Skip to content

A package that provides simplified base components to make building and maintaining LLM-powered applications easier.

License

Notifications You must be signed in to change notification settings

gregreindel/llm-exe

Repository files navigation

llm-exe

tests Coverage Status npm version

A package that provides simplified base components to make building and maintaining LLM-powered applications easier.

  • Write functions powered by LLM's with easy to use building blocks.
  • Pure Javascript and Typescript. Allows you to pass and infer types.
  • Supercharge your prompts by using handlebars within prompt template.
  • Support for text-based (llama-3) and chat-based prompts. (gpt-4o, claude-3.5, grok-3, Gemini, Bedrock, Ollama, etc)
  • Call LLM's from different providers without changing your code. (OpenAi/Anthropic/xAI/Google/AWS Bedrock/Ollama/Deepseek)
  • Allow LLM's to call functions (or call other LLM executors).
  • Not very opinionated. You have control on how you use it.

llm-exe

See full docs here: https://llm-exe.com


Install

Install llm-exe using npm.

npm i llm-exe

ESM-first. CommonJS works too.

// ESM
import * as llmExe from "llm-exe";
// or specific modules
import { useLlm, createChatPrompt, createParser } from "llm-exe";

// CommonJS
const llmExe = require("llm-exe");

Overview

// Prompt
const prompt = createChatPrompt("You are a support agent. Help the user.");
prompt.addUserMessage("I need help with my order.");

// LLM
const llm = useLlm("openai.gpt-4o");

// Parser
const parser = createParser("json", { schema: mySchema });

// Executor
const executor = createLlmExecutor({ llm, prompt, parser });
await executor.execute({ input: "..." });

Prompt Helpers

const prompt = createChatPrompt(`
{{#if user.isFirstTime}}
Welcome!
{{else}}
Welcome back!
{{/if}}
`);

Built-In Parsers

createParser("stringExtract", { enum: ["yes", "no"] });
createParser("listToJson");
createParser("listToArray");
createParser("markdownCodeBlock");
// ...etc

Custom Parsers

const parser = createCustomParser("MyUppercaseParser", (output, input) => {
  return output.toUpperCase();
});

State

const dialogue = createDialogue("chat");
dialogue.setUserMessage("Hi");
dialogue.setAssistantMessage("Hello!");
dialogue.getHistory(); // returns chat array

Hooks

executor.on("onSuccess", console.log);
executor.on("onError", console.error);

Basic Example

Below is simple example:

// 1. Use the model you want
const llm = useLlm("openai.gpt-4o");

// 2. Create a parameterized prompt
const instruction = `
You are a classifier. Given a user message, reply with the category it belongs to.
Pick from only the following options:

{{#each options}}- {{this}}
{{/each}}

Respond with only one of the options.`;

const prompt = createChatPrompt<{ options: string[]; input: string }>(
  instruction
).addUserMessage("{{input}}"); // placeholder for message content

// 3. Create a parser that ensures a clean match
const parser = createParser("stringExtract", {
  enum: ["billing", "support", "cancel", "unknown"],
});

// 4. Create the executor
const classifyMessage = createLlmExecutor({
  llm,
  prompt,
  parser,
});

// 5. Pass in options and a message — like a real function!
// classifyMessage.execute is typed based on the prompt/parser!
const result = await classifyMessage.execute({
  input: "Hi, I'm moving and no longer need this service.",
  options: ["billing", "support", "cancel", "unknown"],
});

console.log(result); // => "cancel"

Further Reading

Find llm-exe on Medium

About

A package that provides simplified base components to make building and maintaining LLM-powered applications easier.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •