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ABSTRACT

We study the problem of translating from call-by-value pcf to a first-
order low-level language. Such translations are typically defined
by induction on the structure of the source term. Each sub-term is
translated to a low-level program fragment and the translation of
the whole term is a composition of these fragments. It is desirable
to follow this compositional approach also in reasoning about such
translations, e.g. to show correctness of the translation by verify-
ing the low-level fragments individually. In this paper, we define a
defunctionalisation method in which the low-level program frag-
ments are considered as little modules with a well-defined interface.
We show correctness of the translation by decomposing it into a
number of steps that each allows compositional reasoning. The
main step is a typed closure conversion that translates pcf into a
calculus based on interaction semantics. It takes into account low-
level information, e.g. on closure representation and stack shape,
that is obtained by global program analysis. We capture such in-
formation using an annotated type system for pcf and show that
suitable annotations can be computed by type inference.
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1 INTRODUCTION

In higher-order programming languages there is no strict distinc-
tion between program code and data. Functions may be computed
and passed around as data, while they can also be considered pro-
gram code to be executed. Compilers have the task of implementing
higher-order functions in low-level languages that separate code
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and data. The aim is to produce efficient low-level machine code,
of course. But being able to translate a whole source program to
efficient machine code is just one aspect of compilation.

There are a number of situations where a more detailed under-
standing of the low-level machine code produced by compiling
source code is needed. For practical applications, it is desirable
to decompose a source program into modules, translate them to
low-level code independently and link the resulting code on a low
level. This is desirable to improve compilation times, for example,
or to allow linking of code produced by different compilers or writ-
ten in different languages. Implementing such low-level linking
of code coming from different source requires the definition of a
low-level calling convention. If the source language is a functional
programming language and the compiled modules contain higher-
order functions, then one must know how the compiler decomposes
higher-order functions into low-level code and data, as such details
are exposed in low-level code.

There are also theoretical reasons for trying to understand the
low-level code produced by compilation of (parts of) high-level
programs. One main motivation for the work in this paper has been
the study of the relation of practical compilation methods to game
semantics. Game semantics can be seen as a method for interpreting
high-level programs by low-level interaction strategies. Connec-
tions between game semantics and defunctionalisation have been
identified for call-by-name languages in [15], but for call-by-value
languages the relations are not fully understood. To relate compila-
tion methods to game semantics, one needs to understand how they
translate source code to low-level code at a similar abstraction level
as the low-level interaction strategies. Since practical compilation
methods are typically defined as a composition of many small steps,
this involves understanding the low-level code produced by a num-
ber of such compilation steps. Another theoretical motivation is
the specification and verification of the low-level code produced by
compilation. Work on compositional compilation with CompCert
shows that this is a non-trivial task [2].

Different ways of compiling higher-order functional program-
ming languages vary with regard to how difficult it is to understand
the low-level code produced by them. A popular way of implement-
ing functional programming languages is using closures with a
function pointer. Function values are encoded by a record contain-
ing a pointer p to the code for the function body and a tuple ®v of the
values of the free variables in the function value. The application of
a function represented by ⟨p, ®v⟩ to an argumentw becomes simply
a call (∗p)(®v,w) (in C-notation). The low-level code produced by
this implementation of functions is relatively easy to work with.
Typically, closures are stored on the heap, so that all functions are
encoded uniformly by a pointer. It is then not hard, for example,
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to define a calling convention and to link compiled low-level code
with programs written in C, for example.

Defunctionalisation is another well-known method for imple-
menting higher-order functional languages. It is useful for example
in order to compile to a target language that does not have pointers
or indirect calls. An extreme example is hardware synthesis for
fpgas. Indeed, the Geometry of Synthesis [7] implements a form
of Geometry of Interaction, which can be considered a variant of
defunctionalisation [15]. Another reason for using defunctional-
isation is that it can be used to translate higher-order programs
into simple first-order programs that are relatively easy to optimise
well, as has been demonstrated by the MLton compiler [3, 18].

