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Abstract 

Bac kgr ound: Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode 
biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and 

anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning 
methods applied to such networks can identify drug r e purposing opportunities. Howev er, a training set of known relationships does 
not exist for many types of node pairs, even when it would be useful to examine how nodes of those types ar e meaningfull y connected. 
For example, users may be curious about not only how metformin is related to breast cancer but also how a g iven g ene might be 
inv olv ed in insomnia. 

Findings: We developed a new pr ocedur e, termed hetnet connectivity sear c h , that proposes important paths between any 2 nodes without 
requiring a supervised gold standard. The algorithm behind connectivity sear c h identifies types of paths that occur more frequently 
than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant 
instances of node connectivity at the scale of large knowledge graphs. 

Conclusion: We implemented the method on Hetionet and provide an online interface at https://het.io/search . We provide an open- 
source implementation of these methods in our new Python package named hetmatpy. 

Ke yw ords: kno wledge graphs, hetnets, networks, connectivity, search, Hetionet, path counts, matrix multiplication, bioinformatics, 
algorithms 
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Introduction 

A network (also known as a gr a ph) is a conce ptual re presenta- 
tion of a group of entities—called nodes —and the relationships be- 
tween them—called edges . Typically, a network has only 1 type of 
node and 1 type of edge. Ho w e v er, in man y cases, it is necessary 
to be able to distinguish between different types of entities and 

relationships. 
A hetnet (short for heterogeneous information network [ 1 ]) is a 

network where nodes and edges have type . T he ability to differen- 
tiate between different types of entities and relationships allows 
a hetnet to describe more complex data accurately. Hetnets are 
particularly useful in biomedicine, where it is important to cap- 
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the original work is pr operl y cited. 
ure the conceptual distinctions between various entities, such as 
enes and diseases, and linka ges, suc h as upregulation and bind-
ng. 

The types of nodes and edges in a hetnet are defined by a
c hema, r eferr ed to as a meta gr a ph. The meta gr a ph consists of
etanodes (types of nodes) and metaedges (types of edges). Note

hat the prefix meta refers to the type (e.g., compound), as opposed
o a specific node/edge/path itself (e.g., acetaminophen). 

One such network is Hetionet, which provides a foundation 

or building hetnet applications. It unifies data from several dif-
er ent, dispar ate sources into a single, compr ehensiv e, accessi-
le , common-format network. T he database is publicly accessible
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ithout login at https://neo4j.het.io . The Neo4j gr a ph database
nables querying Hetionet using the Cypher langua ge, whic h was
esigned to interact with networks where nodes and edges have
oth types and properties. 

The initial application of Hetionet, named Project Rephetio, fo-
used on drug r epur posing [ 2 ]. The authors predicted the proba-
ility of drug efficacy for 209,168 compound–disease pairs. A su-
ervised machine learning approach identified types of paths that
ccur more or less frequently between known treatments than
ontreatments (Fig. 1 B). To tr ain the model, the authors cr eated
harmacother a pyDB, a physician-cur ated catalog of 755 disease-
odifying treatments [ 3 ]. 
Pr oject Rephetio successfull y pr edicted tr eatments, including

hose under investigation by clinical trial. Ho w e v er, 2 c hallenges
imit the applicability of Re phetio. First, Re phetio required known
abels (i.e., treatment status) to train a model. Hence, the approach
annot be applied to domains where training labels do not exist.
econd, the degree-weighted path count (DWPC) metric used to
ssess connectivity is sensitive to node degree . T he Rephetio ap-
r oac h was incapable of detecting whether a high DWPC score in-
icated meaningful connectivity above the level expected by the
ac kgr ound network degr ees. Her e we de v elop Hetnet connectiv-

ty searc h, whic h defines a null distribution for DWPCs that ac-
ounts for degree and enables detecting meaningful hetnet con-
ectivity without training labels. 

Existing r esearc h into methods for determining whether 2
odes are related primarily focuses on homogeneous networks

without type). Early approaches detected related nodes by mea-
uring neighborhood ov erla p or path similarity between 2 nodes
 5 , 6 ]. These a ppr oac hes pr edicted node r elatedness with success.
o w e v er, they ar e c hallenging to scale as a network gr ows in size
r semantic richness (i.e., type) [ 5 ]. 

Mor e r ecentl y, focus has shifted to gr a ph embeddings to deter-
ine if 2 nodes are related, specifically in the context of knowl-

dge gr a phs, whic h ar e often semanticall y ric h and include type
 7 , 8 , 9 , 10 , 11 ]. These types of methods involve mapping nodes
nd sometimes edges to dense vectors via neural network mod-
ls [ 12 , 13 , 14 ], matrix factorization [ 15 , 16 ], or translational dis-
ance models [ 17 ]. Bioteque creates node embeddings from the
ipartite network of DWPCs for a giv en meta path [ 18 ]. Once these
ense vectors have been produced, quantitative scores that mea-
ur e node r elatedness can be gener ated via a mac hine learning
odel [ 8 , 19 , 20 ] or by selected similarity metrics [ 7 , 9 , 21 , 22 , 23 ].

hese a ppr oac hes hav e been quite successful in determining node
 elatedness. Yet, they onl y state w hether 2 nodes ar e r elated and
ail to explain why 2 nodes are related. 

Explaining why 2 nodes are related is a nontrivial task because
 ppr oac hes m ust output mor e than a simple similarity score . T he
rst group of approaches output a list of ranked paths that are
ost r ele v ant between 2 nodes [ 24 , 25 , 26 ]. For example, the FAIRY

r ame work explains why items appear on a user’s social media
eed based on a network of users and content classes (e.g., cat-
gories , user posts , songs) [ 25 ]. ESPRESSO explains how 2 sets of
odes ar e r elated by r eturning subgr a phs [ 27 ]. Other a ppr oac hes
uch as MetaExp return important metapaths rather than paths
ut r equir e some form of supervision [ 28 , 29 ]. 

MechRepoNet is a hetnet containing 250,035 nodes across
 metanodes and 9,652,116 edges across 68 metaedges [ 30 ].
he study trained a model using DWPCs as features to predict
ompound–treats–disease r elationships, whic h was able to select 89

etapaths with positive regression coefficients . T he authors also
r eated DrugMec hDB with a cur ated set of paths ca pturing known
echanisms of action for 123 compound–disease pairs [ 30 ]. Meta-
ath coefficients were used to rank paths, using DrugMechDB as
alidation. The method generally performed well, although in-
er pr etability was c hallenging when “hundr eds, or thousands of
aths ranked above the mechanistic path in DrugMechDB” [ 30 ].
o address this issue, the study explored additional path filters,
uch as filtering for paths that tr av erse known drug targets, and
imensionality reduction by aggregating paths across intermedi-
te nodes and summing the path weights. Refinements to path-
coring techniques might also be helpful solutions in this context.

Hetnet connectivity search explains how 2 nodes are related in
n unsupervised manner that ca ptur es the semantic richness of
dge type and r eturns r esults in the form of both metapaths and
aths. Our open-source implementation, including for a query
nd visualization w ebserver, w as designed with scalability and re-
ponsiveness in mind, allowing in-browser exploration. 

indings 

ompleting hetnet connectivity search involved advances on 3
r onts. We implemented ne w softwar e for efficient matrix-based
perations on hetnets. We developed strategies to efficiently cal-
ulate the desired connectivity score under the null. We designed
nd de v eloped a web interface for easy access to the connectivity
earc h a ppr oac h. 

etmatpy package 

e created the hetmatpy Python pac ka ge , a vailable on GitHub
nd PyPI, under the permissive BSD-2-Clause Plus Patent License.
his pac ka ge pr o vides matrix-based utilities for hetnets . Each
etaedge is r epr esented by a distinct adjacency matrix, which

an be either a dense Numpy array or a sparse SciPy matrix (see
etMat arc hitectur e). Adjacency matrices are stored on disk and

oaded in a lazy manner to help scale the software to hetnets that
re too large to fit entirely in memory. 

