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ABSTRACT
Most functional languages rely on some kind of garbage collection

for automatic memory management. �ey usually eschew reference

counting in favor of a tracing garbage collector, which has less

bookkeeping overhead at runtime. On the other hand, having an

exact reference count of each value can enable optimizations such

as destructive updates. We explore these optimization opportunities

in the context of an eager, purely functional programming language.

We propose a new mechanism for e�ciently reclaiming memory

used by nonshared values, reducing stress on the global memory

allocator. We describe an approach for minimizing the number of

reference counts updates using borrowed references and a heuristic

for automatically inferring borrow annotations. We implemented

all these techniques in a new compiler for an eager and purely

functional programming language with support for multi-threading.

Our preliminary experimental results demonstrate our approach is

competitive and o�en outperforms state-of-the-art compilers.
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1 INTRODUCTION
Although reference counting (Collins 1960) (RC) is one of the oldest

memory management techniques in computer science, it is not

considered a serious garbage collection technique in the functional

programming community, and there is plenty of evidence it is in

general inferior to tracing garbage collection algorithms. Indeed,

high-performance compilers such as ocamlopt and GHC use tracing

garbage collectors. Nonetheless, implementations of several popu-

lar programming languages, e.g., Swi�, Objective-C, Python, and

Perl, use reference counting as a memory management technique.

Reference counting is o�en praised for its simplicity, but many dis-

advantages are frequently reported in the literature (Jones and Lins

1996; Wilson 1992). First, incrementing and decrementing reference
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counts every time a reference is created or destroyed can signif-

icantly impact performance because they not only take time but

also a�ect cache performance, especially in a multi-threaded pro-

gram (Choi et al. 2018). Second, reference counting cannot collect

circular (McBeth 1963) or self-referential structures. Finally, in most

reference counting implementations, pause times are deterministic

but may still be unbounded (Boehm 2004).

In this paper, we investigate whether reference counting is a

competitive memory management technique for purely functional

languages, and explore optimizations for reusing memory, perform-

ing destructive updates, and for minimizing the number of reference

count increments and decrements. �e former optimizations in par-

ticular are bene�cial for purely functional languages that otherwise

can only perform functional updates. When performing functional

updates, objects o�en die just before the creation of an object of

the same kind. We observe a similar phenomenon when we in-

sert a new element into a pure functional data structure such as

binary trees, when we use map to apply a given function to the

elements of a list or tree, when a compiler applies optimizations

by transforming abstract syntax trees, or when a proof assistant

rewrites formulas. We call it the resurrection hypothesis: many

objects die just before the creation of an object of the same kind.

Our new optimization takes advantage of this hypothesis, and en-

ables pure code to perform destructive updates in all scenarios

described above when objects are not shared. We implemented

all the ideas reported here in the new runtime and compiler for

the Lean programming language (de Moura et al. 2015). We also

report preliminary experimental results that demonstrate our new

compiler produces competitive code that o�en outperforms the

code generated by high-performance compilers such as ocamlopt

and GHC (Section 8).

Lean implements a version of the Calculus of Inductive Con-

structions (Coquand and Huet 1988; Coquand and Paulin 1990),

and it has mainly been used as a proof assistant so far. Lean has

a metaprogramming framework for writing proof and code au-

tomation, where users can extend Lean using Lean itself (Ebner

et al. 2017). Improving the performance of Lean metaprograms was

the primary motivation for the work reported here, but one can

apply the techniques reported here to general-purpose functional

programming languages.

We describe our approach as a series of re�nements starting from

λpure, a simple intermediate representation for eager and purely

functional languages (Section 3). We remark that in Lean and λpure,
it is not possible to create cyclic data structures. �us, one of the

main criticisms against reference counting does not apply. From

λpure, we obtain λRC by adding explicit instructions for increment-

ing (inc) and decrementing (dec) reference counts, and reusing
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memory (Section 4). �e inspiration for explicit RC instructions

comes from the Swi� compiler, as does the notion of borrowed refer-

ences. In contrast to standard (or owned) references, of which there

should be exactly as many as the object’s reference counter implies,

borrowed references do not update the reference counter but are

assumed to be kept alive by a surrounding owned reference, further

minimizing the number of inc and dec instructions in generated

code.

We present a simple compiler from λpure to λRC, discussing

heuristics for inserting destructive updates, borrow annotations,

and inc/dec instructions (Section 5). Finally, we show that our

approach is compatible with existing techniques for performing

destructive updates on array and string values, and propose a sim-

ple and e�cient approach for thread-safe reference counting (Sec-

tion 7).

Contributions. We present a reference counting scheme opti-

mized for and used by the next version of the Lean programming

language.

• We describe how to reuse allocations in both user code and

language primitives, and give a formal reference-counting

semantics that can express this reuse.

• We describe the optimization of using borrowed references.

• We de�ne a compiler that implements all these steps. �e

compiler is implemented in Lean itself and the source code

is available.

• We give a simple but e�ective scheme for avoiding atomic

reference count updates in multi-threaded programs.

• We compare the new Lean compiler incorporating these

ideas with other compilers for functional languages and

show its competitiveness.

2 EXAMPLES
In reference counting, each heap-allocated value contains a refer-

ence count. We view this counter as a collection of tokens. �e

inc instruction creates a new token and dec consumes it. When a

function takes an argument as an owned reference, it is responsible

for consuming one of its tokens. �e function may consume the

owned reference not only by using the dec instruction, but also by

storing it in a newly allocated heap value, returning it, or passing

it to another function that takes an owned reference. We illustrate

our intermediate representation (IR) and the use of owned and

borrowed references with a series of small examples.

�e identity function id does not require any RC operation when

it takes its argument as an owned reference.

id x = ret x

As another example, consider the function mkPairOf that takes x
and returns the pair (x ,x).

mkPairOf x = inc x ; let p = Pair x x ; ret p

It requires an inc instruction because two tokens for x are con-

sumed (we will also say that “x is consumed” twice). �e function

fst takes two arguments x and y, and returns x , and uses a dec
instruction for consuming the unused y.

fst x y = dec y ; ret x

�e examples above suggest that we do not need any RC operation

when we take arguments as owned references and consume them

exactly once. Now we contrast that with a function that only

inspects its argument: the function isNil xs returns true if the list

xs is empty and false otherwise. If the argument xs is taken as an

owned reference, our compiler generates the following code

isNil xs = case xs of
(Nil→ dec xs ; ret true)
(Cons→ dec xs ; ret false)

We need the dec instructions because a function must consume

all arguments taken as owned references. One may notice that

decrementing xs immediately a�er we inspect its constructor tag

is wasteful. Now assume that instead of taking the ownership of

an RC token, we could borrow it from the caller. �en, the callee

would not need to consume the token using an explicit dec oper-

ation. Moreover, the caller would be responsible for keeping the

borrowed value alive. �is is the essence of borrowed references:
a borrowed reference does not actually keep the referenced value

alive, but instead asserts that the value is kept alive by another,

owned reference. �us, when xs is a borrowed reference, we com-

pile isNil into our IR as

isNil xs = case xs of (Nil→ ret true) (Cons→ ret false)

As a less trivial example, we now consider the function hasNone
xs that, given a list of optional values, returns true if xs contains a

None value. �is function is o�en de�ned in a functional language

as

hasNone [] = false
hasNone (None : xs) = true
hasNone (Some x : xs) = hasNone xs

Similarly to isNil, hasNone only inspects its argument. �us if xs is

taken as a borrowed reference, our compiler produces the following

RC-free IR code for it

hasNone xs = case xs of
(Nil→ ret false)
(Cons→ let h = projhead xs ; case h of

(None→ ret true)
(Some→ let t = projtail xs ; let r = hasNone t ; ret r))

Note that our case operation does not introduce binders. Instead,

we use explicit instructions proji for accessing the head and tail of

the Cons cell. We use suggestive names for cases and �elds in these

initial examples, but will later use indices instead. Our borrowed

inference heuristic discussed in Section 5 correctly tags xs as a

borrowed parameter.

