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edge prediction features [5]. However, reliance on degree can pose problems for edge prediction.

Firstly, bias in networks can distort node degree so that degree differences between two nodes may

not be meaningful. Secondly, reliance on degree can lead edge prediction methods to make 7 u)t)-‘ AL

;nonspecific or trivial predictions and fail to identify novel or insightful relationships. QJ(’F*'? (ab}‘ﬁ?
(/’.

Most biomedical networks are imperfect representations of the true set of relationships. Real
networks often mistakenly include edges that do not exist and exclude edges that do exist. How well a
network represents the true relationships it attempts to represent depends on a number of factors,
especially the methods used to generate the data in the network [6,7,8]. We define “degree bias” as
the type of misrepresentation that occurs when the fraction of incorrectly existent/nonexistent
relationships,depends on node degree. Depending on the type of data being represented, degree
biases can afise due to experimental methods, inspection bias, or other factors [6].
at a g‘f’u‘eﬂ ﬂd{a? :

Inspection bias indicates that entities are not uniformly studied [9], and it is likely to cause degree
bias when networks are constructed using hypothesis-driven findings extracted from the literature, as
newly-discovered relationships are not randomly sampled from the set of all true relationships.
Though there is a high correlation between the number of publications mentioning a gene and its
degree in low-throughput interaction networks, the number of publications mentioning a gene has
little correlation with its degree in a systematically-derived protein interaction network [1Q]. This
evidence suggests that many poorly studied genes have similar numbers of interactions as those
scientists have preferentially examined and that these edges are missed due to inspection bias. For
networks with strong inspection bias, reliance on degree can lead to predictions that have a good
metrics when assessed by cross validation but little ability to generalize. A

= gnquer 1 ptormt Tssve; :
Another reason why a method's reliance on degree can be unfavorable is that degree imbalance can
lead to prediction nonspecificity. Nonspecific predictions are made on the basis of generic €<—\\- debfined ?
characteristics rather than the specific connectivity information contained in a network. For example,
Gillis et al. [11] examined the concept of prediction specificity in the context of gene function
prediction and found that many predictions appear to rely primarily on multifunctionality and could
be “potentially misleading with respect to causaIity.”Eé:aI networks have a variety of degree
distributions (Figure 1), and they commonly exhibit degree imbalance [1,2,;,5rﬁDegree imbalance
leads high-degree nodes to dominate in the predictiong'made by degree-associated methods [13],
which are effective predictors of connections in some piological networks [14]. Consequently, degree-
based predictions are more likely nonspecific, meanipg the same set of predictions performs well for
different tasks. -/
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Depending on the prediction task, edge predictions between very high degree nodes may be

/lundesired, uninsightful, or nonspecific. Model evaluation is challenging in this context: nonspecific or
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trivial predictions can dominate performance evaluations and may actually be correct, even if they are
not the desired outputs of the predictive model. For example, predicting that the highest degree node [
in a network shares edges with the remaining nodes to which it is not connected will often lead to Eximp'&

many correct predictions, despite this prediction being generic to all other nodes in the network. ng%&n hiah
_ . S | N tegree
Degree is important in edge prediction, but it can cause undesired effects. Degree-based features

should often be included in the interpretation of predictions to disentangle desired from non-desired

effects and to effectively evaluate and compare predictive models. We sought to directly measure the

effect of node degree on edge prediction methods. We introduce a permutation-based framework

and software implementation to find edge existence probabilities due to node degree and to quantify

the contribution of degree to edge prediction methods. This method allows edge predictions to be

evaluated in the context of degree and its effects on the prediction task. Our results demonstrate that
degree-associated methods are very effective for reconstructing a network using a subsampled

holdout. However, these methods are ineffective for predicting edges between networks measuring
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Figure 2: XSwap algorithm pseudocode. A. XSwap algorithm presented by Hanhijarvi, et al. [15]. B roposed/
extensions to the XSwap algorithm.
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For simple networks, each node's degree is preserved For bipartite networks, each node’s number of connections to the
other part is preserved, and{overall node class membershipgare preserved. For directed networks, each nodes' in- and
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We performed three prediction tasks to assess the performance of the edge prior. We compared the
permutation-based prior with two additional features: our analytical approximation of the edﬁigrior e
and the product of source and target degree, scaled to the range [0, 1] to allow calibration C S(«: C \r?\cu‘( 3
assessment. We used 20 biomedical networks from the Hetionet heterogeneous network [4] t?{at hadmooning
at least 2000 edges for the first two tasks, In the first task, we computed the degree-based prediction

features (edge prior, scaled degree prodyct, and analytical prior approximation), and predicted th WZ
original edges in the network. We used node pairs that lacked an edge in the original network as

negative examples and those with an edge as positive examples. To assess the methods’ predictive
performances, we computed the area under the receiver operating characteristic (AUROC) curve for

all three features. In the second task, we sampled 70% of edges from each of the networks, computed

features on the sampled network, ther predicted held-out edges. For this task, negative examples

were node pairs in which an edge did not exist in either original or sampled network, while positive

samples were those node pairs withoyt an edge in the sampled network but with an edge in the

original network. 0 Shwfd be,")'pt/;a 1‘23’ "’). f”} " iX or r¢0 . PM»[@-
(ali 2R B
The third task evaluated the ability of the edge prior to generalize to nazew degree distributions. We

used two domains where networks were available which shared nodes but had different degree
distributions. Protein-protein interactions (PPIl) and transcription factor-target gene (TF-TG)
relationships had networks created both by literature curation of low-throughput, hypothesis-driven
research and by high-throughput, systematic, hypothesis-free experimentation. For the PPl networks,
we used the STRING network, which incorporates literature-mining to find relationships [18] and a
combination of the high-throughput, proteome-scale interaction networks from Rual et al. [9] and
Rolland et al. [10]. We used a transcription factor-target gene (TF-TG) literature-derived network from
Han et al. [19] and a high-throughput network from Lachmann et al. [20]. The pairs of networks for
PPl and TF-TG data sources are ideal because in one we expect inspection bias and in the other we do

not. :
( Why P hered

s a further basis of comparison, we added a time-resolved co-authorship network, which we
partitioned by time to create two separate networks. We created the co-authorship network of bioRxiv
bioinformatics preprints using the Rxivist [21,22] database, which was generated by crawling the
bioRxiv server. Unlike the other two networks, co-authorship does not have degree bias, as the
network faithfully represents all true co-author relationships. We include this network to offer a
comparative prediction task in which the degree distributions between training (posted before 2018)
and testing (posted during or after 2018) do not diffep (Figure éﬁ). The goal of the third prediction task
is to determine feature generalizability for network r¢construction between different degree
distributions, especially predicting a network without degree bias using features from a degree-biased
network. Further information about the networks uged can be found in the supplement.

. ' akluobviys why Yhese Uss ‘
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Our method for degree-preserving permutation produces randomized networks that share few of
their edges with the original network. The feature values for two node pairs with the same source and
target degree are drawn from the same distribution in permuted networks, so nodes with equal
degree can be grouped when summarizing features.@_\fe used this to augment each node pair’s
feature values in permuted networks, which allowed these pairs to have more permuted feature
values than permuted networks. De\gr'e'e_?grﬁﬁ ping greatly increased the effective number of
permutations for nodes with frequently obsgrved degrees [23]. We used degree grouping throughout

our analyses. QA(U‘; /
pAus1 g, .
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Figure 4: A. Degree distributions of networks with and without degree bias can be very different. Data on PPl and TF-
TG were split between literature-derived and systematically-derived networks. In both cases, the networks exhibit large
differences in degree distribution. Co-authorship relationship networks split by date of first co-authorship roughly share

their degree distributions. B, Systematically-derived networks are not uniformly sampled sampied from literature-
derived networks or vice versa. Uniform random sampling produces linearly-correlated node degree, while non-random
sampling produces non-correlated degree. 70% of literature edges were sampled with uniform probability for the
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In the first prediction task, we computed three features—the XSwap edge prior, an analytical % Ugot{\

The edge prior encapsulates degree Vs relevan#

1
approximation to the edge prior, and the (scaled) product of source and target node degree—or (
networks from Hetionet. We then evaluated the extent to which these featureg could reconstruct th

~20 networks. Fhe XSwap-derived edge prior reconstructed many of the networks with a high level of
performance, as measured by the AUROC. Of the 20 individual networks we extracted from Hetionet,
17 had an edge prior self-reconstruction AUROC >= 0.95, with the highest reconstruction AUROC at
0.9971 (Compound-downregulates-Gene edge typé). Meanwhile, the lowest self-reconstruction

" performance (AUROC = 0.7697) occu’Ted in the network having the fewest node pairs (Disease-

localizes-Anatomy edge type). :
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is sensitive to shifts in the degree distribution.