The primary focus of the pac ka ge is to provide compute-
ptimized and memory-efficient implementations of path-
ounting algorithms. Specifically, the package supports comput-
ng DWPCs, which can be done efficiently using matrix multipli-
ation but r equir e complex adjustments to avoid counting paths
ith duplicate nodes (i.e., to filter walks that are not paths, see
WPC matrix multiplication algorithms). The package can reuse
xisting path count computations that span segments of a longer
eta path. The pac ka ge also supports generating null distribu-

ions for DWPCs derived from permuted networks (see “Degree-
rouping of node pairs”). Since this a ppr oac h gener ates too man y
erm uted DWPC v alues to stor e on disk, our implementation r e-
ains summary statistics for each degree group that allow com-
utation of a gamma-hurdle distribution from which null DWPC
 values can be generated. 

WPC null distribution 

o assess connectivity between a source and target node, we use
he D WPC metric. The D WPC is similar to path count (number of
aths between the source and target node along a given metap-
th), except that it do wnw eights paths thr ough high-degr ee nodes.
ather than using the raw DWPC for a source–metapath–target
ombination, we transform the DWPC across all source–target
ode pairs for a metapath to yield a distribution that is more com-
act and amenable to modeling [ 31 ]. 

Pr e viousl y, we had no technique for detecting whether a DWPC
alue was exceptional. One possibility is to e v aluate the DWPCs
or all pairs of nodes and select the top scores (e.g., the top 5% of

https://neo4j.het.io
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Figure 1: (A) Hetionet v1.0 meta gr a ph. The types of nodes and edges in Hetionet. 
(B) Supervised machine learning approach from Project Rephetio. This figure visualizes the feature matrix used by Project Rephetio to make supervised 
pr edictions. Eac h r ow r epr esents a compound–disease pair. The bottom half of r ows corr espond to known tr eatments (i.e., positiv es), while the top half 
correspond to nontreatments (i.e., negatives under a closed-world assumption , not known to be treatments in PharmacotherapyDB). Here, an equal 
number of treatments and nontreatments are shown, but in reality, the problem is heavily imbalanced. Project Rephetio scaled models to assume a 
positiv e pr e v alence of 0.36% [ 2 , 4 ]. Eac h column r epr esents a meta path, labeled with its abbr e viation. 
Featur e v alues ar e degr ee-weighted path counts (abbr e viated DWPCs, tr ansformed and standardized), whic h assess the connectivity along the 
specified metapath between the specific compound and disease. Green values indicate abo ve-a verage connectivity, whereas blue values indicate 
below-av er a ge connectivity. In gener al, positiv es hav e gr eater connectivity for the selected meta paths than negativ es. Rephetio used a logistic 
r egr ession model to learn the effect of each type of connectivity (feature) on the likelihood that a compound treats a disease . T he model predicts 
whether a compound–disease pair is a treatment based on its features but requires supervision in the form of known treatments. 
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DWPCs). Another possibility is to pick a transformed DWPC score 
as a cutoff. The shortcomings of these methods are 2-fold. First,
neither the percentile nor absolute value of a DWPC has inher- 
ent meaning. To select transformed DWPCs greater than 3.5, or 
alternativ el y the top 1% of DWPCs, is arbitrary. Second, compar- 
ing DWPCs between node pairs fails to account for the situation 

wher e high-degr ee node pairs ar e likel y to scor e higher, solel y due 
to their degree (4). 

To address these shortcomings, we developed a method to com- 
pute the right-tail P value of a D WPC . P v alues hav e a br oadl y un-
derstood inter pr etation—in our case, the pr obability that a DWPC 

equal to or greater than the observed DWPC could occur un- 
der a null model. Our null model is based on DWPCs generated 

fr om perm uted networks, wher e edges hav e been r andomized in 

a degr ee-pr eserving manner (see “Perm uted hetnets”). 
By tailoring the null distribution for a DWPC to the degree of its 

source and target node (see “Degree-grouping of node pairs”), we 
account for degree effects when determining the significance of 
a D WPC . To impr ov e the accur acy of DWPC P values, we use fit a 
gamma-hurdle distribution to the null DWPCs. In r ar e cases, ther e 
are insufficient nonzero null DWPCs to fit the gamma portion of 
the null distribution. In these cases, we fall back to an empirical 
calculation as described in “Empirical DWPC P values.”

Enriched metapaths 

For each of the 2,205 metapaths in Hetionet v1.0 with length ≤3,
we computed DWPCs for all node pairs and their corresponding 
ull distributions (see “DWPC and null distribution computation”).
e store the most significant DWPCs as described in “Prioritiz-

ng enric hed meta paths for database stor a ge,” whic h a ppear as
he “pr ecomputed” r o ws in the w eba pp meta path table (Figs. 3 B
nd 2 ). DWPCs that are not retained by the database can be re-
enerated on the fly. This design allows us to immediately provide
sers with the metapaths that are most enriched between 2 query
odes while still allowing on-demand access to the full metrics for
ll metapaths with length ≤3. 

Fig. 2 shows the information used to compute the P value for
nric hed meta paths . T he table includes the following columns: 

� Pa th count : T he number of paths between the source and tar-
get node of the specified metapath. 

� Adjusted P value : A measure of the significance of the DWPC
that indicates whether more paths were observed than ex- 
pected due to random chance. Compares the DWPC to a
null distribution of DWPCs generated from degree-preserving 
perm uted networks. Bonferr oni-adjusted for the number of 
metapaths with the same source metanode, target metanode,
and length. 

� P value : A measure of the significance of the DWPC that indi-
cates whether more paths were observed than expected due 
to random chance. Compares the DWPC to a null distribu-
tion of DWPCs generated from degree-preserving permuted 

networks. Not adjusted for multiple comparisons (i.e., when 
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Figure 2: Expanded metapath details from the connectivity search webapp. This is the expanded view of the metapath table in Figure 3B showing 
enric hed meta paths betw een Alzheimer’s disease and the cir cadian rhythm pathw ay. 

Figure 3: Using the connectivity search webapp to explore the pathophysiology of Alzheimer’s disease . T his figure shows an example user workflow for 
https:// het.io/search/ . 
(A) The user selects 2 nodes. Here, the user is interested in Alzheimer’s disease, so selects this as the source node. The user limits the target node 
search to metanodes relating to gene function. The target node search box suggests nodes, sorted by the number of significant metapaths. When the 
user types in the target node box, the matches reorder based on search word similarity. Here, the user becomes interested in how the circadian rhythm 

might relate to Alzheimer’s disease. 
(B) The webapp returns metapaths between Alzheimer’s disease and the circadian rhythm pathwa y. T he user unc hec ks “pr ecomputed onl y” to 
compute results for all metapaths with length ≤3, not just those that surpass the database inclusion threshold. The user sorts by adjusted P value and 
selects 7 of the top 10 metapaths. 
(C) Paths for the selected metapaths are ordered by their path score (limited to 100 paths for each metapath). The user selects 8 paths (1 from a 
subsequent page of results) to show in the graph visualization and highlights a single path involving ARNT2 for emphasis. 
(D) A subgr a ph displays the pr e viousl y selected paths. The user impr ov es on the automated lay out b y repositioning nodes. Clicking an edge displays its 
properties, informing the user that an association between Creutzfeldt–Jakob disease and NPAS2 was detected by GWAS. 

https://het.io/search/
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m ultiple meta paths ar e assessed for significant connectivity 
between the source and target node). 

� DWPC : Degree-weighted path count—measures the extent of 
connectivity between the source and target node for the given 

metapath. Like the path count, but with less weight given to 
paths along high-degree nodes. 