Defunctionalisation can be seen as a variant of closure conver-
sion. The difference is that the code for function application is not
identified by a pointer p, but by a tag t that is sufficient to identify
the code. The pairs ⟨t , ®v⟩ that represent functions are typically en-
coded using an algebraic data type that also statically controls the
length and type of the vector ®v . In the simplest case, the tag would
be a unique name of the function. For application one implements
a static procedure apply(⟨t , ®v⟩,w) = case t of . . . that performs
case distinction on the tag t . Application of ⟨t , ®v⟩ tow thus becomes
a call to apply(⟨t , ®v⟩,w).

Practical implementations of defunctionalisation are more com-
plicated, however. First, one typically uses some control-flow in-
formation to reduce the number of possible cases in the case-
distinction of apply. For example, if one can determine statically
that only two function values are possible at a certain call site, then
one may invoke a smaller procedure apply′ that performs case dis-
tinction only on these two possible cases, rather than all cases. The
data type for the tag at this point can be optimised to allow only for
the two possible cases. With such an optimisation, there are many
small apply-procedures and control flow information determines
which one to use in application. Such an optimised defunctionalisa-
tion method is implemented in the MLton compiler [3].

Such optimisations make it more difficult to understand the low-
level code produced by defunctionalisation. Consider, for example,
the situation where one has two separately compiled modules, one
containing a function f : ((int → int) → int) → int and the
other an argument д : (int → int) → int for it. Suppose we want
to perform the application of f to g by linking the compiled low-
level code, perhaps because the two modules have been compiled
by different compilers or perhaps because one is implemented as
a circuit on an fpga. If they are to be compiled separately, the
two low-level modules must somehow contain apply-procedures
for f and g respectively. Note that if f wants to apply its argument
to some value, then it needs to invoke an apply-procedure for g,
which would be defined in the other module. Additionally, this code
must also be able to invoke an apply-procedure for g’s argument,
which would be found in the module for f and which may not be
the same as the one for invoking f itself. So, in order to be able to
compose the two compiled low-level code for the two modules, one
must explain how they implement suitable apply-procedures and
one must provide an interface such that both modules can find and
invoke the right apply-procedure in the other module.

To realise such linking of low-level modules, one must keep track
of a number of low-level details. For example, the modules need

to pass (encoded) closures back and forth. The choice of data type
to represent the tags in defunctionalisation in one module may
affect the choice of data types in the other module. This choice of
data types, moreover, depends on control flow information that
is global to the program. It is not immediately clear how to keep
track of such details and there are many details to manage. That it
is possible to do so was shown by Fourtounis et al. [6], who have
presented a defunctionalisation method with separate compilation.
It is desirable to further clarify these issues and to account for many
possible solutions in a systematic, clear and general way.

This is especially important for compositional specification and
formal verification. In which sense does the low-level code for
f : ((int → int) → int) → int correctly implement the source
function of this type? We would like to be able to specify and ver-
ify correctness without having the source code for the function
argument. This is motivated by allowing linking with terms writ-
ten in other languages and by the investigation of the relation to
game semantics. Existing correctness proofs for defunctionalisation,
e.g. [1, 12] do not appear to apply directly in such a situation.

In this paper we show how to address such issues of low-level
modularity by considering defunctionalisation as a translation into
modules with a well-defined signature. In essence, we use a module
system to keep track of many apply-functions and their composi-
tion. All parts of a program will be translated into tiny modules and
the translation of the whole programwill be obtained by composing
these modules. This use of modules in the formulation of defunc-
tionalisation will not incur runtime overhead: our modules will
just be incomplete fragments of low-level program code. Viewing
code fragments as modules allows us to make sense of incomplete
code fragments, as is required e.g. if one wants to consider f and g
from above in isolation. To show correctness of the translation, we
show that it can be described as a type-correct instance of a general
typed closure conversion method. We stress that the main point
of the paper is not just that defunctionalisation can be defined in
a type-correct way or that it can be defined by induction on the
source term. This has been done in previous work, e.g. [12].

2 CALL-BY-VALUE PCF

We take call-by-value pcf as a simple higher-order source language.
Recall that this is a simply-typed functional programming language
with types X ,Y ::= N | X → Y . We use the following terms.

s, t ::= x | zero | succ(t) | pred(t) | ifz s then t1 else t2
| s t | fnx ⇒ t | fix f x ⇒ t

The term fix f x ⇒ t denotes a recursive function definition; the
bound variable f of type X → Y can be used for recursive calls.