When using owned references, we know at run time whether

a value is shared or not simply by checking its reference counter.

We observed we could leverage this information and minimize the

amount of allocated and freed memory for constructor values such

as a list Cons value. �us, we have added two additional instructions

to our IR: let y = reset x and let z = (reuse y in ctori w). �e

two instructions are used together; if x is a shared value, then y is

set to a special reference , and the reuse instruction just allocates

a new constructor value ctori w . If x is not shared, then reset
decrements the reference counters of the components of x , and y
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is set to x . �en, reuse reuses the memory cell used by x to store

the constructor value ctori w . We illustrate these two instructions

with the IR code for the list map function generated by our compiler

as shown in Section 5. �e code uses our actual, positional encoding

of cases, constructors, and �elds as described in the next section.

map f xs = case xs of
(ret xs)
(let x = proj1 xs ; inc x ; let s = proj2 xs ; inc s ;

let w = reset xs ;

let y = f x ; let ys = map f s ;

let r = (reuse w in ctor2 y ys) ; ret r)

We remark that if the list referenced by xs is not shared, the code

above does not allocate any memory. Moreover, if xs is a nonshared

list of list of integers, then map (map inc) xs will not allocate any

memory either. �is example also demonstrates it is not a good idea,

in general, to fuse reset and reuse into a single instruction: if we

removed the letw = reset xs instruction and directly used xs in

reuse, then when we execute the recursive application map f s ,
the reference counter for s would be greater than 1 even if the

reference counter for xs was 1. We would have a reference from

xs and another from s , and memory reuse would not occur in the

recursive applications. Note that removing the inc s instruction is

incorrect when xs is a shared value. Although the reset and reuse
instructions can in general be used for reusing memory between

two otherwise unrelated values, in examples like map where the

reused value has a close semantic connection to the reusing value,

we will use common functional vocabulary and say that the list is

being destructively updated (up to the �rst shared cell).

As another example, a zipper is a technique for traversing and

e�ciently updating data structures, and it is particularly useful

for purely functional languages. For example, the list zipper is a

pair of lists, and it allows one to move forward and backward, and

to update the current position. �e goForward function is o�en

de�ned as

goForward ([], bs) = ([], bs)
goForward (x : xs, bs) = (xs, x : bs)

In most functional programming languages, the second equation

allocates a new pair and Cons value. �e functions map and goFor-
ward both satisfy our resurrection hypothesis. Moreover, the result

of a goForward application is o�en fed into another goForward or

goBackward application. Even if the initial value was shared, ev-

ery subsequent application takes a nonshared pair, and memory

allocations are avoided by the code produced by our compiler.

goForward p = case p of
(let xs = proj1 p ; inc xs ;

case xs of
(ret p)

(let bs = proj2 p ; inc bs ;

let c1 = reset p ;

let x = proj1 xs ; inc x ; xs' = proj2 xs ; inc xs' ;
let c2 = reset xs ;

let bs' = (reuse c2 in ctor2 x bs) ;

let r = (reuse c1 in ctor1 xs' bs') ; ret r))

3 THE PURE IR
Our source language λpure is a simple untyped functional interme-

diate representation (IR) in the style of A-normal form (Flanagan

et al. 1993). It captures the relevant features of the actual IR we

have implemented and avoids unnecessary complexity that would

only distract the reader from the ideas proposed here.

w,x ,y, z ∈ Var
c ∈ Const
e ∈ Expr ::= c y | pap c y | x y | ctori y | proji x
F ∈ FnBody ::= ret x | let x = e; F | case x of F

f ∈ Fn ::= λ y. F

δ ∈ Program = Const ⇀ Fn

All arguments of function applications are variables. �e applied

function is a constant c , with partial applications marked with

the keyword pap, a variable x , the i-th constructor of an erased

datatype, or the special function proji , which returns the i-th
argument of a constructor application. Function bodies always end

with evaluating and returning a variable. �ey can be chained with

(non-recursive) let statements and branch using case statements,

which evaluate to their i-th arm given an application of ctori . As

further detailed in Section 5.3, we consider tail calls to be of the form

let r = c x ; ret r . A program is a partial map from constant names

to their implementations. �e body of a constant’s implementation

may refer back to the constant, which we use to represent recursion,

and analogously mutual recursion. In examples, we use f x = F as

syntax sugar for δ (f ) = λ x . F .

As an intermediate representation, we can and should impose

restrictions on the structure of λpure to simplify working with it.

We assume that

• all constructor applications are fully applied by eta-expanding

them.

• no constant applications are over-applied by spli�ing them

into two applications where necessary.

• all variable applications take only one argument, again by

spli�ing them where necessary. While this simpli�cation

can introduce additional allocations of intermediary par-

tial applications, it greatly simpli�es the presentation of

our operational semantics. All presented program trans-

formations can be readily extended to a system with n-ary

variable applications, which are handled analogously to

n-ary constant applications.

• every function abstraction has been lambda-li�ed to a top-

level constant c .

• trivial bindings let x = y have been eliminated through

copy propagation.

• all dead let bindings have been removed.

• all parameter and let names of a function are mutually

distinct. �us we do not have to worry about name capture.

In the actual IR we have implemented
1
, we also have instruc-

tions for storing and accessing unboxed data in constructor values,

boxing and unboxing machine integers and scalar values, and cre-

ating literals of primitive types such as strings and numbers. Our

1
h�ps://github.com/leanprover/lean4/blob/IFL19/library/init/lean/compiler/ir/basic.

lean

https://github.com/leanprover/lean4/blob/IFL19/library/init/lean/compiler/ir/basic.lean
https://github.com/leanprover/lean4/blob/IFL19/library/init/lean/compiler/ir/basic.lean
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IR also supports join points similar to the ones used in the Haskell

Core language (Maurer et al. 2017). Join points are local function

declarations that are never partially applied (i.e., they never occur

in pap instructions), and are always tail-called. �e actual IR has

support for de�ning join points, and a jmp instruction for invoking

them.

4 SYNTAX AND SEMANTICS OF THE
REFERENCE-COUNTED IR

�e target language λRC is an extension of λpure:

e ∈ Expr ::= . . . | reset x | reuse x in ctori y

F ∈ FnBody ::= . . . | inc x ; F | dec x ; F

We use the subscripts pure or RC (e.g., Exprpure or ExprRC) to refer

to the base or extended syntax, respectively, where otherwise am-

biguous. �e new expressions reset and reuse work together to

reuse memory used to store constructor values, and, as discussed

in Section 2, simulate destructive updates in constructor values.