� Source degree : The number of edges from the source node 
that are of the same type as the initial metaedge of the meta- 
path. 

� Target degree : The number of edges from the target node that 
are of the same type as the final metaedge of the metapath. 

� # DWPCs : The number of DWPCs calculated on permuted 

networks used to generate a null distribution for the DWPC 

fr om the r eal netw ork. P erm uted DWPCs ar e a ggr egated for 
all permuted node pairs with the same degrees as the source 
and target node. 

� # Non-0 DWPCs : The number of permuted DWPCs from the 
“# of DWPCs” column that were nonzero. Nonzero DWPCs in- 
dicate at least 1 path between the source and target node ex- 
isted in the permuted network. 

� Non-0 mean : The mean of nonzer o perm uted DWPCs. Used 

to generate the gamma-hurdle model of the null DWPC dis- 
tribution. 

� Non-0 σ: The standard deviation of nonzero permuted DW- 
PCs. Used to generate the gamma-hurdle model of the null 
DWPC distribution. 

� Neo4j Actions : A Cypher query that users can run in the 
Neo4j browser to show paths with the largest DWPCs for the 
metapath. 

Enriched paths 

In addition to knowing which metapaths are enriched between 2 
query nodes, it is helpful to see the specific paths that contribute 
highly to such enrichment. Since the DWPC is a summation of a 
path metric (called the path degr ee pr oduct), it is str aightforw ar d 

to calculate the proportion of a DWPC attributable to an individual 
path. The webapp allows users to select a metapath to populate 
a table of the corresponding paths . T hese paths ar e gener ated on 

the fly through a Cypher query to the Hetionet Neo4j database. 
It is desirable to have a consolidated view of paths across mul- 

tiple metapaths . T herefore , we calculate a path score heuristic,
which can be used to compare the importance of paths between 

metapaths . T he path score equals the proportion of the DWPC 

contributed by a path multiplied by the magnitude of the DWPC’s 
P v alue ( −log 10 ( P )). To illustr ate, the paths weba pp panel includes 
the following information (Fig. 3 C): 

� Pa th : T he sequence of edges in the network connecting the 
source node to the target node. Duplicate nodes are not per- 
mitted in paths. 

� Path score : A metric of how meaningful the path is in describ- 
ing the connectivity between the source and target node . T he 
score combines the magnitude of the metapath’s P value with 

the percentage of the DWPC contributed by the path. 
� % of DWPC : The contribution of the path to the DWPC for its 

metapath. This metric compares the importance of all paths 
of the same metapath from the source node to the target 
node. 

Hetio website and connectivity search webapp 

We r e v amped the website hosted at https://het.io to serve as a 
unified home for this study and the hetnet-related research that 
preceded it. The website provides the connectivity search webapp 
unning over the hetio network and several other interactive apps
or prior projects. It also includes high-level information on het-
ets and Hetionet, citation and contact details, links to supporting
tudies and softw are, do wnloads and exploration of Hetionet data,
nd related media. 

We created the connectivity search webapp available at https: 
/ het.io/search/ . The tool is free to use, without any login or au-
hentication. The app allows users to quic kl y explor e how an y 2
odes in Hetionet v1.0 might be related. The w orkflo w accepts 1
r more nodes as input and shows the user the most important
etapaths and paths for a pair of query nodes. 
The design guides the user through selecting a source and

arget node (Fig. 3 A). The weba pp r eturns meta paths, scor ed by
hether they occurr ed mor e than expected based on network de-

ree (Fig. 3 B). Users can proceed by requesting the specific paths
or each metapath, which are placed in a unified table sorted ac-
ording to their path score (Fig. 3 C). Finally, the webapp produces
ublication-ready visualizations containing user-selected paths 

Fig. 3 D). 

iscussion 

n this study, we introduce a search engine for hetnet connectivity
etween 2 nodes that returns results in real time. An interactive
ebapp helps users explore node connectivity by ranking metap- 
ths and paths while visualizing multiple paths in a subgraph. 

We made se v er al methodological contributions to support this
 pplication. We de v eloped optimized algorithms for computing
WPCs using matrix m ultiplication. In addition, we cr eated a
ethod for estimating a P value for a D WPC , using null D WPCs

omputed on permuted hetnets. We implemented these advances 
n the open-source hetmatpy Python pac ka ge and HetMat data
tructur e to pr ovide highl y optimized computational infrastruc-
ure for representing and reasoning on hetnets using matrices. 

This work lays the foundation for exciting futur e dir ections. For
any queries, a large number of paths are returned. Interpreta-

ion of large lists is difficult. T herefore , the dimensionality of re-
ults could be reduced by aggregating path scores across interme-
iate nodes or edges [ 32 ]. 

Here, we computed all DWPCs for Hetionet metapaths with 

ength ≤3. Our search engine will therefore overlook important 
onnectivity from longer metapaths. Ho w ever, it is infeasible to
ompute DWPCs for all longer metapaths. One solution would be
o only extend metapaths detected as informative. For example,
f a CbGpPWpG metapath is deemed informative, it could be ex-
ended with additional metaedges like CbGpPWpGaD . One unsu- 
ervised a ppr oac h would be to use the distribution of DWPC P val-
es for a metapath to detect whether the paths still convey suf-
cient information, for example, by r equiring an enric hment of
mall P v alues. Wer e this method to fail, supervised alternativ es
ould be explor ed, suc h as the ability for DWPCs from a longer
eta path to pr edict that of a shorter metapath or metaedge, with

are taken to prevent label leakage. One final approach could
earn from user interest and compute longer metapaths only 
hen requested. 
This work focuses on queries where the input is a node pair.

quall y inter esting would be queries wher e the input is a set of
odes of the same type, optionally with weights. The search would
ompute DWPCs for paths originating on the query nodes . T he
impler formulation would compute DWPCs for metapaths sepa- 
 atel y and compare to null distributions from permuted hetnets. A
or e adv anced form ulation would combine scor es acr oss meta-

aths such that every node in the hetnet would r eceiv e a single

https://het.io
https://het.io/search/
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cor e ca pturing its connectivity to the query set. This a ppr oac h
ould have similar utility to gene set enric hment anal ysis in that

he user could provide a set of genes as input and r eceiv e a ranked
ist of nodes that c har acterize the function of the query genes.
o w e v er, it would excel in its versatility by returning results of
ny node type without requiring predefined gene sets to match
gainst. Some users might be interested in node set transforma-
ions where scores for one node type are converted to another
ode type . T his a ppr oac h could take scor es for human genes and
onvert them to side effects, diseases, pathways, and so on. 

Our work is not without limitations . T he final application re-
ies on multiple databases and cached computations specific to
etionet v1.0. Despite striving for a modular arc hitectur e, gener-
ting an equivalent search webapp for a different hetnet would
 equir e ada ptation due to the man y data sour ces inv olved. Fur-
hermore, w e w ould benefit fr om gr eater r eal-world e v aluation of
he connectivity searc h r esults to help identify situations where
he method underperforms. Despite these challenges, our study
emonstrates one of the first public search engines for node con-
ectivity on a biomedical knowledge gr a ph while contributing
ethods and software that we hope will inspire future work. 

ethods 

etionet 
e used the hetionet knowledge gr a ph to demonstr ate connectiv-

ty search. Hetionet is a knowledge gr a ph of human biology, dis-
ase , and medicine , integr ating information fr om millions of stud-
es and decades of r esearc h. Hetionet v1.0 combines information
rom 29 public databases . T he network contains 47,031 nodes of
1 types (Table 1 ) and 2,250,197 edges of 24 types (Fig. 1 A). 