3 LOW-LEVEL LANGUAGE

We aim to translate pcf to a simple low-level language that has
a similar level of abstraction as compiler intermediate languages
like llvm. Since we focus on defunctionalisation in this paper, it
suffices to use a very simple low-level language with nothing more
than register variables and conditional jumps. We do not need a
built-in call-stack, pointers or indirect jumps. This does not mean
that such features cannot be used. We comment in Sec. 7 how a
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machine stack can be used, if desired. By using a very simple low-
level language, we retain control over low-level implementation
details, which is useful, for example, for implementing tail recursion
or for identifying GC-roots. It also allows us to consider unusual
targets, e.g. for hardware synthesis.

The low-level language has the following first-order types.

A,B ::= α | 0 | unit | int | A × B | A + B | A ∪ B | µα .A
Here, α ranges over an infinite set of type variables, 0 is an empty
type and int represents N-values (let us assume that these are
32-bit integers).

The main purpose of the type system is to capture information
for data representation purposes, much like in llvm. For example,
the types are sufficient to represent tuples without overhead: a
value of type A× B can be encoded simply as a value of type A and
one of type B. The low-level type system is not intended to capture
interesting correctness guarantees. Indeed, the untagged union
typeA∪B makes the type system weak. While it would be possible
to work without union types, they allow a slightly more efficient
representation of values. In Sec. 5.1, we shall see examples, where
control-flow information allows us to omit defunctionalisation tags
completely, even when more than one function value is possible.

The low-level values are defined by:

v,w ::= x | () | n | ⟨v,w⟩ | inlA+B (v) | inrA+B (v)
| inA,B (v) | foldA(v)

The value inA,B (v) denotes an injection into a union type. The type
system is defined so that inA,B (v) is well-typed only when B is
eitherA∪C orC ∪A. Ifv : A, then we have inA,A∪C (v) : A ∪C and
inA,C∪A(v) : C ∪A and these terms denote the respective injections
in the union.

Low-level programs are made up of blocks. A block has the form
f (x : A) = b, where f is the block label, A is the argument type, x
is a formal parameter of type A, and b is the body formed by the
following grammar.

b ::= f (v) | let x = op(v) in b | let ⟨x ,y⟩ =v in b

| let inA,B (x)=v in b | let foldµα .A(x)=v in b

| case v of inl(x) ⇒ g(w); inr(y) ⇒ h(u)

Here, f , g and h range over block labels. The expression f (v) denotes
a jump to the block with label f , the formal parameter of which is
set tov (think of f (v) as “x := v ; goto f ”). A block therefore consists
of a number of let-bindings and ends with a (possibly conditional)
jump with argument to another block. In the first let-term, op
ranges over primitive operations, such as add, sub and mul, which
take an argument of type int×int and produce a result of type int,
as well as eq, which produces a result of type unit + unit, seen as
a boolean. The other let-terms represent pattern matching opera-
tions. For example, the block f (x : A×B) = let ⟨x1,x2⟩ =x inд(x1)
implements the first projection from A × B to A. The types guar-
antee that unpairing and unfolding always succeed. For values of
union type, the deconstruction may be undefined. For example,
(let inA,A∪B (x)= inB,A∪B (w) in b) is undefined if A , B.

We find it useful to depict sets of blocks as control flow graphs.
Blocks are depicted as white boxes and we draw an arrow from one
block to another if the first block ends with a jump to the latter.
We sometimes annotate such edges with the type of the value

that is passed as argument when the corresponding jump is taken.
For example, two blocks b1 : f (x : int) = case v of inl(y) ⇒
h1(w); inr(y) ⇒ д(r ) and b2 : g (x : int) = case v of inl(y) ⇒
f (w); inl(y) ⇒ h2(r ) would be depicted as follows.

intint b1
b2

int

3.1 Program Fragments

We want to view low-level programs as being composed from mod-
ules. To this end we decompose control-flow graphs into fragments.