We de�ne the semantics of λRC (Figures 1 and 2) using a big-step

relation ρ ` 〈F ,σ 〉 ⇓ 〈l ,σ ′〉 that maps the body F and a mutable

heap σ under a context ρ to a location and the resulting heap. �e

context ρ maps variables to locations. A heap σ is a mapping from

locations to pairs of values and reference counters. A value is a

constructor value or a partially-applied constant. �e reference

counters of live values should always be positive; dead values are

removed from the heap map.

l ∈ Loc
ρ ∈ Ctxt = Var ⇀ Loc

σ ∈ Heap = Loc ⇀ Value × N+

v ∈ Value ::= ctori l | pap c l

When applying a variable, we have to be careful to increment the

partial application arguments when copying them out of the pap
cell, and to decrement the cell a�erwards.

2
We cannot do so via

explicit reference counting instructions because the number of

arguments in a pap cell is not known statically.

Decrementing a unique reference removes the value from the

heap and recursively decrements its components. reset, when

used on a unique reference, eagerly decrements the components

of the referenced value, replaces them with ,
3

and returns the

location of the now-invalid cell. �is value is intended to be used

only by reuse or dec. �e former reuses it for a new constructor

cell, asserting that its size is compatible with the old cell. �e la�er

frees the cell, ignoring the replaced children.

If reset is used on a shared, non-reusable reference, it behaves

like dec and returns , which instructs reuse to behave like ctor.

Note that we cannot simply return the reference in both cases and

do another uniqueness check in reuse because other code between

the two expressions may have altered its reference count.

2
If the pap reference is unique, the two steps can be coalesced so that the arguments

do not have to be touched.

3
which can be represented by any unused pointer value such as the null pointer in a

real implementation. In our actual implementation, we avoid this memory write by

introducing a del instruction that behaves like dec but ignores the constructor �elds.

Const-App-Full

δ (c) = λ yc. F l = ρ(y) [yc 7→ l] ` 〈F ,σ 〉 ⇓ 〈l ′,σ ′〉
ρ ` 〈c y,σ 〉 ⇓ 〈l ′,σ ′〉

Const-App-Part

δ (c) = λ yc. F l = ρ(y) | l |< | yc | l ′ < dom(σ )
ρ ` 〈pap c y,σ 〉 ⇓ 〈l ′,σ [l ′ 7→ (pap c l , 1)]〉

Var-App-Full

σ (ρ(x)) = (pap c l , ) δ (c) = λ yc . F
ly = ρ(y) [yc 7→ l ly ] ` 〈F , dec(ρ(x), inc(l ,σ ))〉 ⇓ 〈l ′,σ ′〉

ρ ` 〈x y,σ 〉 ⇓ 〈l ′,σ ′〉
Var-App-Part

σ (ρ(x)) = (pap c l , )
δ (c) = λ yc . F ly = ρ(y) | l ly |< | yc | l ′ < dom(σ )
ρ ` 〈x y,σ 〉 ⇓ 〈l ′, dec(ρ(x), inc(l ,σ ))[l ′ 7→ (pap c l ly , 1)]〉

Ctor-App

l = ρ(y) l ′ < dom(σ )
ρ ` 〈ctori y,σ 〉 ⇓ 〈l ′,σ [l ′ 7→ (ctori l , 1)]〉

Proj

σ (ρ(x)) = (ctorj l , ) l ′ = l i

ρ ` 〈proji x ,σ 〉 ⇓ 〈l ′,σ 〉

Return

ρ(x) = l
ρ ` 〈ret x ,σ 〉 ⇓ 〈l ,σ 〉

Let

ρ ` 〈e,σ 〉 ⇓ 〈l ,σ ′〉 ρ[x 7→ l] ` 〈F ,σ ′〉 ⇓ 〈l ′,σ ′′〉
ρ ` 〈let x = e; F ,σ 〉 ⇓ 〈l ′,σ ′′〉

Case

σ (ρ(x)) = (ctori l , ) ρ ` 〈Fi ,σ 〉 ⇓ 〈l ′,σ ′〉
ρ ` 〈case x of F ,σ 〉 ⇓ 〈l ′,σ ′〉

Figure 1: λRC semantics: the λpure fragment

5 A COMPILER FROM λPURE TO λRC
Following the actual implementation of our compiler, we will dis-

cuss a compiler from λpure to λRC in three steps:

(1) Inserting reset/reuse pairs (Section 5.1)

(2) Inferring borrowed parameters (Section 5.2)

(3) Inserting inc/dec instructions (Section 5.3)

�e �rst two steps are optional for obtaining correct λRC pro-

grams.

5.1 Inserting destructive update operations
In this subsection, we will discuss a heuristics-based implementa-

tion of a function

δreuse : Const → FnRC
that inserts reset/reuse instructions. Given let z = reset x , we

remark that, in every control path, z may appear at most once, and

in one of the following two instructions: let y = reuse z ctori w ,

or dec z. We use dec z for control paths where z cannot be reused.

We implement the function δreuse as

δreuse(c) = λ y. R(F ) where δ (c) = λ y. F
�e function R(F ) (Fig. 3) uses a simple heuristic for replacing

ctori y expressions occurring in F with reusew in ctori y where
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Inc

ρ ` 〈F , inc(ρ(x),σ )〉 ⇓ 〈l ′,σ ′〉
ρ ` 〈inc x ; F ,σ 〉 ⇓ 〈l ′,σ ′〉

Dec

ρ ` 〈F , dec(ρ(x),σ )〉 ⇓ 〈l ′,σ ′〉
ρ ` 〈dec x ; F ,σ 〉 ⇓ 〈l ′,σ ′〉

inc(l ,σ ) = σ [l 7→ (v, i + 1)] if σ (l) = (v, i)

inc(l l ′,σ ) = inc(l ′, inc(l ,σ ))

dec(l ,σ ) =


σ if l =

σ [l 7→ (v, i − 1)] if σ (l) = (v, i), i > 1

dec(l ′,σ [l 7→ ⊥]) if σ (l) = (pap c l ′, 1)
dec(l ′,σ [l 7→ ⊥]) if σ (l) = (ctori l ′, 1)

dec(l l ′,σ ) = dec(l ′, dec(l ,σ ))

Reset-Uniq

ρ(x) = l σ (l) = (ctori l ′, 1)

ρ ` 〈reset x ,σ 〉 ⇓ 〈l , dec(l ′,σ [l 7→ (ctori |l ′ | , 1)])〉
Reset-Shared

ρ(x) = l σ (l) = ( , i) i , 1

ρ ` 〈reset x ,σ 〉 ⇓ 〈 , dec(l ,σ )〉
Reuse-Uniq

ρ(x) = l σ (l) = (ctorj |y | , 1) ρ(y) = l ′′

ρ ` 〈reuse x in ctori y,σ 〉 ⇓ 〈l ,σ [l 7→ (ctori l ′′, 1)]〉
Reuse-Shared

ρ(x) = ρ ` 〈ctori y,σ 〉 ⇓ 〈l ′,σ ′〉
ρ ` 〈reuse x in ctori y,σ 〉 ⇓ 〈l ′,σ ′〉

Figure 2: λRC semantics cont.

w is a fresh variable introduced by R as the result of a new reset
operation. For each arm Fi in a case x of F operation, the function

R requires the arity n of the corresponding matched constructor.

In the actual implementation, we store this information for each

arm when we compile our typed frontend language into λpure. �e

auxiliary functions D and S implement the dead variable search and

substitution steps respectively. For each case operation, R a�empts

to insert reset/reuse instructions for the variable matched by the

case. �is is done using D in each arm of the case. Function

D(z,n, F ) takes as parameters the variable z to reuse and the arity n
of the matched constructor. D proceeds to the �rst location where z
is dead, i.e. not used in the remaining function body, and then uses

S to a�empt to �nd and substitute a matching constructor ctori y
instruction with a reusew in ctori y in the remaining code. If no

matching constructor instruction can be found, D does not modify

the function body.

