
DOI: 10.1093/gigascience/giad047

Himmelstein et al. Q1: [Copyeditor to Author][AU: Please provide
the short title for running head.]

TECH NOTE

Hetnet connectivity search provides rapid insights
into how two 2 biomedical entities are related

Daniel S. Himmelstein , Michael Zietz , Vincent Rubinetti , Kyle Kloster ,

Benjamin J. Heil , Faisal Alquaddoomi , Dongbo Hu , David N. Nicholson , Yun

Hao , Blair D. Sullivan , Michael W. Nagle and Casey S. Greene

Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania,

Philadelphia, Pennsylvania PA, United States of America USA Q2: [Copyeditor to Author]
[AU: Please provide missing 'Postal code' for this affiliation] Q3: [Copyeditor
to Author][AU: To check that we have your surnames correctly identified and
tagged (e.g. for indexing), we have coloured green the names that we have
assumed are surnames. If any of these are wrong, please let us know so that we
can amend the tagging.]

Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania,

Philadelphia, Pennsylvania PA, USA United States of America Q4: [Copyeditor to Author]
[AU: Please provide missing 'Postal code' for this affiliation]

Department of Biomedical Informatics, Columbia University, New York, New York NY, USA United

States of America Q5: [Copyeditor to Author][AU: Please provide missing 'Postal
code' for this affiliation]

Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania,

Philadelphia, Pennsylvania PA, USA United States of America Q6: [Copyeditor to Author]
[AU: Please provide missing 'Postal code' for this affiliation]

Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado CO, USA United

States of America Q7: [Copyeditor to Author][AU: Please provide missing 'Postal
code' for this affiliation]

Carbon, Inc.; Department of Computer Science, North Carolina State University, Raleigh, North

Carolina NC, United States of America USA Q8: [Copyeditor to Author][AU: Please
provide missing 'Postal code' for this affiliation]

Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of

Pennsylvania, Philadelphia, PA, USA Q9: [Copyeditor to Author][AU: Please provide
missing 'Postal code' for this affiliation]

1 2,3 4,5 6

7 8,9 10 11

12 13 14,15 16,17,18,*

1

2

3

4

5

6

7

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine,

Aurora, Colorado CO, USA United States of America Q10: [Copyeditor to Author][AU:
Please provide missing 'Postal code' for this affiliation]

Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado CO, United States

of America USA Q11: [Copyeditor to Author][AU: Please provide missing 'Postal
code' for this affiliation]

Department of Pathology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA,

USA Q12: [Copyeditor to Author][AU: Please provide missing 'Postal code'
for this affiliation]

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine

University of Pennsylvania, Philadelphia, PA, USA Q13: [Copyeditor to Author][AU:
Please provide missing 'Postal code' for this affiliation]

Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of

Pennsylvania, Philadelphia, PA, USA Q14: [Copyeditor to Author][AU: Please
provide missing 'Postal code' for this affiliation]

School of Computing, University of Utah, Salt Lake City, Utah UT, USA Q15: [Copyeditor to
Author][AU: Please provide missing 'Postal code' for this affiliation]

Integrative Biology, Internal Medicine Research Unit, Worldwide Research, Development, and

Medicine, Pfizer Inc, Cambridge, Massachusetts MA, United States of America USA Q16:
[Copyeditor to Author][AU: Please provide missing 'Postal code' for this
affiliation]

Neurogenomics, Translational Sciences, Neurology Business Group, Eisai Inc, Cambridge,

Massachusetts MA, USA United States of America Q17: [Copyeditor to Author][AU:
Please provide missing 'Postal code' for this affiliation]

Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania,

Philadelphia, Pennsylvania PA, USA United States of America Q18: [Copyeditor to Author]
[AU: Please provide missing 'Postal code' for this affiliation]

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine,

Aurora, Colorado CO, USA United States of America Q19: [Copyeditor to Author][AU:
Please provide missing 'Postal code' for this affiliation]

Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado CO, United States

of America USA Q20: [Copyeditor to Author][AU: Please provide missing
'Postal code' for this affiliation]

Correspondence address. Casey S. Greene, Email: casey.s.greene@cuanschutz.edu

Received: 7 January 2023; Revised: 14 April 2023; Accepted: 6 June 2023

8

9

10

11

12

13

14

15

16

17

18

*

mailto:casey.s.greene@cuanschutz.edu

Abstract

Background:

Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and
offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of
nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2
million edges of 24 types. Previous work has demonstrated that supervised machine learning
methods applied to such networks can identify drug repurposing opportunities. However, a
training set of known relationships does not exist for many types of node pairs, even when it
would be useful to examine how nodes of those types are meaningfully connected. For example,
users may be curious about not only how metformin is related to breast cancer , but also how a
given gene might be involved in insomnia.

Findings:

We developed a new procedure, termed hetnet connectivity search, that proposes important paths
between any two 2 nodes without requiring a supervised gold standard. The algorithm behind
connectivity search identifies types of paths that occur more frequently than would be expected
by chance (based on node degree alone). Several optimizations were required to precompute
significant instances of node connectivity at the scale of large knowledge graphs.

Conclusion:

We implemented the method on Hetionet and provide an online interface at https://het.io/search.
We provide an open source open-source implementation of these methods in our new Python
package named hetmatpy.

Keywords:
knowledge graphs; hetnets; networks; connectivity; search; hetionet Hetionet; path counts; matrix
multiplication; bioinformatics; algorithms

Introduction
A network (also known as a graph) is a conceptual representation of a group of entities—called nodes—and the
relationships between them—called edges. Typically, a network has only one 1 type of node and one 1 type of
edge. However, in many cases, it is necessary to be able to distinguish between different types of entities and
relationships.

A hetnet (short for het erogeneous heterogeneous information net work network [1]) is a network where
nodes and edges have type. The ability to differentiate between different types of entities and relationships
allows a hetnet to describe more complex data accurately. Hetnets are particularly useful in biomedicine, where
it is important to capture the conceptual distinctions between various entities, such as genes and diseases, and
linkages, such as upregulation and binding.

https://het.io/search

The types of nodes and edges in a hetnet are defined by a schema, referred to as a metagraph. The
metagraph consists of metanodes (types of nodes) and metaedges (types of edges). Note that the prefix meta
refers to the type (e.g., compound), as opposed to a specific node/edge/path itself (e.g., acetaminophen).

One such network is Hetionet, which provides a foundation for building hetnet applications. It unifies data
from several different, disparate sources into a single, comprehensive, accessible, common-format network. The
database is publicly accessible without login at https://neo4j.het.io. The Neo4j graph database enables querying
Hetionet using the Cypher language, which was designed to interact with networks where nodes and edges have
both types and properties.

The initial application of Hetionet, named Project Rephetio, focused on drug repurposing [2]. The authors
predicted the probability of drug efficacy for 209,168 compound–disease pairs. A supervised machine learning
approach identified types of paths that occur more or less frequently between known treatments than non-
treatments nontreatments (Fig. 1B). To train the model, the authors created PharmacotherapyDB, a physician-
curated catalog of 755 disease-modifying treatments [3].

Figure 1: A. (A) Hetionet v1.0 metagraph. The types of nodes and edges in Hetionet.
B. (B) Supervised machine learning approach from Project Rephetio. This figure visualizes the feature matrix used
by Project Rephetio to make supervised predictions. Each row represents a compound–disease pair. The bottom
half of rows correspond to known treatments (i.e., positives), while the top half correspond to non-treatments
nontreatments (i.e., negatives under a closed-world assumption, not known to be treatments in
PharmacotherapyDB). Here, an equal number of treatments and non-treatments nontreatments are shown, but in
reality, the problem is heavily imbalanced. Project Rephetio scaled models to assume a positive prevalence of
0.36% [2, 4]. Each column represents a metapath, labeled with its abbreviation.
Feature values are degree-weighted path counts (abbreviated DWPCs, transformed and standardized), which
assess the connectivity along the specified metapath between the specific compound and disease. Green colored
values indicate above-average connectivity, whereas blue values indicate below average below-average
connectivity. In general, positives have greater connectivity for the selected metapaths than negatives. Rephetio

https://neo4j.het.io/

used a logistic regression model to learn the effect of each type of connectivity (feature) on the likelihood that a
compound treats a disease. The model predicts whether a compound–disease pair is a treatment based on its
features , but requires supervision in the form of known treatments.

Project Rephetio successfully predicted treatments, including those under investigation by clinical trail
trial. However, two 2 challenges limit the applicability of Rephetio. First, Rephetio required known labels (i.e.,
treatment status) to train a model. Hence, the approach cannot be applied to domains where training labels do not
exist. Second, the DWPC degree-weighted path count (DWPC) metric used to assess connectivity is sensitive to
node degree. The Rephetio approach was incapable of detecting whether a high DWPC score indicated
meaningful connectivity above the level expected by the background network degrees. Here we develop Hetnet
connectivity search, which defines a null distribution for DWPCs that accounts for degree and enables detecting
meaningful hetnet connectivity without training labels.

Existing research into methods for determining whether two 2 nodes are related primarily focuses on
homogeneous networks (without type). Early approaches detected related nodes by measuring neighborhood
overlap or path similarity between two 2 nodes [5, 6]. These approaches predicted node relatedness with success.
However, they are challenging to scale as a network grows in size or semantic richness (i.e., type) [5].