The second prediction task mirrored the first task, but it involved reconstructing networks based on
subsampled networks with only 70% of the original edges. Because edges were sampled uniformly
without replacement, the subsampled networks share similar degree distributions to the original
networks (see Figure 4B). Unlike in the first task, edges that were present in the sampled network
were not tested and therefore are not included in the performance metrics. The results of the second
prediction task further demonstrate a high level of performance for degree-sequence-based node
pair features (Figure 5). The edge prior was able to reconstruct the unsampled network with an
AUROC of greater than 0.9 in 14 of 20 networks. As was observed in the first task, node pair features
computed in second prediction task were highly rank-correlated, meaning the AUROC values for
different featlures were similar. While performance was slightly lower in the second task than the first,
many networks were still well-reconstructed. The edge prior was the best calibrated feature for both

tasks. FW’

In the third prediction task, we computed the three edge prediction features for paired networks
representing data from PPI, TF-TG, and bioRxiv bioinformatics pre-print co-authorship. The goal of the
task was to compare predictive performance across different degree distributions for the same type
of data. We find that the task of predicting systematically-derived edges using a network with degree
bias is significantly more challenging than network reconstruction, and we find consistently lower
performance compared to the other tasks (Figure 5). The edge prior was not able to predict the
separate PPI network better than by random guessing (AUROC of roughly 0.5). Only slightly better was
its performance in predicting the separate TF-TG network, at an AUROC of 0.59. We find superior
performance in predicting the co-authorship relationships (AUROC 0.75), which was expected as the
network being predicted shared roughly the same degree distribution as the network on which the
edge prior was computed. The results of the third prediction task show that a difference in degree
distribution between the network on which features are computed and the network to be predicted
can make prediction significantly more challenging.

The edge prior can be considered a baseline edge predictor that accurately captures degree’s
contribution to the probability of an edge existing. The edge prior's low performance in the third task
indicates that degree is less helpful for edge prediction tasks in which training and testing networks
do not share their degree distributions. Many biomedical prediction tasks can be framed as edge
prediction tasks between different degree distributions. In drug repurposing, for example, existing
compound-disease treatment relationships are unlikely to be randomly sampled from all true
treatment relationships. However, all treatment relationships between existing compounds and
diseases are desirable outputs in prediction. Edge predictions can be based on both underlying
biological properties and network degree distributions. However, predictions based on biological
properties may be more consistent and generalizable than those based on degree. Degree’s influence
on edge prediction accuracy measures can reveal the relative contributions of these two factors.

Degree can underly a large fraction of performance

We conducted a further edge prediction task as an example application of the edge prior and our
permutation framework. To begin, we chose the STRING PPI network for the comparison and
computed five edge prediction features (Supplemental table 2). The goal of the task was to
reconstruct the network on which the features were computed. All five features were correlated with
degree (Figure 7), which we quantified for a node pair using the product of source and target degrees.
We expected features based on degree to show strong performance for a network reconstruction task
without holdout, as found in the first prediction task. ‘



measured gegree (eg: Jaccard Index), wnereas reatures wnose pertormances equatea tne eage prior
completely captured degree (eg: preferential attachment index).

Features can also capture information beyond degree, and our method can quantify this
performance. For example, the superior performance on unpermuted networks relative to permute
networks indicated that RWR, resource allocation, Jaccard, and Adamic/Adar indices captured more
than degree in this prediction task. These results aligned with the definitions of each feature and
validated that our permutation framework accurately assessed reliance on degree.

Discussion 1hi5 6ffW/(J b&f’”‘/-"?j/’fl/ (. f«*"’/ pner poagro

We focus on edge prediction in biomedical networks. Our overall goal is to predict new edges with
specificity, so that predictions reflect particular connectivity rather than generic node characteristics.
Our permutation framework measures the predictive performance attributable to degree to provide a
baseline expectation for edge pairs. We expect that non-specificity due to degree is not a unique
property of biomedical networks. For example, if node A connects to nearly all other nodes in a
network, predicting that all remaining nodes share an edge with node A will likely result in many
correct—though nonspecific—predictions, regardless of the type of data contained in the network.
Node degree should be accounted for to make correct predictions while being able to distinguish
specific from nonspecific predictions. Prediction without reliance on node degree is challenging
because many effective methods for edge prediction are correlated with degree (Figure 7).

The effects of node degree are obvious when edge prediction features are functions of degree. For
example, the resource allocation index is the sum of inverse degree of common neighbors between
source and target nodes (in the symmetric case), while preferential attachment is the product of
source and target degree [26,27]. However, because many other edge prediction methods are not
explicitly degree-based, it is important to have a general method for comparing the effects of node
degree on edge prediction methods.