As an example, consider the map function for lists

map f xs = case xs of
(ret xs)
(let x = proj1 xs ; let s : = proj2 xs ;

let y = f x ; let ys = map f s ;

let r = ctor2 y ys ; ret r)

ApplyingR to the body ofmap , we haveD looking for opportunities

to reset/reuse xs in both case arms. Since xs is unused a�er

let s = proj
2
xs, S is applied to the rest of the function, looking for

R : FnBodypure → FnBodyRC
R(let x = e; F ) = let x = e; R(F )
R(ret x) = ret x

R(case x of F ) = case x of D(x ,ni ,R(Fi ))
where ni = #�elds of x in i-th branch

D : Var × N × FnBodyRC → FnBodyRC

D(z,n, case x of F ) = case x of D(z,n, F )
D(z,n, ret x) = ret x

D(z,n, let x = e; F ) = let x = e; D(z,n, F )
if z ∈ e or z ∈ F

D(z,n, F ) = letw = reset z; S(w,n, F )
otherwise, if S(w,n, F ) , F for a fresh w

D(z,n, F ) = F otherwise

S : Var × N × FnBodyRC → FnBodyRC
S(w,n, let x = ctori y; F ) = let x = reusew in ctori y; F

if | y |= n
S(w,n, let x = e; F ) = let x = e; S(w,n, F ) otherwise

S(w,n, ret x) = ret x

S(w,n, case x of F ) = case x of S(w,n, F )

Figure 3: Inserting reset/reuse pairs

constructor calls with two parameters. Indeed, such a call can be

found in the let-binding for r . �us, function D successfully inserts

the appropriate instructions, and we obtain the function described

in Section 2. Now, consider the list swap function that swaps the

�rst two elements of a list. It is o�en de�ned as

swap [] = []

swap [x] = [x]

swap (x : y : zs) = y : x : zs

In λpure, this function is encoded as

swap xs = case xs of
(ret xs)
(let t1 = proj2 xs ; case t1 of

(ret xs)
(let h1 = proj1 xs ;

let h2 = proj1 t1 ; let t2 = proj2 t1 ;

let r1 = ctor2 h1 t2 ; let r2 = ctor2 h2 r1 ; ret r2))

By applying R to swap, we obtain
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swap xs = case xs of
(ret xs)
(let t1 = proj2 xs ; case t1 of

(ret xs)
(let h1 = proj1 xs ; let w1 = reset xs ;

let h2 = proj1 t1 ; let t2 = proj2 t1 ;

let w2 = reset t1 ; let r1 = reuse w2 in ctor2 h1 t2 ;

let r2 = reuse w1 in ctor2 h2 r1 ; ret r2))

Similarly to the map function, the code generated for the function

swap will not allocate any memory when the list value is not shared.

�is example demonstrates that our heuristic procedure can avoid

memory allocations even in functions containing many nested case
instructions. �e example also makes it clear that we could further

optimize our λRC by adding additional instructions. For example,

we can add an instruction that combines reset and reuse into a

single instruction and is used in situations where reuse occurs

immediately a�er the corresponding reset instruction such as in

the example above where we have let w2 = reset t1; let r1 =

reusew2 in ctor2 h1 t2,

5.2 Inferring borrowing signatures
We now consider the problem of inferring borrowing signatures, i.e.

a mapping β : Const ⇀ {O,B}∗, which for every function should

return a list describing each parameter of the function as either

Owned or Borrowed. Borrow annotations can be provided manu-

ally by users (which is always safe), but we have two motivations

for inferring them: avoiding the burden of annotations, and making

our IR a convenient target for other systems (e.g., Coq, Idris, and

Agda) that do not have borrow annotations.

If a function f takes a parameter x as a borrowed reference, then

at runtime x may be a shared value even when its reference counter

is 1. �us, we must never mark x as borrowed if it is used by a

let y = reset x instruction. We also assume that each β(c) has

the same length as the corresponding parameter list in δ (c).
Partially applying constants with borrowed parameters is also

problematic because, in general, we cannot statically assert that

the resulting value will not escape the current function and thus

the scope of borrowed references. �erefore we extend δreuse to

the program δβ by de�ning a trivial wrapper constant cO := c
(we will assume that this name is fresh) for any such constant

c , set β(cO) := O, and replace any occurrence of pap c y with

pap cO y. �e compiler step given in the next subsection will, as

part of the general transformation, insert the necessary inc and

dec instructions into cO to convert between the two signatures.

Our heuristic is based on the fact that when we mark a parameter

as borrowed, we reduce the number of RC operations needed, but

we also prevent reset and reuse as well as primitive operations

from reusing memory cells. Our heuristic collects which parameters

and variables should be owned. We say a parameter x should be

owned if x or one of its projections is used in a reset, or is passed

to a function that takes an owned reference. �e la�er condition is

a heuristic and is not required for correctness. We use it because the

function taking an owned reference may try to reuse its memory cell.

A formal de�nition is given in Fig. 4. Many re�nements are possible,

and we discuss one of them in the next section. Note that if a call is

collectO : FnBodyRC → 2
Vars

collectO(let z = ctori x ; F) = collectO(F )
collectO(let z = reset x ; F) = collectO(F ) ∪ {x}
collectO(let z = reuse x in ctori x ; F) = collectO(F )
collectO(let z = c x ; F) = collectO(F ) ∪ {xi ∈ x | β(c)i = O}
collectO(let z = x y ; F) = collectO(F ) ∪ {x ,y}
collectO(let z = pap cO x ; F ) = collectO(F ) ∪ {x}
collectO(let z = proji x ; F) = collectO(F ) ∪ {x} if z ∈ collectO(F )
collectO(let z = proji x ; F) = collectO(F ) if z < collectO(F )
collectO(ret x) = ∅
collectO(case x of F ) =

⋃
Fi ∈F collectO(Fi )

Figure 4: Collecting variables that should not be marked as
borrowed

recursive, we do not know which parameters are owned, yet. �us,

given δ (c) = λy. b, we infer the value of β(c) by starting with the

approximation β(c) = Bn , then we compute S = collectO(b), update

β(c)i := O if yi ∈ S , and repeat the process until we reach a �x

point and no further updates are performed on β(c). �e procedure

described here does not consider mutually recursive de�nitions,

but this is a simple extension where we process a block of mutually

recursive functions simultaneously. By applying our heuristic to

the hasNone function described before, we obtain β(hasNone) = B.

�at is, in an application hasNone xs, xs is taken as a borrowed

reference.

5.3 Inserting reference counting operations
Given any well-formed de�nition of β and δβ , we �nally give a

procedure for correctly inserting inc and dec instructions.
4

δRC(c) : Const → FnRC
δRC(c) = λ y. O−(y,C(F , βl )) where δβ (c) = λ y. F ,

βl = [y 7→ β(c), . . . 7→ O]

�e map βl : Var → {O,B} keeps track of the borrow status of

each local variable. For simplicity, we default all missing entries to

O.

In general, variables should be incremented prior to being used

in an owned context that consumes an RC token. Variables used

in any other (borrowed) context do not need to be incremented.

Owned references should be decremented a�er their last use. We

use the following two helper functions to conditionally add RC

instructions (Fig. 5) in these contexts:

• O+x prepares x for usage in an owned context by incre-

menting it. �e increment can be omi�ed on the last use

of an owned variable, with V representing the set of live

variables a�er the use.

