦′, 𝑦) =
Lossgene (𝑦′, 𝑦) + Lossintron(𝑦′, 𝑦)

2

Equation 12. Gene loss, intron loss, and hierarchy loss

Figure 7. The architectures of the a) CRB block, b) concatenated CRB block, and

c) feature block

Figure 8. The schematic diagrams of the relation blocks

doi:10.6342/NTU202002143

25

 Hyperparameter optimization procedure, cross-validation, testing, and

augmentation

Hyperparameter optimization procedure first used a random search to generate

40 hyperparameter sets and using them to create 40 models. These models were trained,

and the macro F-scores of the lowest validation losses were recorded. Then, Bayesian

optimization with the Gaussian process used all its previous results to generated a

hyperparameter set that may achieve the highest validation macro F-score. If the

Bayesian optimization found there was no improvement in five trials, then the

optimization procedure would stop. The hyperparameter set that achieved the highest

validation macro F-score was used for cross-validation. The hyperparameter space is

described in Table 1, and the total space size is 3072. The hyperparameter optimization

procedure was implemented with a python package called Optuna [61]. Adam optimizer

was used due to its ability to accelerate the training procedure. During training, if the

largest gradient was larger than one, then all the gradients were rescaled so that the

largest gradient was one. The batch size was 16, so the model could fit the memory

limitation of the graphics processing unit. The learning rate started at 0.001, as

suggested by Kingma’s study [48]. The epoch of the training procedure was 50, and the

training procedure would stop earlier if the validation loss were not decreasing for ten

epochs. The DNA sequence and gene annotation would be converted to numeric vectors

by one-hot-encoding.

The settings of the cross-validation of the deep learning model were similar to

the hyperparameter optimization procedure. There were only four differences. The first

one was that the epochs were extended to 100. The second one was that the training

procedure was stopped when validation loss stopped decreasing for 20 epochs. The third

one was that the batch size would decrease until it could fit the GPU memory. The

doi:10.6342/NTU202002143

26

fourth one was that the dropout was used with a dropout rate of 0.5, and the dropout was

applied between layers of the relation block and after batch normalization layers in the

feature block. The deep learning models were created based on the best hyperparameter

set. For each model, the weights of the lowest validation loss were saved. The trained

deep learning models were then tested on DataTest.

In order to help deep learning model be useful in real-world scenarios, data must

be augmented during training. During training, the regions would first be randomly

truncated. If the region included gene had the upstream region with u nts, then the

region would be truncated randomly from zero to u/10 nts from the 5’ of the region. If

the region included gene had the downstream region with d nts, then the region would

be truncated randomly from zero to d/10 nts from the 3’ of the region. If the origin

region with length l did not include any gene, then the region was first truncated

randomly from zero to l/2 from the 5’ of the region. Then the truncated region with

length r was truncated randomly from zero to r/2 from the 3’ of the region. After the

regions were truncated randomly, three regions would be randomly merged into one

region. If there were two regions left, then they would stay the same or be randomly

merged into one region. If there were one region left, then it would stay the same.

Figure 9 shows an augmentation example. During validating or testing, the origin

dataset would be used.

doi:10.6342/NTU202002143

27

Table 1. The hyperparameter space of the model

 Hyperparameter Values or type

Feature

block

Layer number of concatenated CRB blocks 4, 8, 12, and 16

The output channel number of the CRB

block

4, 8, 12, and 16

Kernel size of CNN 513, 1025, 1537, and

2049

Relation

block

Relation block type BR, BHR, HR

Hidden size of each layer in each direction 64, 96, 128, and 160

Layer number 1, 2, 3, and 4

Figure 9. Augmentation example (Notes: The direction of every region is 5’ to 3’.)

 Comparison of results on the testing dataset and potential transcript regions

There were several metrics to evaluate the performance of prediction. The base-

level metrics simply considered the performance on the base level. There was an F-

score for each kind of label. There was a macro F-score for overall performance. These

doi:10.6342/NTU202002143

28

formulas are shown in Equation 13 and Equation 14. The TP indicates the number of

true-positive, the FP indicates the number of false-positive, the FN indicates the number

of false-negative, and the N indicates the number of classes.

There also had other metrics that consider different levels like block-level and

chain-block-level. The block-level F-scores considered the performance on the block

level like exon block and intron block. The predicted block was considered accurate if

the boundary of the predicted block was the same as the boundary of the annotated

block. The chain-block-level F-score considered the performance on the chain-block

levels like gene and chained introns. The building blocks of the gene were all the exons

in the same gene. The building blocks of the chained introns were all the introns in the

same gene. The chained blocks were considered as correct if all the blocks were correct.

Figure S2 shows examples of annotation and its performance.

There were also metrics to evaluate the performance of site prediction. Equation

15 shows formulas about the distance of sites. The t indicates the target site, s indicates

the source site, n indicates the number of source sites, m indicates the number of target

sites, p indicates predicted site, and a indicates the answer site. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝒔,𝒕,𝒋 is the

distance between the closest source site to target sites j. If there were no source sites

around the target site j, the distance would be assigned as NaN. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝒔,𝒕 is

mean distance between the closest source site to target sites, and the mean method

named nanmean would ignore the NaN. The 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝐦𝐞𝐚𝐧 is the mean distance

between predicted sites and answer sites. The F-score of each kind of site could also be

calculated, and it indicated how well the locations of prediction and answer were

matched. Figure S3 shows the examples of annotation at the block level, their gene

boundaries, and metrics of distance and site prediction. Table 2 shows a summary of

metrics to be compared.

doi:10.6342/NTU202002143

29

The number of data to be compared is too small to use parametric tests like

Students’ t-test [62], so the Wilcoxon rank-sum test [63] was used. It assigned each

observation a rank and got the rank sum of each group, and then it calculated the

probability of a statistic called U to get the p-value. Equation 16 shows the equation of

the Wilcoxon rank-sum test. The ri is the rank of the data i, and the R is the sum of ri.

The ni is the number of data in dataset i. The Ui is the statistic value U of the dataset i.

The smaller U was used to calculate the probability of observation. If the medians of the

two datasets were not equal, the one-tailed test was used. Otherwise, the two-tailed was

used. The test was calculated by a module named exactRankTests [64].

In order to get the gene annotation on the whole genome and to reduce time

consumption, the potential transcript regions were selected from the genome. First of

all, the regions around the existed transcriptome of Araport11 on both strands were

selected. Secondly, the region which has nucleotide other than A, T, C, and G, was

discarded. Thirdly, the regions were merged if they were overlapped to each other. The

merged region was called the potential transcript region. Figure 10 shows the

example of creating potential transcript regions. The models were used to predict gene

annotation on potential transcript regions. The three peptide sequences of each gene

were generated by transeq from EMBOSS [65]. The HMMER3 [66] and pfam_scan.pl

[67] were used to scanning the peptide sequence to domains in Pfam-A (version 32.0)

[68]. If any of the peptide sequences of the gene had at least one domain existed in

Pfam-A, then the gene was viewed as the domain-including gene.

doi:10.6342/NTU202002143

30

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 =
2 ∙ recall ∙ precision

recall + precision

Equation 13. Recall formula, precision formula, and F-score formula

macro recall =
1

N
∑recall𝑖

N

𝑖

macro precision =
1

N
∑precision 𝑖

N

𝑖

macro F1 =
2 ∙ macro recall ∙ macro precision

macro recall + macro precision

Equation 14. Formulas of macro recall, macro precision, and macro F-score

distance𝑠,𝑡,𝑗 = {
min
𝑖∈[1,𝑛]

|𝑑𝑠,𝑖 − 𝑑𝑡,𝑗| if 𝑛 > 0

NaN if 𝑛 = 0

distance𝑠,𝑡 = nanmean
𝑗∈[1,𝑚]

(distance𝑠,𝑡,𝑗)

distancemean =
distance𝑝,𝑎 + distance𝑎,𝑝

2

Equation 15. The mean distance between predicted sites and answer sites

𝑅 =∑𝑟𝑖
𝑖

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = min (𝑈1, 𝑈2)

Equation 16. The Wilcoxon rank-sum test

doi:10.6342/NTU202002143

31

Figure 10. The examples of data related to potential transcript region

Table 2. The metrics to evaluate the performance

Metric type Details

F-score Exon, intron, and intergenic region

Macro F-score Base level

F-score of block-level Exon block and intron block

F-score of chain-block-level Gene and chained introns

Mean distance TSS, CS, DS, and AS

F-score of site prediction TSS, CS, DS, and AS

 The post-processing procedure

There were two kinds of problems in the predicted annotation. The one called

boundary problem was a problem that the boundary of the predicted intron could not

perfectly match the true intron. The other called fragment problem was a problem that

there were regions that their lengths were too short. The boundary post-processing

doi:10.6342/NTU202002143

32

method would relieve the boundary problem. The length filtering method would relieve

the fragment problem. The post-processing procedure using these two methods was

applied to the predicted result of deep learning to relieve these two problems. Figure 11

shows the schematic diagram of revising the predicted result of the deep learning model.

Before deciding the length threshold of fragments, the distribution of regions has

to be measured and fitted by the model. The log-length of the exon, intron, and gene

was assumed could be fit by the Gaussian mixture model with two components. The

outlier boundary for each component of the Gaussian model was set to be three standard

deviations lower to the mean value. The smallest outlier boundary of the components

would be the threshold to decide whether the region was fragment or not. The log-

length distribution of the predicted intergenic regions was used to be fit by the Gaussian

mixture model with four components. The smallest mean of four components was used

to be the threshold. Figure 12 shows the example of the log-length distribution of the

intergenic region and the example of the Gaussian model and the log-length distribution

of the predicted intergenic region. The blue line in Figure 12b indicates the summation

of all models, and the other lines indicate each component of the Gaussian model.

