Given metapath M, the nodes of given source and target degree s, t have randomly distributed DWPC values $\delta_{M, s, t}$ (δ for simplicity) in permuted networks.

$$
\begin{aligned}
& P(\delta=0)=1-\lambda \\
& \delta \mid \delta \neq 0 \sim \Gamma(\alpha, \beta)
\end{aligned}
$$

Thus, given an observed DWPC value d, the probability of a more extreme value under the null hypothesis in a one-sided test (p-value) is

$$
\begin{aligned}
p=P(\delta \geq d) & =P(\delta \neq 0) P(\delta \geq d \mid \delta \neq 0) \\
& =\lambda \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{\beta x}
\end{aligned}
$$

We can estimate the parameters λ, α, and β using the sample mean and sample variance. To compute these quantities, given n, the number of degreegrouped permutations (sample size), let $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be observed values of DWPC for a single source, target degree combination, and let p be its nonzero values: $p=\left\{x: x \in\left\{\delta_{1}, \ldots, \delta_{n}\right\}\right.$ and $\left.x>0\right\}$. Then the permuted DWPC values have positive sample mean $\bar{\delta}^{\dagger}$ and unbiased sample variance s^{2}. Note that these are the mean and variance of the nonzero values only.

$$
\begin{aligned}
& \bar{\delta}^{\dagger}=\frac{\sum_{=1}^{n} \delta_{i}}{|p|} \\
& s^{2}=\frac{\sum_{i=1}^{n} \delta_{i}^{2}-\left(\sum_{i=1}^{n} \delta_{i}\right)^{2} /|p|}{|p|-1}
\end{aligned}
$$

Since $E[\delta \mid \delta \neq 0]=\frac{\alpha}{\beta}$ and $\operatorname{Var}(\delta \mid \delta \neq 0)=\frac{\alpha}{\beta^{2}}$, we can solve the two equations to find α and β.

$$
\begin{aligned}
& \lambda=\frac{|p|}{n} \\
& \beta=\frac{\bar{\delta}^{\dagger}}{s^{2}} \\
& \alpha=\bar{\delta}^{\dagger} \beta
\end{aligned}
$$

Thus knowing only the fraction of δ_{i} that are nonzero, and the mean and variance of nonzero values, we can find all three parameters of the gamma hurdle model.