O+x (V , F , βl ) = F if βl (x) = O ∧ x < V
O+x (V , F , βl ) = inc x ; F otherwise

4
We will tersely say that a variable x “is incremented/decremented” when an inc/dec

operation is applied to it, i.e. the RC of the referenced object is incremented/decre-

mented at runtime.
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C : FnBodyRC × (Var → {O,B}) → FnBodyRC
C (ret x, βl ) = O+x (∅, ret x, βl )

C (case x of F , βl ) = case x of O−(y,C(F , βl ), βl )
where {y} = FV(case x of F )

C (let y = proji x ; F, βl ) = let y = proji x ; inc y ; O−x (C(F , βl ), βl )
if βl (x) = O

C (let y = proji x ; F, βl ) = let y = proji x ; C (F, βl [y 7→ B])
if βl (x) = B

C (let y = reset x ; F, βl ) = let y = reset x ; C (F, βl )

C (let z = c y ; F, βl ) = Capp(y, β(c), let z = c y; C(F , βl ), βl )
C (let z = pap c y ; F, βl ) = Capp(y, β(c), let z = pap c y; C(F , βl ), βl )
C (let z = x y ; F, βl ) = Capp(x y,O O, let z = x y; C(F , βl ), βl )
C (let z = ctori y ; F, βl ) = Capp(y,O, let z = ctori y; C(F , βl ), βl )
C (let z = reuse x in ctori y ; F, βl ) =

Capp(y,O, let z = reuse x in ctori y; C(F , βl ), βl )

Capp : Varn × {O,B}n × FnBodyRC × (Var → {O,B}) → FnBodyRC
Capp(y y′,O b, let z = e; F , βl ) =

O+y (y′ ∪ FV(F ),Capp(y′,b, let z = e; F , βl ), βl )
Capp(y y′,B b, let z = e; F , βl ) =

Capp(y′,b, let z = e; O−y (F , βl ), βl )
Capp([], [], let z = e; F , βl ) = let z = e; F

Figure 5: Inserting inc/dec instructions

• O−x decrements x if it is both owned and dead. O−(x , F , βl )
decrements multiple variables, which may be needed at

the start of a function or case branch.

O−x (F , βl ) = dec x ; F if βl (x) = O ∧ x < FV(F )
O−x (F , βl ) = F otherwise

O−(x x ′, F , βl ) = O−(x ′,O−x (F , βl ), βl )
O−([], F , βl ) = F

Applications are handled separately, recursing over the arguments

and parameter borrow annotations in parallel; for partial, variable

and constructor applications, the la�er default to O.

Examples
We demonstrate the behavior of the compiler on two application

special cases. �e value of βl is constant in these examples and le�

implicit in applications.

(1) Consuming the same argument multiple times

β(c) := O O

βl := [y 7→ O]
C(let z = c y y; ret z)

= Capp(y y,O O, let z = c y y; C(ret z))
= Capp(y y,O O, let z = c y y; ret z)
= O+y ({y, z},Capp(y,O, let z = c y y; ret z))
= O+y ({y, z},O+y ({z},Capp([], [], let z = c y y; ret z)))
= O+y ({y, z},O+y ({z}, let z = c y y; ret z))
= O+y ({y, z}, let z = c y y; ret z)
= inc y; let z = c y y; ret z

Because y is dead a�er the call, it needs to be incremented

only once, moving its last token to c instead.

(2) Borrowing and consuming the same argument

β(c) := B O

βl := [y 7→ O]
C(let z = c y y; ret z)

= Capp(y y,B O, let z = c y y; C(ret z))
= Capp(y y,B O, let z = c y y; ret z)
= Capp(y,O, let z = c y y; O−y (ret z))
= Capp(y,O, let z = c y y; dec y; ret z)
= O+y ({y, z}, Capp([], [], let z = c y y; dec y; ret z))
= O+y ({y, z}, let z = c y y; dec y; ret z)
= inc y; let z = c y y; dec y; ret z

Even though the owned parameter comes a�er the bor-

rowed parameter, the presence of y in the dec instruction

emi�ed when handling the �rst parameter makes sure we

do not accidentally move ownership when handling the

second parameter, but copy y by emi�ing an inc instruc-

tion.

Preserving tail calls
A tail call let r = c x ; ret r is an application followed by a ret
instruction. Recursive tail calls are implemented using gotos in our

compiler backend. �us, it is highly desirable to preserve them

as we transform λpure into λRC. However, the previous example

shows that our function for inserting reference counting instruc-

tions may insert dec instructions a�er a constant application, and

consequently, destroy tail calls. A dec instruction is inserted a�er

a constant application let r = c x if β(c)i = B and βl (xi ) = O
for some xi ∈ x . �at is, function c takes the i-th parameter as

a borrowed reference, but the actual argument is owned. As an

example, consider the following function in λpure.

f x = case x of
(let r = proj1 ; ret r)
(let y1 = ctor1 ; let y2 = ctor1 y1 ; let r = f y2 ; ret r)

�e compiler from λpure to λRC, infers β(f ) = B, and produces

f x = case x of
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(let r = proj1 x ; inc r ; ret r)
(let y1 = ctor1 ; let y2 ctor1 y1 ;

let r = f y2 ; dec y2 ; ret r)

which does not preserve the tail call let r = f y2; ret r . We

addressed this issue in our real implementation by re�ning our

borrowing inference heuristic, marking β(c)i = O whenever c
occurs in a tail call let r = c x ; ret r where βl (xi ) = O. �is

small modi�cation guarantees that tail calls are preserved by our

compiler, and the following λRC code is produced for f instead

f x = case x of
(let r = proj1 x ; inc r ; dec x ; ret r)
(dec x ; let y1 = ctor1 ; let y2 = ctor1 y1 ;

let r = f y2 ; ret r)

6 OPTIMIZING FUNCTIONAL DATA
STRUCTURES FOR RESET/REUSE

In the previous section, we have shown how to automatically insert

reset and reuse instructions that minimize the number of mem-

ory allocations at execution time. We now discuss techniques we

have been using for taking advantage of this transformation when

writing functional code. Two fundamental questions when using

this optimization are: Does a reuse instruction now guard my con-

structor applications? Given a let y = reset x instruction, how

o�en is x not shared at runtime? We address the �rst question using

a simple static analyzer that when invoked by a developer, checks

whether reuse instructions are guarding constructor applications

in a particular function. �is kind of analyzer is straightforward to

implement in Lean since our IR is a Lean inductive datatype. �is

kind of analyzer is in the same spirit of the inspection-testing pack-

age available for GHC (Breitner 2018). We cope with the second

question using runtime instrumentation. For each let y = reset x
instruction, we can optionally emit two counters that track how

o�en x is shared or not. We have found these two simple techniques

quite useful when optimizing our own code. Here, we report one

instance that produced a signi�cant performance improvement.

Red-black trees
Red-black trees are implemented in the Lean standard library and

are o�en used to write proof automation. For the purposes of this

section, it is su�cient to have an abstract description of this kind

of tree, and one of the re-balancing functions used by the insertion

function.

