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    Chapter 26   

 Methods to Study Splicing from High-Throughput RNA 
Sequencing Data 

           Gael     P.     Alamancos    ,     Eneritz     Agirre    , and     Eduardo     Eyras      

  Abstract 

   The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided 
a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the 
complexity of the information to be analyzed has turned this into a challenging task. In the last few years, 
a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expres-
sion of isoforms and splicing events, and their relative changes under different conditions. We provide an 
overview of the methods available to study splicing from short RNA-Seq data, which could serve as an 
entry point for users who need to decide on a suitable tool for a specifi c analysis. We also attempt to 
propose a classifi cation of the tools according to the operations they do, to facilitate the comparison and 
choice of methods.  

  Key words     RNA-Seq  ,   Splicing  ,   Alternative splicing  ,   Isoform  ,   Quantifi cation  ,   Reconstruction  

1      Introduction 

 The development of novel high-throughput sequencing (HTS) 
methods for RNA (RNA-Seq) has facilitated the discovery of many 
novel transcribed regions and splicing isoforms [ 1 ] and has pro-
vided evidence that a large fraction of the transcribed RNA in 
human cells undergo alternative splicing [ 2 ,  3 ]. RNA-Seq thus 
represents a very powerful tool to study alternative splicing under 
multiple conditions at unprecedented depth. However, the large 
datasets produced and the complexity of the information to be ana-
lyzed has turned this into a challenging task. In the last few years, a 
plethora of tools have been developed (Fig.  1 ), allowing researchers 
to process RNA-Seq data to study the expression of isoforms and 
splicing events, and their relative changes under different condi-
tions. In this chapter, we provide an overview of the methods 
available to study alternative splicing from short RNA- Seq data. 
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vol. 1126, DOI 10.1007/978-1-62703-980-2_26, © Springer Science+Business Media, LLC 2014



  Fig. 1    Graphical representation of methods to study splicing from RNA-Seq. Methods are divided according to 
whether they perform mapping, reconstruction of events/isoforms, quantifi cation of events/isoforms and 
whether they can perform a comparison between two or more conditions of event/isoform relative abun-
dances, or of isoform expression. We only list the mapping methods that are spliced-mappers or the ones that 
use some heuristics to map to known exons and junctions. Mapping methods that also perform quantifi cation 
are repeated in both levels. Methods for reconstruction ( blue ), quantifi cation ( green ), and comparison ( red  ) are 
divided according to whether they work with isoforms ( lighter color  ) or with events ( darker color  ); when they 
work at both levels, events and isoforms, they are overlapped by the two color tones, darker and lighter, 
respectively. Methods are also grouped by rounded rectangles according to the tables in Subheading  2 . Some 
methods perform reconstruction and quantifi cation and are grouped with those that only perform reconstruc-
tion. Methods that require an annotation are indicated. Quantifi cation methods that work with or without 
annotation are in different groups.  Solid arrows  connect Mapping methods to the tools in the other three levels; 
since, in principle, any mapping method producing BAM as output could be fed to methods reading BAM as 
input. Some methods perform mapping and quantifi cation or mapping and differential splicing and are con-
nected with a  solid arrow  too. We indicate with  dashed gray arrows  those cases when a comparison method 
can use the output from a quantifi cation method       
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We will group the methods according to the different questions 
they address:

     1.    Assignment of the sequencing reads to their likely gene of origin. 
This is addressed by methods that map reads to the genome 
and/or to the available gene annotations (Subheading  2.1 ).   

   2.    Quantifi cation of events and isoforms. Either using an annota-
tion (Subheadings  2.2  and  2.3 ) or after reconstructing tran-
scripts (Subheading  2.4 ), many methods estimate the 
expression level or the relative usage of isoforms and/or events.   

   3.    Recovering the sequence of splicing events and isoforms. This 
is addressed by transcript reconstruction and de novo assembly 
methods (Subheadings  2.4 ,  2.5 , and  2.6 ).   

   4.    Providing an isoform or event view of differential splicing or 
expression. These include methods that compare relative 
event/isoform abundance or isoform expression across two or 
more conditions (Subheadings  2.7  and  2.8 ).   

   5.    Visualizing splicing regulation. Various tools facilitate the visu-
alization of the RNA-Seq data in the context of alternative 
splicing (Subheading  2.9 ).    

  In this review, we use transcript or isoform to refer to a distinct 
RNA molecule transcribed from a gene locus. We use gene to refer 
to the set of isoforms transcribed from the same genomic region and 
the same strand, sharing some exonic sequence; and a gene locus 
refers to this genomic region. A splicing event refers to the exonic 
region of a gene that shows variability across two or more of its iso-
forms. Splicing events generally include exon skipping (or cassette 
exon), alternative 5′ and 3′ splice-sites, mutually exclusive exons, 
retained introns, alternative fi rst exons and alternative last exons 
( see  for example [ 4 ]), although other events may occur as a combi-
nation of two or more of these ones. In this review, we do not enter 
into the details of the specifi c mathematical models behind each 
method; for a comparative analysis of the mathematical models 
behind many of these methods  see  ref.  5 . Our aim is rather to provide 
an overview that could serve as an entry point for users who need to 
decide on a suitable tool for a specifi c analysis. We also attempt to 
propose a classifi cation of the tools according to the operations they 
do, to facilitate the comparison and choice of methods.  

2     Materials 

 This section includes the list of methods described in subsequent 
sections. 

      In Table  1 , we provide a list of mapping tools that are able to locate 
exon–intron boundaries. Some of the methods use annotation infor-
mation for mapping (OSA, X-MATE, SAMMate, IsoformEx, 

2.1  Spliced-Mappers

Splicing Analysis with RNA-Seq
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RNASEQR, RUM, SpliceSeq, MapAI), some can use annotation as 
an option (GEM, MapNext, STAR, TopHat), and others (the rest) 
work directly with the genome reference. Additionally, some meth-
ods perform quantifi cation (Subheading  2.2 ) (SAMMate, IsoformEx, 
RUM, SpliceSeq) and are included here since they provide an inde-
pendent method for mapping. We also indicate whether the method 
can map paired- end reads, the type of splice-site model used, the 
reference where the method is described and the URL where the 
software is available.