One limitation that restricts the applicability of Hetionet is in-
ompleteness . In many cases , Hetionet v1.0 includes only a subset
f the nodes from a given resource. For example, the Disease On-
ology contains over 9,000 diseases [ 33 ], while Hetionet includes
nly 137 diseases [ 34 ]. Nodes were excluded to avoid redundant or
v erl y specific nodes while ensuring a minimum level of connec-
ivity for compounds and diseases. See the Project Rephetio meth-
ds for more details [ 2 ]. Nonetheless, Hetionet v1.0 remains one
f the most compr ehensiv e and integr ativ e networks that consol-
dates biomedical knowledge into a manageable number of node
nd edge types [ 35 ]. Other integr ativ e r esources, some still un-
er de v elopment, include Wikidata [ 36 ], SemMedDB [ 37 , 38 , 39 ],
POKE [ 40 ], and RTX-KG2c [ 41 ]. 

etMat architecture 

t the core of the hetmatpy package is the HetMat data structure
or storing and accessing the network. HetMats are stored on disk
s a dir ectory, whic h by conv ention uses a .hetmat extension. A
etMat directory stores a single heterogeneous network, whose
ata reside in the following files. 

1. A meta gr a ph.json file stores the schema, defining which
types of nodes and edges comprise the hetnet. This format is
defined by the hetnetpy Python pac ka ge. Hetnetpy was origi-
nall y de v eloped with the name hetio during prior studies [ 2 ,
42 ], but we renamed it het net py for better disambiguation
from het mat py. 

2. A nodes directory containing 1 file per node type (metanode)
that defines each node. Currently, .tsv files in which each row
r epr esents a node are supported. 

3. An edges directory containing 1 file per edge type (metadata)
that encodes the adjacency matrix. The matrix can be seri-
alized using either the Numpy dense format (.npy) or SciPy
sparse format (.sparse.npz). 

For node and edge files, compression is supported as detected
rom .gz, .bz2, .zip, and .xz extensions . T his structure of storing a
etnet supports selectiv el y r eading nodes and edges into memory.
or example, a certain computation may only require access to a
ubset of the node and edge types. By only loading the required
ode and edge types, we reduce memory usage and read times. 

Additional subdir ectories, suc h as path counts and perm uta-
ions, stor e data gener ated fr om the HetMat. By using consistent
aths for generated data, we avoid recomputing data that already
xist on disk. A HetMat directory can be zipped for archiving and
r ansfer. Users can selectiv el y include gener ated data in arc hiv es.
ince the primary application of HetMats is to generate computa-
ionally demanding measurements on hetnets, the ability to share
etMats with precomputed data is paramount. 
The HetMat class implements the above logic. A het-

at_fr om_gr a ph function cr eates a HetMat object and directory
n disk from the preexisting hetnetpy.hetnet.Graph format. 

We converted Hetionet v1.0 to HetMat format and uploaded the
etionet-v1.0.hetmat.zip arc hiv e to the Hetionet data r epository. 

WPC matrix multiplication algorithms 

rior to this study, we used 2 implementations for computing DW-
Cs . T he first is a pure Python implementation available in the
etnetpy.pathtools .DWPC function [ 42 ]. T he second uses a Cypher
uery, pr epar ed by hetnetpy .neo4j.construct_dwpc_query , that is
xecuted by the Neo4j database [ 2 ,43 ]. Both of these implementa-
ions r equir e tr av ersing all paths betw een the sour ce and target
ode . Hence , they ar e computationall y cumbersome despite opti-
izations [ 44 ]. 
Since our methods only require degree-weighted counts, not

ull y enumer ated paths, adjacency matrix m ultiplication pr esents
n alternativ e a ppr oac h. Multiplication alone, ho w e v er, counts
alks rather than paths, meaning paths traversing a single node
ultiple times are counted. When computing network-based fea-

ures to quantify the relationship between a source and target
ode, w e w ould like to exclude tr av ersing duplicate nodes (i.e.,
aths, not trails or walks) [ 45 ]. We de v eloped a suite of algorithms
o compute true path counts and DWPCs using matrix multipli-
ation that benefits from the speed advantages of only counting
aths. 

Our implementation begins by categorizing a metapath accord-
ng to the pattern of its repeated metanodes, allowing DWPC com-
utation using a specialized order of operations. For example, the
etapath DrDtCrC is categorized as a set of disjoint repeats, while
tCtDpC is categorized as repeats of the form B AB A. Many com-
lex repeat patterns can be represented piecewise as simpler pat-
erns, allowing us to compute DWPC for most metapaths up to
ength 5 and many of length 6 and beyond without enumerat-
ng individual paths. For example, disjoint groups of repeats like
rDtCrC can be computed as the matrix product of DWPC matri-
es for DrD and CrC . Randomly inserted nonrepeated metanodes
e.g., G in DrDaGaDrD ) r equir e no special tr eatment and ar e in-
luded in DWPC with matrix multiplication. 

After metapath categorization, we segment metapaths accord-
ng to their repeat pattern, following our order of operations. By
egmenting and computing r ecursiv el y, we can efficientl y e v alu-
te DWPC on highly complex metapaths, using simple patterns
s building blocks for higher-le v el patterns. Finall y, our special-
zed DWPC functions are applied to individual segments, the re-
ults are combined, and final corrections are made to ensure no
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Table 1: Node types in Hetionet, including the abbr e viation, number of nodes, and description for each of the 11 metanodes in Hetionet 
v1.0 

Metanode Abbre via tion Nodes Description 

Anatomy A 402 Anatomical structures, excluding structures that are 
known not to be found in humans. From Uberon. 

Biological Process BP 11,381 Lar ger pr ocesses or biological pr ogr ams accomplished by 
multiple molecular activities. From Gene Ontology. 

Cellular 
Component 

CC 1,391 The locations r elativ e to cellular structures in which a gene 
product performs a function. From Gene Ontology. 

Compound C 1,552 Appr ov ed small-molecule compounds with documented 
c hemical structur es. Fr om DrugBank. 

Disease D 137 Complex diseases, selected to be distinct and specific 
enough to be clinically relevant yet general enough to be 
w ell annotated. F rom Disease Ontology. 

Gene G 20,945 Protein-coding human genes. From Entrez Gene. 
Molecular 
Function 

MF 2,884 Activities that occur at the molecular le v el, suc h as 
“catal ysis” or “tr ansport.” Fr om Gene Ontology. 

Pathway PW 1,822 A series of actions among molecules in a cell that leads to 
a certain product or change in the cell. From WikiPathwa ys , 
Reactome , and Pathwa y Interaction Database . 

Pharmacologic 
Class 

PC 345 “Chemical/Ingr edient,” “Mec hanism of Action,” and 
“Physiologic Effect” FDA class types. From DrugCentral. 

Side Effect SE 5,734 Adverse drug reactions. From SIDER/UMLS. 
Symptom S 438 Signs and Symptoms (i.e., clinical abnormalities that can 

indicate a medical condition). From the MeSH ontology. 
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r epeated nodes ar e counted. The r ecursiv e, segmented a ppr oac h 

we de v eloped also allo w ed us to implement a cac hing str ategy 
that impr ov ed speed b y av oiding duplicate DWPC computations.
In summary, the functionality we de v eloped r esulted in mor e than 

a 175-fold reduction in compute time, allowing us to compute mil- 
lions of DWPC values across Hetionet [ 46 ]. 

Details of matrix DWPC implementation 

DWPC computation r equir es us to r emov e all duplicate nodes 
from paths. We used 3 repeat patterns as the building blocks for 
DWPC computation: short repeats (AAA), nested repeats (BAAB), 
and ov erla pping r epeats (B AB A). Let D ( X wX yZ ) denote the DWPC 

matrix for metapath XwXyZ . Under this notation, D ( XyZ ) is the 
degree-w eighted (bi)adjacenc y matrix for metaedge XyZ . Addi- 
tionall y, let diag(A ) r epr esent a dia gonal matrix whose entries are 
the diagonal elements of A . 