More recently, focus has shifted to graph embeddings to determine if two 2 nodes are related, specifically
in the context of knowledge graphs, which are often semantically rich and include type [7, 8,9, 10, 11]. These
types of methods involve mapping nodes and sometimes edges to dense vectors via neural network models [12,
13, 14], matrix factorization [15, 16], or translational distance models [17]. Bioteque creates node embeddings
from the bipartite network of DWPCs for a given metapath [18]. Once these dense vectors have been produced,
quantitative scores that measure node relatedness can be generated via a machine learning model [8, 19, 20] or
by selected similarity metrics [7, 9, 21, 22, 23]. These approaches have been quite successful in determining
node relatedness. Yet, they only state whether two 2 nodes are related and fail to explain why two 2 nodes are
related.

Explaining why two 2 nodes are related is a non-trivial nontrivial task because approaches must output
more than a simple similarity score. The first group of approaches output a list of ranked paths that are most
relevant between two 2 nodes [24, 25, 26]. For example, the FAIRY framework explains for why items appear
on a user's social media feed based on a network of users and content classes (e.g., categories, user posts, songs)
[25]. ESPRESSO explains how two 2 sets of nodes are related by returning subgraphs [27]. Other approaches
such as MetaExp return important metapaths rather than paths , but require some form of supervision [28, 29].

MechRepoNet is a hetnet containing 250,035 nodes across 9 metanodes and 9,652,116 edges across 68
metaedges [30]. The study trained a model using DWPCs as features to predict Compound–treats–Disease
compound–treats–disease relationships, which was able to select 89 metapaths with positive regression
coefficients. The authors also created DrugMechDB with a curated set of paths capturing known mechanisms of
action for 123 compound–disease pairs [30]. Metapath coefficients were used to rank paths, using DrugMechDB
as validation. The method generally performed well, although interpretability was challenging when “hundreds,
or thousands of paths ranked above the mechanistic path in DrugMechDB” [30]. To address this issue, the study
explored additional path filters, such as filtering for paths that traverse known drug targets, and dimensionality
reduction by aggregating paths across intermediate nodes and summing the path weights. Refinements to path
scoring path-scoring techniques might also be helpful solutions in this context.

Hetnet connectivity search explains how two 2 nodes are related in an unsupervised manner that captures
the semantic richness of edge type and returns results in the form of both metapaths and paths. Our open source
open-source implementation, including for a query and visualization webserver, was designed with scalability
and responsiveness in mind, allowing in-browser exploration.

Findings
Completing hetnet connectivity search involved advances on three 3 fronts. We implemented new software for
efficient matrix-based operations on hetnets. We developed strategies to efficiently calculate the desired
connectivity score under the null. We designed and developed a web interface for easy access to the connectivity
search approach.

Hetmatpy package

We created the hetmatpy Python package, available on GitHub and PyPI, under the permissive BSD-2-Clause
Plus Patent License. This package provides matrix-based utilities for hetnets. Each metaedge is represented by a
distinct adjacency matrix, which can be either a dense Numpy array or a sparse SciPy matrix (see HetMat
architecture). Adjacency matrices are stored on disk and loaded in a lazy manner to help scale the software to
hetnets that are too large to fit entirely in memory.

The primary focus of the package is to provide compute-optimized and memory-efficient implementations
of path counting path-counting algorithms. Specifically, the package supports computing degree-weighted path
counts (DWPCs), DWPCs, which can be done efficiently using matrix multiplication but require complex
adjustments to avoid counting paths with duplicate nodes (i.e., to filter walks that are not paths, see DWPC
matrix multiplication algorithms). The package can reuse existing path count computations that span segments of
a longer metapath. The package also supports generating null distributions for DWPCs derived from permuted
networks , (see “Degree-grouping of node pairs pairs”). Since this approach generates too many permuted
DWPC values to store on disk, our implementation retains summary statistics for each degree-group degree
group that allow computation of a Gamma-hurdle gamma-hurdle distribution from which null DWPC p- P
values can be generated.

DWPC null distribution

To assess connectivity between a source and target node, we use the DWPC (degree-weighted path count)
metric. The DWPC is similar to path count (number of paths between the source and target node along a given
metapath), except that it downweights paths through high degree high-degree nodes. Rather than using the raw
DWPC for a source-metapath-target source–metapath–target combination, we transform the DWPC across all
source-target source–target node pairs for a metapath to yield a distribution that is more compact and amenable
to modeling [31].

Previously, we had no technique for detecting whether a DWPC value was exceptional. One possibility is
to evaluate the DWPCs for all pairs of nodes and select the top scores (e.g., the top 5% of DWPCs). Another
possibility is to pick a transformed DWPC score as a cutoff. The shortcomings of these methods are twofold 2-
fold. First, neither the percentile nor absolute value of a DWPC has inherent meaning. To select transformed
DWPCs greater than 3.5, or alternatively the top 1% of DWPCs, is arbitrary. Second, comparing DWPCs

between node pairs fails to account for the situation where high-degree node pairs are likely to score higher,
solely on due to their degree (4).

To address these shortcomings, we developed a method to compute the right-tail p- P value of a DWPC. p
P - “Permuted hetnets hetnets”).

By tailoring the null distribution for a DWPC to the degree of its source and target node (see “Degree-
grouping of node pairs pairs”), we account for degree effects when determining the significance of a DWPC. To
improve the accuracy of DWPC p-values, P values, we use fit a gamma-hurdle distribution to the null DWPCs.
In rare cases, there are insufficient nonzero null DWPCs to fit the gamma portion of the null distribution. In
these cases, we fallback fall back to an empirical calculation as described in “Empirical DWPC p-values. P
values.”

Enriched metapaths

For each of the 2,205 metapaths in Hetionet v1.0 with length ≤3, we computed DWPCs for all node pairs and
their corresponding null distributions , (see “DWPC and null distribution computation computation”). We store
the most significant DWPCs as described in “Prioritizing enriched metapaths for database storage, storage,”
which appear as the “precomputed” rows in the webapp metapath table (Fig. Figs. 3B & and 2). DWPCs
that are not retained by the database can be regenerated on the fly. This design allows us to immediately provide
users with the metapaths that are most enriched between two 2 query nodes , while still allowing on-demand
access to the full metrics for all metapaths with length ≤3.

Figure 2: Expanded metapath details from the connectivity search webapp. This is the expanded view of
the metapath table in Figure 3B showing enriched metapaths between Alzheimer's disease and the circadian
rhythm pathway.

Fig. 2 shows the information used to compute p - the P value for enriched metapaths. The table includes
the following columns:

● path Path count: The number of paths between the source and target node of the specified metapath.

● adjusted p - Adjusted P value: A measure of the significance of the DWPC that indicates whether more
paths were observed than expected due to random chance. Compares the DWPC to a null distribution of

DWPCs generated from degree-preserving permuted networks. Bonferroni-adjusted for the number of
metapaths with the same source metanode, target metanode, and length.

● p- P value: A measure of the significance of the DWPC that indicates whether more paths were observed
than expected due to random chance. Compares the DWPC to a null distribution of DWPCs generated
from degree-preserving permuted networks. Not adjusted for multiple comparisons (i.e., when multiple
metapaths are assessed for significant connectivity between the source and target node).

● DWPC: Degree-Weighted Path Count—Measures Degree-weighted path count—measures the extent of
connectivity between the source and target node for the given metapath. Like the path count, but with less
weight given to paths along high-degree nodes.

● source Source degree: The number of edges from the source node that are of the same type as the initial
metaedge of the metapath.

● target Target degree: The number of edges from the target node that are of the same type as the final
metaedge of the metapath.

● # DWPCs: The number of DWPCs calculated on permuted networks used to generate a null distribution
for the DWPC from the real network. Permuted DWPCs are aggregated for all permuted node pairs with
the same degrees as the source and target node.

● # non Non-0 DWPCs: The number of permuted DWPCs from ‘ the “# of DWPCs ’ ” column that were
nonzero. Nonzero DWPCs indicate at least one 1 path between the source and target node existed in the
permuted network.

● non-0 Non-0 mean: The mean of nonzero permuted DWPCs. Used to generate the gamma-hurdle model
of the null DWPC distribution.

● non Non-0 σ: The standard deviation of nonzero permuted DWPCs. Used to generate the gamma-hurdle
model of the null DWPC distribution.

● Neo4j Actions: A Cypher query that users can run in the Neo4j browser to show paths with the largest
DWPCs for the metapath.

Enriched paths

In addition to knowing which metapaths are enriched between two 2 query nodes, it is helpful to see the specific
paths that contribute highly to such enrichment. Since the DWPC is a summation of a path metric (called the
path degree product), it is straightforward to calculate the proportion of a DWPC attributable to an individual
path. The webapp allows users to select a metapath to populate a table of the corresponding paths. These paths
are generated on-the-fly on the fly through a Cypher query to the Hetionet Neo4j database.

It is desirable to have a consolidated view of paths across multiple metapaths. Therefore, we calculate a
path score heuristic, which can be used to compare the importance of paths between metapaths. The path score
equals the proportion of the DWPC contributed by a path multiplied by the magnitude of the DWPC's p P -
value (-log −log10(pP)). To illustrate, the paths webapp panel includes the following information (Fig. 3C):

● pathPath: The sequence of edges in the network connecting the source node to the target node. Duplicate
nodes are not permitted in paths.

● path Path score: A metric of how meaningful the path is in describing the connectivity between the source
and target node. The score combines the magnitude of the metapath's p-value P value with the percent
percentage of the DWPC contributed by the path.

● % of DWPC: The contribution of the path to the DWPC for its metapath. This metric compares the
importance of all paths of the same metapath from the source node to the target node.