The following describes the length filtering method. If the lengths of the exon,

intron, or intergenic region were smaller than the threshold, then they would be tagged

as fragments. Then, the shortest fragment was chosen to be processed. If there were

multiple shortest fragments, the most upstream one was chosen to be processed. If the

neighbors of the shortest fragment had the same kind of label, then the label of the

shortest fragment was assigned as the label of neighbors, and they were merged into one

block. Otherwise, the label of the shortest fragment was assigned as the label of longer

neighbor, and they were merged into one block. The block was retagged as fragment if

it were smaller than its threshold. The whole procedure was repeated until there was no

doi:10.6342/NTU202002143

33

fragment of exon, intron, or intergenic region left. After that, the neighboring exons and

introns were grouped into the gene. If the gene were smaller than its length threshold,

then it would be retagged as the intergenic region. The exons and introns on it would be

retagged as part of the intergenic region.

The following described the boundary post-processing method. First of all, the

locations of canonical motifs of the splicing sites must be found. For every predicted

splicing site, the region around r nts was selected, and the location of its nearest

canonical motif was recorded if it existed. The radius r nts were decided by the scaled

Distancea, p. If there were two nearest canonical motifs, the most upstream one was

chosen. If the canonical motif was indeed around the predicted splicing site and was

inside the gene, then the splicing site was tagged as valid. If the splicing donor site and

splicing acceptor site of the intron were valid, then the boundary of the intron was

modified by the location of their nearest motifs. Otherwise, the intron would be

discarded. If there were introns overlapped, then they were merged into one intron.

Figure 13 shows examples of boundary post-processing procedure.

The prediction results on Val1 to Val8 were merged into one dataset named

PredictedVal. The grid search was used to find the best hyperparameters of the post-

processing procedure to create the best reviser to revise PredictedVal. The best reviser

would revise the predicted results of deep learning. Table 3 shows the hyperparameter

settings in the hyperparameter space of the post-processing procedure. Equation 17

shows the Lossrevision to evaluate the performances of the hyperparameter sets. The eb,

ib, g, and ci in Equation 17 indicate exon block, intron block, gene, chained introns,

and. The t, c, d, and a in Equation 17 indicate TSS, CS, DS, and AS.

doi:10.6342/NTU202002143

34

Figure 11. Prediction and revision of deep learning model

Figure 12. Examples of the log-length distribution of the intergenic region and the

Gaussian model and the log-length distribution of the predicted intergenic region

doi:10.6342/NTU202002143

35

Figure 13. The examples of the boundary post-processing procedure (The red

block indicates exon, and yellow block indicates intron)

Table 3. Hyperparameter settings of the post-processing procedure

ID Procedure The scale of Distancea, p

1 Length filtering method NaN

2, 3, 4, and 5 Boundary post-processing method 0, 1, 2, and 3

6, 7, 8, and 9 Length filtering method

Boundary post-processing method

0, 1, 2, and 3

10, 11, 12, and 13 Boundary post-processing method

Length filtering method

0, 1, 2, and 3

doi:10.6342/NTU202002143

36

Scoreblock = ∑ F1,𝑘
𝑘∈{eb,ib,g,ci}

Scoresite = ∑ F1,𝑘
𝑘∈{t,c,d,a}

Scoredistance = ∑
1

distancemean,𝑘 + 1
𝑘∈{t,c,d,a}

Lossrevision = 13 −
Scoreblock + Scoresite + Scoredistance +macro F1,base

13

Equation 17. The formula of the Lossrevision (Notes: The macro F1, base indicates the

macro F-score of the base level.)

 Training and testing procedure of Augustus

Augustus was used to comparing the deep learning model. Figure 14 shows the

schematic diagram of gene annotation prediction by Augustus. The Augustus directly

used double-strand DNA to predict transcript annotation. Then the predicted transcript

annotation was converted to gene annotation. The following describes the procedure of

training and testing Augustus, which took the previous study [69] as a reference. First of

all, the configuration file was created by “new_species.pl.” The parameters were

updated by using the “etraining” to train on DataTrain. After that, the hyperparameters

were updated by “optimize_augustus.pl.” The parameters were updated again by using

the “etraining.” Finally, the updated model was tested on the DataTest. The whole

procedure was repeated eight times.

The predicted transcripts of Augustus have multiple TSSs, multiple CSs, and

alternative splicing sites. The transcripts with most often TSS were preserved. If there

were many TSSs, then the transcripts with most upstream TSS were preserved. Then,

the transcripts with most often CS were preserved. If there still were many CSs, then the

transcripts with most upstream CS were preserved. For each kind of splicing site, the

doi:10.6342/NTU202002143

37

most often site was selected. If there were multiple sites, then the most upstream site

was selected. Then the gene annotation was derived by these transcripts.

Figure 14. The schematic diagram of gene annotation prediction by Augustus

doi:10.6342/NTU202002143

38

 Results

 The different settings of the boundary around the gene

The nucleotide composition profiles of the previous study [21] showed that the

DSEs were located within the region downstream of CS to downstream 100 nts. So, the

downstream distance from CS was set to be 100 nts. The locations of TFBS,

chromosome immunoprecipitation sites (ChIP sites), and DNase I hypersensitive sites

(DHSs) from Yu’s study were used as experimental data of the transcription [19]. The

numbers of genes that have transcription evidence located around it are showed in

Table 4. By analyzing Yu’s data, the distributions of the most positive location

difference between specific sites to each TSS of the gene are shown in Figure 15.

Figure 16 shows the percentage of genes supported by evidence and the number of data

of different settings of upstream distance. The result with 1000-nt upstream distance had

about 98% of genes that had evidence supported, and had a suitable number of regions

to be used. So, the upstream distance from TSS was set to be 1000 nts.

Table 4. The number of genes which have at least one data located around it

Type Number Type Number

TFBS 15657 DHS 26224

ChIP site 15021 Any 28412

doi:10.6342/NTU202002143

39

Figure 15. The percentage plot of genes which have evidence within the range

Figure 16. The plots of the percentages of genes supported by evidence and the

numbers of data of different upstream distance settings

 The statistic result of the experimental data and transcripts

The high-quality data was created by using the procedures described in section

3.2 and the distance setting in section 4.1. The numbers of the GRO-seq signals and the

PAT-seq clusters are shown in Table 5 and Table 6. The numbers and ratios of the

locations of the strongest evidence are shown in Table 7 and Table 8. The ratios of the

GRO-seq signals and the PAT-seq clusters are shown in Table 9. The mode location

0%
10%
20%
30%
40%
50%
60%
70%
80%

0
 ~

-5
0

0
 ~

 -
1

-1
0

0
0

 ~
 -

5
0

1

-1
5

0
0

 ~
 -

1
0

0
1

-2
0

0
0

 ~
 -

1
5

0
1

 ~
 -

2
0

0
1

TFBS

Chip site

DHS

Any

doi:10.6342/NTU202002143

40

differences between locations of the reference site and the experimental site are shown

in Table 10. The statistic result of distances and the location difference between TSSs

and CSs before and after reannotated is showed in Table 11. The numbers about

background transcripts, consistent transcripts, reannotated transcripts are shown in

Figure 17.

Table 5. The number of GRO-seq signal

Data Number

Raw data 14863

Data located on external 5' UTR of transcript 8870

The strongest data located on external 5' UTR of transcript 8362

Table 6. The number of PAT-seq cluster

Data Number

Raw data 112226

Data located on external 3' UTR of transcript 45927

The strongest data located on external 3' UTR of transcript 21260

Table 7. The number and ratio of the locations of the strongest GRO-seq signal

Location Number Ratio

External 5' UTR of transcript 8362 68%

The region on the transcript but not on external 5' UTR 2624 21%

The region upstream of transcript 1335 11%

doi:10.6342/NTU202002143

41

Table 8. The number and ratio of locations of the strongest PAT-seq cluster

Location Number Ratio

External 3' UTR of transcript 21260 78%

The region on the transcript but not on external 3' UTR 3396 13%

The region downstream of the transcript 2457 9%

Table 9. The ratios of the GRO-seq signals and the PAT-seq clusters

 TSS evidence CS evidence

The percentages of evidence located in

corresponding external UTR among all evidence

59.7% 40.9%

The percentage of evidence located in

corresponding external UTR is the strongest

94.3% 46.3%

Table 10. The mode location difference between reference and experimental site

TSS CS

The closest reference location to the experimental location 0 1

The closest experimental location to the reference location 0 -1

Table 11. The statistic result of distances between the reference and redefined site

 Min Median Mode

TSS 0 81 0

CS 0 83 0

doi:10.6342/NTU202002143

42

 The statistic result of transcripts and regions after filtering and cleaning

The summary of the numbers of the transcripts is shown in Figure 17. The Venn

diagram of the transcripts passed filters is shown in Figure S4. Table S6 shows the

statistic result of each kind of region. The percentages of each label are displayed in

Figure 18. The number of regions on each dataset is shown in Table S5. Figure 19

shows the nucleotide composition and motif around each kind of site. The zero in

Figure 19 indicates the location after TSS, location before the CS, location after DS,

and location before the AS. Table 12 shows the numbers of the splicing site motifs and

their percentage in the whole dataset. Table S7 shows the motifs and their percentages

of the splicing site in DataTrain.