             In Table  2 , we give a list of methods that can be used to quantify 
known splicing events (RUM, SpliceSeq, MMES, SpliceTrap), 
known isoforms (SAMMate, IsoformEx, Erange, rSeq, rQuant, 
FluxCapacitor, IQSeq, Cuffl inks, Casper, CEM, IsoInfer, SLIDE, 
RABT, DRUT, iReckon), or both (MISO, ALEXA-Seq, SOLAS) 
when a genome-based annotation is available. Some include the 
mapping step (RUM, SpliceSeq, SAMMate, IsoformEx). Some 
isoform-based methods can quantify known and novel isoforms 
simultaneously (IsoInfer, SLIDE, RABT, DRUT, iReckon) or 
choose between quantifying known or novel isoforms (Cuffl inks, 
Casper, CEM, IsoLasso). We indicate the type of input used by 
each method, whether they exploit paired-end read information in 
the calculation and what type of quantifi cation is given. We also 
provide the reference where the method is described, and the URL 
(or email) where the software is available.

           Table  3  includes methods that quantify isoforms using a transcrip-
tome annotation and reads mapped with a non-spliced mapper. 
All the methods listed used bowtie to map reads to transcripts in 
the original publication. Although they generally work with reads 
mapped to a transcriptome, some methods (RSEM, MMSEQ) can 
work with reads mapped to a genome. We indicate the type of 
input used by the method, whether they exploit paired-end read 
information in the calculation and what type of isoform quantifi ca-
tion is given. We also provide the reference where the method is 
described, and the URL where the software is available.

         Table  4  includes methods to reconstruct (all methods) and to 
quantify (all methods except for G-Mo.R-Se and assemblySAM) 
multiple isoforms from genome-mapped reads without using any 
gene annotation. Some methods can also be run with annotations 
for quantifi cation (Cuffl inks, IsoLasso, Casper, CEM). Some per-
form simultaneously the reconstruction and  quantifi cation of novel 
isoforms (NSMAP, Montebello, IsoLasso). We indicate the type of 
input used by each method, whether they exploit paired-end read 
information in the calculation and what type of isoform quantifi ca-
tion is given. We also provide the reference where the method is 
described and the URL or email where the software is available.

2.2  Genome-Based 
Quantifi cation of 
Known Events and 
Isoforms

2.3  Isoform 
Quantifi cation Guided 
by a Transcriptome

2.4  Genome-Based 
Reconstruction and 
Quantifi cation Without 
Annotation

Splicing Analysis with RNA-Seq
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          Table  5  includes methods that could be used to perform alternatively 
spliced gene prediction from RNA-Seq data. Besides the de novo 
reconstruction and quantifi cation methods from Subheading  2.4  
and those from Subheading  2.2  that can predict novel and known 
isoforms simultaneously (IsoInfer, SLIDE, RABT, DRUT, 
iReckon), we also include methods that can use various sources of 
evidence to predict alternatively spliced genes (TAU, SpliceGrapher, 
ExonMap/JunctionWalk) and methods that predict alternatively 
spliced protein-coding genes from multiple evidences (Augustus, 
mGene). We also include classical protein- coding gene prediction 
methods that could potentially use RNA- Seq as evidence (Gaze, 
JigSaw, EVM, Evigan). For each method, we indicate the type of 
input used, whether they exploit paired-end read information in the 
calculation or provide any isoform quantifi cation. We also give the 
reference where the method is described and the URL or email 
where the software is available.

         Table  6  includes methods for de novo transcriptome assembly. 
Some of these methods produce multiple isoforms per assembled 
gene (OASES, SOAPdenovo-trans, TransAbyss, Trinity) and only 
two quantify the alternative isoforms (TransAbyss, Trinity). 
Nonetheless, these methods could be coupled with transcriptome- 
based quantifi cation methods (Subheading  2.3 ). KisSplice assem-
bles alternatively spliced events rather than isoforms and quantifi es 
the read coverage of these events. We indicate whether they exploit 
paired-end read information in the calculation, the  k -mer approach 
(single/multiple), whether they detect multiple isoforms per gene 
and whether they perform isoform quantifi cation. We also provide 
the reference where the method is described and the URL (or email) 
where the software is available.

         Table  7  includes methods that measure relative changes in inclu-
sion/usage between two or more conditions at the exon level 
(DEXSeq, DSGSeq, GPSeq, SOLAS), event level (MATS, 
JuncBASE, JETTA, SpliceSeq), and isoform region level 
(DiffSplice, SplicingCompass, FDM, rDiff) or at both, isoform and 
event levels (MISO, ALEXA-Seq). We indicate whether the meth-
ods perform any quantifi cation per sample, the measure of differ-
ential splicing provided, whether they exploit paired-end read 
information in the calculation, the reference where the method is 
described and the URL where the software is available.

          Table  8  includes methods that measure differential expression at 
the transcript level between two or more conditions, allowing 
multiple transcripts per gene. Cuffdiff2, additionally, can calculate 
signifi cant changes in the relative abundance of isoforms. For each 
method, we indicate the quantifi cation performed per sample, 
whether it exploits paired-end read information in the calculation, 

2.5  Evidence-Based 
Alternatively Spliced 
Gene Prediction

2.6  De Novo 
Transcriptome 
Assembly

2.7  Differential 
Splicing

2.8  Isoform-Based 
Differential Expression

Gael P. Alamancos et al.
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the measure of differential expression provided, the reference 
where the method is described and the URL where the software is 
available.

       Table  9  includes some of the available tools for the visualization of 
alternative splicing using RNA-Seq data. Some of them can be 
used as command line tools that are included in the distribution of 
the analysis tools (RSEM, SpliceGrapher, DiffSplice, DEXSeq, 
SplicingCompass) or provided separately (Sashimi Plots), whereas 
others are Graphical User Interfaces (Savant, ALEXA-Seq, 
SpliceSeq).

3        Methods 

  Event and Isoform quantifi cation are very much dependent on the 
correct assignment of RNA-Seq reads to the molecule of origin. 
Accordingly, we will start by reviewing some of the read mappers 
that are splice-site aware, and therefore, can be used to detect 
exon–intron boundaries and connections between exons. This 
alignment problem has been addressed in the past by tools that 
combine fast heuristics for sequence matching with a model for 
splice-sites, for example, Exonerate [ 97 ], BLAT [ 98 ], or GMAP 
[ 99 ]. These methods, however, are not competitive enough to 
map all reads from a sequencing run in a reasonable time. In the 
last few years, a myriad of methods have been developed for map-
ping short reads to a reference genome [ 100 ]. Those that are 
splice-site aware and incorporate intron-like gaps are generally 
called spliced-mappers, split-mappers, or spliced aligners. Their 
main challenge is that reads must be split into shorter pieces, which 
may be harder to map unambiguously; and although introns are 
marked by splice-site signals, these occur frequently by chance in 
the genome. 

 Spliced-mappers have been classifi ed previously into two main 
classes [ 101 ],  exon-fi rst  and  seed-and-extend  (Subheading  2.1 ). 
 Exon-fi rst  methods map reads fi rst to the genome using an unspliced 
approach to fi nd read-clusters; unmapped reads are then used to 
fi nd connections between these read-clusters. These methods 
include TopHat [ 6 ], SOAPsplice [ 7 ], PASSion [ 8 ], MapSplice [ 9 ], 
SpliceMap [ 10 ], HMMsplicer [ 11 ], TrueSight [ 12 ], and GEM [ 13 ]. 
 Seed-and-extend  methods generally start by mapping part of the 
reads as  k -mers or substrings; candidate matches are then extended 
using different algorithms and potential splice-sites are located. 
These methods include SplitSeek [ 14 ], Supersplat [ 15 ], SeqSaw 
[ 16 ], ABMapper [ 17 ], MapNext [ 18 ], STAR [ 19 ], GSNAP [ 20 ], 
and PALMapper [ 22 ]. A generalization of seed-and- extend meth-
ods is represented by the multi-seed methods, like CRAC [ 23 ], 

2.9  Visualization of 
Alternative Splicing

3.1  Spliced- Mapping 
Short Reads

Splicing Analysis with RNA-Seq
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OLego [ 24 ], and Subread [ 25 ], which consider multiple subreads 
within each read. Similarly, ABMapper consider multiple read-splits 
for mapping. Some methods actually use a hybrid strategy, following 
an exon-fi rst approach for unspliced reads, and then using seed-
and-extend approach for spliced reads, like MapSplice, SpliceMap, 
HMMSplicer, TrueSight, GEM, and PALMapper; the latter being 
a combination of GenomeMapper [ 102 ] and QPalma [ 21 ] for 
spliced reads.  Exon-fi rst  methods depend strongly on suffi cient 
coverage on potential exons to incorporate spliced reads, but are 
generally faster than  seed-and-extend  methods. On the other hand, 
 seed-and-extend  methods tend to be less dependent on recovering 
exon-like read-clusters and may recover more novel splice-sites. 
However, the storage of  k -mers for long reads requires suffi cient 
computer memory for large  k , and the mapping has limited accu-
racy for small  k  [ 7 ]. 

 There is also a different class of tools, which use the annota-
tion and/or some heuristics to map reads. These include OSA 
[ 26 ], X-Mate [ 27 ], RNASEQR [ 28 ], MapAI [ 29 ], SAMMate 
[ 30 ], IsoformEx [ 31 ], RUM [ 32 ], SpliceSeq [ 33 ], and PASTA 
[ 34 ]. RNASEQR and RUM use Bowtie [ 103 ] to map reads to the 
transcriptome and genome; and then identify novel junctions 
from the unmapped reads using BLAT [ 98 ]. Similarly, SAMMate 
and IsoformEx use Bowtie to locate reads in exons and junctions, 
whereas SpliceSeq uses Bowtie to map reads to a graph represen-
tation of the annotation; X-Mate uses its own heuristics to trim 
and map reads recursively to locate reads on exons and junctions. 
On the other hand, PASTA does not use any gene annotation; it 
uses Bowtie and a splice-site model to locate read fragments on 
exon junctions. Among these methods, SAMMate, IsoformEx, 
RUM, and SpliceSeq also provide some level of quantifi cation for 
exons, events, or isoforms (Subheading  2.2 ) (Fig.  1 ), which makes 
them convenient as a pipeline tool. OSA is actually a seed-and- 
extend mapping method but relies on an annotation. OSA avoids 
splitting reads into subreads which helps improving speed; and 
like other annotation-guided methods, also split-maps reads that 
are not located in the provided annotation using the seed-and-
extend approach. Finally, unlike the other methods, MapAI and 
ContextMap use reads already mapped to a reference genome. 
MapAI uses reads mapped to a transcriptome to assign them to 
their genomic positions, whereas ContextMap refi nes the genome 
mappings using the read context, extending to all reads the con-
text approach used by methods like MapSplice or GEM for spliced 
reads. In the newest version, ContextMap can also be used as a 
standalone read-mapping tool. Annotation-guided mapping 
methods are possibly the best option to accurately assign reads to 
gene annotations, whereas de novo mapping tools are convenient 
for fi nding new splicing junctions. 
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 Besides the differences in the mapping procedure, de novo 
 mapping tools detect splice-sites using a variety of approaches, which 
may determine the reliability of the splice-sites detected and the pos-
sibility of obtaining novel ones. Most tools search for an exact match 
of the fl anking intronic dinucleotides to the canonical splice-sites 
GT-AG, GC-AG, AT-AC ( see  Subheading  2.1 ). Tools like MapNext 
and Tophat use a two-step approach, fi rst mapping to the known 
junctions and then locating novel ones with GT-AG dinucleotides, 
whereas tools like MapSplice, Supersplat, SpliceMap, and 
HMMSplicer use a gapped-alignment approach that allows the detec-
tion of junctions regardless of the exon coverage. HMMSplice, 
QPalma, PASTA, and OLego use a more complex representation for 
splice-sites. HMMSplice is based on a hidden Markov model, QPalma 
on a Support Vector Machine, PASTA on a logistic regression, and 
OLego in the combined logistic modeling of sequence bias and 
intron-size; all of which are trained on known splice-sites. In contrast, 
MapSplice, SeqSaw, STAR, SplitSeek, and CRAC can do an unbiased 
search of splice-junctions, not necessarily looking for the splice-site 
motif and generally using support from multiple reads; hence, they 
can potentially recover noncanonical splice-sites. Annotation-guided 
methods will accurately assign reads to known splice-sites, but will 
miss novel ones, unless they use some heuristics for novel junctions 
like RUM and RNASEQR. Mapping methods like STAR, GEM, 
MapNext, and TopHat accept annotations as optional input, which 
will guide the initial mapping of reads. Other parameters may be 
important too, like the search range of intron lengths. Most mod-
els impose restrictions in the minimum and maximum intron 
lengths, but methods like MapSplice does not impose any restric-
tion and OSA has a specifi c search for novel exons using distal frag-
ments. The decision of which tool to use depends very much on 
whether the aim is to assign reads to known annotations or to fi nd 
novel splice-sites.  

  First reports using RNA-Seq to quantify splicing followed an 
approach analogous to splicing junction arrays [ 104 ]. They were 
based on the analysis of junctions built from known gene annota-
tions [ 2 ,  3 ,  105 – 108 ]. In these and later methods, reads aligning 
to candidate alternative exons and its junctions are considered as 
inclusion reads, whereas reads mapping to fl anking exons and to 
junctions skipping the candidate alternative exon are considered as 
skipping or exclusion reads. These reads are then used to provide 
an estimate of the relative inclusion of the regulated exon [ 109 ], 
generally called inclusion level. This approach has shown a reason-
able agreement with microarrays and can be modifi ed to include 
exon-body reads and variable exon lengths [ 2 ,  109 ] 

 An alternative measure, “percent spliced in” (PSI), has been 
defi ned as the number of isoforms that include the exon over the 
total isoforms [ 110 ], or equivalently, as the fraction of mRNAs 

3.2  Defi nition and 
Quantifi cation of 
Events and Isoforms

Gael P. Alamancos et al.