Figure 3: Using the connectivity search webapp to explore the pathophysiology of Alzheimer's disease.
This figure shows an example user workflow for https://het.io/search/.
A. (A) The user selects two 2 nodes. Here, the user is interested in Alzheimer's disease, so selects this as the
source node. The user limits the target node search to metanodes relating to gene function. The target node search
box suggests nodes, sorted by the number of significant metapaths. When the user types in the target node box, the
matches reorder based on search word similarity. Here, the user becomes interested in how the circadian rhythm
might relate to Alzheimer's disease .B .
(B) The webapp returns metapaths between Alzheimer's disease and the circadian rhythm pathway. The user
unchecks “precomputed only” to compute results for all metapaths with length ≤ 3, not just those that surpass the
database inclusion threshold. The user sorts by adjusted p- P value and selects 7 of the top 10 metapaths .C .
(C) Paths for the selected metapaths are ordered by their path score (limited to 100 paths for each metapath). The
user selects 8 paths (1 from a subsequent page of results) to show in the graph visualization and highlights a single
path involving ARNT2 for emphasis.
D. (D) A subgraph displays the previously selected paths. The user improves on the automated layout by
repositioning nodes. Clicking an edge displays its properties, informing the user that an association between

https://het.io/search/

Creutzfeldt-Jakob Creutzfeldt–Jakob disease and NPAS2 was detected by GWAS Q21: [Copy Editor
Freelancer to Author] Author: Please define GWAS..

Hetio website and connectivity search webapp

We revamped the website hosted at https://het.io to serve as a unified home for this study and the hetnet-related
research that preceded it. The website provides the connectivity search webapp running over the hetio network
and several other interactive apps for prior projects. It also includes high-level information on hetnets and
Hetionet, citation and contact details, links to supporting studies and software, downloads and exploration of
Hetionet data, and related media.

We created the connectivity search webapp available at https://het.io/search/. The tool is free to use,
without any login or authentication. The app allows users to quickly explore how any two 2 nodes in Hetionet
v1.0 might be related. The workflow accepts one 1 or more nodes as input and shows the user the most important
metapaths and paths for a pair of query nodes.

The design guides the user through selecting a source and target node (Fig. 3A). The webapp returns
metapaths, scored by whether they occurred more than expected based on network degree (Fig. 3B). Users can
proceed by requesting the specific paths for each metapath, which are placed in a unified table sorted according
to their path score (Fig. 3C). Finally, the webapp produces publication-ready visualizations containing user-
selected paths (Fig. 3D).

Discussion
In this study, we introduce a search engine for hetnet connectivity between two 2 nodes that returns results in
realtime real time. An interactive webapp helps users explore node connectivity by ranking metapaths and paths ,
while visualizing multiple paths in a subgraph.

We made several methodological contributions to support this application. We developed optimized
algorithms for computing DWPCs using matrix multiplication. In addition, we created a method for estimating a
p- P value for a DWPC, using null DWPCs computed on permuted hetnets. We implemented these advances in
the open-source hetmatpy Python package and HetMat data structure to provide highly-optimized highly
optimized computational infrastructure for representing and reasoning on hetnets using matrices.

This work lays the foundation for exciting future directions. For many queries, a large number of paths are
returned. Interpretation of large lists is difficult. Therefore, the dimensionality of results could be reduced by
aggregating path scores across intermediate nodes or edges [32].

Here, we computed all DWPCs for Hetionet metapaths with length ≤ 3. Our search engine will therefore
overlook important connectivity from longer metapaths. However, it is infeasible to compute DWPCs for all
longer metapaths. One solution would be to only extend metapaths detected as informative. For example, if a
CbGpPWpG metapath is deemed informative, it could be extended with additional metaedges like
CbGpPWpGaD. One unsupervised approach would be to use the distribution of DWPC p- P values for a
metapath to detect whether the paths still convey sufficient information, for example, by requiring an enrichment
of small p-values. P values. Were this method to fail, supervised alternatives could be explored, such as the
ability for DWPCs from a longer metapath to predict that of a shorter metapath or metaedge, with care taken to

https://het.io/
https://het.io/search/

prevent label leakage. One final approach could learn from user interest and compute longer metapaths only
when requested.

This work focuses on queries where the input is a node pair. Equally interesting would be queries where
the input is a set of nodes of the same type, optionally with weights. The search would compute DWPCs for
paths originating on the query nodes. The simpler formulation would compute DWPCs for metapaths separately
and compare to null distributions from permuted hetnets. A more advanced formulation would combine scores
across metapaths such that every node in the hetnet would receive a single score capturing its connectivity to the
query set. This approach would have similar utility to gene set enrichment analysis in that the user could provide
a set of genes as input and receive a ranked list of nodes that characterize the function of the query genes.
However, it would excel in its versatility by returning results of any node type without requiring pre-defined
predefined gene sets to match against. Some users might be interested in node set transformations where scores
for one node type are converted to another node type. This approach could take scores for human genes and
convert them to side effects, diseases, pathways, etcetera and so on.

Our work is not without limitations. The final application relies on multiple databases and cached
computations specific to Hetionet v1.0. Despite striving for a modular architecture, generating an equivalent
search webapp for a different hetnet would require adaptation due to the many data sources involved.
Furthermore, we would benefit from greater real-world evaluation of the connectivity search results to help
identify situations where the method underperforms. Despite these challenges, our study demonstrates one of the
first public search engines for node connectivity on a biomedical knowledge graph , while contributing methods
and software that we hope will inspire future work.

Methods

Hetionet

We used the hetionet knowledge graph to demonstrate connectivity search. Hetionet is a knowledge graph of
human biology, disease, and medicine, integrating information from millions of studies and decades of research.
Hetionet v1.0 combines information from 29 public databases. The network contains 47,031 nodes of 11 types
(Table 1) and 2,250,197 edges of 24 types (Fig. 1A).

Table 1: Node types in Hetionet The , including the abbreviation, number of nodes, and description for each of
the 11 metanodes in Hetionet v1.0 .

Metanode
Abbr
Abbreviation Nodes Description

Anatomy A 402 Anatomical structures, excluding structures that are known not to be found in
humans. From Uberon.

Biological
Process

BP 11,381 Larger processes or biological programs accomplished by multiple molecular
activities. From Gene Ontology.

Cellular
Component

CC 1,391 The locations relative to cellular structures in which a gene product performs a
function. From Gene Ontology.

Compound C 1,552 Approved small molecule small-molecule compounds with documented chemical
structures. From DrugBank.

Disease D 137 Complex diseases, selected to be distinct and specific enough to be clinically
relevant yet general enough to be well annotated. From Disease Ontology.

Gene G 20,945 Protein-coding human genes. From Entrez Gene.

Metanode
Abbr
Abbreviation Nodes Description

Molecular
Function

MF 2,884 Activities that occur at the molecular level, such as “catalysis” or “transport.” From
Gene Ontology.

Pathway PW 1,822 A series of actions among molecules in a cell that leads to a certain product or
change in the cell. From WikiPathways, Reactome, and Pathway Interaction
Database.

Pharmacologic
Class

PC 345 “Chemical/Ingredient,” “Mechanism of Action,” and “Physiologic Effect” FDA
class types. From DrugCentral.

Side Effect SE 5,734 Adverse drug reactions. From SIDER/UMLS.
Symptom S 438 Signs and Symptoms (i.e., clinical abnormalities that can indicate a medical

condition). From the MeSH ontology.

One limitation that restricts the applicability of Hetionet is incompleteness. In many cases, Hetionet v1.0
includes only a subset of the nodes from a given resource. For example, the Disease Ontology contains over
9,000 diseases [33], while Hetionet includes only 137 diseases [34]. Nodes were excluded to avoid redundant or
overly specific nodes , while ensuring a minimum level of connectivity for compounds and diseases. See the
Project Rephetio methods for more details [2]. Nonetheless, Hetionet v1.0 remains one of the most
comprehensive and integrative networks that consolidates biomedical knowledge into a manageable number of
node and edge types [35]. Other integrative resources, some still under development, include Wikidata [36],
SemMedDB [37, 38, 39], SPOKE [40], and RTX-KG2c [41].

HetMat architecture

At the core of the hetmatpy package is the HetMat data structure for storing and accessing the network. HetMats
are stored on disk as a directory, which by convention uses a .hetmat extension. A HetMat directory stores a
single heterogeneous network, whose data resides reside in the following files.

1 A metagraph.json file stores the schema, defining which types of nodes and edges comprise the hetnet. This
format is defined by the hetnetpy Python package. Hetnetpy was originally developed with the name hetio
during prior studies [2, 42], but we renamed it to hetnetpy for better disambiguation from hetmatpy.

2 A nodes directory containing one 1 file per node type (metanode) that defines each node. Currently, .tsv files
where in which each row represents a node are supported.

3 An edges directory containing one 1 file per edge type (metadata) that encodes the adjacency matrix. The
matrix can be serialized using either the Numpy dense format (.npy) or SciPy sparse format (.sparse.npz).

For node and edge files, compression is supported as detected from .gz, .bz2, .zip, and .xz extensions. This
structure of storing a hetnet supports selectively reading nodes and edges into memory. For example, a certain
computation may only require access to a subset of the node and edge types. By only loading the required node
and edge types, we reduce memory usage and read times.

Additional subdirectories, such as path-counts path counts and permutations, store data generated from the
HetMat. By using consistent paths for generated data, we avoid recomputing data that already exists exist on
disk. A HetMat directory can be zipped for archiving and transfer. Users can selectively include generated data in
archives. Since the primary application of HetMats is to generate computationally demanding measurements on
hetnets, the ability to share HetMats with precomputed data is paramount.

The HetMat class implements the above logic. A hetmat_from_graph function creates a HetMat object and
directory on disk from the pre-existing preexisting hetnetpy.hetnet.Graph format.