Figure 17. The numbers and percentages of transcripts after each preprocessing

doi:10.6342/NTU202002143

43

Figure 18. The ratios of each kind of label in different datasets

Table 12. The data of the splicing site motifs in gene annotation

0%

20%

40%

60%

80%

100%

D
at

aW
h
o
le

T
ra

in
1

T
ra

in
2

T
ra

in
3

T
ra

in
4

T
ra

in
5

T
ra

in
6

T
ra

in
7

T
ra

in
8

V
al

1

V
al

2

V
al

3

V
al

4

V
al

5

V
al

6

V
al

7

V
al

8

D
at

aT
ra

in

D
at

aT
es

t

T
ra

in
S

m
al

l

V
al

S
m

al
l

Intron Exon Intergenic region

Splicing donor site Splicing acceptor site

Motif Count Percentage (%) Motif Count Percentage (%)

GT 4019 99.235 AG 4050 100

GC 30 0.741

TT 1 0.025

doi:10.6342/NTU202002143

44

Figure 19. The nucleotide composition (a~d) and motif (e~h) of each site in gene

annotation (Notes: The motifs are generated by WebLogo3 [70].)

doi:10.6342/NTU202002143

45

 Hyperparameter searching result on the small dataset

The hyperparameter sets were created based on the method described in section

3.4. The first 40 trials were created based on the random search, and the left trials were

created based on the Bayesian optimization. The total number of trials was 53. The

Bayesian optimization had executed 13 times. The optimization was early stopped

because there was no improvement in these five trials after the trial47. Trial47 had the

best macro F-score, which was 0.95. Table 13 shows the base performance of trial47.

Table 14 shows the settings with the highest count in the top ten trials. Table 15 shows

the best top ten trials of 53 trials.

Table 13. The base performance of the trial47

Validation

metric

Exon F-score Intron F-score Intergenic

region F-score

Macro F-

score

Value 0.94192 0.9338 0.98299 0.95343

Table 14. The settings with the highest count in the top ten trials

Block type Hyperparameter Setting with the

highest count

Feature block Layer number of concatenated CRB blocks 12

The output channel number of the CRB block 4

Kernel size of CNN 2049

Relation block Relation block type HR

Hidden size of each layer in each direction 160

Layer number 4

doi:10.6342/NTU202002143

46

Table 15. Top 10 Macro F-score and their hyperparameters in decreasing order

 Feature block Relation block

Id Layer

number

Output number

of each layer

Kernel

size

Relation

type

Hidden

number

Layer

number

Macro

F-score

47 16 4 2049 HR 160 4 0.95343

43 12 4 2049 HR 64 4 0.95014

1 12 4 2049 HR 160 3 0.94427

18 8 4 1025 BHR 160 4 0.94379

15 12 4 1025 HR 96 2 0.94210

24 12 4 2049 BR 64 3 0.93873

45 16 4 2049 BHR 160 4 0.93653

46 16 4 2049 BHR 160 4 0.93312

52 4 4 2049 HR 64 4 0.93191

49 4 4 2049 BHR 160 4 0.93105

 Result comparison of deep learning model and Augustus on the testing dataset

Based on the setting of trial47, the eight-fold cross-validation was executed, as

depicted in section 3.4. The batch size was slightly decreased from 16 to 14 to fit the

memory of the GPU. The eight Augustus models were trained based on the method in

section 3.7. Figure 20 shows the comparison plots of performances between Augustus

and the deep learning model on the DataTest. Wilcoxon rank-sum test was used to test

their significance. If its p-value is less than 0.05, then it was considered as statistically

significant, and it has a superscript with one star (*). The performances between

Augustus and the deep learning model are shown in Table 16. The tick  in the table,

doi:10.6342/NTU202002143

47

means the result of the deep learning model was significantly better than the result of

Augustus. The triangle  in the table, means the results have no statistical significance.

The cross  in the table, means the result of the deep learning model was significantly

worse than the result of Augustus. Table 17 shows the statistic result of Distancea, p on

PredictedVal. Figure 21 and Figure 22 show the distributions and the Gaussian models

of log-lengths of exons, introns, genes, and intergenic regions in DataTrain and

PredictedVal.

doi:10.6342/NTU202002143

48

Figure 20. The comparison plots between Augustus and deep learning (DL)

Table 16. The performances between Augustus and the DL on the testing dataset

doi:10.6342/NTU202002143

49

Median Augustus DL Compare P-value Status

Exon F-score 0.934 0.958 Greater 0.00008* 

Intron F-score 0.939 0.959 Greater 0.00016* 

Intergenic region F-score 0.997 0.987 Less 0.00008* 

Macro F-score 0.957 0.969 Greater 0.00233* 

Intron block F-score 0.900 0.844 Less 0.00008* 

Exon block F-score 0.588 0.524 Less 0.00008* 

Chained introns F-score 0.611 0.526 Less 0.00008* 

Gene F-score 0.000 0.000 Equal 1.00000 

TSS F-score 0.016 0.011 Less 0.29417 

CS F-score 0.019 0.016 Less 0.42782 

DS F-score 0.933 0.907 Less 0.00008* 

AS F-score 0.943 0.892 Less 0.00008* 

Mean distance of TSS 123.4 135.3 Greater 0.25268 

Mean distance of CS 81.9 283.7 Greater 0.00521* 

Mean distance of DS 17.6 15.7 Less 0.22090 

Mean distance of AS 11.6 19.8 Greater 0.00008* 

Table 17. The Distancea, p about the splicing sites on the PredictedVal

Distancea, p Splicing donor site Splicing acceptor site

Value 21.3 23.4

doi:10.6342/NTU202002143

50

Figure 21.The distribution and the Gaussian model of the log-length (nt) of the

exon and intron on the DataTrain and PredictedVal (x-axis: log 10 of length, y-axis:

density) (Notes: The blue line in the figures means the summation of all models,

and the others mean components of the Gaussian model.)

doi:10.6342/NTU202002143

51

Figure 22. The distribution and the Gaussian model of the log-length (nt) of the

gene and intergenic region on the DataTrain and PredictedVal (x-axis: log 10 of

length, y-axis: density) (Notes: The blue line in the figures means the summation of

all models, and the others mean components of the Gaussian model.)

 The revised result of deep learning model on the testing dataset

The post-processing procedure introduced in section 3.6 was applied to

PredictedVal. Table S8 shows the hyperparameters of revision settings and their

Lossrevision on PredictedVal. The Reviser8 and Reviser9 had the lowest values, and the

values are 0.502. The Reviser8 was chosen to be the best reviser to revise the predicted

result of deep learning. Table 18 shows the details of the Reviser8. The Reviser8 was

doi:10.6342/NTU202002143

52

applied to the predicted results on PredictedVal. Figure 23 shows the comparison plots

of performances between the origin result and the revised result of the deep learning

model. The performances between the origin result and the revised result of the deep

learning model are shown in Table 19. The intergenic region F-score in origin and

revised, which estimated at the fifth decimal places, are 0.98705 and 0.98714. The F-

score of the CS prediction in origin and revised, which estimated at the fifth decimal

places, are 0.01566 and 0.01563.

Table 18. The detail of the Reviser8

Method (in order) Type Value

Length filtering method Exon length 22.2

Intron length 37.9

Intergenic region length 2.8

Gene length 333.1

Boundary post-processing method DS distance 42.7

AS distance 46.8

doi:10.6342/NTU202002143

53

Figure 23. The comparison plots between origin result and the revised result of the

deep learning model

doi:10.6342/NTU202002143

54

Table 19. The performances between origin result and the revised result of the

deep learning model

Median Origin Revised Status P-value Status

Exon F-score 0.958 0.957 Less 0.32269 

Intron F-score 0.959 0.955 Less 0.32269 

Intergenic region F-score 0.987 0.987 Greater 0.56076 

Macro F-score 0.969 0.967 Less 0.25268 

Intron block F-score 0.844 0.886 Greater 0.00148* 

Exon block F-score 0.524 0.566 Greater 0.00521* 

Chained introns F-score 0.526 0.600 Greater 0.00521* 

Gene F-score 0.000 0.000 Equal 1.00000 

TSS F-score 0.011 0.013 Greater 0.34957 

CS F-score 0.016 0.016 Less 0.62922 

DS F-score 0.907 0.936 Greater 0.00148* 

AS F-score 0.892 0.930 Greater 0.00008* 

Mean distance of TSS 135.3 52.6 Less 0.00016* 

Mean distance of CS 283.7 55.8 Less 0.00016* 

Mean distance of DS 15.7 11.7 Less 0.00031* 

Mean distance of AS 19.8 13.1 Less 0.00016* 

doi:10.6342/NTU202002143

55

 Comparison of the revised result of deep learning model and the result of

Augustus on the testing dataset and potential transcript regions

Figure 24 shows the comparison plot of performances between the result of

Augustus and the revised result of the deep learning model on DataTest. The

performances between the result of Augustus and the revised result of the deep learning

model on DataTest are shown in Table 20.

For each transcript in Araport11, a DNA region was selected from upstream

1000 nts of its TSS to downstream 100 nts of its CS. Only the DNA region with

nucleotide A, T, C, and G was preserved, and the preserved regions were merged as

potential transcript regions, as describes in section 3.5. The gene structure was created

from transcripts in potential transcript regions. For each gene, three peptides derived

from it were search against domains in Pfam-A, and the gene was viewed as a domain-

support gene if any peptide included any domain. The genes derived from transcripts of

Araport11, Augustus, and revised prediction of deep learning model on these regions

were extracted and were evaluated by the above methods. Figure 25, Figure 26, and

Figure 27 show the boxplot of the results. Table 21 shows the average number of genes

that match any domain in Pfam-A.

doi:10.6342/NTU202002143

56

Figure 24. The comparison plots between Augustus and DL with revision

doi:10.6342/NTU202002143

57

Table 20. The performances between the result of Augustus and the revised result

of deep learning model on the testing dataset

Median Augustus DL

with

revision

Status P-value Status

Exon F-score 0.934 0.957 Greater 0.00008* 

Intron F-score 0.939 0.955 Greater 0.00093* 

Intergenic region F-score 0.997 0.987 Less 0.00008* 

Macro F-score 0.957 0.967 Greater 0.00093* 

Intron block F-score 0.900 0.886 Less 0.00093* 

Exon block F-score 0.588 0.566 Less 0.00140* 

Chained introns F-score 0.611 0.600 Less 0.36962 

Gene F-score 0.000 0.000 Equal 1.00000 

TSS F-score 0.016 0.013 Less 0.34934 

CS F-score 0.019 0.016 Less 0.31057 

DS F-score 0.933 0.936 Greater 0.24382 

AS F-score 0.943 0.930 Less 0.00016* 

Mean distance of TSS 123.4 52.6 Less 0.00008* 

Mean distance of CS 81.9 55.8 Less 0.00008* 

Mean distance of DS 17.6 11.7 Less 0.00016* 

Mean distance of AS 11.6 13.1 Greater 0.02494* 

doi:10.6342/NTU202002143

58

Figure 25. The boxplot of the number of genes

Figure 26. The boxplot of the ratio of genes that match any domain in Pfam-A

Figure 27. The boxplot of the number of genes that match any domain in Pfam-A

Table 21. The average number of genes that match any domain in Pfam-A

The deep learning model with revision Augustus Araport 11

18642.1 21961.3 27343

doi:10.6342/NTU202002143

59

 Discussion

 Different kinds of evidence can affect the percentage of the genes that have

evidence supported

Figure 16 shows that the percentages of the TFBS are higher than the

percentages of the DHS and the ChIP site. The reason behind this might be that the

TFBS was predicted by searching its similarity to existed motifs, and the DHS and the

ChIP site were from the experimental data. The experiment might lose some locations

related to transcription. The percentages of DHSs are higher than the percentages of the

ChIP sites, and this may be caused by the experimental property they had. DHSs are the

location that lacks chromatin on DNA sequence, so the DNase I can hydrolyze that parts

of DNA. It is less specific than the result of the ChIP site because the ChIP site is from

the ChIP-seq, which captures transcription factors (TFs) by using the TF-specific

antibody. So, the DHS is expected to be less specific than the ChIP site. The percentage

of the gene which has any evidence in it is slightly lower than the percentage of TFBS

at settings of 2000-nucleotide and 1500-nucleotide upstream distance, as depicted in

Figure 16. It is because only the DNA region from -2000 nts to +200 nts was used to

search TFBSs, but the experimental data did not have this restrain [19]. The same

reason causes the problem in the setting of 1500-nucleotide upstream distance.

 The transcripts have transcription-related evidence around their TSSs

The previous study showed that 63% of predicted TFBSs were located -400 nts

to +200 nts and that 86% of predicted TFBSs were located -1000 nts to +200 nts [19]. It

showed most of the TFBSs located within the region around TSS. Figure 15 shows that

most of the genes have at least one evidence of transcription located directly on the gene

body. Figure 16 shows the percentage of genes that have at least one evidence located

doi:10.6342/NTU202002143

60

within the region with specific upstream distances. The percentages in Figure 16 are

pretty high because the gene had averagely 5.4 TFBSs [19], so one gene likely has at

least one TFBS in the setting of 1000-nt upstream distance. The previous study [71]

showed that some elements located on the gene (especially on introns) could indeed

affect transcription initialization. The result in Figure 15 agrees with the previous study

that elements downstream of TSS might relate to transcription.

 Different upstream distances can have a massive impact on the number of data

and the percentage of genes supported by transcription evidence

As shown in Figure 16, the settings of the upstream distance have a massive

impact on the number of data. The result with 500-nt upstream distance has the most

significant number of data, but the percentage of genes that have transcription evidence

supported is the lowest. The result with 2000-nt upstream distance has the most

significant percentage of genes that have transcription evidence supported, but the

number of data is the lowest. The larger upstream distance is used, the fewer data are

included. This situation is the opposite of the percentage of genes that have transcription

evidence supported. The larger upstream distance is used, the larger percentage of genes

have transcription related evidence supported. Because the larger upstream distance is,

there are more chances of covering the low confidence transcript, and the region covers

the low confidence transcript will be discarded.

 Most locations of evidence are near external UTRs

About 60% of GRO-seq signal locations are located in external 5' UTR of the

consistent transcripts, and 41% of PAT-seq cluster locations are located in external 3'

UTR of the consistent transcripts, as shown in Table 9. There are many GRO-seq

signals and PAT-seq clusters located outside the existed transcript. There may be three

doi:10.6342/NTU202002143

61

reasons behind this. The first possible reason is that these signals are not filtered by the

threshold so that they might be noise generated by background. The second possible

reason is that many transcripts have not been annotated. The low expression or specific

expression situation of these transcripts might be the reason that they are not annotated.

The third possible reason is that some transcript annotation lacks UTR or its UTRs are

not annotated correctly, so the evidence cannot locate on their external UTRs correctly.

Table 7 shows that most of the strongest GRO-seq signals are located on external 5’

UTR, it indicates that the GRO-seq signals can indeed capture location around the TSS.

Table 8 shows that most of the strongest PAT-seq clusters are located on external 3’

UTR, it shows that the PAT-seq clusters can indeed capture location around the CS.

Table 9 shows that 94% of GRO-seq signals located on external 5’ UTR of the

consistent transcripts are the strongest signal and that 46% of PAT-seq signals located

on external 3’ UTR of the consistent transcripts are the strongest signal. The percentage

of GRO-seq signals is twice as large as the percentage of PAT-seq signals. It seems that

the 5’ UTR that has GRO-seq signals will likely have about one GRO-seq signals on it

and that 3’ UTR that has PAT-seq clusters will likely have about two PAT-seq clusters

located on it.

 The boundary of the reannotated transcript is close to the existed boundary

Table 10 shows that the mode location differences between the reference TSSs

and experimental TSSs are zero nts, and this indicates that the TSS evidence can match

the locations of existed TSSs. Table 11 shows that the mode location difference of

TSSs before and after redefined is zero nts, and this indicates that the location of the

strongest experimental TSSs has no bias to reference. Table 10 shows the most often

locations of the experimental CSs are 1-nt upstream from reference CSs, and this

doi:10.6342/NTU202002143

62

indicates that the location of experimental CSs has a bias to reference CSs. Table 11

shows that the mode location difference of CSs before redefined and after redefined is

zero nucleotides. There might be a reason behind the difference. The experimental CSs

are locations defined by PAT-seq clusters, but the redefined CSs are locations defined

by the strongest PAT-seq cluster in the transcript. So, the PAT-seq clusters are likely to

be 1-nt upstream from reference CSs, but the strongest PAT-seq clusters have no bias to

reference CSs and that locations of the experimental CSs agree with locations of the

reference CSs.

 The nucleotide compositions around different kinds of sites agree with the

previous studies

The previous study that used full-length cDNA to get nucleotide compositions

on Arabidopsis showed that 60% of nucleotides at TSS were nucleotide A and that there

were peaks of nucleotide T and a peak of nucleotide C before the TSS, and it also

showed AT-rich region was upstream 30 nts from TSS [72]. The previous study which

used the GRO-seq signal to define TSS showed that the nucleotide A was the most

dominant nucleotide on the TSS, the nucleotide T or nucleotide C was upstream from

TSS, and AT-rich region was upstream 30 nts from TSS [57]. Figure 19a and Figure

19e also shows similar results to these previous studies [57, 72]. The previous studies

also showed that there was a peak of nucleotide A, followed by a peak of nucleotide T,

and then followed by a peak of nucleotide A around the CS, and they also showed the

T-rich region was downstream 20~100 nts of the CS [21, 72, 73]. The previous result

studied element around the CS showed the last nucleotide before the CS is dominated

by nucleotide A [73]. Figure 19b and Figure 19f also shows similar results to the

previous studies [21, 72, 73]. As shown in Table 12, 99% of DS motifs in gene

doi:10.6342/NTU202002143

63

annotation are GT, and 100% of AS motifs in gene annotation are AG. The previous

result also showed that the motif of canonical DS was GT, and the motif of the

canonical AS was AG [72], So the canonical motif in Table 12 agrees with the previous

result [72].

 There is a tradeoff between the quality of annotation and the number of

transcripts, and the number of high-quality data is rare

The numbers of transcripts are shown in Figure 17. It shows that 99.7% of

background transcripts are consistent, and it means the data is reliable. Only 12.2% of

consistent transcripts can be reannotated by the evidence. It is the most significant

bottleneck of data cleaning, and it shows only little data have evidence supported on

their boundary. About 41.4% of reannotated transcripts can pass five transcript filters.