Program fragments are control-flow graphs with a choice of
incoming and outgoing edges. Formally, a program fragment P =
(entry, S, exit) is given by a set S of well-typed blocks, a list of
entry labels entry = (entryi : Ai )i=1, ...,n and a list of exit labels
exit = (exiti : Bi )i=1, ...,m . We require that no two blocks in S have
the same label. All blocks in S must be well-typed, given that the
entry and exit labels have their specified type. Each entry label must
be defined in S , while no exit label may be defined in it. We write
P : A1, . . . ,An → B1, . . . ,Bm to indicate the types of the entry-
and exit-labels of a program.

We depict a program fragment P : A1, . . . ,An → B1, . . . ,Bm by
a grey box with dashed lines as shown on the right below. The
example blocks above can be made into the following fragment
((f : int), {b1,b2}, (h1 : int, h2 : int)), which would be depicted as
on the left below. One should think of such a grey box as represent-
ing the control-flow graph of the blocks in the fragment.

A1 B1

An Bm

...
...
... Pint

int
int

In the following, program fragments will be the building blocks
from which larger programs are built. For example, if one has
fragments P : ®A → ®B andQ : ®B → ®C , then one can combine them to
form a single fragment (Q ◦ P) : ®A → ®C . In essence, one just takes
all the blocks from P and Q and renames the entry labels of Q to
match the exit labels of P . That is, if P jumps to its i-th exit label,
then the jump goes to the i-th entry label of Q . Some care must be
take in case both P andQ define a block with the same label; in such
cases one may freshly rename the label in one of the programs.

To allow renaming of labels, we identify program fragments
up to (bijective) renaming of labels. Notice that the entry and exit
labels are identified by their position in the respective lists, and can
be renamed without harm.

Each program may be transformed into a program with a single
entry and exit label. From a program P : A1, . . . ,An → B1, . . . ,Bm ,
one obtains a program P ′ : A1 + · · · + An → B1 + · · · + Bm by
adding case distinction to the entry and injection blocks into the
exit. In the graphical notation, we make such conversions implicitly,
i.e. we draw P ′ as we draw P above, when the types make such
conversions clear.

We consider two programs P ,Q : A → B without free value
variables equal if they are equal extensionally: If one jumps with
value v to the entry label of each of the programs, then they either
both diverge, or they both jump to their exit label, with the same
argument value. In general, two programs are equal if applying any
closing substitution to them produces equal programs.
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For types A and B we introduce a relation A ◁ B that formalises
that any value of type A can be encoded as a value of type B. We
defineA◁B to hold if there exist two program fragments in : A → B
and out : B → A, such that their composition b2 ◦ b1 : A → A
(obtained by taking the blocks from both programs and making
the entry label of out the exit label of in) is equal to the identity.
For the purposes of this paper, we shall use only instances of ◁,
where in and out are computationally inexpensive, e.g.A◁ (A∪B).

3.2 Signatures

In the translation of pcf to the low-level language, we will view
the low-level program fragments as tiny low-level modules. The
translation will be strongly compositional in the sense that the
translation of a program is a composition of the fragments obtained
by translating its parts. Moreover, this composition of fragments
will be type-correct: We next define SML-style signatures for pro-
gram fragments that will specify their interfaces.

Signatures are defined by the following grammar.

S ::= A → B | sig X : S, . . . ,X : S end | functor(X : S) → S

| A · S | ∀α ◁A. S | ∃α ◁A. S

Here, X ranges over variables. We allow signatures of the form
sig X1 : S1, . . . ,Xn : Sn end only if the variables Xi are pairwise
distinct. The functor binds the variable in its argument as usual;
we assume that the bound variable is named freshly.

We next define what it means for a program fragment to have sig-
nature S . First we associate to each signature S two lists S− and S+
of low-level types. The program fragments of signature S will then
be fragments P : S− → S+ with further properties depending on S .