We converted Hetionet v1.0 to HetMat format and uploaded the hetionet-v1.0.hetmat.zip archive to the
Hetionet data repository.

DWPC matrix multiplication algorithms

Prior to this study, we used two 2 implementations for computing DWPCs. The first is a pure Python
implementation available in the hetnetpy.pathtools.DWPC function [42]. The second uses a Cypher query,
prepared by hetnetpy.neo4j.construct_dwpc_query, that is executed by the Neo4j database [2,43]. Both of these
implementations require traversing all paths between the source and target node. Hence, they are
computationally cumbersome despite optimizations [44].

Since our methods only require degree-weighted counts, not fully enumerated paths, adjacency matrix
multiplication presents an alternative approach. Multiplication alone, however, counts walks rather than paths,
meaning paths traversing a single node multiple times are counted. When computing network-based features to
quantify the relationship between a source and target node, we would like to exclude traversing duplicate nodes
(i.e., paths, not trails nor or walks) [45]. We developed a suite of algorithms to compute true path counts and
DWPCs using matrix multiplication that benefits from the speed advantages of only counting paths.

Our implementation begins by categorizing a metapath according to the pattern of its repeated metanodes,
allowing DWPC computation using a specialized order of operations. For example, the metapath DrDtCrC is
categorized as a set of disjoint repeats, while DtCtDpC is categorized as repeats of the form BABA. Many
complex repeat patterns can be represented piecewise as simpler patterns, allowing us to compute DWPC for
most metapaths up to length 5 and many of length 6 and beyond without enumerating individual paths. For
example, disjoint groups of repeats like DrDtCrC can be computed as the matrix product of DWPC matrices for
DrD and CrC. Randomly-inserted non-repeated Randomly inserted nonrepeated metanodes (e.g., G in
DrDaGaDrD) require no special treatment and are included in DWPC with matrix multiplication.

After metapath categorization, we segment metapaths according to their repeat pattern, following our
order of operations. By segmenting and computing recursively, we can efficiently evaluate DWPC on highly
complex metapaths, using simple patterns as building-blocks building blocks for higher-level patterns. Finally,
our specialized DWPC functions are applied to individual segments, the results are combined, and final
corrections are made to ensure no repeated nodes are counted. The recursive, segmented approach we developed
also allowed us to implement a caching strategy that improved speed by avoiding duplicate DWPC
computations. In summary, the functionality we developed resulted in more than a 175-fold reduction in
compute time, allowing us to compute millions of DWPC values across Hetionet [46].

Details of matrix DWPC implementation
DWPC computation requires us to remove all duplicate nodes from paths. We used three 3 repeat patterns as the
building blocks for DWPC computation: short repeats (AAA), nested repeats (BAAB), and overlapping repeats
(BABA). Let denote the DWPC matrix for metapath XwXyZ. Under this notation, is the degree-
weighted (bi)adjacency matrix for metaedge XyZ. Additionally, let represent a diagonal matrix whose
entries are the diagonal elements of .

For the case of short (<4) repeats for a single metanode, XaXbX (e.g., GiGdG), we simply subtract the
main diagonal.

Nested repeats XaYbYcX (e.g., CtDrDtC) , are treated recursively, with both inner (YY) and outer (XX)
repeats treated as separate short repeats.

Overlapping repeats XaYbXcY (e.g., CtDtCtD) require several corrections (denotes the Hadamard
product).

Most paths of length six—and 6—and many even longer paths—can be represented hierarchically using
these patterns. For example, a long metapath pattern of the form CBABACXYZ can be segmented as
(C(BABA)C)XYZ using patterns for short and overlapping repeats and can be computed using the tools we
developed. In addition to these matrix routines—which advantageously count rather than enumerate paths—we
implemented a general matrix method for any metapath type. The general method is important for patterns such
as long (≥4) repeats , or complex repeat patterns (e.g., of the form ABCABC), but it requires path enumeration
and is therefore slower. As an alternative approach for complex paths, we developed an approximate DWPC
method that corrects repeats in disjoint simple patterns but only corrects the first repeat in complex patterns (e.g.,
≥ length four 4 repeat). Mayers et al. [47] developed an alternative approximation, which subtracts the main
diagonal at every occurrence of the first repeated metanode [47] . Our matrix methods were validated against
the existing Python and Cypher implementations in the hetnetpy package that rely on explicit path enumeration.

Permuted hetnets

In order to generate a null distribution for a DWPC, we rely on DWPCs computed from permuted hetnets. We
derive permuted hetnets from the unpermuted network using the XSwap algorithm [48]. XSwap randomizes
edges while preserving node degree. Therefore, it's it is ideal for generating null distributions that retain general
degree effects , but destroy the actual meaning of edges. We adapt XSwap to hetnets by applying it separately to
each metaedge [2, 49, 50].

Project Rephetio created 5 permuted hetnets [2,49], which were used to generate a null distribution of
classifier performance for each metapath-based feature. Here, we aim to create a null distribution for individual
DWPCs, which requires vastly more permuted values to estimate with accuracy. Therefore, we generated 200
permuted hetnets. Permutations 001–005 are were those generated by Project Rephetio, while permutations 006–
200 were generated by this study. For the newly generated permutations, we attempted 10 times the number of
swaps as edges for a given metaedge, which is the default multiplier set by the hetnetpy permute_graph function.
More recently, we also developed the xswap Python package, whose optimized C/C++ implementation will
enable future research to generate even larger sets of permuted networks [50].

Degree-grouping of node pairs

For each of the 200 permuted networks and each of the 2,205 metapaths, we computed the entire DWPC matrix
(i.e., all source nodes × target nodes). Therefore, for each actual DWPC value, we computed 200 permuted
DWPC values. Because permutation preserves only node degree, DWPC values among nodes with the same

source and target degrees are equivalent to additional permutations. We greatly increased the effective number of
permutations by grouping DWPC values according to node degree, affording us a superior estimation of the
DWPC null distribution.

We have applied this degree-grouping approach previously when calculating the prior probability of edge
existence based on the source and target node degrees [50, 51]. But here, we apply degree-grouping to null
DWPCs. The result is that the null distribution for a DWPC is based not only on permuted DWPCs for the
corresponding source–metapath–target combination , but instead also on all permuted DWPCs for the source-
degree–metapath–target-degree combination.

The “# DWPCs” column in Fig. 2 illustrates how degree-grouping inflates the sample size of null DWPCs.
The p- P value for the DaGiGpPW metapath relies on the minimum number of null DWPCs (200), since no
other disease besides Alzheimer's had 196 associates edges (source degree) and no other pathway besides
circadian rhythm had 201 participates edges (target degree). However, for other metapaths with over 5,000 null
DWPCs, degree-grouping increased the size of the null distribution by a factor of 25. In general, source–target
node pairs with lower degrees receive the largest sample size multiplier from degree-grouping. This is
convenient since low-degree nodes also tend to produce the highest proportion of zero DWPCs, by virtue of low
connectivity. Consequently, degree grouping degree-grouping excels where it is most needed.

One final benefit of degree-grouping is that it reduces the disk space required to store null DWPC
summary statistics. For example, with 20,945 genes in Hetionet v1.0, there exist 438,693,025 gene pairs. Gene
nodes have 302 distinct degrees for interacts edges, resulting in 91,204 degree pairs. This equates to an 4,810-
fold reduction in the number of summary statistics that need to be stored to represent the null DWPC distribution
for a metapath starting and ending with a Gene–interacts–Gene metaedge.

We store the following null DWPC summary statistics for each metapath–source-degree–target-degree
combination: total number of null DWPCs, total number of nonzero null DWPCs, sum of null DWPCs, sum of
squared null DWPCs, and number of permuted hetnets. These values are sufficient to estimate the p P - value for
a DWPC, by either fitting a gamma-hurdle null distribution or generating an empiric p-value. P value.
Furthermore, these statistics are additive across permuted hetnets. Their values are always a running total and
can be updated incrementally as statistics from each additional permuted hetnet become available.

Fig. 4 shows how various aspects of DWPCs vary by degree group. The rows display the following
metrics of the DWPC distribution for all node-pairs node pairs in a given degree-group:

● # Nonzero DWPCs: The number of nonzero DWPCs values (on average per network to enable
comparison).

● % Nonzero DWPCs: Of the total number of DWPCs, the percent percentage that is nonzero. As node
degrees increase, the chance of node pairs having at least one 1 path, and hence a nonzero DWPC, greatly
increases.

● Mean DWPC: The average value of all DWPCs, including zeros.

● Mean Nonzero DWPC: The average value of nonzero DWPCs.

● Std Dev Nonzero DWPC: The standard deviation of nonzero DWPCs.

● Gamma Model β: The β parameter of the gamma model fit on nonzero DWPCs. Note that the gamma
model is only fit on permuted network DWPCs to estimate a null distribution for the unpermuted network

DWPCs. Since this parameter varies with source & and target node degree, it is important to fit a separate
gamma model for each degree group.

Figure 4: Path-based metrics vary by node degree and network permutation status. Each row shows a
different metric of the DWPC distribution for the CbGpPWpG metapath—traversing Compound–binds–
Gene–participates–Pathway–participates–Gene, selected for illustrative purposes. Metrics are computed for
degree-groups, which is a specific pair of source degree (in this case, the source compound's count of CbG
edges) and target degree (in this case, the target gene's count of GpPW edges). On the left, metrics Metrics
are reported for the unpermuted hetnet and on the right left and for the 200 permuted hetnets on the right.
Hence, each cell on the right summarizes 200 times the number of DWPCs as the corresponding cell on the
left. The colormap color map is row normalized, such that its intensity peaks for the maximum value of each
metric across the unpermuted and permuted values. Gray indicates null values.