Only 24.4% of filtered transcripts have no discarded transcripts nearby and can be

preserved, and it is the second significant bottleneck of data cleaning. 89.5% of

transcripts are in clean selected regions. The number of the consistent transcripts is

93720, and the number of transcripts in the clean selected regions is 1031. It shows that

there are only about 1% of the consistent transcript left in the data. There is a tradeoff

between the quality of annotation and the number of transcripts. Although the data is

clean, the number of transcripts is too small, and it makes models hard to recover the

whole transcriptome.

 The hyperparameter optimization can find well hyperparameters in a few trials

The best trial is trial47, and its macro F-score is 0.953, as shown in Table 15.

The settings with the highest count in Table 14 similar to the best trial, trial47, except

the number of layers in feature block is 12, not 16. The F-scores of the exon, intron, and

the intergenic region are 0.942, 0.934, and 0.983, as shown in Table 13. The label order

doi:10.6342/NTU202002143

64

of the biggest F-score to the smallest F-score is the intergenic region, exon, and intron.

The label order of the largest portion to the smallest portion is the intergenic region,

exon, and intron, as shown in Figure 18. These two orders are the same, and it shows

that the higher portion the label number has, the higher its F-score is. The layer number

of the concatenated CRB block in the feature block tends to be as large as 12. It is

because as the number of layers increase, it can learn more abstract features. The

phenomenon is similar to ResNet, Wide Residual Networks, DenseNet, and

EfficientNet, which showed a deeper layer could have better performance [3, 43, 74,

75]. The output number of concatenated CRN blocks in the feature block tends to be as

small as 4. The phenomenon is a contradiction with the observation in the previous

researches that showed that the larger output number of each block could increase

performance [3, 27, 75]. Although the DenseNet can have very thin layers due to its

ability to reuse features of all previous layers, the research showed that the larger output

number of each block could increase performance [3]. The phenomenon might be

caused by the overfitting when the model parameters are too many, and the data is not

sufficient to make a model generalize well on unseen data. So, the dropout would be

used during cross-validation to prevent overfitting. The kernel size in the feature block

tends to be as large as 2049. The phenomenon is expected because the larger kernel size

can increase the receptive field. So, it can capture a larger feature. The number of

hidden units in each RNN layer tends to be as large as 160. The phenomenon is

expected because the more hidden unit can increase the memory and their parameters to

learn more features. The previous research showed that RNN with more hidden units

could achieve better results [76]. The number of RNN layers tends to be as large as 4.

As mentioned before, it is because as the number of layers increase, it can learn more

abstract features. The models that used the hierarchy inference method have better

doi:10.6342/NTU202002143

65

macro F-score than the models that used the basic inference method. Among the model

used the hierarchy inference method, the five out of ten of the relation block type are

hierarchy relation block; the four out of ten are basic hierarchy relation block. It seems

the hierarchy relation block is slightly better than the basic hierarchy relation block.

 The result of deep learning and result of Augustus have their strength and

weakness

Augustus and deep learning have their strength and weakness, as shown in

Table 16. The exon F-score, intron F-score, and macro F-score of the deep learning

model are significantly better than Augustus. Intergenic region F-score of deep learning

model is significantly worse than Augustus. Besides the base-level metrics, the

additional metrics were also be used to test these two kinds of models. Both block-level

performances of the deep learning model are significantly worse than Augustus. One of

the two chain-block-level performances, two of the four distance performances, and two

of the four site prediction of the deep learning model are significantly worse than

Augustus. Although the overall base-level performances of the deep learning model are

significantly better than Augustus, the additional performances show the opposite

situation. The design of the loss function and hyperparameter optimization procedure

might cause this problem. The loss function is designed to minimize the difference

between answer and prediction on the base level, and the optimized target of

hyperparameter optimization is macro F-score of the base level. It is hard to design the

loss function on these additional metrics. So, the post-processing procedure would be

applied to the predicted result of deep learning to improve the overall performance.

doi:10.6342/NTU202002143

66

 The result of deep learning has fragment problem and boundary problem,

and the data in DataTrain and PredictedVal can provide information for post-

processing procedure

The log-length distributions of the exon, intron, and gene on DataTrain and

PredictedVal are similar, and the only difference is there are some predicted regions

shorter than most regions of each type, as shown in from Figure 21, Figure 22a, and

Figure 22b. The distributions of the log-length of the intergenic region on DataTrain and

PredictedVal are similar, as shown in Figure 22c and Figure 22d. The log-length

distributions around 2 and 3 are the lengths of downstream intergenic regions and

upstream intergenic regions, and the log-length distribution around 3.5 is the lengths of

regions with no exon. The only difference is the log-length distribution around 0.5,

which is the length distribution of fragments of the predicted intergenic region. The

values of Gaussian models will be used in the length filtering method, and the fragment

problem can be relieved, as described in section 3.6.

Table 17 shows the Distancea, p of DS is 21 nts, and the Distancea, p of AS is also

23 nts. These indicate the answer site is nearby the predicted site. The problem can be

relieved by the boundary post-processing method, as described in section 3.6. The

boundary post-processing method needs canonical motifs on the DataTrain. Table S7

shows that the canonical motifs of the DS on the DataTrain are GT, and it also shows

that the canonical motif of the AS on the DataTrain is AG. As expected, these canonical

motifs on DataTrain are the same as canonical motifs on Datawhole, as shown in Table

12. The canonical motifs GT and AT are used for the boundary post-processing method

to relieved the boundary problem, as described in section 3.6.

doi:10.6342/NTU202002143

67

 The post-processing procedure can improve the result of the deep learning

model

As shown in Table 18, reviser8, which is the best reviser, treats region which its

length is small than its threshold as a fragment and removes it by the length filtering

method. Then it uses the boundary post-processing method to fix the intron boundary.

The exon F-score, intron F-score, macro F-score, and F-score of CS prediction are

worse after reviser8 is used, as shown in Figure 23a, Figure 23b, and Figure 23e.

Fortunately, as shown in Table 19, the statistic result shows no significant difference in

these metrics after reviser8 is used. As shown in Figure 23d and Table 19, the gene F-

score has not changed after the reviser8 is used. The F-score of TSS prediction and

intergenic region F-score are better after reviser8 is used, as shown in Figure 23a and

Figure 23e. Unfortunately, as shown in Table 19, the statistic result shows no

significant difference after reviser8 is used. All the other metrics are better after the

post-processing procedure, as shown in Figure 23. They are all significantly better after

the post-processing procedure, as shown in Table 19. It shows the post-processing

procedure can indeed improve almost all the metrics and without any significant loss of

performances.

 The deep learning model with the post-processing procedure is competitive

to Augustus in many places

The deep learning model with the post-processing procedure has been compared

again to Augustus. The result is shown in section 4.7. As shown in Table 20, two of the

three base-level F-scores, and macro F-score on the base level, and three of the four

distance performances of the deep learning model with the post-processing procedure

are significantly better than Augustus. The p-values of the tests in chain-block-level

doi:10.6342/NTU202002143

68

performances do not reach the statistical significance, as shown in Table 20. As shown

in Table 20, one of the three base-level F-scores, both block-level performances, one of

the four distance performances, and one of the four site prediction of the deep learning

model with the post-processing procedure are significantly worse than Augustus.

Overall, the base-level performances and distances of the deep learning model with the

post-processing procedure are better than Augustus. The block-level performances of

the deep learning model with the post-processing procedure are worse than Augustus.

The chain-base-level performances and site prediction of the deep learning model with

the post-processing procedure are similar to Augustus. As shown in Table 20, the 6 out

of 16 metrics in the revised result of deep learning are significantly better than

Augustus, the 5 out of 16 metrics in the revised result of deep learning are significantly

worse than Augustus, and 5 out of 16 metrics have no statistical significance. These

results show that the deep learning model with the post-processing procedure is

competitive to Augustus.

 The difficulty of getting a good result in each metric

As shown in Figure 24, the mean distances in the DS and AS are smaller than

mean distances in TSS and CS, and the site-prediction F-scores of DS and AS are far

higher than site-prediction F-scores of TSS and CS. This phenomenon might be because

the motifs of the DS and AS are more conserved than motifs of the TSS and CS, as

shown in Figure 19. There are 3415 DSs and 3415 ASs in DataTrain, as shown in Table

S7. As shown in Table S5, there are 1636 regions in DataTrain, so there are 818

transcripts in DataTrain. It indicates that there are 818 TSSs and 818 CSs in DataTrain.

So, the other possible reason is that there are more DSs and ASs than TSSs and

cleavages sites, so it makes the performance s of the splicing site could be better.

doi:10.6342/NTU202002143

69

As shown in Figure 24, different types of metrics have some interesting trends.

The performances of base-level metrics are higher than performances of block-level

metrics because a correct block needs all its bases to be correct, and all its bases to be

correct are hard. The block-level metrics are higher than chain-block-level metrics

because correct chained blocks need all their blocks to be correct, and all their blocks to

be correct are very hard. The intron block F-scores are higher than the exon block F-

score because the boundary sites of the intron, which are DS and AS, have higher

performances than TSS and CS, which are the two boundary sites of the exon. The

chain-intron F-scores are higher than the gene F-score because the performance of the

intron block is better than the performance of exon block. It seems the site prediction

performance of the TSS and CS is a key point in the overall performance. If the site

prediction performance of the TSS and CS can be improved, then the mean distance of

them, exon block F-score, and gene F-score can all be improved. As mentioned above,

the number of TSS and CS is very low. So, increasing the number of them or designing

some loss for them would be the possible solutions.

 The deep learning model with the post-processing procedure can predict

domain-including genes in potential transcript regions

As shown in Figure 26, the percentage of genes derived from Araport11 has at

least one domain in Pfam-A is very low. It is because genes in Araport11 were derived

from all kinds of transcripts. It included transcripts like non-coding transcripts. The

number of Araport11 protein-coding genes was 27655 [1]. It is similar to the number of

domain-including genes in potential transcript regions, which is 27343, as shown in

Figure 27 and Table 21. As shown in Figure 25 and Figure 26, the numbers of genes

from the result of Augustus and the revised result of deep learning model are similar,

doi:10.6342/NTU202002143

70

but the ratio of domain-including genes from the deep learning model with revision is

less than the ratio from Augustus. The poor performance of the revised result of deep

learning on the exon block and the intron block might be the reason. The performance

on the exon block and the intron block should be improved, so the predicted result on

the potential transcript regions would be better. The numbers of domain-supported

genes from the deep learning model with revision and Augustus are lower than the

number of domain-supported genes from Araport11, as shown in Figure 27. There are

two possible reasons. One is that only a few genes are used to train both models, so

these two kinds of models cannot predict all the domain-supported genes in the potential

transcription regions. The other reason is that the number of domain-supported genes of

Araport11 may be overestimated, and the actual number of domain-supported genes is

not that much.

 The comparison of other annotation applications

The proposed deep learning model has some advantages over some existed

methods. Unlike DeepAnnotator [10] that trained multiple submodels independently to

accomplish the task, the submodels of the proposed deep learning model can be trained

together. The transcript-related basic hierarchy block in the hierarchy block can learn

features from the feature block. The intron-related basic hierarchy block in the hierarchy

block can learn features from the feature block and transcript-related basic hierarchy

block. Unlike SpliceAI [9] could only predict the splicing site and DeepPolyA [7] could

only predict the CS, the proposed model can predict full annotation. The proposed

architecture of the deep learning model does not need to analyze the feature

composition and can learn the features it needs, unlike Augustus [2], which needed to

doi:10.6342/NTU202002143

71

analyze the feature composition of annotation, and needed to design many submodels to

detect these features.

 Future work on improving model

Currently, the proposed deep learning model cannot be significantly better than

Augustus in all the metrics. Although the overall base-level metrics and overall distance

metrics have better results than the results of Augustus, the other metrics still need to be

improved. One possible solution is to change the target of hyperparameter optimization

from macro F-score to Lossrevision. The other possible solution is to incorporate the 8362

experimental TSSs and 21260 experimental CSs to existed data, as shown in Table 5

and Table 6. So, the model can have more data to use. The deep learning model needs a

large number of data to achieve a better result due to its high number of parameters.

Currently, the number of high-quality data is far smaller than the number of coding

genes. There is indeed a tradeoff between the quality of data and the number of data, so

one way to get more data is to increase the tolerance of the preprocessing procedure to

the low-quality data. As discussed in section 5.3, the upstream distance can affect the

number of data. The larger the upstream distance is, the lower the percentage of genes

that have evidence supported is. The result with the 1000-nt upstream distance has 98%

of genes with transcription evidence supported, 977 genes, 1031 transcripts, and 1954

regions. In order to get more data, the upstream distance can be reduced to 500 nts, so

the result with 500-nt upstream distance has 95% of genes with transcription evidence

supported, 1593 genes, 1678 transcripts, and 3186 regions. The number of data will

have a significant increment, while the percentage of genes with transcription evidence

supported will slightly decrease. As discussed in section 5.7, only about 12.2% of

transcripts can be reannotated, and 24.4% of transcripts can pass the recursive cleaning

doi:10.6342/NTU202002143

72

procedure. In order to increase the data, more evidence should be collected, so the

number of transcripts can be reannotated can increase. The recursive cleaning procedure

will filter out transcripts that have any discarded transcripts nearby so that the

annotation can be clean. The increased number of data by collecting more evidence can

decrease the number of discarded transcripts, so the number of transcripts passed the

recursive cleaning procedure will be increased. There is another method to increase the

number of transcripts. In this method, the low-quality transcript will be used, but the

loss of deep learning model will be redesign, so the high-quality transcript has higher

weights than the low-quality transcripts. So, the deep learning model can focus on

predicting the high-quality transcript and also learn some useful features from low-

quality transcripts.

The transcript structure is mostly derived from short reads. Lacking sufficient

reads might cause problems like merging multiple kinds of transcripts of the same gene

into one transcript, and this might mislead us the combination of splicing sites. Gene

structure, a reduced structure, is created from sites like canonical TSS, canonical CS,

and all canonical splicing sites of transcripts. Although the gene structure can derive the

transcript structures, it cannot provide a real combination of sites and cannot derive

transcripts with multiple TSSs, multiple CSs, and alternative splicing sites. Currently,

the deep learning model can only predict gene structure. In order to predict transcript

data when there is sufficient high-quality transcriptome, some modification of the model

needs to be done.

The deep learning model shows it can predict genes of the Arabidopsis, but it

has not shown its ability to be applied to other species. There are two problems when

applied to other species. The first problem is that many species do not have

transcriptome data. The second problem is that only a few species that have boundary

doi:10.6342/NTU202002143

73

evidence. The solution to the first problem is to use the existed transcriptome of closely

related species to predict the transcriptome of species that have not to be annotated. A

solution to the second problem is to treat the regions that start with its first translation

start site to its first translation stop site as genes and treat other regions as intergenic

regions. This solution will make the model focus on coding regions and introns that

surrounded by coding regions and treat any noncoding part as intergenic regions, so the

boundary evidence will not be needed anymore. Another solution to the second problem

is to train the model by transcripts supported by boundary evidence of closely related

species. So, the model could be applied to species that lack boundary evidence.

doi:10.6342/NTU202002143

74

 Conclusion

The thesis showed the procedures to clean and reannotate coding transcripts of

Arabidopsis thaliana by using multiple filters and data from Araport11 [1], genome,

GRO-seq, and PAT-seq. The results showed there was a tradeoff between the quality of

annotation and the number of data, and the high-quality coding transcripts were very

rare. The methods to create gene annotation, to build the deep-learning-based model,

and to revise the result were proposed. The median macro F-score of the deep learning

was 0.969, and the median macro F-score of Augustus was 0.957. The Wilcoxon rank-

sum test showed that the macro F-score of the deep learning model was significantly

better than Augustus. The post-processing procedure could significantly improve the

performance of the deep learning model. The revised results showed that the overall

base-level metrics and the overall distance metrics of the deep learning model were

significantly better than Augustus [2]. The model could directly predict gene structures

of coding genes on potential transcript regions only by the DNA sequences of

Arabidopsis thaliana. The result showed that these genes included domain sequences,

which made them more reliable. The architecture of the proposed model was more

straightforward than the architecture of Augustus. Unlike DeepPolyA [7] predicted the

CS and SpliceAI [9] predicted the splicing site, the proposed model could predict the

full gene structure. Unlike DeepAnnotator [10], which used separate models to

accomplish the task, the proposed model could accomplish the task by one model.

Overall, the proposed deep learning model with a post-processing procedure could be an

alternative method to annotate the gene structure of the coding gene on the DNA

sequence of Arabidopsis thaliana. The performance of the proposed model still needs to

be improved, and the problems of predicting annotations of other species that lack

enough data are still a challenge that needs to be overcome.

doi:10.6342/NTU202002143

75

References

1. Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town

CD: Araport11: a complete reannotation of the Arabidopsis thaliana

reference genome. The Plant Journal 2016, 89(4):789-804.

2. Stanke M, Waack S: Gene prediction with a hidden Markov model and a

new intron submodel. Bioinformatics 2003, 19(suppl_2):ii215-ii225.

3. Huang G, Liu Z, van der Maaten L, Weinberger KQ: Densely Connected

Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR): 2017. IEEE: 2261-2269.

4. Quang D, Xie X: DanQ: a hybrid convolutional and recurrent deep neural

network for quantifying the function of DNA sequences. Nucleic Acids

Research 2016, 44(11):e107-e107.

5. Hill ST, Kuintzle R, Teegarden A, Merrill IIIE, Danaee P, Hendrix DA: A deep

recurrent neural network discovers complex biological rules to decipher

RNA protein-coding potential. Nucleic Acids Research 2018, 46(16):8105-

8113.

6. Veltri D, Kamath U, Shehu A: Deep learning improves antimicrobial peptide

recognition. Bioinformatics 2018, 34(16):2740-2747.

7. Gao X, Zhang J, Wei Z, Hakonarson H: DeepPolyA: A Convolutional Neural

Network Approach for Polyadenylation Site Prediction. IEEE Access 2018,

6:24340-24349.

8. Bretschneider H, Gandhi S, Deshwar AG, Zuberi K, Frey BJ: COSSMO:

predicting competitive alternative splice site selection using deep learning.

Bioinformatics 2018, 34(13):i429-i437.

doi:10.6342/NTU202002143

76

9. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI,

Kosmicki JA, Arbelaez J, Cui W, Schwartz GB: Predicting splicing from

primary sequence with deep learning. Cell 2019, 176(3):535-548.

10. Amin MR, Yurovsky A, Tian Y, Skiena S: DeepAnnotator: Genome

Annotation with Deep Learning. In: Proceedings of the 2018 ACM

International Conference on Bioinformatics, Computational Biology, and Health

Informatics; Washington, DC, USA. Association for Computing Machinery

2018: 254–259.

11. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R,

Dreher K, Alexander DL, Garcia-Hernandez M et al: The Arabidopsis

Information Resource (TAIR): improved gene annotation and new tools.

Nucleic Acids Research 2012, 40(D1):D1202-D1210.

12. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with

RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.

13. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B:

AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids

Research 2006, 34(suppl_2):W435-W439.

14. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis

X, Fan L, Raychowdhury R, Zeng Q: Full-length transcriptome assembly

from RNA-Seq data without a reference genome. Nature biotechnology 2011,

29(7):644.

15. Campbell MS, Law M, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei J,

Achawanantakun R, Jiao D, Lawrence CJ: MAKER-P: a tool kit for the rapid

creation, management, and quality control of plant genome annotations.

Plant physiology 2014, 164(2):513-524.

doi:10.6342/NTU202002143

77

16. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith Jr RK, Hannick LI, Maiti

R, Ronning CM, Rusch DB, Town CD et al: Improving the Arabidopsis

genome annotation using maximal transcript alignment assemblies. Nucleic

Acids Research 2003, 31(19):5654-5666.

17. Haberle V, Stark A: Eukaryotic core promoters and the functional basis of

transcription initiation. Nature Reviews Molecular Cell Biology 2018,

19(10):621-637.

18. Korkuc P, Schippers JHM, Walther D: Characterization and identification of

cis-regulatory elements in Arabidopsis based on single-nucleotide

polymorphism information. Plant physiology 2014, 164(1):181-200.

19. Yu C-P, Lin J-J, Li W-H: Positional distribution of transcription factor

binding sites in Arabidopsis thaliana. Scientific Reports 2016, 6:25164.

20. Neve J, Patel R, Wang Z, Louey A, Furger AM: Cleavage and

polyadenylation: Ending the message expands gene regulation. RNA Biol

2017, 14(7):865-890.

21. Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM,

Barton GJ, Simpson GG: Direct sequencing of Arabidopsis thaliana RNA

reveals patterns of cleavage and polyadenylation. Nature structural &

molecular biology 2012, 19(8):845.

22. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ:

Alternative splicing: a pivotal step between eukaryotic transcription and

translation. Nature Reviews Molecular Cell Biology 2013, 14(3):153-165.

23. Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M:

Transcripts from downstream alternative transcription start sites evade

doi:10.6342/NTU202002143

78

uORF-mediated inhibition of gene expression in Arabidopsis. Proceedings of

the National Academy of Sciences 2018, 115(30):7831-7836.

24. Zhang P, Dimont E, Ha T, Swanson DJ, Hide W, Goldowitz D: Relatively

frequent switching of transcription start sites during cerebellar

development. BMC Genomics 2017, 18(1):461.

25. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J: A

paired-end sequencing strategy to map the complex landscape of

transcription initiation. Nature Methods 2010, 7(7):521-527.

26. Morton T, Petricka J, Corcoran DL, Li S, Winter CM, Carda A, Benfey PN,

Ohler U, Megraw M: Paired-end analysis of transcription start sites in

Arabidopsis reveals plant-specific promoter signatures. The Plant Cell

2014:tpc-114.

27. Core LJ, Waterfall JJ, Lis JT: Nascent RNA Sequencing Reveals Widespread

Pausing and Divergent Initiation at Human Promoters. Science 2008,

322(5909):1845.

28. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P,

Thompson JF, Bowers J, Jarosz M, Milos PM: Direct RNA sequencing. Nature

2009, 461:814.

29. Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, Seemann T,

Beilharz TH: PAT-seq: a method to study the integration of 3'-UTR

dynamics with gene expression in the eukaryotic transcriptome. RNA 2015,

21(8):1502-1510.

30. Krogh A, Mian IS, Haussler D: A hidden Markov model that finds genes in E.

coli DNA. Nucleic Acids Research 1994, 22(22):4768-4778.

doi:10.6342/NTU202002143

79

31. Haussler, David DK, Eeckman, H MGRF: A generalized hidden Markov

model for the recognition of human genes in DNA. In: Proceedings of the

International Conference on Intelligent Systems for Molecular Biology, St Louis:

1996. 134-142.

32. Stanke M, Diekhans M, Baertsch R, Haussler D: Using native and syntenically

mapped cDNA alignments to improve de novo gene finding. Bioinformatics

2008, 24(5):637-644.

33. Stanke M, Morgenstern B: AUGUSTUS: a web server for gene prediction in

eukaryotes that allows user-defined constraints. Nucleic Acids Research

2005, 33(suppl_2):W465-W467.

34. Holt C, Yandell M: MAKER2: an annotation pipeline and genome-database

management tool for second-generation genome projects. BMC

Bioinformatics 2011, 12(1):491.

35. Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5(1):59.

36. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M: Gene

identification in novel eukaryotic genomes by self-training algorithm.

Nucleic Acids Research 2005, 33(20):6494-6506.

37. Chan K-L, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low E-TL:

Seqping: gene prediction pipeline for plant genomes using self-training gene

models and transcriptomic data. BMC Bioinformatics 2017, 18(1):1-7.

38. Majoros WH, Pertea M, Salzberg SL: TigrScan and GlimmerHMM: two open

source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20(16):2878-

2879.

doi:10.6342/NTU202002143

80

39. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing

systems: 2012. 1097-1105.

40. Redmon J, Divvala S, Girshick R, Farhadi A: You only look once: Unified,

real-time object detection. In: Proceedings of the IEEE conference on

computer vision and pattern recognition: 2016. 779-788.

41. Glorot X, Bordes A, Bengio Y: Deep sparse rectifier neural networks. In:

Proceedings of the fourteenth international conference on artificial intelligence

and statistics: 2011. 315-323.

42. Bridle JS: Training stochastic model recognition algorithms as networks can

lead to maximum mutual information estimation of parameters. In:

Advances in neural information processing systems: 1990. 211-217.

43. He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition: 2016. 770-778.

44. Xu Y, Kong Q, Huang Q, Wang W, Plumbley MD: Attention and Localization

based on a Deep Convolutional Recurrent Model for Weakly Supervised

Audio Tagging. In: Conference of the International Speech Communication

Association: 8/20/2017. 2017: 3083-3087.

45. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller P-A: Deep

learning for time series classification: a review. Data Mining and Knowledge

Discovery 2019, 33(4):917-963.

46. Siegelmann HT, Sontag ED: On the computational power of neural nets.

Journal of computer and system sciences 1995, 50(1):132-150.

doi:10.6342/NTU202002143

81

47. Cho K, van Merrienboer B, Gulcehre C, Bougares F, Schwenk H, Bengio Y:

Learning phrase representations using RNN encoder-decoder for statistical

machine translation. In: Conference on Empirical Methods in Natural

Language Processing (EMNLP 2014): 2014.

48. Kingma DP, Ba JL: Adam: A Method for Stochastic Optimization. In:

International Conference on Learning Representations: 1/1/2015. 2015.

49. Ioffe S, Szegedy C: Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In: Proceedings of the 32nd

International Conference on Machine Learning; Proceedings of Machine

Learning Research: Edited by Francis B, David B. PMLR 2015: 448--456.

50. Santurkar S, Tsipras D, Ilyas A, Madry A: How does batch normalization help

optimization? In: Advances in Neural Information Processing Systems: 2018.

2483-2493.

51. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R: Dropout:

a simple way to prevent neural networks from overfitting. The Journal of

Machine Learning Research 2014, 15(1):1929-1958.

52. Pham V, Bluche T, Kermorvant C, Louradour J: Dropout improves recurrent

neural networks for handwriting recognition. In: 2014 14th International

Conference on Frontiers in Handwriting Recognition: 2014. IEEE: 285-290.

53. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison

A, Antiga L, Lerer A: Automatic differentiation in PyTorch. In.; 2017.

54. Snoek J, Larochelle H, Adams RP: Practical bayesian optimization of

machine learning algorithms. In: Advances in neural information processing

systems: 2012. 2951-2959.

doi:10.6342/NTU202002143

82

55. Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs

with applications to RNA splicing signals. Journal of Computational Biology

2004, 11(2-3):377-394.

56. Salzberg SL, Delcher AL, Kasif S, White O: Microbial gene identification

using interpolated Markov models. Nucleic acids research 1998, 26(2):544-

548.

57. Hetzel J, Duttke SH, Benner C, Chory J: Nascent RNA sequencing reveals

distinct features in plant transcription. Proceedings of the National Academy

of Sciences 2016, 113(43):12316.

58. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,

Chaisson M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner.

Bioinformatics 2013, 29(1):15-21.

59. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C,

Singh H, Glass CK: Simple combinations of lineage-determining

transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Molecular cell 2010, 38(4):576-589.

60. Zhu S, Ye W, Ye L, Fu H, Ye C, Xiao X, Ji Y, Lin W, Ji G, Wu X:

PlantAPAdb: A Comprehensive Database for Alternative Polyadenylation

Sites in Plants. Plant Physiology 2020, 182(1):228.

61. Akiba T, Sano S, Yanase T, Ohta T, Koyama M: Optuna: A next-generation

hyperparameter optimization framework. In: Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining:

2019. 2623-2631.

62. Student: The probable error of a mean. Biometrika 1908:1-25.

doi:10.6342/NTU202002143

83

63. Mann HB, Whitney DR: On a test of whether one of two random variables is

stochastically larger than the other. The annals of mathematical statistics

1947:50-60.

64. Hothorn T, Hornik K, Hothorn MT: Package ‘exactRankTests’. 2019.

65. Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular Biology

Open Software Suite. Trends in Genetics 2000, 16(6):276-277.

66. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD: HMMER web

server: 2018 update. Nucleic acids research 2018, 46(W1):W200-W204.

67. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A,

Hetherington K, Holm L, Mistry J: Pfam: the protein families database.

Nucleic acids research 2014, 42(D1):D222-D230.

68. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M,

Richardson LJ, Salazar GA, Smart A et al: The Pfam protein families

database in 2019. Nucleic Acids Research 2018, 47(D1):D427-D432.

69. Hoff KJ, Stanke M: Predicting genes in single genomes with augustus.

Current protocols in bioinformatics 2019, 65(1):e57.

70. Crooks GE, Hon G, Chandonia J-M, Brenner SE: WebLogo: a sequence logo

generator. Genome Research 2004, 14(6):1188-1190.

71. Gallegos JE, Rose AB: Intron DNA sequences can be more important than

the proximal promoter in determining the site of transcript initiation. The

Plant Cell 2017:tpc-00020.

72. Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB,

Feldmann KA: Features of Arabidopsis genes and genome discovered using

full-length cDNAs. Plant molecular biology 2006, 60(1):69-85.

doi:10.6342/NTU202002143

84

73. Loke JC, Stahlberg EA, Strenski DG, Haas BJ, Wood PC, Li QQ: Compilation

of mRNA polyadenylation signals in Arabidopsis revealed a new signal

element and potential secondary structures. Plant physiology 2005,

138(3):1457-1468.

74. Tan M, Le Q: EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks. In: International Conference on Machine Learning: 2019.

6105-6114.

75. Zagoruyko S, Komodakis N: Wide Residual Networks. In: British Machine

Vision Conference: 1/1/2016. 2016.

76. Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J: LSTM: A

Search Space Odyssey. IEEE Trans Neural Networks Learn Syst 2017,

28(10):2222-2232.

77. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 2010, 26(6):841-842.

78. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R, Subgroup GPDP: The Sequence Alignment/Map

format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

79. Grisel O, Mueller A, Lars, Gramfort A, Louppe G, Prettenhofer P, Blondel M,

Niculae V, Nothman J, Joly A et al: scikit-learn/scikit-learn: Scikit-learn

0.22.2.post1. In., 0.22.2.post1 edn: Zenodo; 2020.

80. Head T, MechCoder, Louppe G, Shcherbatyi I, fcharras, Vinícius Z, cmmalone,

Schröder C, nel, Campos N et al: scikit-optimize/scikit-optimize: v0.5.2. In.,

v0.5.2 edn: Zenodo; 2018.

81. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,

Burovski E, Peterson P, Weckesser W, Bright J: SciPy 1.0: fundamental

doi:10.6342/NTU202002143

85

algorithms for scientific computing in Python. Nature methods 2020,

17(3):261-272.

82. Hunter JD: Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering 2007, 9(3):90-95.

83. Waskom M, Botvinnik O, Ostblom J, Lukauskas S, Hobson P, MaozGelbart,

Gemperline DC, Augspurger T, Halchenko Y, Cole JB et al:

mwaskom/seaborn: v0.9.1 (January 2020). In., v0.9.1 edn: Zenodo; 2020.

84. Walt Svd, Colbert SC, Varoquaux G: The NumPy Array: A Structure for

Efficient Numerical Computation. Computing in Science & Engineering 2011,

13(2):22-30.

85. McKinney W: Data Structures for Statistical Computing in Python. In: 2010

2010. 56-61.

86. venn 0.1.3 [https://pypi.org/project/venn/]

87. He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In: Proceedings of the

IEEE International Conference on Computer Vision: 2015. 1026-1034.

88. Glorot X, Bengio Y: Understanding the difficulty of training deep

feedforward neural networks. In: Proceedings of the thirteenth international

conference on artificial intelligence and statistics: 2010. 249-256.

https://pypi.org/project/venn/

doi:10.6342/NTU202002143

86

Supplementary Figures

doi:10.6342/NTU202002143

87

Figure S1. Examples of transcripts failed to be reannotated (Assumed all the

evidence related to the transcript)

doi:10.6342/NTU202002143

88

Figure S2. The examples of annotation at every level, their gene boundaries,

and metric results on the base level, the block level, and chain-block level

doi:10.6342/NTU202002143

89

Figure S3. The examples of annotation and metrics of distances and site

predictions

doi:10.6342/NTU202002143

90

Figure S4. The Venn diagram of the transcripts passed filters

doi:10.6342/NTU202002143

91

Supplementary Tables

doi:10.6342/NTU202002143

92

Table S1. The version of tools

Name Version Name Version

AUGUSTUS [2, 13, 32, 33] 3.3.2 PyTorch [53] 1.4.0

bedtools [77] 2.25.0 SAMtools [78] 0.1.19-96b5f2294a

exactRankTests [64] 0.8-31 Scikit-Learn [79] 0.22.2.post1

HMMER3 [66] 3.3 Scikit-Optimize [80] 0.5.2

HOMER [59] 4.10 Scipy [81] 1.4.1

Matplotlib [82] 3.0.3 Seaborn [83] 0.9.1

NumPy[84] 1.18.5 STAR [58] 2.6.1a

Optuna [61] 1.2.0 transeq [65] 6.6.0

Pandas[85] 0.24.0 venn [86] 0.1.3

pfam_scan.pl [67] 1.6

Table S2. Data source summary

Type Name or Id

Genome GCF_000001735.3 [11]

Transcriptome Araport11 [1].

5’ GRO-seq SRR3647033 [57]

GRO-seq datasets SRR3647034 [57] and SRR3647035 [57]

PAT-seq processed dataset SRP089899 [60]

doi:10.6342/NTU202002143

93

Table S3. The names and sources of the datasets (The number mean

chromosome)

Name Source Name Source Name Source

Train1 1+, 2, 3, and 5 Val1 1- DataWhole 1, 2, 3, 4, and 5

Train2 1-, 2, 3, and 5 Val2 1+ DataTrain 1, 2, 3, and 5

Train3 1, 2 +, 3, and 5 Val3 2- DataTest 4

Train4 1, 2-, 3, and 5 Val4 2+ TrainSmall Train3

Train5 1, 2, 3+, and 5 Val5 3- ValSmall Val3

Train6 1, 2, 3-, and 5 Val6 3+

Train7 1, 2, 3, and 5+ Val7 5-

Train8 1, 2, 3, and 5- Val8 5+

Table S4. Weights and bias initialization (Notes: The fan_in means the number

of input channel)

Block Layer Method Method Formula

Feature

block

CNN Kaiming

initialization

[87]

𝐖𝐞𝐢𝐠𝐡𝐭𝐬 ∈ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦(−𝒙, 𝒙),𝐰𝐡𝐞𝐫𝐞 𝒙

= √
𝟔

𝐟𝐚𝐧_𝐢𝐧

𝐁𝐢𝐚𝐬 = 𝟎

Relation

block

RNN Xavier

initialization

[88]

𝐖𝐞𝐢𝐠𝐡𝐭𝐬 ∈ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦(−𝒙, 𝒙),𝐰𝐡𝐞𝐫𝐞 𝒙

= √
𝟑

𝐟𝐚𝐧_𝐢𝐧

CNN 𝐁𝐢𝐚𝐬 = 𝟎

doi:10.6342/NTU202002143

94

Table S5. The number of regions on each dataset

Table S6. The summary of regions with single exon, regions with multiple

exons, regions with no exon (no gene), and all regions

Region type Count Length

Min Median Max

Regions with single exon 220 1411 2276 5005

Regions with multiple exons 757 1723 3466 9580

Regions with no exon (no gene) 977 1411 3129 9580

All 1954 1411 3129 9580

Table S7. The statistical result of DS and AS in gene annotation on DataTrain

Splicing donor site Splicing acceptor site

Motif Count Percentage (%) Motif Count Percentage (%)

GT 3391 99.297% AG 3415 100

GC 23 0.673%

TT 1 0.029%

Dataset Number Dataset Number Dataset Number Dataset Number

Train1 1382 Train5 1450 Val1 254 Val5 186

Train2 1382 Train6 1450 Val2 254 Val6 186

Train3 1498 Train7 1396 Val3 138 Val7 240

Train4 1498 Train8 1396 Val4 138 Val8 240

DataTrain 1636 DataTest 318

doi:10.6342/NTU202002143

95

Table S8. Hyperparameter setting and Lossrevision of the post-processing

procedures (L indicates Length filtering and B indicates Boundary post-

processing)

Id Methods Distance scale Lossrevision

Origin NaN NaN 0.52156

Reviser1 L method NaN 0.50812

Reviser2 B method 0 0.51764

Reviser3 B method 1 0.51008

Reviser4 B method 2 0.50984

Reviser5 B method 3 0.50999

Reviser6 L method and then the B method 0 0.51292

Reviser7 L method and then the B method 1 0.50220

Reviser8 L method and then the B method 2 0.50196

Reviser9 L method and then the B method 3 0.50196

Reviser10 B method and then the L method 0 0.51374

Reviser11 B method and then the L method 1 0.50247

Reviser12 B method and then the L method 2 0.50225

Reviser13 B method and then the L method 3 0.50240