Color = R | B
Tree a = E | T Color (Tree a) a (Tree a)

balance1 v t (T (T R l x r1) y r2) = T R (T B l x r1) y (T B r2 v t)
balance1 v t (T l1 y (T R l2 x r)) = T R (T B l1 y l2) x (T B r v t)
balance1 v t (T l y r) = T B (T R l y r) v t
insert (T B a y b) x = balance1 y b (insert a x) if x < y and a is red
…

Note that the �rst two balance1 equations create three T construc-

tor values, but the pa�erns on the le�-hand side use only two T
constructors. �us, the generated IR for balance1 contains T con-

structor applications that are not guarded by reuse, and this fact

can be detected at compilation time. Note that even if the result

of (insert a x) contains only nonshared values, we still have to

allocate one constructor value. We can avoid this unnecessary

memory allocation by inlining balance1. A�er inlining, the input

value (T B a y b) is reused in the balance1 code. �e �nal gener-

ated code now contains a single constructor application that is not

guarded by a reuse, the one for the equation:

insert E x = T R E x E

�e generated code now has the property that if the input tree

is not shared, then only a single new node is allocated. More-

over, even if the input tree is shared we have observed a positive

performance impact using reset and reuse. �e recursive call

(insert a x) always returns a nonshared node even if x is shared.

�us, balance1 y b (insert a x) always reuses at least one memory

cell at runtime.

�ere is another way to avoid the unnecessary memory alloca-

tion that does not rely on inlining. We can chain the T constructor

value from insert to balance1. We accomplish this by rewriting

balance1 and insert as follows

balance1 (T v t) (T (T R l x r1) y r2) = T R (T B l x r1) y (T B r2 v t)
balance1 (T v t) (T l1 y (T R l2 x r)) = T R (T B l1 y l2) x (T B r v t)
balance1 (T v t) (T l y r) = T B (T R l y r) v t
insert (T B a y b) x = balance1 (T B E y b) (insert a x) if x < y and a is red

Now, the input value (T B a y b) is reused to create value (T B E y b)
which is passed to balance1. Note that we have replaced a with E to

make sure the recursive application (insert a x) may also perform

destructive updates if a is not shared. �is simple modi�cation

guarantees that balance1 does not allocate memory when the input

trees are not shared.

7 RUNTIME IMPLEMENTATION
7.1 Values
In our runtime, every value starts with a header containing two tags.

�e �rst tag speci�es the value kind: ctor, pap, array, string, num,

thunk, or task. �e second tag speci�es whether the value is single-

threaded, multi-threaded, or persistent. We will describe how this

kind is used to implement thread safe reference counting in the

next subsection. �e kinds ctor and pap are used to implement

the corresponding values used in the formal semantics of λpure and

λRC. �e kinds array, string, and thunk are self explanatory. �e

kind num is for arbitrary precision numbers implemented using the

GNU multiple precision library (GMP). �e task value is described

in the next subsection.

Values tagged as single- or multi-threaded also contain a refer-

ence counter. �is counter is stored in front of the standard value

header. We will primarily focus on the layout of ctor values here

because it is the most relevant one for the ideas presented in this

paper. A ctori value header also includes the constructor index i ,
the number of pointers to other values and/or boxed values, and

the number of bytes used to store scalar unboxed values such as

machine integers and enumeration types. In a 64-bit machine, the

ctor value header is 16 bytes long, twice the size of the header

used in OCaml to implement the corresponding kind of value. A�er

the header, we store all pointers to other values and boxed values,
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and then all unboxed values. �us, in a 64 bit machine, our run-

time uses 32 bytes to implement a List Cons value: 16 bytes for the

header, and 16 bytes for storing the list head and tail. �e unboxed

value support has restrictions similar to the ones found in GHC.

For example, to pass an unboxed value to a polymorphic function

we must �rst box it.

Our runtime has built-in support for array and string operations.

Strings are just a special case of arrays where the elements are

characters. We perform destructive updates when the array is not

shared. For example, given the array write primitive

Array.write :Array α →Nat→α →Array α

the function application Array.write a i v will destructively update

and return the array a if it is not shared. �is is a well known

optimization for systems based on reference counting (Jones and

Lins 1996), nonetheless we mention it here because it is relevant for

many applications. Moreover, destructive array updates and our

reset/reuse technique complement each other. As an example, if

we have a nonshared list of integer arrays xs,map (Array.map inc) xs
destructively updates the list and all arrays. In the experimental

section we demonstrate that our pure quick sort is as e�cient as

the quick sort using destructive updates in OCaml, and the quick

sort using the primitive ST monad in Haskell.

7.2 �read safety
We use the following basic task management primitives to develop

the Lean frontend.

Task.mk : (Unit→α )→ Task α
Task.bind : Task α → (α → Task β)→ Task β
Task.get : Task α →α

�e function Task.mk converts a closure into a task value and

executes it in a separate thread, Task.bind t f creates a task value

that waits for t to �nish and produce result a, and then starts f a
and waits for it to �nish. Finally, Task.get t waits for t to �nish and

returns the value produced by it. �ese primitives are part of the

Lean runtime, implemented in C++, and are available to regular

users.

�e standard way of implementing thread safe reference count-

ing uses memory fences (Schling 2011). �e reference counters are

incremented using an atomic fetch and add operation with a relaxed

memory order. �e relaxed memory order can be used because new

references to a value can only be formed from an existing reference,

and passing an existing reference from one thread to another must

already provide any required synchronization. When decrementing

a reference counter, it is important to enforce that any decrements

of the counter from other threads are visible before checking if the

object should be deleted. �e standard way of achieving this e�ect

uses a release operation a�er dropping a reference, and an acquire
operation before the deletion check. �is approach has been used

in the previous version of the Lean compiler, and we have observed

that the memory fences have a signi�cant performance impact even

when only one thread is being executed. �is is quite unfortunate

because most values are only touched by a single execution thread.

We have addressed this performance problem in our runtime by

tagging values as single-threaded, multi-threaded, or persistent. As

the name suggests, a single-threaded value is accessed by a single

thread and a multi-threaded one by one or more threads. If a value

is tagged as single-threaded, we do not use any memory fence

for incrementing or decrementing its reference counter. Persis-

tent values are never deallocated and do not even need a reference

counter. We use persistent values to implement values that are

created at program initialization time and remain alive until pro-

gram termination. Our runtime enforces the following invariant:

from persistent values, we can only reach other persistent values,

and from multi-threaded values, we can only reach persistent or

multi-threaded values. �ere are no constraints on the kind of

value that can be reached from a single-threaded value. By default,

values are single-threaded, and our runtime provides a markMT(o)
procedure that tags all single-threaded values reachable from o as

multi-threaded. �is procedure is used to implement Task.mk f and

Task.bind x f. We use markMT(f ) and markMT(x) to ensure that

all values reachable from these values are tagged as multi-threaded

before we create a new task, that is, while they are still accessible

from only one thread. Our invariant ensures that markMT does

not need to visit values reachable from a value already tagged as

multi-threaded. �us values are visited at most once by markMT
during program execution. Note that task creation is not a constant

time operation in our approach because it is proportional to the

number of single-threaded values reachable from x and f . �is does

not seem to be a problem in practice, but if it becomes an issue we

can provide a primitive asMT д that ensures that all values allocated

when executing д are immediately tagged as multi-threaded. Users

would then use this �ag in code that creates the values reachable

by Task.mk f and Task.bind x f.
�e reference counting operations perform an extra operation

to test the value tag and decide whether a memory fence is needed

or not. �is additional test does not require any synchronization

because the tag is only modi�ed before a value is shared with other

execution threads. In the experimental section, we demonstrate

that this simple approach signi�cantly boosts performance. �is

is not surprising because the additional test is much cheaper than

memory fences on modern hardware. �e approach above can be

adapted to more complex libraries for writing multi-threaded code.

We just need to identify which functions may send values to other

execution threads, and use markMT.

8 EXPERIMENTAL EVALUATION
We have implemented the RC optimizations described in the pre-

vious sections in the new compiler for the Lean programming

language. We have implemented all optimizations in Lean, and

they are available online
5
. At the time of writing, the compiler

supports only one backend where we emit C++ code. We chose C++

just for convenience because the Lean runtime is implemented in

C++. We are currently working on an LLVM backend for our com-

piler. To test the e�ciency of the compiler and RC optimizations,

we have devised a number of benchmarks
6

that aim to replicate

common tasks performed in compilers and proof assistants. All

timings are arithmetic means of 50 runs as reported by the temci
benchmarking tool (Bechberger 2016)

7
, executed on a PC with an

5
h�ps://github.com/leanprover/lean4/tree/master/library/init/lean/compiler/ir

6
h�ps://github.com/leanprover/lean4/tree/IFL19/tests/bench

7
Detailed reports are available at h�ps://pp.ipd.kit.edu/∼ullrich/report

https://github.com/leanprover/lean4/tree/master/library/init/lean/compiler/ir
https://github.com/leanprover/lean4/tree/IFL19/tests/bench
https://pp.ipd.kit.edu/~ullrich/report
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i7-3770 Intel CPU and 16 GB RAM running Ubuntu 18.04, using

Clang 7.1.0 for compiling the Lean runtime library as well as the

C++ code emi�ed by the Lean compiler.

• deriv and const_fold implement di�erentiation and con-

stant folding, respectively, as examples of symbolic term

manipulation where big expressions are constructed and

transformed. We claim they re�ect operations frequently

performed by proof automation procedures used in theo-

rem provers.

• rbmap stress tests the red-black tree implementation from

the Lean standard library. �e benchmarks rbmap_10 and

rbmap_1 are two variants where the we perform updates

on shared trees.

• frontend is the new frontend we are developing for the

next version of Lean. Its parser and macro expander are

wri�en purely in Lean (approximately 8000 lines of code),

while it is interfacing with the old C++ implementation

for elaboration. We are planning to eventually rewrite

the elaborator in Lean as well. �e new frontend is just

20% slower than the old one wri�en in C++, but it is more

powerful and supports user customizations that are not

handled by the old one. For example, the new parser imple-

ments in�nite lookahead while the old parser uses single

token lookahead.

• qsort it is the basic quicksort algorithm for sorting arrays.

• binarytrees is taken from the Computer Languages Bench-

marks Game
8
. �is benchmark is a simple adaption of Hans

Boehm’s GCBench benchmark
9
. �e Lean version is a trans-

lation of the fastest, parallelized Haskell solution, using

Task in place of the Haskell parallel API.

• unionfind implements the union-�nd algorithm which

is frequently used to implement decision procedures in

automated reasoning. We use arrays to store the �nd table,

and thread the state using a state monad transformer

We have tested the impact of each optimization by selectively

disabling it and comparing the resulting runtime with the base

runtime (Fig. 6):

• -reuse disables the insertion of reset/reuse operations

• -borrow disables borrow inference, assuming that all param-

eters are owned. Note that the compiler must still honor

borrow annotations on builtins, which are una�ected.

• -ST uses atomic RC operations for all values

�e results show that the new reset and reuse instructions

signi�cantly improve performance in the benchmarks const_fold,

rbmap, and unionfind. �e borrowed inference heuristic provides

signi�cant speedups in benchmarks binarytrees and deriv bench-

marks.

We have also directly translated some of these programs to other

statically typed, functional languages: Haskell, OCaml, and Stan-

dard ML (Fig. 7). For the la�er we selected the compilers ML-

ton (Weeks 2006), which performs whole program optimization and

can switch between multiple GC schemes at runtime, and MLKit,

8
h�ps://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/

binarytrees.html

9
h�p://hboehm.info/gc/gc bench/

base -reuse -borrow -ST

binarytrees 1.00̃ 0.99̃ 1.22̃ 1.13̃

deriv 1.00 0.97 1.17̃ 1.24̃

const_fold 1.00 1.53 0.97 1.07

frontend 1.00̃ 1.04̃ 1.04̃ 1.29̃

qsort 1.00 1.14 1.01 1.15

rbmap 1.00 3.09̃ 1.09̃ 1.42̃

rbmap_10 1.43̃ 3.11̃ 1.44̃ 2.03̃

rbmap_1 4.78̃ 5.31̃ 4.53̃ 7.13̃

unionfind 1.00̃ 1.27̃ 0.98̃ 1.96̃

geom. mean 1.24̃ 1.69̃ 1.29̃ 1.65̃

Figure 6: Lean variant benchmarks, normalized by the base
run time (rbmap for rbmap *). Digits whose order of magni-
tude is no larger than that of twice the standard deviation
are marked by squiggly lines.

which combines Region Inference and garbage collection (Hallen-

berg et al. 2002). While not primarily a functional language, we have

also included Swi� as a popular statically typed language using ref-

erence counting. For binarytrees, we have used the original �les

and compiler �ags from the fastest Benchmark Game implementa-

tions. For Swi�, we used the second-fastest, safe implementation,

which is much more comparable to the other versions than the

fastest one completely depending on unsafe code. �e Benchmark

Game does not include an SML version. For qsort, the Lean code

is pure and relies on the fact that array updates are destructive if

the array is not shared. �e Swi� code behaves similarly because

Swi� arrays are copy-on-write. All other versions use destructive

updates, using the ST monad in the case of Haskell.

While the absolute runtimes in Fig. 7 are in�uenced by many

factors other than the implementation of garbage collection that

make direct comparisons di�cult, the results still signify that both

our garbage collection and the overall runtime and compiler imple-

mentation are very competitive. We initially conjectured the good

performance was a result of reduced cache misses due to reusing al-

locations and a lack of GC tracing. However, the results demonstrate

this is not the case. �e only benchmark where the code generated

by our compiler produces signi�cantly fewer cache misses is rbmap.

Note that Lean is 4x faster than OCaml on const_fold even though

they both trigger a similar number of cache misses per second. �e

results suggest that Lean code is o�en faster in the benchmarks

where the code generated by other compilers spends a signi�cant

amount of time performing GC. Using const_fold as an example

again, Lean spends only 13% of the runtime deallocating memory,

while OCaml spends 91% in the GC. �is comparison is not entirely

precise since it does not include the amount of time Lean spends

updating reference counts, but it seems to be the most plausible

explanation for the di�erence in performance. �e results for qsort
are surprising, the Lean and Swi� implementations outperforms

all destructive ones but MLton. We remark that MLton and Swi�

have a clear advantage since they use arrays of unboxed machine

integers, while Lean and the other compilers use boxed values. We

did not �nd a way to disable this optimization in MLton or Swi� to

con�rm our conjecture. We believe this benchmark demonstrates

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/binarytrees.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/binarytrees.html
http://hboehm.info/gc/gc_bench/
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Lean 4 GHC 8.6.5 ocamlopt 4.07.1 MLton 20180207 MLKit 4.3.18 Swi� 5.0.1