Gamma-hurdle distribution

We are interested in identifying source and target nodes whose connectivity exceeds what typically arises at
random. To identify such especially-connected especially connected nodes, we compare DWPC values to the
distribution of permuted network DWPC values for the same source and target nodes. While a single DWPC
value is not actually a test statistic, we use a framework akin to classical hypothesis testing to identify outliers.

Two observations led us to the quasi-significance testing framework we developed. First, a sizable fraction
of permuted DWPC values is often zero, indicating that the source and target nodes are not connected along the
metapath in the permuted network. Second, we observed that non-zero nonzero DWPC values for any given
source and target nodes are reasonably approximated as following a gamma distribution. Motivated by these
observations, we parametrized permuted DWPC values using a zero-inflated gamma distribution, which we
termed the gamma-hurdle distribution. We fit a gamma-hurdle distribution to each combination of source node,
target node, and metapath. Finally, we estimated the probability of observing a permuted DWPC value greater
than DWPC computed in the unpermuted network, akin to a one-tailed p-value 1-tailed P value. These quasi-
significance scores (“ p -values”) P values”) allow us to identify outlier node pairs at the metapath level (see
examples in Fig. 5).

Figure 5: From null distribution to p - P value for DWPCs. Null DWPC distributions are shown for three 3
metapaths between Alzheimer's disease and the circadian rhythm pathway, selected from Fig. 2. For each
metapath, null DWPCs are computed on 200 permuted hetnets and grouped according to source–target
degree. Histograms show the null DWPCs for the degree group corresponding to Alzheimer's disease and
the circadian rhythm pathway (as noted in the plot titles by deg.) deg). The proportion of null DWPCs that
were zero is calculated, forming the “hurdle” of the null distribution model. The nonzero null DWPCs are
modeled using a gamma distribution, which can be fit solely from a sample mean and standard deviation.
The mean of nonzero null DWPCs is denoted with a diamond, with the standard deviation plotted twice as a
line in either direction. Actual DWPCs are compared to the gamma-hurdle null distribution to yield a p -
value. P value.

Details of the gamma-hurdle distribution
Let X be a gamma-hurdle random variable with parameters λ, α, and β.

The gamma-hurdle distribution is defined over the support [0, ∞). The probability of a draw, X, from the
gamma-hurdle distribution is given as follows:

We estimate all three 3 parameters using the method of moments (using Bessel's correction to estimate the
second moment). As a validation of our method, we compared our method of moments parameter estimates to
approximate maximum likelihood estimates (gamma distribution parameters do not have closed-form maximum
likelihood estimates) and found excellent concordance between the methods. Let N be the number of permuted
DWPC values , and n the number of nonzero values.

Finally, we compute a p-value P value for each DWPC value, t.

Empirical DWPC p-values P values

We calculate an empirical p-value P value for special cases where the gamma-hurdle model cannot be applied.
These cases include when the observed DWPC is zero or when the null DWPC distribution is all zeroes or has
only a single distinct nonzero value. The empirical p- P value (p Pempiric) equals the proportion of null DPWCs

≥ the observed DWPC.

Since we don't do not store all null DWPC values, we apply the following criteria to calculate p Pempiric

from summary statistics:

1 When the observed DWPC = 0 (no paths of the specified metapath existed between the source and target
node), p Pempiric = 1.

2 When all null DWPCs are zero but the observed DWPC is positive, p Pempiric = 0.

3 When all nonzero null DWPCs have the same positive value (standard deviation = 0), p Pempiric = 0 if the

observed DWPC > the null DWPC, else p Pempiric = proportion of nonzero null DWPCs.

DWPC and null distribution computation

We decided to compute DWPCs and their significance for all source–target node pairs for metapaths with length
≤ 3. On Hetionet v1.0, there are 24 metapaths of length 1, 242 metapaths of length 2, and 1,939 metapaths of
length 3. The decision to stop at length 3 was one of practicality, as length 4 would have added 17,511
metapaths.

For each of the 2,205 metapaths, we computed the complete path count matrix and DWPC matrix. In total,
we computed 137,786,767,964 path counts (and the same number of DWPCs) on the unpermuted network, of
which 11.6% were nonzero.

The DWPC has a single parameter, called the damping exponent (w), which controls how much paths
through high-degree nodes are downweighted [42]. When w = 0, the DWPC is equivalent to the path count.
Previously, we found w = 0.4 was optimal for predicting disease-associated genes [42]. Here, we use w = 0.5,
since taking the square root of degrees has more intuitive appeal.

We selected data types for matrix values that would allow for high precision. We used 64-bit unsigned
integers for path counts and 64-bit floating-point numbers for DWPCs. We considered using 16 -bits bits or 32 -
bits bits per DWPC to reduce memory/storage requirements , but decided against it in case certain applications
required greater precision.

We used SciPy sparse for path count and DWPC matrices with density <0.7, serialized to disk with
compression and a .sparse.npz extension. This format minimizes the space on disk and load time for the entire
matrix but does not offer read access to slices. We used Numpy 2 D -dimensional arrays for DWPC matrices
with density ≥ 0.7, serialized to disk using Numpy's .npy format. We bundled the path count and DWPC matrix
files into HetMat archives by metapath length and deposited the archives to Zenodo [52]. The archive for length
3 DWPCs was the largest at 131.7 GB.

We also generated null DWPC summary statistics for the 2,205 metapaths, which are also available by
metapath length from Zenodo as HetMat archives consisting of .tsv.gz files [52]. Due to degree grouping degree-
grouping, null DWPCs DWPC summary statistic archives are much smaller than the DWPC archives. The
archive for length 3 null DWPCs summary statistics was 733.1 MB. However, the compute required to generate
null DWPCs is far greater because there are multiple permuted hetnets (in our case 200). As a result, computing
and saving all DWPCs took 6 hours, whereas computing and saving the null DWPC summary statistics took 361
hours.

Including null DWPCs and path counts, the Zenodo deposit totals 185.1 GB and contains the results of
computing ∼28 trillion DWPCs—27,832,927,128,728 to be exact.

Adjusting DWPC p- P values

When a user applies hetnet connectivity search to identify enriched metapaths between two 2 nodes, many
metapaths are evaluated for significance. Due to multiple testing of many DWPCs, low p- P values are likely to
arise by chance. Therefore, we devised a multiple-testing correction.

For each combination of source metanode, target metanode, and length, we counted the number of
metapaths. For Disease…Pathway metapaths, there are 0 metapaths of length 1, 3 metapaths of length 2, and 24
metapaths of length 3. We calculated adjusted p-values P values by applying a Bonferroni correction based on
the number of metapaths of the same length between the source and target metanode. Using Fig. 2 as an
example, the DdGpPW p-value P value of 5.9% was adjusted to 17.8% (multiplied by a factor of 3).

Bonferroni controls family-wise error rate, which corresponds here to incorrectly finding that any
metapath of a given length is enriched. As a result, our adjusted p-values P values are conservative. We would
prefer to adjust p- P values for false discovery rate [53], but these methods often require access to all p- P values
at once (impractical here) and assume a uniform distribution of p- P values when there is no signal (not the case
here when most DWPCs are zero).

Prioritizing enriched metapaths for database storage

Storing DWPCs and their significance in the database (as part of the PathCount table in Fig. 6) enables the
connectivity search webapp to provide users with enriched metapaths between query nodes in real time.
However, storing ∼15.9 billion rows (the total number of nonzero DWPCs) in the database's PathCount table
would exceed a reasonable disk quota. An alternative would be to store all DWPCs in the database whose
adjusted p-value P value exceeded a universal threshold (e.g., p P < 5%). But we estimated this would still be

prohibitively expensive. Therefore, we devised a metapath-specific threshold. For metapaths with length 1, we
stored all nonzero DWPCs, assuming users always want to be informed about direct edges between the query
nodes, regardless of significance. For metapaths with length ≥ 2, we chose an adjusted p- P value threshold of 5
× (nsource × ntarget) , where nsource and ntarget are the node counts for the source and target metanodes (i.e.,

“Nodes” column in Table 1). Notice that metapaths with a large number of possible source–target pairs (large
DWPC matrices) are penalized. This decision is based on practicality since otherwise, the majority of the
database quota would be consumed by a minority of metapaths between plentiful metanodes (e.g., Gene…Gene
metapaths). Also, we assume that users will search nodes at a similar rate by metanode (e.g., they're they are
more likely to search for a specific disease than a specific gene). The constants in the threshold formula help
scale it. The multiplier of 5 relaxes the threshold to saturate the available database capacity. The −0.3 exponent
applies the large DWPC-matrix penalty.

Figure 6: Schema for the connectivity search backend relational database models. Each Django model is
represented as a table, whose rows list the model's field names and types. Each model corresponds to a
database table. Arrows denote foreign key relationships. The arrow labels indicate the foreign key field
name followed by reverse relation names generated by Django (in parentheses).

Users can still evaluate DWPCs that are not stored in the database, using either the webapp or API. These
are calculated on the fly, delegating DWPC computation to the Neo4j database. Unchecking “precomputed only”

−0.3

on the webapp shows all possible metapaths for two 2 query nodes. For some node pairs, the on-the-fly
computation is quick (less than a second). Other times, computing DWPCs for all metapaths might take more
than a minute.

Backend database & and API

We created a backend application using Python's Django web framework. The source code is available in the
connectivity-search-backend repository. The primary role of the backend is to manage a relational database and
provide an API for requesting data.