We developed a permutation framework to quantify the edge probability due to degree. We term this
probability the “edge prior”, and we have identified two applications. First, a probability associated
with every node pair can be treated as a classification score. Ordering these scores provides an
assessment of performance based solely on degree, which can be used as a baseline for other
classifiers. Second, node pair probabilities can be used to adjust edge prediction features depending
on the task. If degree is a desired feature, then the edge prior can be treated like a Bayesian prior
probability. Alternatively, if degree is not a desired feature, then the edge prior can be used to
calibrate fg_)ature‘s and thus potentially enhance predictive specificity.

Lo Yads cortedt”
Figure 8 illustrates the utility of the edge prior and permutation framework for two purposes. First, it
contéxtdalizes feature performances relative to the baseline of nonspecific, degree-based predictions,
quantified by the edge prior. Degree has varying utility for different edge prediction tasks. The edge
prior's performance on a task quantifies the utility of degree toward the task. This comparison is
useful because specific predictions (based on more than degree alone) are more valuable for some
applications than nonspecific ones and because degree can be an expression of bias in many real-
world networks. - a e
Second, Figure 8 compares five edge prediction features computed on and unpermuted networks.
This comparison identified the fraction of each féature's performance attributable to degree. Some
features, such as the preferential attachment index, perfectly and exclusively measure degree. The
Adamic/Adar indexd@lso incorporates degree almost completelybecause its performances from
permuted networks are nearly at the performance of the edge prior. However, the Adamic/Adar index
had much higher performance when computed on the unpermuted network, indicating that it also
extracts higher-order information. This analysis, enabled by network permutation, measured the
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To approximate the edge prior, we began by making two simplifications. First, we assumed
independence between node pairs. This assumption does not actually hold for the XSwap algorithm,
though it is a reasonable simplification for large, sparse networks. Second, we assumed that the
XSwap process is stationary. This assumption also does not actually hold, but it was made because it
significantly simplifies the problem. A single node pair has two possible states, “edge” and "no edge”.
These states are not transient, and they are not periodic so long as more than one possible swap
exists in the network. In almost all cases, then, our simplified model of the algorithm gives the state of
a node pair as an ergodic process, independent of other node pairs.

Let A; ; represent the existence of edge (i, ) For a given node pair, (i, ), then, let g; ; represent the

transition probability from the “no edge” state to the “edge” state in one successful iteration of the
XSwap algorithm. Let 7; j represent the probability of the opposite transition (“edge” to “no edge”) in

one successful iteration. With “no edge” represented as [1, O]T and “edge"” represented as [0, l]T, the
transition matrix, P, is given by the following:
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The stationary distribution of this system should correspond to the distribution when the number of
swaps goes to infinity. It can be found by computing the eigenvectors of the system, as we know that
the stationary distribution vector, v satisfies PTv = v. The normalized eigenvector v is given by
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The asymptotic edge probability is therefore
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Since node pairs are being treated as independent, the probability 6f an edge being created in one
successful iteration, given that the edge does not currently exist, is the ratio of the number of edge
choices involving nodes 7 and j to the total number of possible swaps, 5. Let d(u;) represent the

degree of source node ¢ and d(v;) represent the degree of target node j.
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Similarly, the probability of an edge being eliminated in one iteration is the ratio of the number of

edge choices involving (i, j) and any other valid edge to the total number of possible swaps. Let m be
the total number of edges in the network.

m—d(w) —d(v;) +1
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The approximate edge prior is, therefore,



GiG 20945 147164

GpMF Source: 20945, Target: 2884 97222
GpPW Source: 20945, Target: 1822 84372
Sampled 3992 255522
PPI Literature 3992 364743
Systematic 3916 12913
Sampled 4587 30686
bioRxiv <2018 4615 43691
All time 4615 , 44963
TF-TG Sampled Source: 142, Target: 1396 2689
Literature Source: 144, Target: 1406 3496
Systematic Source: 144, Target: 1417 29177

Edge prediction features

In the table that follows, let k(«) denote the set of neighbors of node w. Let A represent the
normalized Laplacian adjacency matrix, and let y, be a vector with all ones except for a one in the u-
th position.  For a directed graph, let A(u) denote the set of nodes that node w points to and D(u)
the set of nodes that point to u. All definitions that follow are the score between nodes u and v.

Table 2: Edge prediction features.

' Feature | Definition Citation |
. [F)Nk()] |
Jaccard index T@UFE)] - [28]
Preferential attachment score |k(u) || k(v)| [28]
. . | 1
Resource allocation index Ewek(u)ﬂk(v) @) [26]
. . ' 1
Adamic/Adar index Ewek(u)nk(v) Toglk(w)] [29]
-1 .
Random walk with restart score c [(]I —-(1- c)A) yu] [30,31]
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Inference score