For the case of short ( < 4) repeats for a single metanode, XaXbX 

(e.g., GiGdG ), we simply subtract the main diagonal. 

D ( X aX bX ) = D ( XaX ) D ( XbX ) − diag ( D ( XaX ) D ( XbX ) ) 

Nested repeats XaYbYcX (e.g., CtDrDtC ) are treated recursively,
with both inner (YY) and outer (XX) repeats treated as separate 
short repeats. 

D ( XaY bY cX ) = D ( XaY ) D ( YbY ) D ( YcX ) − diag

Ov erla pping r epeats XaYbXcY (e.g., CtDtCtD ) r equir e se v er al cor- 
rections ( � denotes the Hadamard product). 

Most paths of length 6—and many even longer paths—can be 
r epr esented hier arc hicall y using these patterns . For example , a 
long metapath pattern of the form CB AB ACXYZ can be segmented 

as (C(B AB A)C)XYZ using patterns for short and ov erla pping r e- 
peats and can be computed using the tools we de v eloped. In 

addition to these matrix r outines—whic h adv anta geousl y count 
r ather than enumer ate paths—we implemented a gener al matrix 
method for any metapath type . T he general method is important 
or patterns such as long ( ≥4) repeats or complex repeat patterns
e.g., of the form ABCABC), but it r equir es path enumer ation and
s ther efor e slo w er. As an alternativ e a ppr oac h for complex paths,
e de v eloped an a ppr oximate DWPC method that corr ects r epeats

n disjoint simple patterns but only corrects the first repeat in
omplex patterns (e.g., ≥ length 4 repeat). Mayers et al. [ 47 ] de-
 eloped an alternativ e a ppr oximation, whic h subtr acts the main
iagonal at every occurrence of the first repeated metanode. Our
atrix methods were validated against the existing Python and 

ypher implementations in the hetnetpy pac ka ge that r el y on ex-
licit path enumeration. 

ermuted hetnets 

n order to generate a null distribution for a D WPC , we r el y on
WPCs computed from permuted hetnets. We derive permuted 

etnets from the unpermuted network using the XSwap algo- 
ithm [ 48 ]. XSwap randomizes edges while preserving node de-
ree . T herefore , it is ideal for generating null distributions that
 etain gener al degr ee effects but destr oy the actual meaning of
dges. We adapt XSwap to hetnets by applying it separately to
ach metaedge [ 2 , 49 , 50 ]. 

Project Rephetio created 5 permuted hetnets [ 2 , 49 ], which were
sed to generate a null distribution of classifier performance for
ac h meta path-based featur e. Her e, we aim to create a null dis-
ribution for individual DWPCs, whic h r equir es v astl y mor e per-
 uted v alues to estimate with accur acy. Ther efor e, we gener ated

00 perm uted hetnets. Perm utations 001–005 wer e those gener-
ted by Project Rephetio, while permutations 006–200 were gen- 
rated by this study. For the newly generated permutations, we
ttempted 10 times the number of swaps as edges for a given
etaedge, which is the default multiplier set by the hetnetpy per-
 ute_gr a ph function. Mor e r ecentl y, we also de v eloped the xswa p

ython pac ka ge, whose optimized C/C ++ implementation will en-
ble futur e r esearc h to gener ate e v en lar ger sets of permuted net-
orks [ 50 ]. 
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egree-grouping of node pairs 

or each of the 200 permuted networks and each of the 2,205
etapaths, we computed the entire DWPC matrix (i.e., all source

odes × target nodes). T herefore , for each actual DWPC value,
e computed 200 permuted DWPC values. Because permutation
r eserv es onl y node degr ee, DWPC v alues among nodes with the
ame source and target degrees are equivalent to additional per-
 utations. We gr eatl y incr eased the effectiv e number of perm uta-

ions by grouping DWPC values according to node degree, afford-
ng us a superior estimation of the DWPC null distribution. 

We hav e a pplied this degree-grouping a ppr oac h pr e viousl y when
alculating the prior probability of edge existence based on the
ource and target node degrees [ 50 , 51 ]. But here, we apply degree-
rouping to null DWPCs . T he result is that the null distribution
or a DWPC is based not only on permuted DWPCs for the cor-
 esponding source–meta path–tar get combination but also on all
ermuted DWPCs for the source-degr ee–meta path–tar get-degr ee
ombination. 

The “# DWPCs” column in Fig. 2 illustrates how degr ee-gr ouping
nflates the sample size of null DWPCs . T he P value for the
aGiGpPW meta path r elies on the minim um n umber of n ull DW-
Cs (200), since no other disease besides Alzheimer’s had 196 as-
ociates edges (source degree) and no other pathway besides circa-
ian rhythm had 201 participates edges (target degree). Ho w ever,
or other metapaths with over 5,000 null DWPCs, degree-grouping
ncreased the size of the null distribution by a factor of 25. In
ener al, source–tar get node pairs with lower degrees receive the
argest sample size multiplier from degree-grouping. This is con-
enient since low-degree nodes also tend to produce the highest
r oportion of zer o DWPCs, b y virtue of lo w connectivity. Conse-
uentl y, degr ee-gr ouping excels where it is most needed. 

One final benefit of degr ee-gr ouping is that it reduces the disk
pace r equir ed to stor e null DWPC summary statistics. For exam-
le, with 20,945 genes in Hetionet v1.0, there exist 438,693,025
ene pairs. Gene nodes have 302 distinct degrees for interacts
dges, resulting in 91,204 degree pairs . T his equates to an 4,810-
old reduction in the number of summary statistics that need to
e stored to represent the null DWPC distribution for a metapath
tarting and ending with a Gene–interacts–Gene metaedge. 

We store the following null DWPC summary statistics for each
eta path–source-degr ee–tar get-degr ee combination: total num-

er of null DWPCs, total number of nonzero null DWPCs, sum
f null DWPCs, sum of squared null DWPCs, and number of per-
uted hetnets . T hese v alues ar e sufficient to estimate the P v alue

or a D WPC , b y either fitting a gamma-hur dle null distribution or
enerating an empiric P value . Furthermore , these statistics are
d diti v e acr oss perm uted hetnets . T heir v alues ar e al ways a run-
ing total and can be updated incr ementall y as statistics from
ach additional permuted hetnet become a vailable . 

Fig. 4 sho ws ho w v arious aspects of DWPCs v ary by degr ee
r oup. The r ows display the following metrics of the DWPC dis-
ribution for all node pairs in a given degree-group: 

� # Nonzero DWPCs : The number of nonzero DWPCs values (on
av er a ge per network to enable comparison). 

� % Nonzero DWPCs : Of the total number of DWPCs, the per-
centage that is nonzero. As node degrees increase, the chance
of node pairs having at least 1 path, and hence a nonzero
D WPC , gr eatl y incr eases. 

� Mean DWPC : T he a v er a ge v alue of all DWPCs, including zer os.
� Mean Nonzero DWPC : T he a verage value of nonzero DWPCs.
� Std Dev Nonzero DWPC : The standard deviation of nonzero

DWPCs. 
� Gamma Model β: The β parameter of the gamma model fit
on nonzero DWPCs. Note that the gamma model is only fit on
permuted network DWPCs to estimate a null distribution for
the unpermuted network DWPCs. Since this parameter varies
with source and target node degree, it is important to fit a
separate gamma model for each degree group. 

amma-hurdle distribution 

e ar e inter ested in identifying source and tar get nodes whose
onnectivity exceeds what typically arises at random. To iden-
ify such especially connected nodes, we compare DWPC values to
he distribution of permuted network DWPC values for the same
ource and target nodes. While a single DWPC value is not actually
 test statistic, we use a fr ame work akin to classical hypothesis
esting to identify outliers. 