We define the database schema using Django's object-relational mapping framework (Fig. 6). We import
the data into a PostgreSQL database. Populating the database for all 2,205 metapaths up to length 3 was a
prolonged operation, taking over 3 days. The majority of the time is spent populating the
DegreeGroupedPermutation (37,905,389 rows) and PathCount (174,986,768 rows) tables. To avoid redundancy,
the database only stores a single orientation of a metapath. For example, if rows are stored for the GpPWpGaD
metapath, they would not also be stored for the DaGpPWpG metapath. The backend is responsible for checking
both orientations of a metapath in the database and reversing metapaths on-the-fly on the fly before returning
results. The database is located at search-db.het.io with public read-only access available.

We host a public API instance at https://search-api.het.io. Version 1 of the API exposes several endpoints
that are used by the connectivity search frontend, including queries for node details (/v1/node), node lookup
(/v1/nodes), metapath information (/v1/metapaths), and path information (/v1/paths). The endpoints return JSON
payloads. Producing results for these queries relies on internal calls to the PostgreSQL relational database as well
as the pre-existing preexisting Hetionet v1.0 Neo4j graph database. They were designed to power the hetnet
connectivity search webapp , but are also available for general research use.

Frontend

Hetio website
We created a static website to serve as the home for the Hetio organization using Jekyll hosted on GitHub Pages
(Fig. 7). The source code is available in the het.io repository. To make a change to the website, an author simply
commits the changes (either directly or through a pull request) to the repository's gh-pages branch, and GitHub
automatically re-compiles recompiles the website and hosts the resulting files at the provided custom domain
URL.

https://search-api.het.io/

Figure 7: Homepage of the Hetio website. The redesigned homepage provides a succinct overview of what
Hetionet consists of and what its purpose is.

Webapps
We developed the connectivity search app as a single-page, standalone application using React and associated
tools. The source code is available in the connectivity-search-frontend repository.

Since the rest of the overarching Hetio website was mostly non-interactive noninteractive content, it was
appropriate to construct the bulk of the website in simple static formats like Markdown and HTML using Jekyll ,
and leave React for implementing the sections of the site that required more complex behavior.

We used React's own create-react-app command line command-line tool to generate a boilerplate for the
app. This simplified setup, testing, and building pipelines, bypassing time-consuming configuration of things
like Webpack and linters. Some configuration was necessary to produce non-hashed nonhashed, consistently
named output files like index.js that could be easily and reliably referenced by and embedded into the Hetio
Jekyll website.

For authoring components, we used React's traditional class syntax. At the time of authoring the app,
React Hooks were still nascent, and thus the simpler and less-verbose functional syntax was not viable.

While writing this application, we also elected to re-write rewrite the pre-existing preexisting Rephetio
and disease-associated genes apps in the same manner. We created a custom package of React components and
utility functions that could be shared across the multiple interactive apps on the website. The package is located
at and can be installed from the frontend-components repository. The package consists of interface
“components” (building blocks) like buttons and sortable/searchable/paginated tables as well as utility functions
for formatting data and debugging. Each of the interactive apps imports this package to reduce code repetition
and to enforce a consistent style and behavior across the website.

For managing state in the connectivity search app, we used the Redux library. Redux was chosen over
vanilla React or other state management libraries since:

1 The state in this app was very “global,” meaning most of it was needed by a lot of different parts of the app.
Redux provides a convenient global “store” of state that is easily accessible to any component, avoiding the
“prop-drilling” phenomenon.

2 The structure of the state is nested and complex. Redux's “reducer” approach makes it cleaner to modify this
type of data.

3 Redux's approach to immutable state that is updated by actions and pure functions makes the application
easier to debug. It is easy to get a clear timeline of how and when the state changed , and what changed it.

To create the graph visualization at the bottom of the app, the D3 library was used. D3 satisfied several
core requirements:

1 SVG Q22: [Copy Editor Freelancer to Author] Author: Please define SVG. implementation
for high-resolution, publication-ready figures .

2 Force-directed layout for untangling nodes .
3 Pinnable nodes and other physics customizations .
4 Customizable node and edge drag/hover/select behavior .
5 Intuitive pan/zoom view that worked on desktop and mobile .
6 Node and edge appearances that were completely customizable for alignment, text wrapping, color, outlines,

fonts, arrowheads, and non-colliding noncolliding coincident edges .

Visual design

A limited palette of colors was chosen to represent the different types of nodes (metanodes) in the Hetionet
knowledge graph. These colors are listed and programmatically accessible in the hetionet repository
under/describe/styles.json.

At the time of developing connectivity search, Hetionet already had an established palette of colors (from
Project Rephetio). To avoid confusion, we were careful to keep the general hue of each metanode color the same
for backwards backward compatibility , e.g (e.g., genes stayed generally blue, diseases stayed generally brown
brown). In this way, this palette selection was more of a modernization/refresh. For cohesiveness, accessibility,
and aesthetic appeal, we used the professionally-curated professionally curated Material Design palette as a
source for the specific color values.

The palette is now used in all Hetio-related applications and materials. This is not just to maintain a
consistent look and feel across the Hetio organization , but to convey clear and precise meaning. For example,
the colors used in the metagraph in Fig. 1A are exactly the same colors , and thus represent the same types of
entities, as in any part of the connectivity search app (Fig. 3).

Colors in the palette are also used in the Hetio logo (seen in Fig. 7) and other miscellaneous logos and
iconography across the website, to establish an identifiable brand for the Hetio organization as a whole.

Realtime Real-time open science

This study was conducted entirely in the open via public GitHub repositories. We used GitHub Issues for
discussion, leaving a rich online history of the scholarly process. Furthermore, most additions to the analyses

were performed by pull request, whereby a contributor proposes a set of changes. This provides an opportunity
for other contributors to review changes before they are officially accepted. For example, in
greenelab/connectivity-search-analyses#156, @zietzm proposed a notebook to visualize parameters for null
DWPC distributions. After @zietzm addressed @dhimmel's comments, the pull request was approved and
merged into the project's main branch.

The manuscript for this study was written using Manubot, which allows authors to collaboratively write
manuscripts on GitHub [54]. The Manubot-rendered manuscript is available at
https://greenelab.github.io/connectivity-search-manuscript/. We encourage readers with feedback or questions to
comment publicly via GitHub Issues.

Software & and data availability

Hetio is a superset/collection of hetnet-related research, tools, and datasets that, most notably, includes the
Hetionet project itself and the connectivity search tool that are the focus of this manuscript article. Most of the
Hetio resources and projects can be found under the Hetio GitHub organization, with others being available
under the Greene Lab GitHub organization, one of the collaborating groups. Information about Hetio is also
displayed and disseminated at https://het.io, as noted in the Hetio Website section.

Availability of supporting source code and requirements

Availability of Supporting Source Code and Requirements

● Project name: Hetnet Connectivity Search

● Project home page homepage: https://het.io/search/

● Operating systems: Platform independent

● Programming language: Python, Javascript, Cypher

● Other requirements: refer Refer to specific repositories below for their respective dependency
configuration files

● License: refer Refer to specific repositories below, but generally software is released under BSD, figures
and documentation under CC BY, and data under CC0.

● RRID: SCR_023630

● biotools ID: connectivity-search

This study primarily involves the following GitHub repositories:

● greenelab/connectivity-search-manuscript [55]: Source code for this manuscript. Best place for general
comments or questions. CC BY 4.0 License.

● greenelab/connectivity-search-analyses [56]: The initial project repository that contains research
notebooks, dataset generation code, and exploratory data analyses. The hetmatpy package was first
developed as part of this repository until its relocation in November 2018. BSD 3-Clause License.

● greenelab/connectivity-search-backend [57]: Source code for the connectivity search database and API.
BSD 3-Clause License.

https://greenelab.github.io/connectivity-search-manuscript/
https://het.io/
https://het.io/search/
https://scicrunch.org/resolver/RRID:

● greenelab/connectivity-search-frontend [58]: Source code for the connectivity search webapp. BSD 3-
Clause License.

● hetio/hetmatpy [59]: Python package for matrix storage and operations on hetnets. Released on PyPI. BSD
2-Clause Plus Patent License. Registered at biotools:hetmatpy and RRID:SCR_023409.

● hetio/hetnetpy [60]: Preexisiting python Python package for representing hetnets. Dependency of hetmatpy.
Released on PyPI. Dual licensed under BSD 2-Clause Plus Patent License and CC0 1.0 (public domain
dedication).

● hetio/hetionet [61]: Preexisiting data repository for Hetionet, including the public Neo4j instance and
HetMat archives. CC0 1.0 License.

● hetio/het.io [62]: Preexisiting source code for the https://het.io/website. CC BY 4.0 License.

Abbreviations
Arnt: aryl hydrocarbon receptor nuclear translocator protein; ARNT2: aryl hydrocarbon receptor nuclear
translocator 2; DWPC: degree-weighted path count; LFS: large file storage; NPAS2: neuronal PAS domain
protein 2; PAS: Per-Arnt-Sim; Per: period circadian protein; Sim: single-minded protein.

Funding
DSH D.S.H., BJH B.J.H., DH D.H., and DNN D.N.N. were funded by The Gordon and Betty Moore Foundation
(GBMF4552). DSH D.S.H. and CSG C.S.G. were funded by Pfizer Worldwide Research, Development, and
Medical. KK K.K. was funded by The Gordon and Betty Moore Foundation (GBMF4560). DNN D.N.N. was
funded by The National Institutes of Health (T32 HG000046). CSG C.S.G. was funded by the National Human
Genome Research Institute (R01 HG010067) . CSG was funded by , the National Cancer Institute (R01
CA237170) . CSG was funded by , the Gordon and Betty Moore Foundation (GBMF 4552) . CSG was funded
by , and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01
HD109765). The funders had no role in the study design, data analysis and interpretation, or writing of the
manuscript.

Data availability Availability
An archival copy of the code and supporting data is available via the GigaScience repository [63]. The
connectivity-search-analyses and hetionet repositories contain datasets related to this study. Large datasets were
compressed and tracked with Git LFS (Large File Storage large file storage). GitHub LFS had a max file size of
2 GB. Datasets exceeding this size, along with other essential datasets, are available from Zenodo [52].

Competing Interests
This work was supported, in part, by Pfizer Worldwide Research, Development, and Medical.

Authors’ contributions Contributions
Author contributions are noted here according to CRediT (Contributor Roles Taxonomy). Conceptualization by
DSH D.S.H., MZ M.Z., KK K.K., BDS B.D.S., and CSG C.S.G. Data curation by DSH D.S.H., MZ M.Z., VR

https://scicrunch.org/resolver/RRID:SCR_023409
https://het.io/

V.R., and DNN D.N.N. Formal analysis by DSH D.S.H., MZ M.Z., KK K.K., and BJH B.J.H. Funding
acquisition by DSH D.S.H., BDS B.D.S., and CSG C.S.G. Investigation by DSH D.S.H., MZ M.Z., BJH B.J.H.,
YH Y.H., MWN M.W.N., and CSG C.S.G. Methodology by DSH D.S.H., MZ M.Z., VR V.R., KK K.K., BJH
B.J.H., and CSG C.S.G. Project administration by DSH D.S.H. and CSG C.S.G. Resources by DSH D.S.H., FSA
F.S.A., DH D.H., MWN M.W.N., and CSG C.S.G. Software by DSH D.S.H., MZ M.Z., VR V.R., BJH B.J.H.,
FSA F.S.A., and DH D.H. Supervision by DSH D.S.H., BDS B.D.S., and CSG C.S.G. Visualization by DSH
D.S.H., MZ M.Z., VR V.R., and YH Y.H. Writing—original draft by DSH D.S.H., MZ M.Z., VR V.R., DNN
D.N.N., and CSG C.S.G. Writing—review & editing by DSH D.S.H., MZ M.Z., VR V.R., DH D.H., BDS
B.D.S., and CSG C.S.G. Validation by BJH B.J.H. Q23: [Copyeditor to Author][AU: Permissions:
Permission to reproduce any third party material in your paper should have been obtained prior
to acceptance. If your paper contains figures or text that require permission to reproduce, please
confirm that you have obtained all relevant permissions and that the correct permission text has
been used as required by the copyright holders. Please contact jnls.author.support@oup.com if
you have any questions regarding permissions.] Q24: [Copyeditor to Author][AU: Please
check that funding is recorded in a separate funding section if applicable. Use the full official
names of any funding bodies, and include any grant numbers.] Q25: [Copyeditor to Author]
[AU: Journal policy requires authors to provide a data availability statement in their manuscript.
Please confirm that this statement is included in your manuscript, or provide one if you have not
already, and that any required links or identifiers for your data are present in the manuscript as
described or provide edits with the required information.]

References
1. Himmelstein D, Greene C, Baranzini S. Renaming ‘ heterogeneous networks Heterogeneous Networks’ to a more concise More

Concise and catchy term Catchy Term. ThinkLab; 2015 ; Aug. doi: . Q26: [Copy Editor
Freelancer to Author] Author: Please provide the city of publication for Refs. 1, 3, 4, 31,
32, 34, 43, 44, 45, 49, 51.

2. Himmelstein DS, Lizee A, Hessler C, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing.

eLife 2017 ; doi: . Q27: [Copy Editor Freelancer to Author] Author: Please provide the
volume number and page range for Refs. 2 and 15.

3. Himmelstein D. Announcing PharmacotherapyDB: the The Open Catalog of Drug Therapies for Disease. ThinkLab; 2016 ;

Mar. doi: .

4. Himmelstein D. Our hetnet edge prediction methodology Hetnet Edge Prediction Methodology: the modeling framework The
Modeling Framework for Project Rephetio. ThinkLab; 2016 ; May. doi: .

5. Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. J Am Soc Inf Sci 2007;58:1019–31.

6. Lü L, Zhou T. Link prediction in complex networks: a survey. Physica A 2011;390:1150–70.

7. Yang K, Wang N, Liu G, et al. Heterogeneous network embedding for identifying symptom candidate genes. J Am Med Inform
Assoc 2018;5:1452–9.

8. Abdelaziz I, Fokoue A, Hassanzadeh O, et al. Large-scale structural and textual similarity-based mining of knowledge graph to

predict drug–drug interactions. Journal of J Web Semantics 2017;4:104–17.

9. Gong F, Wang M, Wang H, et al. SMR: medical Knowledge Graph Embedding knowledge graph embedding for Safe Medicine

Recommendation safe medicine recommendation. Big Data Research Res 2021;3:100174.

10. Ali M, Berrendorf M, Hoyt CT, et al. PyKEEN 1.0: a Python Library library for Training training and Evaluating Knowledge
Graph Embeddings evaluating knowledge graph embeddings. Journal of J Machine Learning Research Learn Res 2021;22:1–6

2021 . ;

11. Bonner S, Barrett IP, Ye C, et al. Understanding the performance of knowledge graph embeddings in drug discovery. Artificial

Intelligence in the Artif Intell Life Sciences Sci 2022;2:100036.

12. Grover A, Leskovec J. node2vec: scalable Feature Learning feature learning for Networks networks. In: Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM; 2016 ; doi: . Q28:
[Copy Editor Freelancer to Author] Author: Please provide the editor(s) if applicable and
the city of publication for the following references: 12, 13, 19, 25, 26, 27, 28, 38, and 48.

13. Dong Y, Chawla NV, Swami A. metapath2vec: scalable Representation Learning representation learning for Heterogeneous

Networks heterogeneous networks. In: KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Association for Computing Machinery (ACM) ACM; 2017 ; doi: .

14. Gao Z, Fu G, Ouyang C, et al. edge2vec: representation learning using edge semantics for biomedical knowledge discovery.

BMC Bioinf 2019;20 , doi: . Q29: [Copy Editor Freelancer to Author] Author: Please provide
the page range for the following references: 14, 18, 22, 35, 36, 39, 41, and 53.

15. Paliwal S, de Giorgio A, Neil D, et al. , Lacoste AM. Preclinical validation of therapeutic targets predicted by tensor
factorization on heterogeneous graphs. Sci Rep 2020;0 , doi: .

16. Zitnik M, Zupan B. Data Fusion fusion by Matrix Factorization matrix factorization. IEEE Trans Pattern Anal Mach Intell

2015;37:41–53.

17. Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data. In: Proceedings of the
26th International Conference on Neural Information Processing Systems. Red Hook, NY , USA : Curran Associates Inc.; p.

2013:2787–95 2013 ; . Q30: [Copy Editor Freelancer to Author] Author: Please provide
editor(s) if applicable.

18. Fernández-Torras A, Duran-Frigola M, Bertoni M, et al. Integrating and formatting biomedical data as pre-calculated

knowledge graph embeddings in the Bioteque. Nat Commun 2022;3 , doi: .

19. Wang X, Gong Y, Yi J, et al. Predicting gene-disease associations from the heterogeneous network using graph embedding. . In:

2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2019 ; doi: .

20. Li L, Wang P, Wang Y, et al. A Method method to Learn Embedding learn embedding of a Probabilistic Medical Knowledge

Graph probabilistic medical knowledge graph: algorithm Development development. JMIR Med Inform 2020;8:e17645.

21. Alshahrani M, Hoehndorf R. Semantic Disease Gene Embeddings (SmuDGE): phenotype-based disease gene prioritization

without phenotypes. Bioinformatics 2018;4:i901–7.

22. Xu B, Liu Y, Yu S, et al. A network embedding model for pathogenic genes prediction by multi-path random walking on

heterogeneous network. BMC Med Genomics 2019;12 , doi: .

23. Zong N, Kim H, Ngo V, et al. Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target

associations. In: Wren J, editor ed. Bioinformatics. Oxford: Oxford University Press (OUP) ; 2017 ; doi: .

24. Pirrò G. Explaining and Suggesting Relatedness suggesting relatedness in Knowledge Graphs knowledge graphs. In: The

Semantic Web - ISWC Web—ISWC 2015. Springer International Publishing ; doi: . Q31: [Copy Editor
Freelancer to Author] Author: Please provide editor(s) and year of publication.

25. Ghazimatin A, Saha Roy R, Weikum G. FAIRY: a Framework framework for Understanding Relationships Between Users
understanding relationships between users' Actions actions and their Social Feeds social feeds. In: Proceedings of the Twelfth

ACM International Conference on Web Search and Data Mining. ACM; 2019 ; doi: .

26. Wang Y, Carman MJ, Li Y-F. Using Knowledge Graphs knowledge graphs to Explain Entity Co-occurrence explain entity co-

occurrence in Twitter. . In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM;
2017 ; doi: .

27. Seufert S, Berberich K, Bedathur SJ, et al. ESPRESSO: explaining Relationships relationships between Entity Sets entity sets.

In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM; 2016 ; doi: .

28. Behrens F, Aghaei F, Müller E, et al. MetaExp: interactive Explanation explanation and Exploration exploration of Large
Knowledge Graphs large knowledge graphs.In: WWW '18: Companion Proceedings of the The Web Conference 2018.

Association for Computing Machinery (ACM) ACM; 2018 ; doi: .

29. Meng C, Cheng R, Maniu S, et al. Discovering Meta-Paths meta-paths in Large Heterogeneous Information Networks large

heterogeneous information networks. In: Proceedings of the 24th International Conference on World Wide Web. International

World Wide Web Conferences Steering Committee ; . 2015 ; doi: . Q32: [Copy Editor
Freelancer to Author] Author: Please provide editor(s) if applicable, publisher, and city of
publication.

30. Mayers M, Tu R, Steinecke D, et al. Design and application of a knowledge network for automatic prioritization of drug

mechanisms. In: Wren J, editor ed. Bioinformatics. Oxford: Oxford University Press (OUP) ; 2022 ; doi: .

31. Himmelstein D, Khankhanian P, Lizee A. Transforming DWPCs for hetnet edge prediction Hetnet Edge Prediction. ThinkLab;
2016 ; Apr. doi: .

32. Himmelstein D. Decomposing the DWPC to assess intermediate node Assess Intermediate Node or edge contributions Edge

Contributions. ThinkLab; 2016 ; Dec. doi: .

33. Schriml LM, Mitraka E, Munro J, et al. Human Disease Ontology 2018 update: classification, content and workflow expansion.
Nucleic Acids Res 2019;7:D955–62.

34. Himmelstein D, Li TS. Unifying disease vocabularies Disease Vocabularies. ThinkLab; 2015 ; Mar. doi: .

35. Bonner S, Barrett IP, Ye C, et al. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective.

Briefings Bioinf 2022;3 , doi: .

36. Waagmeester A, Stupp G, Burgstaller-Muehlbacher S, et al. Wikidata as a knowledge graph for the life sciences. eLife 2020;9 ,

doi: .

37. Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB: a PubMed-scale repository of biomedical semantic predications.

Bioinformatics 2012;8:3158–60.

38. Cong Q, Feng Z, Li F, et al. Constructing Biomedical Knowledge Graph Based biomedical knowledge graph based on

SemMedDB and Linked Open Data linked open data. . In: 2018 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM). Institute of Electrical and Electronics Engineers (IEEE); 2018 ; doi: .

39. Mayers M, Li TS, Queralt-Rosinach N, et al. Time-resolved evaluation of compound repositioning predictions on a text-mined

knowledge network. BMC Bioinf 2019;20 , doi: .

40. Morris JH, Soman K, Akbas RE, et al. The scalable precision medicine open knowledge engine (SPOKE): a massive
knowledge graph of biomedical information. In: Lu Z, editor ed. Bioinformatics. Oxford: Oxford University Press (OUP); 2023

; doi: .

41. Wood EC, Glen AK, Kvarfordt LG, et al. RTX-KG2: a system for building a semantically standardized knowledge graph for

translational biomedicine. BMC Bioinf 2022;23 , doi: .

42. Himmelstein DS, Baranzini SE. Heterogeneous Network Edge Prediction network edge prediction: a Data Integration

Approach data integration approach to Prioritize Disease-Associated Genes prioritize disease-associated genes. TangH , editor .

PLoS Comput Biol 2015;11:e1004259 .

43. Himmelstein D. Using the neo4j graph database Graph Database for hetnets Hetnets. ThinkLab; 2015 ; Oct. doi: .

44. Himmelstein D, Lizee A. Estimating the complexity Complexity of hetnet traversal Hetnet Traversal. ThinkLab; 2016 ; Mar.

doi: .

45. Himmelstein D. Path exclusion conditions Exclusion Conditions. ThinkLab; 2015 ; Dec. doi: .

46. Zietz M. Vagelos Report Summer 2017 Vagelos Report Summer 2017. Figshare. figshare 2017 ; doi: . . Q33: [Copy
Editor Freelancer to Author] Author: Please provide the URL for the following references:
46, 50, and 52.

47. GitHub - mmayers12/hetnet_ml: Software to quickly extract features from heterogeneous networks for machine learning .

GitHub . https://github.com/mmayers12/hetnet_ml GitHub - mmayers12/hetnet_ml: Software to quickly extract features from

heterogeneous networks for machine learning. GitHub. https://github.com/mmayers12/hetnet_ml. Accessed 2022 Oct October

4. Q34: [Copy Editor Freelancer to Author] Author: Please list authors.

48. Hanhijärvi S, Garriga GC, Puolamäki K. Randomization Techniques techniques for Graphs graphs. In: Proceedings of the 2009

SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics; 2009 ; doi: .

49. Himmelstein D. Assessing the effectiveness Effectiveness of our hetnet permutations Our Hetnet Permutations. ThinkLab; 2016

; Feb. doi: .

50. Zietz M, Himmelstein DS, Kloster K, et al. The probability of edge existence due to node degree: a baseline for network-based

predictions. Biorxiv 2023 ; .Jan. doi: . bioRxiv .

51. Lizee A, Himmelstein D. Network Edge Prediction: Estimating the prior Prior. ThinkLab; 2016 ; Apr. doi: .

52. Himmelstein D, Zietz M, Kloster K, et al. Node connectivity measurements for Hetionet v1.0 metapaths. Zenodo ; Zenodo.
2018 ; .Nov. doi: .

53. Korthauer K, Kimes PK, Duvallet C, et al. A practical guide to methods controlling false discoveries in computational biology.

Genome Biol 2019;0 , doi: .

54. Himmelstein DS, Rubinetti V, Slochower DR, et al. Open collaborative writing with Manubot. Schneidman-DuhovnyD , editor
. PLoS Comput Biol 2019;5:e1007128.

55. Himmelstein D, Zietz M, Rubinetti V, et al. greenelab/connectivity-search-manuscript repository: manuscript source code for

Hetnet Connectivity Search. GitHub. 2023 ; . https://github.com/greenelab/connectivity-search-manuscript. Accessed 2023 Apr

April 6.

https://github.com/mmayers12/hetnet_ml
https://github.com/greenelab/connectivity-search-manuscript

56. Himmelstein D, Zietz M, Kloster K, et al. greenelab/connectivity-search-analyses repository: Hetnet connectivity search

research notebooks . GitHub . https://github.com/greenelab/connectivity-search-analyses 2022 ; greenelab/connectivity-search-

analyses repository: hetnet connectivity search research notebooks. GitHub. 2023. https://github.com/greenelab/connectivity-
search-analyses. Accessed 2023 Apr April 6.

57. Himmelstein D, Hu D, Alquaddoomi F, et al. greenelab/connectivity-search-backend repository: Django backend for hetnet

connectivity search . GitHub . https://github.com/greenelab/connectivity-search-backend 2023 ; greenelab/connectivity-search-

backend repository: Django backend for hetnet connectivity search. GitHub. 2023. https://github.com/greenelab/connectivity-
search-backend. Accessed 2023 Apr April 6.

58. Rubinetti V, Himmelstein D, Hu D, et al. greenelab/connectivity-search-frontend repository: Frontend source code for Hetnet

connectivity search . GitHub . https://github.com/greenelab/connectivity-search-frontend 2023 ; greenelab/connectivity-search-

frontend repository: frontend source code for Hetnet connectivity search. GitHub. 2023.
https://github.com/greenelab/connectivity-search-frontend. Accessed 2023 Apr April 6.

59. Himmelstein D, Zietz M, Kloster K, et al. hetio/hetmatpy repository: Python package for matrix storage and operations on

hetnets . GitHub . https://github.com/hetio/hetmatpy 2022 ; hetio/hetmatpy repository: Python package for matrix storage and

operations on hetnets. GitHub. 2022. https://github.com/hetio/hetmatpy. Accessed 2023 Apr April 6.

60. Himmelstein D, Heil B, Zietz M, et al. hetio/hetnetpy repository: Hetnets in Python . GitHub .

https://github.com/hetio/hetnetpy 2021 ; hetio/hetnetpy repository: Hetnets in Python. GitHub. 2021.

https://github.com/hetio/hetnetpy. Accessed 2023 Apr April 6.

61. Himmelstein D, Lizee A, Alquaddoomi F, et al. hetio/hetionet: Data repository containing Hetionet downloads . GitHub .
https://github.com/greenelab/connectivity-search-manuscript 2023 ; hetio/hetionet: data repository containing Hetionet

downloads. GitHub. 2023. https://github.com/greenelab/connectivity-search-manuscript. Accessed 2023 Apr April 6.

62. Rubinetti V, Himmelstein D, Hu D, et al. hetio/het.io repository: Source code for het.io website . GitHub .

https://github.com/hetio/het.io 2021 ; hetio/het.io repository: Source code for het.io website. GitHub. 2021.
https://github.com/hetio/het.io. Accessed 2023 Apr April 6.

63. Daniel HS, Michael Z, Vincent R, et al. Supporting data for "Hetnet connectivity search provides rapid insights Connectivity

Search Provides Rapid Insights into how two biomedical entities are related How 2 Biomedical Entities Are Related." .

GigaScience Database GigaScience Database , . 2023 ; . May. https://doi.org/10.5524/102389.

https://github.com/greenelab/connectivity-search-analyses
https://github.com/greenelab/connectivity-search-analyses
https://github.com/greenelab/connectivity-search-backend
https://github.com/greenelab/connectivity-search-backend
https://github.com/greenelab/connectivity-search-frontend
https://github.com/greenelab/connectivity-search-frontend
https://github.com/hetio/hetmatpy
https://github.com/hetio/hetmatpy
https://github.com/hetio/hetnetpy
https://github.com/hetio/hetnetpy
https://github.com/greenelab/connectivity-search-manuscript
https://github.com/greenelab/connectivity-search-manuscript
https://github.com/hetio/het.io
https://github.com/hetio/het.io
https://doi.org/10.5524/102389