381

that represent the inclusion isoform [ 38 ]. If the PSI value is 
 calculated for a particular splicing event, it can be considered 
equivalent to the inclusion level. Isoform quantifi cation can be 
expressed in terms of either a global measure of expression [ 58 ], 
which may provide a global ranking comparable across genes in 
one sample, or in terms of a relative measure of expression, which 
is normalized per gene locus and comparable across conditions. 
The global measure is generally given in terms of RPKM or 
FPKM (Reads or Fragments Per Kilobase of transcript sequence 
per Millions mapped reads); and the relative measure is given in 
terms of a PSI value or a similar value. 

 Besides the original approaches [ 2 ,  3 ,  105 – 108 ], various tools 
have been developed recently to quantify events and isoforms. 
These range from simply quantifying the inclusion of events to the 
reconstruction and quantifi cation of novel isoforms. Some of the 
tools that reconstruct isoforms also estimate their quantifi cation, 
and some tools may quantify either known isoforms or novel ones, 
or both simultaneously. Accordingly, we classify the methods 
depending on whether they use annotation or not and on the type 
of input and output:

    1.    Event/isoform quantifi cation using known (genome-based) 
gene annotations (Subheading  2.2 ).   

   2.    Isoform quantifi cation using a transcriptome annotation 
(Subheading  2.3 ).   

   3.    De novo isoform reconstruction with a genome reference, 
either purely focused on reconstruction or also providing iso-
form quantifi cation (Subheading  2.4 ).   

   4.    Isoform reconstruction and quantifi cation guided by annota-
tion. These methods use a gene annotation as a guide and can 
complete the annotation with new exons, new isoforms, or 
even with some new gene loci (Subheading  2.5 ).   

   5.    Finally, some of the de novo transcript assembly methods also 
quantify isoforms (Subheading  2.6 ).    

   Various tools have been developed for event quantifi cation from a 
single condition (Subheading  2.2 ) (Fig.  1 ): RUM [ 32 ], SpliceSeq 
[ 33 ]. MMES [ 36 ], SpliceTrap [ 37 ], MISO [ 38 ], ALEXA-Seq 
[ 39 ], and SOLAS [ 40 ]. RUM provides quantifi cation of genes, 
exons, and junctions in terms of read-counts and RPKM (reads per 
kilobase per million mapped reads), whereas SpliceTrap and MMES 
use the reads mapped to junctions and employ a statistical model 
to calculate exon inclusion levels and junction scores, RUM and 
MMES also provide the mapping step. RUM has its own heuristics 
(Subheading  2.1 ), whereas MMES maps reads to exon–exon junc-
tions using SOAP [ 111 ]. Similarly, SpliceSeq maps reads to a splic-
ing-graph to obtain exon and junction inclusion levels. MISO and 
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ALEXA-Seq use reads on exons and junctions, whereas SOLAS uses 
only reads on exons. MISO provides PSI values, while ALEXA-Seq 
and SOLAS event and isoform expression levels. MISO, ALEXA-Seq, 
and SOLAS can also estimate isoform relative abundances and can 
be further used for differential splicing (Subheading  2.7 ). 

 Quantifi cation of isoforms is more complicated than that of 
events, as it requires the correct assignment of reads to isoforms 
sharing part of their sequence. One of the fi rst attempts to do this 
was Erange [ 41 ], where reads mapped to the genome and known 
junctions were distributed in isoforms according to the coverage of 
the genomic context, and isoform expression was defi ned in terms 
of RPKM. However, the uncertainty in the assignment of reads 
shared by two or more isoforms must be appropriately modeled. 
Accordingly, a number of methodologies have been proposed to 
address this issue (Subheading  2.2 ): SAMMate [ 30 ], IsoformEx [ 31 ], 
MISO [ 38 ], ALEXA-Seq [ 39 ], SOLAS [ 40 ], rSeq [ 42 ], rQuant [ 43 ], 
FluxCapacitor [ 44 ], IQSeq [ 45 ], Cuffl inks [ 46 ], Casper [ 47 ], CEM 
[ 48 ], IsoLasso [ 49 ], IsoInfer [ 50 ], SLIDE [ 51 ], RABT [ 52 ], 
DRUT [ 53 ], and iReckon [ 54 ]. Isoform quantifi cation    is generally 
given in terms of RPKM, FPKM, some equivalent  isoform expression 
level  value, PSI, or an equivalent  relative expression  value. 

 SAMMate and IsoformEx use the reads mapped to exons and 
junctions by their own methods to quantify gene and isoform 
expression in terms of RPKM values. SAMMate incorporates two 
quantifi cation methods, one that is not sensitive to coverage, so it 
can be used on early sequencing platforms [ 112 ] and a recent one 
that is aimed for deeper coverage and uses a fi ltering of non- 
expressed transcripts [ 113 ]. SOLAS and rSeq use reads on exons to 
estimate isoform expression levels, whereas rQuant uses the position-
wise density of mapped reads to calculate two abundance estimates: 
the RPKM and the estimated average read coverage for each tran-
script. IQSeq provides a statistical model that facilitates the incor-
poration of data from multiple technologies; and FluxCapacitor, 
unlike other methods, does not account for the mapping variability 
across isoforms and directly solves the constraints derived from 
distributing the reads in isoforms according to the splicing graph 
built from the read evidence. 

 IsoInfer, SLIDE, RABT, DRUT, and iReckon can quantify the 
known annotation and at the same time predict and quantify novel 
isoforms in known gene loci. RABT quantifi es known and novel 
isoforms, taking into account existing gene annotations and using 
the same graph assembly algorithm of Cuffl inks, combining the 
sequencing reads with reads obtained by fragmenting known tran-
scripts. RABT is part of the Cuffl inks distribution, but here we dis-
tinguish it from the original Cuffl inks, which quantifi es abundances 
of either only annotated or only novel isoforms [ 46 , [ 52 ]. Similar to 
RABT, SLIDE uses RNA-Seq data and existing gene annotation to 
discover novel isoforms and to estimate the abundance of known 
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and new isoforms. Additionally, it can use other sources of evidence, 
like RACE, CAGE, and EST, or even the output from other iso-
form reconstruction algorithms. IsoInfer uses the transcript start 
and end sites, plus exon–intron boundaries to enumerate all possi-
ble isoforms, estimate their expression levels and then choose the 
subset of isoforms that best explain the observed reads, predicting 
novel isoforms from the existing exon data. On the other hand, 
iReckon can work with just transcript start and end sites or with full 
annotations; it models multimapped reads, intron- retention and 
unspliced pre-mRNAs and performs reconstruction and quantifi ca-
tion simultaneously. DRUT uses a modifi ed version of the IsoEM 
algorithm [ 56 ] in combination with a de novo reconstruction 
method similar to Cuffl inks to complete partial existing annotations 
as well as to estimate isoform frequencies. Casper, similar to 
Cuffl inks, estimates abundances of known or novel isoforms sepa-
rately, but unlike other methods, uses information of the connectiv-
ity of more than two exons. Generally, known isoform quantifi cation 
methods show a high level of agreement with experimental valida-
tion [ 54 ] and can be improved using annotation- guided methods 
for read mapping [ 29 ].  

  A number of methods consider reads mapped to a transcriptome 
for isoform quantifi cation (Subheading  2.3 ); these include RSEM 
[ 55 ], IsoEM [ 56 ], NEUMA [ 57 ], BitSeq [ 58 ], MMSEQ [ 59 ], 
and eXpress [ 60 ]. Although these methods depend on a transcrip-
tome annotation, they can use a standard (non-spliced) mapper to 
obtain the input data. Additionally, they can work also with pre-
dicted isoforms from transcript assembly methods (Fig.  1 ). All of 
them provide a measure of global isoform expression, similar to 
RPKM. Moreover, RSEM also calculates the fraction of transcripts 
represented by the isoform, equivalent to PSI. RSEM and IsoEM 
use both an Expectation–Maximization algorithm and model 
paired-end fragment size. RSEM models the mapping uncertainty 
to transcripts and provides confi dence intervals of the abundance 
estimates. IsoEM uses the fragment-size information to disambig-
uate the assignment of reads to isoforms. BitSeq is based on a 
Bayesian approach, incorporates the mapping step to the transcrip-
tome, models the nonuniformity of reads, and provides an expres-
sion value per isoform. BitSeq can also be used for differential 
isoform expression (see below). MMSEQ also takes into account 
the nonuniform read distribution and deconvolutes the mapping 
to isoforms to estimate isoform-expression and haplotype-specifi c 
isoform-expression. The method eXpress is in fact a general tool 
for quantifying abundances of a set of sequences in a generic exper-
iment and can be used with a reference genome or transcriptome. 
For RNA-Seq reads mapped to a transcriptome, eXpress provides 
isoform quantifi cation in terms of FPKM. Finally, NEUMA is 
different from the other methods, as it does not use any probabilistic 
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description and assumes uniformity of the reads along transcripts. 
NEUMA labels reads according to whether they are isoform or 
gene specifi c and calculates a measure of isoform quantifi cation 
defi ned as the number of fragments per virtual kilobase per million 
reads (FVKM). Transcript-based methods can be generally applied 
to the transcripts obtained from genome annotations, so that the 
correspondence of transcripts to gene loci is maintained. 
Additionally, they can be used in combination with de novo transcript 
assembly methods (see below) to estimate isoform abundance in 
genomes without a reference.  

  These methods use the reads mapped to the genome to recon-
struct isoforms de novo. They are generally based on previous 
approaches to transcript reconstruction from ESTs [ 114 – 117 ]. 
As for ESTs [ 118 ], accuracy is limited by the lengths of the input 
reads; hence, the use of paired-end sequencing becomes crucial. 
Additionally, as RNA abundance spans a wide range of values, the 
correct recovery of lowly expressed isoforms requires suffi cient 
sequencing coverage. Although these methods work independently 
of the mapping procedure, they strongly rely on the accuracy of 
the spliced-mapper. 

 Purely reconstruction methods, without isoform quantifi cation, 
include G-Mo.R-Se [ 61 ] and assemblySAM [ 62 ]. Methods that 
reconstruct isoforms as well as estimate their abundances include 
Cuffl inks [ 46 ], Casper [ 47 ], CEM [ 48 ], IsoLasso [ 49 ], TAU [ 63 ], 
Scripture [ 64 ], Montebello [ 65 ], and NSMAP [ 66 ]. G-Mor.R-Se, 
Scripture, and TAU proceed in a similar way by fi rst obtaining 
candidate exons from read-clusters and then connecting them 
using reads spanning exon–exon junctions. Subsequently, all possible 
isoforms from the graph of connected exons are computed. 
As they explore all possible connections between potential exons, 
they ensure a high sensitivity but at the cost of a high false- positive 
rate. In contrast, Cuffl inks fi rst connects predicted exons trying to 
identify the minimum number of possible isoforms using a graph 
generated from the reads; expression levels are then calculated 
using a statistical model [ 42 ]. IsoLasso also tries to obtain the min-
imal set of isoforms from predicted exons, but maximizing the 
number of reads included in each isoform. CEM model takes into 
account positional, sequencing and mappability biases of the RNA- 
Seq. Casper follows a heuristics similar to Cuffl inks but exploiting 
the reads that connect more than 2 exon. Some of these methods 
use paired-end reads and/or model the insert-size distribution, 
which improve the reconstruction accuracy [ 119 ]. NSMAP, 
IsoLasso, and Montebello perform identifi cation of the exonic 
structures and estimation of the isoform expression levels simulta-
neously in a single probabilistic model; iReckon does so too, but 
was not included in this section as it needs at least the transcript 
start and end positions. The rest of methods perform reconstruction 
and quantifi cation independently. 

3.2.3  Genome-Based 
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 Although reasonable overlap among methods has been 
reported [ 120 ], there are still many predictions unique to each 
method. Interestingly, given a fi xed number of sequenced bases, 
sequencing longer reads does not seem to lead to more accurate 
quantifi cations [ 55 ,  56 ], although exonic structures may be better 
predicted [ 48 ]. These de novo reconstruction and quantifi cation 
methods seem a good option for fi nding novel isoforms [ 64 ], 
alternatively spliced genes in a genome with partial annotation 
[ 61 ] and for quantifying isoforms under various conditions [ 46 ]. 
However, they depend much on coverage. Accordingly, if the aim is 
to obtain the expression of known isoforms, gene-based methods 
may be a better choice. Alternatively, for protein-coding gene fi nding 
there are other options available, as discussed next.  

  The methods described above are mainly focused on isoform 
quantifi cation, using available annotation, or on the de novo 
reconstruction and quantifi cation of isoforms, using reads mapped 
to the genome. Quantifi cation methods based solely on gene 
annotations could miss many novel genes and isoforms, whereas de 
novo approaches not using annotations may produce many false 
positives. Combined approaches that discover novel isoforms in 
known and new loci and, at the same time, quantify them, could 
help improving the gene annotation. Some of the annotation-
based quantifi cation methods can also reconstruct and quantify 
new isoforms in known gene loci (Subheading  2.5 ): IsoInfer [ 50 ], 
SLIDE [ 51 ], RABT [ 52 ], DRUT [ 53 ], and iReckon [ 54 ]. Some 
of these methods can work with partial evidence, like iReckon. 
However, they do not predict new isoforms in new gene loci. To 
this end, a number of methods can use RNA-Seq and other sources 
of evidence to predict the exon–intron structures of isoforms, or 
even to predict full protein-coding gene structures. These methods 
include (Subheading  2.5 ) TAU [ 63 ], SpliceGrapher [ 67 ], mGene 
[ 69 ], and the method described in ref.  68 . The method mGene is 
an SVM-based gene predictor ( see , e.g., [ 121 ]) that fi rst recon-
structs a high-quality gene set, which then uses to train a gene 
model that is applied using RNA-Seq data in addition to the previ-
ously determined genomic signal predictors. In contrast, 
SpliceGrapher and TAU incorporate into the same graph model 
information from ESTs and RNA-Seq reads to complete known 
gene annotations and produce novel variants. ExonMap/
JunctionWalk proposed in ref. [ 68 ] combine SpliceMap [ 10 ] align-
ments with known annotations to complete known isoforms and 
obtain novel ones without quantifi cation (Fig.  1 ). 

 Some of these methodologies are reminiscent of the 
evidence- based gene prediction methods. These are generally 
based on probabilistic models of protein-coding genes, which 
can incorporate external spliced evidence like ESTs and cDNAs 
into the model to guide the prediction of the exon–intron struc-
ture, and some of which can predict multiple isoforms in a gene 
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locus. Accordingly, evidence-based gene prediction methods 
could still be useful for splicing analysis from RNA-Seq. In par-
ticular, Augustus [ 70 ] is an evidence-based protein-coding gene 
prediction method, capable of fi nding multiple isoforms per 
gene, which has been shown to be highly accurate using a blind 
test set [ 122 ,  123 ]. Other evidence- based prediction methods 
include (   Subheading  2.5 ) GAZE [ 71 ], JigSaw [ 72 ], EVM [ 73 ], 
and Evigan [ 74 ]. Although these four methods do not explicitly 
model alternative isoforms, they can still produce multiple tran-
scripts in a locus. 

 Evidence-based gene prediction methods can take as input 
transcripts reconstructed by other methods and generate protein- 
coding isoforms. They do not provide a quantifi cation of isoforms, 
but in combination with quantifi cation methods (Subheadings  2.2  
and  2.3 ) they could be a powerful approach to annotate and quan-
tify alternatively spliced protein-coding genes from newly sequenced 
genomes using RNA-Seq data.  

  De novo transcript assemblers put together reads into transcriptional 
units without mapping the reads to a genome reference, similar to 
building Unigene clusters from ESTs prior to having a genome 
reference [ 124 ]. A transcriptional unit can be defi ned as the set of 
RNA sequences that are transcribed from the same genome locus 
and share some sequence, i.e., the set of RNA isoforms from the 
same gene. This is generally represented as a sequence-based graph, 
where paths along the graph potentially resolve the different iso-
forms. Methods for transcript assembly include (Subheading  2.6 ) 
Rnnotator [ 75 ], STM [ 76 ], OASES [ 77 ], SOAPdenovo-trans 
[ 78 ], TransAbyss [ 79 ], Trinity [ 80 ], and Kissplice [ 81 ]. Although 
KisSplice focuses on recovering alternative splicing events, we include 
it here as it follows a similar approach to the other methods.  See  ref.  125  
for a recent comparison between some of these methods. 

 The main challenge of these methods is not only to distinguish 
sequence errors from polymorphisms but also to distinguish close 
paralogues from alternative isoforms, which requires correctly cap-
turing the exonic variability. All these methods are based on a graph 
built from  k -mer overlaps between read sequences. The choice of 
 k -mer length affects the assembly, being more sensitive at low values 
of  k  and more specifi c at high values. Accordingly, some use a 
variable  k -mer approach. Isoforms are recovered as paths through 
the graph with suffi cient read coverage. Not all methods can provide 
multiple isoforms from the same gene (Subheading  2.6 ). 

 Genome-independent methods are useful when there is no 
genome reference sequence available, and could also be valuable 
when the RNA is expected to contain much variation, like in a cancer 
cell with many copy number alterations, mutations and genome 
rearrangements compared to the reference genome. De novo 
assembly methods tend to be more sensitive to sequencing errors 
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and low coverage, and generally require more computational 
resources, although full parallelization of the graph algorithms 
can alleviate this issue [ 126 ]. Some of the methods also consider 
the comparison to reference sets of DNA or protein sequences 
[ 76 ]. In fact, mapping assembled transcripts to a reference genome, 
even from a related species, seems to improve accuracy in transcript 
quantifi cation [ 127 ]. KisSplice is explicitly designed to obtain and 
quantify de novo alternative splicing events, which may potentially 
be coupled with other methods to study differential splicing. On the 
other hand, OASES, TransAbyss, Trinity, and SOAPdenovo- trans 
can produce multiple isoforms, but only TransAbyss and Trinity 
perform quantifi cation. Nonetheless, multiple assembled isoforms 
can be quantifi ed with transcript-based methods (Subheading  2.3 ) 
or further processed with isoform-based differential expression 
methods (Subheading  2.8 ).   

  The comparison of events and isoforms across two or more condi-
tions provide valuable information to understand the regulation of 
alternative splicing. However, it is important to distinguish differ-
ential isoform relative abundance, from differential isoform expres-
sion. Changes in relative abundance of isoforms, regardless of the 
expression change, indicate a splicing-related mechanism. On the 
other hand, there can be measurable changes in the expression of 
isoforms across samples, without necessarily changing the relative 
abundance, which possibly indicates a transcription-related mecha-
nism. With this in mind, we can consider two types of methods, 
those that measure relative event or isoform usage (Subheading  2.7 ) 
and those that measure isoform-based changes in expression 
(Subheading  2.8 ). 