Two observations led us to the quasi-significance testing frame-
 ork w e de v eloped. First, a sizable fr action of perm uted DWPC

alues is often zero, indicating that the source and target nodes
re not connected along the metapath in the permuted network.
econd, we observed that nonzero DWPC values for any given
ource and target nodes are reasonably approximated as fol-
owing a gamma distribution. Motivated by these observations,
e parametrized permuted DWPC values using a zero-inflated
amma distribution, which we termed the gamma-hurdle distri-
ution . We fit a gamma-hurdle distribution to each combination
f source node, target node, and meta path. Finall y, we estimated
he probability of observing a perm uted DWPC v alue gr eater than
WPC computed in the unpermuted network, akin to a 1-tailed
 value . T hese quasi-significance scores (“P values”) allow us to
dentify outlier node pairs at the metapath level (see examples in
ig. 5 ). 

etails of the gamma-hurdle distribution 

et X be a gamma-hurdle random variable with parameters λ, α,
nd β. 

X ∼ �H ( λ, α, β ) 

The gamma-hurdle distribution is defined over the support [0,
 ). The probability of a dr aw, X , fr om the gamma-hurdle distribu-

ion is given as follows: 
We estimate all 3 parameters using the method of moments

using Bessel’s correction to estimate the second moment). As a
alidation of our method, we compared our method of moments
arameter estimates to approximate maximum likelihood esti-
ates (gamma distribution parameters do not have closed-form
aximum likelihood estimates) and found excellent concordance

etween the methods. Let N be the number of permuted DWPC
alues and n the number of nonzero values. 

Finally, we compute a P value for each DWPC value, t . 

p = P ( X ≥ t ) = 

βα

� ( α) 

∞ 

∫ 
t 

x α−1 exp ( −βx ) dx 

mpirical DWPC P values 

e calculate an empirical P value for special cases where the
amma-hurdle model cannot be applied. These cases include
hen the observed DWPC is zero or when the null DWPC distribu-

ion is all zeroes or has only a single distinct nonzero value . T he
mpirical P value ( P empiric ) equals the proportion of null DPWCs ≥
he observed D WPC . 

Since we do not store all null DWPC values, we apply the fol-
owing criteria to calculate P empiric from summary statistics: 
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Figure 4: Path-based metrics vary by node degree and network permutation status. Each ro w sho ws a different metric of the DWPC distribution for the 
CbGpPWpG meta path—tr av ersing Compound–binds–Gene–participates–P athwa y–participates–Gene , selected for illustr ativ e pur poses. Metrics ar e 
computed for degr ee-gr oups, whic h is a specific pair of source degree (in this case, the source compound’s count of CbG edges) and target degree (in 
this case, the target gene’s count of GpPW edges). Metrics are reported for the unpermuted hetnet on the left and for the 200 permuted hetnets on the 
right. Hence, each cell on the right summarizes 200 times the number of DWPCs as the corresponding cell on the left. The color map is row normalized, 
such that its intensity peaks for the maximum value of each metric across the unpermuted and permuted values . Gra y indicates null values. 
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F igure 5: F r om null distribution to P v alue for D WPCs. Null D WPC distributions ar e shown for 3 meta paths between Alzheimer’s disease and the 
circadian rhythm pathway, selected from Fig. 2 . For each metapath, null DWPCs are computed on 200 permuted hetnets and grouped according to 
source–tar get degr ee. Histogr ams show the null DWPCs for the degr ee gr oup corr esponding to Alzheimer’s disease and the cir cadian rhythm pathw ay 
(as noted in the plot titles by deg). The proportion of null DWPCs that were zero is calculated, forming the “hurdle” of the null distribution model. The 
nonzero null DWPCs are modeled using a gamma distribution, which can be fit solely from a sample mean and standard deviation. The mean of 
nonzero null DWPCs is denoted with a diamond, with the standard deviation plotted twice as a line in either direction. Actual DWPCs are compared to 
the gamma-hurdle null distribution to yield a P value. 
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1. When the observed DWPC = 0 (no paths of the specified
metapath existed between the source and target node),
P empiric = 1. 

2. When all null DWPCs are zero but the observed DWPC is pos-
itive, P empiric = 0. 

3. When all nonzero null DWPCs have the same positive value
(standard deviation = 0), P empiric = 0 if the observed DWPC
> the null D WPC , else P empiric = proportion of nonzero null
DWPCs. 

WPC and null distribution computation 

e decided to compute DWPCs and their significance for all
ource–target node pairs for metapaths with length ≤3. On Het-
onet v1.0, there are 24 metapaths of length 1, 242 metapaths of
ength 2, and 1,939 metapaths of length 3. The decision to stop
t length 3 was one of practicality, as length 4 would have added
7,511 metapaths. 

For each of the 2,205 metapaths, we computed the complete
ath count matrix and DWPC matrix. In total, we computed
37,786,767,964 path counts (and the same number of DWPCs) on
he unpermuted network, of which 11.6% were nonzero. 

The DWPC has a single parameter, called the damping expo-
ent ( w ), which controls how much paths through high-degree
odes are do wnw eighted [ 42 ]. When w = 0, the DWPC is equiv-
lent to the path count. Pr e viousl y, we found w = 0.4 was optimal
or predicting disease-associated genes [ 42 ]. Here, we use w = 0.5,
ince taking the square root of degrees has more intuitive appeal.

We selected data types for matrix values that would allow for
igh precision. We used 64-bit unsigned integers for path counts
nd 64-bit floating-point numbers for DWPCs. We considered us-
ng 16 bits or 32 bits per DWPC to reduce memory/storage require-

ents but decided against it in case certain applications required
r eater pr ecision. 

We used SciPy sparse for path count and DWPC matrices
ith density < 0.7, serialized to disk with compression and a

sparse .npz extension. T his format minimizes the space on disk
nd load time for the entire matrix but does not offer read ac-
ess to slices. We used Numpy 2-dimensional arrays for DWPC
atrices with density ≥0.7, serialized to disk using Numpy’s .npy

ormat. We bundled the path count and DWPC matrix files into
etMat arc hiv es by meta path length and deposited the arc hiv es

o Zenodo [ 52 ]. The arc hiv e for length 3 DWPCs was the largest at
31.7 GB. 
We also generated null DWPC summary statistics for the 2,205
eta paths, whic h ar e also av ailable by meta path length fr om

enodo as HetMat arc hiv es consisting of .tsv.gz files [ 52 ]. Due to
egr ee-gr ouping, null DWPC summary statistic arc hiv es ar e m uc h
maller than the DWPC arc hiv es . T he arc hiv e for length 3 null DW-
Cs summary statistics was 733.1 MB. Howe v er, the compute re-
uir ed to gener ate null DWPCs is far greater because ther e ar e
 ultiple perm uted hetnets (in our case 200). As a result, comput-

ng and saving all DWPCs took 6 hours, whereas computing and
aving the null DWPC summary statistics took 361 hours. 

Including null DWPCs and path counts, the Zenodo deposit to-
als 185.1 GB and contains the results of computing ∼28 trillion
WPCs—27,832,927,128,728 to be exact. 

djusting DWPC P values 

hen a user applies hetnet connectivity search to identify en-
ic hed meta paths between 2 nodes, man y meta paths ar e e v al-
ated for significance. Due to multiple testing of many DWPCs,

ow P v alues ar e likel y to arise by c hance . T her efor e, we de vised a
 ultiple-testing corr ection. 
For each combination of source metanode, target metanode,

nd length, we counted the number of metapaths. For Disease…-
 athway meta paths, ther e ar e 0 meta paths of length 1, 3 meta-
aths of length 2, and 24 metapaths of length 3. We calculated
djusted P values by applying a Bonferroni correction based on
he number of metapaths of the same length between the source
nd target metanode. Using Fig. 2 as an example, the DdGpPW P
alue of 5.9% was adjusted to 17.8% (multiplied by a factor of 3). 