Time Del CM Time GC CM Time GC CM Time GC CM Time GC CM Time GC CM

binarytrees 1.00̃ 4̃4̃% 14 2.9̃1̃ 71̃% 14 1.28̃ — 18 — — — — — — 5.31̃ 58̃% 10

deriv 1.00 2̃8̃% 16 2.09̃ 42% 5 1.31̃ 75% 6 0.86 22% 19 3.75̃ 58% 21 3.27̃ 4̃5̃% 6

const_fold 1.00 1̃5̃% 22 2.28̃ 59% 7 4.03̃ 90% 6 0.92 29̃% 31 3.74̃ 63% 14 5.11̃ 53̃% 12

qsort 1.00 1̃1̃% 0 1.70 1% 0 1.34 33% 0 0.54 0% 0 3.17̃ 0% 0 0.65̃ 0% 0

rbmap 1.00 2̃% 4 2.14̃ 36% 5 0.87 31% 5 2.66̃ 29̃% 33 5.62̃ 60% 10 6.7̃0̃ 5̃8̃% 1

rbmap_10 1.43̃ 1̃2̃% 15 12.4̃9̃ 87% 14 1.63̃ 58% 9 2.92̃ 29̃% 33 8.08̃ 72% 16 7.3̃0̃ 5̃4̃% 3

rbmap_1 4.78̃ 2̃7̃% 29 12.4̃7̃ 87% 13 8.02̃ 88% 13 3.81̃ 39% 30 13.07̃ 83% 33 10.9̃6̃ 4̃8̃% 14

Figure 7: Cross-language benchmarks. �emeasurements include wall clock time (normalized by the Lean base run time), GC
time (in percent, as reported by the respective compiler), and last-level cache misses (CM, in million per second, as reported
by perf stat). For Swi�, we measure time spent in inc, dec, and deallocation runtime functions as GC time using perf. For
Lean, the former are always inlined, so we can only measure object deletion time.

that our compiler allows programmers to write e�cient pure code

that uses arrays and hashtables. For rbmap, Lean is much faster

than all other systems except for OCaml. We imagined this would

only be the case when the tree was not shared. �en we devised

the two variants rbmap_10 and rbmap_1 which save the current

tree in a list a�er every tenth or every insertion, respectively. �e

idea is to simulate the behavior of a backtracking search where

we store a copy of the state before each case-split. As expected,

Lean’s performance decreases on these two variants since the tree

is now a shared value, and the time spent deallocating objects in-

creases substantially. However, Lean still outperforms all systems

but MLton on rbmap_1. In all other systems but MLton and Swi�,

the time spent on GC increases considerably. Finally, we point out

that MLton spends signi�cantly less time on GC than the other

languages using a tracing GC in general.

9 RELATEDWORK
�e idea of representing RC operations as explicit instructions so

as to optimize them via static analysis is described as early as Barth

(1977). Schulte (1994) describes a system with many features similar

to ours. In general, Schulte’s language is much simpler than ours,

with a single list type as the only non-primitive type, and no higher-

order functions. He does not give a formal dynamic semantics for

his system. He gives an algorithm for inserting RC instructions that,

like ours, has an on-the-�y optimization for omi�ing inc instruc-

tions if a variable is already dead and would immediately be decre-

mented a�erwards. Schulte brie�y discusses how RC operations

can be minimized by treating some parameters as “nondestructive”

in the sense of our borrowed references. In contrast to our inference

of borrow annotations, Schulte proposes to create one copy of a

function for each possible destructive/nondestructive combination

of parameters (i.e. exponential in the number of (non-primitive)

parameters) and to select an appropriate version for each call site

of the function. Our approach never duplicates code.

Introducing destructive updates into pure programs has tradi-

tionally focused on primitive operations like array updates (Hudak

and Bloss 1985), particularly in the functional array languages

Sisal (McGraw et al. 1983) and SaC (Scholz 1994). Grelck and Tro-

jahner (2004) propose an alloc_or_reuse instruction for SaC that

can select one of multiple array candidates for reuse, but do not de-

scribe heuristics for when to use the instruction. Férey and Shankar

(2016) describe how functional update operations explicit in the

source language can be turned into destructive updates using the

reference counter. In contrast, Schulte (1994) presents a “reusage”

optimization that has an e�ect similar to the one obtained with

our reset/reuse instructions. In particular, it is independent of

a speci�c surface-level update syntax. However, his optimization

(transformation T14) is more restrictive and is only applicable to

a branch of a case x if x is dead at the beginning of the branch.

His optimization cannot handle the simple swap described earlier,

let alone more complex functions such as the red black tree re-

balancing function balance1.

While not a purely functional language, the Swi� programming

language
10

has directly in�uenced many parts of our work. To the

best of our knowledge, Swi� was the �rst non-research language to

use an intermediate representation with explicit RC instructions, as

well as the idea of (safely) avoiding RC operations via “borrowed”

parameters (which are called “+0” or “guaranteed” in Swi�), in its

implementation. While Swi�’s primitives may also elide copies

when given a unique reference, no speculative destructive updates

are introduced for user-de�ned types, but this may not be as impor-

tant for an impure language as it is for Lean. Parameters default to

borrowed in Swi�, but the compiler may locally change the calling

convention inside individual modules.

Baker (1994) describes optimizing reference counting by use of

two pointer kinds, a standard one and a deferred increment pointer

kind. �e la�er kind can be copied freely without adding RC opera-

tions, but must be converted into the standard kind by incrementing

it before storing it in an object or returning it. �e two kinds are

distinguished at runtime by pointer tagging. Our borrowed ref-

erences can be viewed as a static re�nement of this idea. Baker

then describes an extended version of deferred-increment he calls

anchored pointers that store the stack level (i.e. the lifetime) of the

standard pointer they have been created from. Anchored pointers

do not have to be converted to the standard kind if returned from a

stack frame above this level. In order to statically approximate this

extended system, we would need to extend our type system with

10
h�ps://developer.apple.com/swi�/

https://developer.apple.com/swift/
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support for some kind of lifetime annotations on return types as

featured in Cyclone (Jim et al. 2002) and Rust (Matsakis and Klock

2014).

Ungar et al. (2017) optimize Swi�’s reference counting scheme

by using a single bit to tag objects possibly shared between multiple

threads, much like our approach. However, because of mutability,

every single store operation must be intercepted to (recursively) tag

objects before becoming reachable from an already tagged object.

Choi et al. (2018) remove the need for tagging by extending every

object header with the ID of the thread T that allocated the value,

and two reference counters: a shared one that requires atomic

operations, and another one that is only updated by T . �anks

to immutability, we can make use of the simpler scheme without

introducing store barriers during normal code generation. Object

tagging instead only has to be done in threading primitives.

10 CONCLUSION
We have explored reference counting as a memory management

technique in the context of an eager and pure functional program-

ming language. Our preliminary experimental results are encour-

aging and show our approach is competitive with state-of-the-art

compilers for functional languages and o�en outperform them. Our

resurrection hypothesis suggests there are many opportunities for

reusing memory and performing destructive updates in functional

programs. We have also explored optimizations for reducing the

number of reference counting updates, and proposed a simple and

e�cient technique for implementing thread safe reference counting.

We barely scratched the surface of the design space, and there

are many possible optimizations and extensions to explore. We

hope our λpure will be useful in the future as a target representation

for other purely functional languages (e.g., Coq, Idris, Agda, and

Matita). We believe our approach can be extended to program-

ming languages that support cyclic data structures because it is

orthogonal to traditional cycle-handling techniques. Finally, we are

working on a formal correctness proof of the compiler described in

this paper, using a type system based on intuitionistic linear logic

to model owned and borrowed references.
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