  Most of these methods are focused on splicing events, thereby 
summarizing the isoform relative abundance into two possible 
splicing outcomes in a local region of the gene (Fig.  1 ). They use a 
predetermined set of splicing events, generally calculated from 
gene annotations and additional EST and cDNA data; hence, they 
are suitable for studying splicing variation in well- annotated genomes. 
They all consider exon-skipping events (cassette exons), and some also 
include alternative 5′ and 3′ splice-sites, mutually exclusive exons and 
retained introns; and in very few cases, multiple-cassette exons, alter-
native fi rst exons and alternative last exons [ 38 ]. Potential novel 
events are sometimes built by considering hypothetical exon–exon 
junctions from the annotation [ 85 ]. 

 Methods that calculate differential relative abundance of events 
or exons under at least two conditions include (Subheading  2.7 ) 
SpliceSeq [ 33 ], MISO [ 38 ], ALEXA-Seq [ 39 ], SOLAS [ 40 ], 
DEXSeq [ 82 ], DSGSeq [ 83 ], GPSeq [ 84 ], MATS [ 85 ], JuncBase 
[ 86 ], JETTA [ 87 ], SplicingCompass [ 88 ], DiffSplice [ 89 ], FDM 
[ 90 ] rDiff [ 91 ,  128 ], and the methods from ref.  129 . ALEXA-Seq 
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estimates inclusion levels on a set of pre-calculated events using 
only unambiguous reads, i.e., reads that map to one unique event, 
and calculates various measures of differential expression, including 
the splicing index, i.e., a measure of change in expression of an 
event between two conditions relative to the change in expression 
of the entire gene locus between the same two conditions. On the 
other hand, SOLAS uses single-reads and only takes into account 
those mapping within exons, disregarding reads spanning exon–
exon junctions, to detect differentially spliced events between two 
conditions. DEXSeq, DSGSeq, and GPSeq use read counts on 
exons to calculate those genes with differential splicing between 
two conditions. They do not provide any event or isoform infor-
mation and report the exons with signifi cant change (Fig.  1 ). 
MATS and MISO use both a Bayesian approach to calculate the 
differential inclusion of splicing events between two samples, using 
reads that map to exons and to the inclusion and skipping exon 
junctions. JuncBASE also uses reads mapped to exon junctions and 
uses a Fisher exact test to compare the read count in the inclusion 
and exclusion forms in two conditions. JETTA estimates the 
differential inclusion between two conditions from pre-calculated 
expression values for genes, exons, and junctions, which the 
authors obtain using SeqMap [ 130 ] and rSeq [ 49 ]. SpliceSeq 
calculates read coverage along genes, exons, and junctions for each 
sample, which are then compared to identify signifi cant changes in 
splicing across samples. SpliceSeq also includes the evaluation of the 
impact of alternative splicing on protein products and a visualiza-
tion of the events (see below). Besides all these methods, various 
methods were proposed in ref.  129  based on reads over exon 
junctions to fi nd robust estimates of PSI, taking into account the 
positional bias of reads relative to the junction. 

 Some of these methods can also measure the change in the 
relative abundance of isoforms (Fig.  1 ): MISO can measure changes 
in isoform relative abundances from previously calculated isoform 
PSI values; ALEXA-Seq uses the events that are differentially 
expressed to infer isoform abundance differences between two 
conditions. Finally, rDiff, FDM, and DiffSplice are methods that 
work with a more general defi nition of event and that can operate 
without an annotation. FDM and DiffSplice are graph- based meth-
ods and both identify regions of differential abundance of tran-
scripts between two samples using the variability of reads that 
defi ne a splicing graph. Similarly, rDiff uses a Maximum Mean 
Discrepancy test [ 131 ] to estimate regions that have a signifi cant 
distance between the read distributions in the two conditions. 
Alternatively, rDiff can work with an annotation; it considers 
reads in exonic regions that are not in all isoforms and groups 
those regions according to whether they occur in the same set of 
isoforms. Finally, SplicingCompass uses a geometric approach to 
detect differentially spliced genes and quantifi es relative exon usage. 

Gael P. Alamancos et al.



389

In summary, these methods test whether events, isoforms, or 
genic regions, change their relative abundances between two or 
more conditions, and so directly address the question of differ-
ential splicing. 

 When comparing two or more conditions, biological variability 
becomes an important issue, which has been shown to be relevant 
for studying expression [ 132 ] and splicing [ 82 ] from RNA-Seq 
data. However, not all methods take this into account. From the 
methods described here, DEXSeq, DSGSeq, GPSeq, DiffSplice, 
FDM, rDiff, and a newer version of MATS accept multiple repli-
cates and model biological variability in different ways. In contrast, 
the initial methods for calculating splicing changes from RNA-Seq 
data [ 2 ,  3 ,  105 ], as well as MISO, ALEXA-Seq, JETTA, SpliceSeq, 
SOLAS, and SplicingCompass, do not work with multiple repli-
cates. On the other hand, JuncBASE can work with replicated data 
but does not seem to model variability. As the cost of sequencing 
continue to decrease, it will be more common to include replicates 
in the differential splicing analysis, which will prove relevant to 
discern actual regulatory changes from biological variability.  

  Current methods to study differential splicing at the event level 
show a high validation rate [ 2 ,  85 ]. However, their agreement with 
microarray-based methods is not as high as one may expect [ 2 ]. 
This limitation could be due to the simplifi cation of considering 
only events, rather than full RNA isoforms. An improvement in 
this direction would be to quantify changes in isoform expression. 
A possible approach is to combine methods that quantify isoforms 
with methods for differential gene expression. However, as previ-
ously pointed out [ 5 ,  90 ,  93 ], this may be problematic, since tools 
for differential gene expression analysis do not generally take into 
account the uncertainty of mapping reads to isoforms. We will not 
discuss here the many methods that have been proposed to study 
differential gene expression analysis from RNA-Seq data; for a 
recent review  see  refs.  5 ,  133 . 

 A number of methods have been proposed to detect expression 
changes at the isoform level (Subheading  2.8 ): BitSeq [ 58 ], BASIS 
[ 92 ], Cuffdiff2 [ 93 ], and EBSeq [ 94 ]. Cuffdiff2, BitSeq, and 
EBSeq take into account the read-mapping uncertainty, accept 
multiple replicates and model biological variability. BASIS does 
not accept replicates, but it models variability along genes. Cuffdiff2 
and BitSeq provide quantifi cation and differential expression of 
isoforms from genome-mapped and transcriptome-mapped reads, 
respectively. Cuffdiff2 can use reads directly mapped to the genome 
or can use the results from Cuffl inks on two conditions after using 
cuffcompare [ 46 ] (Fig.  1 ), which gives equivalent transcripts in 
both conditions. On the other hand, EBSeq relies on the iso-
form quantification from other methods, like RSEM or 
Cuffl inks, and is actually included in the current release of RSEM; 

3.3.2  Isoform-Based 
Differential Expression
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whereas BASIS uses coverage over exon regions that are isoform-
specifi c to calculate differential expression of isoforms. These 
methods rely on an annotation, either genome-based (Cuffdiff2, 
BASIS, and EBSeq) or transcriptome-based (BitSeq and EBSeq). 
Except for Cuffdiff2, these methods do not explicitly address the 
question of whether the relative abundance of these isoforms 
change across samples (Fig.  1 ). Accordingly, if there is an increase 
of transcription but the relative abundance of isoforms remain con-
stant, they can detect changes in isoform expression, even though 
there might not be an actual change in splicing. On the other hand, 
if there are changes in the relative abundance of isoforms, they may 
possibly detect expression changes, but they will not provide infor-
mation about the change of the relative abundances, and there-
fore do not directly address the question of differential splicing.   

  Being able to visualize the complexity of alternative splicing is an 
important aspect of the analysis. In the past, there have been mul-
tiple efforts to store and visualize alternative isoforms from ESTs 
and cDNAs [ 134 ,  135 ]. Visualization for RNA-Seq requires 
specialized tools that can effi ciently process large amount of data 
from multiple samples. This has triggered the development of spe-
cialized tools to visualize alternative isoforms and events from 
RNA-Seq data (Subheading  2.9 ). Perhaps the simplest way to 
visualize isoforms and events is to generate track fi les for a genome 
browser. For instance, RSEM produces WIG fi les that can be 
viewed as tracks in the UCSC browser [ 136 ]. Similarly, SpliceGrapher 
and DiffSplice produce fi les in GFF-like formats (  http://gmod.
org/wiki/GFF    ), which can be uploaded into visualization tools like 
GBrowse [ 137 ] or Apollo [ 138 ]. On the other hand, SpliceGrapher 
and Alexa-Seq have their own visualization utilities. Other tools have 
been developed independently from the analysis method. For 
instance, the Sashimi plot toolkit to visualize isoforms and events 
and their relative coverage was used with MISO but can be used 
with the results from other tools (Subheading  2.8 ). Similarly, the 
browser Savant [ 95 ] has been used in conjunction with iReckon, 
but can be used independently for multiple HTS data formats. 
Finally, SpliceSeq [ 33 ] and SplicingViewer [ 96 ] are stand-alone 
tools that, besides mapping reads and quantifying events, also 
provide a visualization of results.   

4    Conclusions and Outlook 

 The rapid development of short-read RNA sequencing technologies 
has triggered the development of new methods for data analysis. 
In this review, we have tried to provide an overview of methods 
applicable to the study of alternative splicing. These provide a way 
to detect and quantify exon–exon junctions, transcript isoforms, 

3.4  Visualizing 
Alternative Splicing
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and differential splicing. Despite the many tools available not all 
are necessarily applicable to every purpose. For instance, for 
genomes with good annotation coverage, like human, the expres-
sion of known isoforms and possibly their changes under several 
conditions might be more accurately assessed using annotation- 
guided methods. Similarly, if suffi cient annotation is available, 
there are also hybrid methods that can quantify known isoforms 
and predict novel ones simultaneously. For newly sequenced 
genomes, there are effective methods to perform de novo recon-
struction and quantifi cation of isoforms. However, if one is specifi -
cally interested in protein-coding genes, there are also evidence-based 
gene prediction methods available, which can be quite effective for 
isoform prediction. 

 One can identify some open questions and areas of improve-
ment. For instance, not all of the de novo transcript assembly 
methods describe multiple isoforms per gene and only few actually 
quantify them. These are still two hard problems to solve, as 
incompleteness or absence of transcriptomes can lead to many 
reconstruction and quantifi cation errors [ 139 ]. There are different 
approaches to improve these questions, either by a combination of 
methods and homology searches [ 140 ] or by using error correction 
of sequencing reads before assembly [ 141 ]. These tools are of great 
relevance for non-model organisms and we will probably see sub-
stantial improvements in the near future. Accurate reconstruction 
and quantifi cation of isoforms is crucial for downstream analysis 
and in particular, for differential analysis of isoform abundances. 
Methods to estimate differential splicing at the event level seem to 
provide accurate measures as shown by experimental validation. 
However, differential expression at the isoform level is still an active 
area of development. 

 Extending de novo transcriptome assembly methods to calculate 
differential expression of isoforms between two or more conditions 
could facilitate the analysis of isoform expression for non-model 
organisms. Although this may be done currently with a combina-
tion of methods, a tool that integrates all these could provide a 
powerful approach to study expression and splicing in tumor sam-
ples, where multiple genome rearrangements and copy number 
alterations are expected to have occurred. On a different direction, 
considering that a reference genome sequence does not represent 
all DNA that can be possibly transcribed in a cell, unmapped RNA 
reads may come from functional RNAs not represented in the 
genome annotation. Tools that map reads to a genome reference 
and simultaneously attempt to perform transcript assembly will be 
also quite useful to perform systematic analyzes of RNA in cancer 
samples as well as in genomes that are partly assembled. 

 Besides the technical improvements, there is probably also a 
need to improve the comparison and evaluation of current methods. 
Transcript reconstruction methods should be evaluated using 
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manual gene annotation sets, as proposed previously for gene 
prediction methods [ 123 ] and currently by RGASP for RNA-
Seq based methods (  http://www.gencodegenes.org/rgasp    ). 
Additionally, these comparisons should use measures that take into 
account alternative splicing [ 123 ,  142 ]. Similarly, there is the need 
to develop an experimental gold standard dataset for isoform quan-
tifi cation and differential isoform expression [ 143 ]. 

 As a fi nal question, we may ask for how long some of these 
methods will be needed. There are new technologies for single- 
molecule sequencing that soon will be used to probe the transcrip-
tome. This may preclude the need to perform reconstruction of 
isoforms. Nonetheless, short-read RNA-Seq may still be necessary 
for effi cient quantifi cation. On the other hand, single-molecule 
sequencing technologies will open up a whole new set of problems, 
like that of reconciling new cell-specifi c RNA sequences with the 
information available for the genome sequence and its annotation. 
In fact, we will be in the position to quantify multiple transcrip-
tomes and to revisit previous studies of differential splicing and 
expression in cancer, as the DNA and transcription complexity of 
the tumor cell is fully revealed. 

 With this review, we have aimed to provide an overview of the 
different tools to study different aspects of alternative splicing from 
RNA-Seq data, organized such that it is useful for the end user to 
navigate through the list of methods. All of them have their advan-
tages and disadvantages, but are certainly useful to answer specifi c 
questions. We also hope that this review makes it easier to identify 
the tools that are still missing in order to improve the study of 
splicing with RNA-Seq.     
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