Bonferr oni contr ols famil y-wise err or r ate, whic h corr esponds
ere to incorrectly finding that any metapath of a given length is
nric hed. As a r esult, our adjusted P v alues ar e conserv ativ e. We
ould prefer to adjust P values for false discovery rate [ 53 ], but

hese methods often r equir e access to all P values at once (imprac-
ical here) and assume a uniform distribution of P values when
here is no signal (not the case here when most DWPCs are zero).

rioritizing enriched metapaths for database 

torage 

toring DWPCs and their significance in the database (as part of
he PathCount table in Fig. 6 ) enables the connectivity search we-
a pp to pr ovide users with enric hed meta paths between query
odes in real time. Ho w ever, storing ∼15.9 billion rows (the to-
al number of nonzero DWPCs) in the database’s PathCount ta-
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Figure 6: Schema for the connectivity search backend relational database models. Each Django model is represented as a table, whose rows list the 
model’s field names and types. Each model corresponds to a database table. Arrows denote foreign k e y relationships . T he arrow labels indicate the 
foreign k e y field name follo w ed b y r e v erse r elation names gener ated by Django (in par entheses). 

 

 

 

c  

D

B
W
f  

s  

m  

d

r  

P  

a  

T  

P
t  

e  

G  

P  

o  

p  

a

s  

t

ble would exceed a reasonable disk quota. An alternative would 

be to store all DWPCs in the database whose adjusted P value 
exceeded a universal threshold (e.g., P < 5%). But we estimated 

this would still be pr ohibitiv el y expensiv e . T her efor e, we de vised 

a meta path-specific thr eshold. For meta paths with length 1, we 
stored all nonzero DWPCs, assuming users always want to be in- 
formed about direct edges between the query nodes, regardless of 
significance. For metapaths with length ≥2, we chose an adjusted 

P v alue thr eshold of 5 × ( n source × n target ) −0.3 , wher e n source and n target 

are the node counts for the source and target metanodes (i.e.,
“Nodes” column in Table 1 ). Notice that metapaths with a large 
number of possible source–target pairs (large DWPC matrices) are 
penalized. This decision is based on practicality since otherwise,
the majority of the database quota would be consumed by a mi- 
nority of metapaths between plentiful metanodes (e.g., Gene…- 
Gene metapaths). Also, we assume that users will search nodes 
at a similar rate by metanode (e.g., they are more likely to search 

for a specific disease than a specific gene). The constants in the 
thr eshold form ula help scale it. The m ultiplier of 5 r elaxes the 
threshold to saturate the available database capacity. The −0.3 
exponent applies the large DWPC-matrix penalty. 

Users can still e v aluate DWPCs that are not stored in the 
database, using either the webapp or API. These are calculated 

on the fly, delegating DWPC computation to the Neo4j database.
Unc hec king “pr ecomputed onl y” on the weba pp shows all possible 
metapaths for 2 query nodes. For some node pairs, the on-the-fly 
t
(

omputation is quick (less than a second). Other times, computing
WPCs for all metapaths might take more than a minute. 

ac k end data base and API 
e created a backend application using Python’s Django web 

r ame w ork. The sour ce code is available in the connectivity-
earc h-bac kend r epository. The primary role of the backend is to
anage a relational database and provide an API for requesting

ata. 
We define the database schema using Django’s object- 

 elational ma pping fr ame work (Fig. 6 ). We import the data into a
 ostgreSQL database . P opulating the database for all 2,205 metap-
ths up to length 3 was a pr olonged oper ation, taking ov er 3 da ys .
he majority of the time is spent populating the Degr eeGr ouped-
ermutation (37,905,389 rows) and PathCount (174,986,768 rows) 
ables . To a v oid redundanc y, the database onl y stor es a single ori-
ntation of a metapath. For example, if rows are stored for the
pPWpGaD metapath, they would not also be stored for the DaGp-
WpG meta path. The bac kend is r esponsible for c hec king both
rientations of a metapath in the database and r e v ersing meta-
aths on the fly before returning results . T he database is located
t search-db.het.io with public read-only access a vailable . 

We host a public API instance at https://search-api.het.io . Ver- 
ion 1 of the API exposes se v er al endpoints that are used by
he connectivity search frontend, including queries for node de- 
ails (/v1/node), node lookup (/v1/nodes), metapath information 

/v1/metapaths), and path information (/v1/paths). The endpoints 

https://search-api.het.io
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eturn JSON pa yloads . Producing results for these queries relies
n internal calls to the Postgr eSQL r elational database as well as
he preexisting Hetionet v1.0 Neo4j gr a ph database . T hey were de-
igned to po w er the hetnet connectivity sear ch w eba pp but ar e
lso available for general research use. 

rontend 

etio website 
e created a static website to serve as the home for the Hetio or-

anization using Jekyll hosted on GitHub P a ges (Fig. 7 ). The source
ode is available in the het.io repository. To make a change to the
ebsite, an author simply commits the changes (either dir ectl y or

hrough a pull request) to the repository’s gh-pages branch, and
itHub automaticall y r ecompiles the website and hosts the re-
ulting files at the provided custom domain URL. 

ebapps 
e de v eloped the connectivity searc h a pp as a single-pa ge, stan-

alone application using React and associated tools . T he source
ode is available in the connectivity-search-frontend repository. 

Since the rest of the ov er arc hing Hetio website was mostly non-
nter activ e content, it was a ppr opriate to construct the bulk of the
ebsite in simple static formats like Markdown and HTML using

ekyll and leave React for implementing the sections of the site
hat r equir ed mor e complex behavior. 

We used React’s own cr eate-r eact-a pp command-line tool to
ener ate a boiler plate for the a pp . This simplified setup , testing,
nd building pipelines, bypassing time-consuming configuration
f things like Webpack and linters. Some configuration was neces-
ary to produce nonhashed, consistently named output files like
ndex.js that could be easily and r eliabl y r efer enced by and em-
edded into the Hetio Jekyll website. 

For authoring components, we used React’s traditional class
yntax. At the time of authoring the app, React Hooks were still
ascent, and thus the simpler and less-verbose functional syntax
as not viable. 
While writing this application, we also elected to rewrite the

reexisting Rephetio and disease-associated genes apps in the
ame manner. We created a custom package of React components
nd utility functions that could be shar ed acr oss the m ultiple in-
er activ e a pps on the website . T he pac ka ge is located at and can be
nstalled from the frontend-components repository. The package
onsists of interface “components” (building blocks) like buttons
nd sortable/searc hable/pa ginated tables as well as utility func-
ions for formatting data and debugging. Each of the inter activ e
pps imports this package to reduce code repetition and to enforce
 consistent style and behavior across the website. 

For managing state in the connectivity search app, we used the
edux library. Redux was chosen over vanilla React or other state
ana gement libr aries since: 

1. The state in this app was very “global,” meaning most of it
was needed by a lot of different parts of the app. Redux pro-
vides a convenient global “store” of state that is easily ac-
cessible to any component, avoiding the “prop-drilling” phe-
nomenon. 

2. The structure of the state is nested and complex. Redux’s
“r educer” a ppr oac h makes it cleaner to modify this type of
data. 

3. Redux’s a ppr oac h to imm utable state that is updated by ac-
tions and pure functions makes the application easier to de-
bug. It is easy to get a clear timeline of how and when the
state changed and what changed it. 
To create the graph visualization at the bottom of the app, the
3 library was used. D3 satisfied several core requirements: 

1. SVG implementation for high-r esolution, publication-r eady
figures 

2. For ce-directed lay out for untangling nodes 
3. Pinnable nodes and other physics customizations 
4. Customizable node and edge dr a g/hov er/select behavior 
5. Intuitiv e pan/zoom vie w that worked on desktop and mobile
6. Node and edge a ppear ances that wer e completel y customiz-

able for alignment, text wr a pping, color, outlines , fonts , ar-
rowheads, and noncolliding coincident edges 

isual design 

 limited palette of colors was chosen to r epr esent the differ-
nt types of nodes (metanodes) in the Hetionet knowledge gr a ph.
hese colors are listed and pr ogr ammaticall y accessible in the
etionet repository under/describe/styles.json. 

At the time of de v eloping connectivity search, Hetionet already
ad an established palette of colors (from Project Rephetio). To
v oid confusion, w e w er e car eful to k ee p the general hue of each
etanode color the same for backw ar d compatibility (e.g., genes

tayed gener all y blue , diseases sta yed gener all y br own). In this
ay, this palette selection was more of a modernization/refresh.

or cohesiveness, accessibility, and aesthetic appeal, we used the
r ofessionall y cur ated Material Design palette as a source for the
pecific color values. 

The palette is now used in all Hetio-r elated a pplications and
aterials . T his is not just to maintain a consistent look and feel

cross the Hetio organization but to convey clear and precise
eaning. For example, the colors used in the meta gr a ph in Fig. 1 A

r e exactl y the same colors and thus r epr esent the same types of
ntities, as in any part of the connectivity search app (Fig. 3 ). 

Colors in the palette are also used in the Hetio logo (seen in
ig. 7 ) and other miscellaneous logos and iconogr a phy acr oss the
ebsite, to establish an identifiable brand for the Hetio organiza-

ion as a whole. 

eal-time open science 

his study was conducted entir el y in the open via public GitHub
epositories. We used GitHub Issues for discussion, leaving a rich
nline history of the sc holarl y pr ocess. Furthermor e, most addi-
ions to the analyses were performed by pull request, whereby a
ontributor proposes a set of changes . T his pro vides an opportu-
ity for other contributors to r e vie w c hanges befor e they ar e of-
cially accepted. For example, in greenelab/connectivity-search-
nal yses#156, @zietzm pr oposed a notebook to visualize parame-
ers for null DWPC distributions. After @zietzm addressed @dhim-

el’s comments, the pull request was a ppr ov ed and mer ged into
he project’s main branch. 

The manuscript for this study was written using Manubot,
hich allows authors to collaboratively write manuscripts on
itHub [ 54 ]. The Manubot-r ender ed manuscript is av ailable at
ttps:// greenelab.github.io/ connectivity- search- manuscript/. We
ncour a ge r eaders with feedbac k or questions to comment pub-
icly via GitHub Issues. 

oftware and data availability 

etio is a superset/collection of hetnet-related research, tools, and
atasets that, most notably, includes the Hetionet project itself
nd the connectivity search tool that are the focus of this article.
ost of the Hetio resources and projects can be found under the

https://greenelab.github.io/connectivity-search-manuscript/


| 13 

Figure 7: Homepage of the Hetio website . T he redesigned homepage provides a succinct ov ervie w of what Hetionet consists of and what its purpose is. 
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Hetio GitHub organization, with others being available under the 
Greene Lab GitHub organization, one of the collaborating groups.
Information about Hetio is also displayed and disseminated at ht 
tps://het.io , as noted in the Hetio Website section. 

Availability of Supporting Source Code and 

Requirements 

� Project name: Hetnet Connectivity Search 

� Pr oject homepa ge: https:// het.io/search/ 
� Operating systems: Platform independent 
� Pr ogr amming langua ge: Python, Jav ascript, Cypher 
� Other r equir ements: Refer to specific r epositories below for 

their r espectiv e dependency configur ation files 
� License: Refer to specific repositories below, but generally 

softwar e is r eleased under BSD, figur es and documentation 

under CC BY, and data under CC0. 
� RRID: SCR_023630 
� biotools ID: connectivity-search 

This study primarily involves the following GitHub repositories: 

� gr eenelab/connectivity-searc h-manuscript [ 55 ]: Source code 
for this manuscript. Best place for general comments or ques- 
tions. CC BY 4.0 License. 

� gr eenelab/connectivity-searc h-anal yses [ 56 ]: The initial 
pr oject r epository that contains r esearc h notebooks, dataset 
generation code, and exploratory data analyses . T he het- 
matpy pac ka ge was first de v eloped as part of this r epository 
until its relocation in November 2018. BSD 3-Clause License. 

� gr eenelab/connectivity-searc h-bac kend [ 57 ]: Source code for 
the connectivity search database and API. BSD 3-Clause Li- 
cense. 

� gr eenelab/connectivity-searc h-fr ontend [ 58 ]: Source code for 
the connectivity search webapp. BSD 3-Clause License. 

� hetio/hetmatpy [ 59 ]: Python pac ka ge for matrix stor a ge and 

operations on hetnets. Released on PyPI. BSD 2-Clause Plus 
P atent License. Register ed at biotools:hetmatpy and RRID:SC 

R _ 023409 . 
� hetio/hetnetpy [ 60 ]: Preexisiting Python package for repre- 

senting hetnets. Dependency of hetmatpy. Released on PyPI.
Dual licensed under BSD 2-Clause Plus Patent License and 

CC0 1.0 (public domain dedication). 
� hetio/hetionet [ 61 ]: Preexisiting data repository for Hetionet,

including the public Neo4j instance and HetMat arc hiv es. CC0
1.0 License. 

� hetio/het.io [ 62 ]: Preexisiting source code for the https://het.
io/website. CC BY 4.0 License. 

bbreviations 

rnt: aryl hydr ocarbon r ece ptor n uclear tr anslocator pr otein;
RNT2: aryl hydrocarbon receptor nuclear translocator 2; DWPC: 
egree-weighted path count; LFS: large file storage; NPAS2: neu- 
onal PAS domain protein 2; PAS: P er-Arnt-Sim; P er: period cir ca-
ian protein; Sim: single-minded protein. 

unding 

.S.H., B.J.H., D.H., and D.N .N . w ere funded b y The Gor don and Betty
oore Foundation (GBMF4552). D.S.H. and C.S.G. were funded by 

fizer Worldwide Researc h, De v elopment, and Medical. K.K. was
unded by The Gordon and Betty Moore Foundation (GBMF4560).
.N .N . w as funded b y The National Institutes of Health (T32
G000046). C .S .G. w as funded b y the National Human Genome
esearch Institute (R01 HG010067), the National Cancer Institute 

R01 CA237170), the Gordon and Betty Moore Foundation (GBMF 
552), and the Eunice Kenned y Shri ver National Institute of Child
ealth and Human De v elopment (R01 HD109765). The funders
ad no role in the study design, data analysis and inter pr etation,
r writing of the manuscript. 

https://het.io
https://het.io/search/
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:SCR_023409
https://het.io/


14 | GigaScience , 2023, Vol. 00, No. 0 

D
A  

t  

a  

L  

fi  

c  

f

C
T  

D

A
A  

t  

B  

m  

b  

M  

a  

b  

V  

V  

b  

b

R
1  

 

2  

 

3  

 

4  

 

5  

6  

7  

 

8  

 

9  

 

1  

 

1  

 

1  

 

 

1  

 

 

 

1  

 

1  

 

1  

1  

 

 

1  

 

 

1  

 

 

 

2  

 

2  

 

2  

 

 

2  

 

 

2  

 

2  

 

 

 

2  

 

 

2  

 

 

2  

 

a ta Av ailability 

n arc hiv al copy of the code and supporting data is available via
he GigaScience repository [ 63 ]. The connectivity-searc h-anal yses
nd hetionet repositories contain datasets related to this study.
arge datasets were compressed and tracked with Git LFS (large
le stor a ge). GitHub LFS had a max file size of 2 GB. Datasets ex-
eeding this size, along with other essential datasets, are available
rom Zenodo [ 52 ]. 
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