S S− S+

A → B A B
sig X1 : S1, . . . ,Xn : Sn end S−1 , . . . , S

−
n S+1 , . . . , S

+
n

functor(X : S1) → S2 S−2 , S
+
1 S+2 , S

−
1

A · S1 A × S−1 A × S+1∀α ◁A. S1 S−1 [A/α] S+1 [A/α]∃α ◁A. S1 S−1 [A/α] S+1 [A/α]

Here we denote list concatenation using comma. We write A × S
for the list obtained by replacing each B in S with A × B.

In the rest of this section we define what it means for a program
fragment to have signature S .

A fragment of signature A → B is any fragment P : A → B with
a single entry label of type A, call it entry, and a single exit label of
type B, call it ret. Such a fragment implements a function from A
to B in the following sense: To apply the function to argumentv : A,
one executes the jump entry(v). The program will then compute
the result and return it by jumping to ret.

A fragment of signature S = sig X1 : S1, . . . ,Xn : Sn end is a

S−
1

S−
n S+

n

S+
1
...

...

fragment P : S− → S+ that provides an imple-
mentation for each of the signatures S1,. . . ,Sn in
the following sense. If, for any i , one restricts
the interface to just the entry and exit labels be-
longing to Si , then the resulting fragment must be a fragment of
signature Si .

For example, a fragment of signature
sig add : int × int → int,

square : int → int

end

int× int

int int

int

provides two entry labels add.entry, square.entry and two exit la-
bels add.ret, square.ret. These labels are shown from top to bottom
in the figure on the right.

A concrete fragment of this example signature would be:
add.entry(x) = let y = add(x) in add.ret(y)

square.entry(x) = let y = mul(⟨x ,x⟩) in square.ret(y) (1)

If we consider it as a fragment with just the labels add.entry and
add.ret, then it must be a fragment of signature int × int → int.

A fragment of signature S = functor(X : S1) → S2 is a frag-
ment P : S− → S+ that represents a functor in the following sense:
Whenever Q is a fragment of signature S1, then the composition
of P and Q shown on the right below is a fragment of signature S2.

P
Q

S−
2 S+

2

S+
1 S−

1

P

S−
2

S+
1 S−

1

S+
2

(2)

Recall from above that the composition may require renaming. We
draw Q as having a single entry and exit label, as justified above.

For example, let S1 be sig add : int×int → int, square : int →
int end as above and let S2 be sig f : int → int end. Then, a
fragment of signature functor(X : S1) → S2 should have three
entry labels, one coming from S−2 and two from S+1 . Suppose these
labels are defined (in this order) by the following blocks.

f .entry(x : int) = X .add.entry(⟨x ,x⟩)
X .add.ret(y : int) = X .square.entry(y)

X .square.ret(z : int) = f .ret(z)
(3)

Suppose the exit labels are f .ret, X .add.entry and X .square.entry,
in this order. To see how this defines functor, consider the fragment
of signature S1 defined in (1) above. To connect it to our functor as
shown in (2), we just need to rename the entry and exit labels of the
blocks in (1) appropriately and add these blocks to the blocks for the
functor. In this case, renaming amounts to prefixing each label with
‘X .’, i.e. rename add.entry to X .add.entry, etc. The resulting blocks
together with those from (3) are then a fragment of signature S2,
with entry label f .entry and exit label f .ret. It implements the
function x 7→ (x + x)2.

By itself, this simple realisation of functors is quite limited. Sup-
pose, for example, that we want to implement f so that it imple-
ments the mapping x 7→ x2 + x . It would be natural to modify the
above definitions to:

f .entry(x : int) = X .square.entry(x)
X .add.ret(z : int) = f .ret(z)

X .square.ret(y : int) = X .add.entry(y, ??)
But we cannot complete the definition in the last line, as the initial
value of x is not available there anymore. To address this problem,
we use signatures of the form A · S .

To explain the signatures of the formA·S1, we need the following
notation. Given a fragment F : A1, . . . ,An → B1, . . . ,Bm , define a
fragmentC ·F of type (C×A1), . . . , (C×An ) → (C×B1), . . . , (C×Bm )
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that behaves like F , the only difference being that it passes around
an additional value of typeC unchanged. The fragmentC · F can be
defined from F by giving each block a new first argument of typeC ,
which is then passed on uninspected and unchanged. For example,
f (x : A) = g(v) becomes f (⟨z,x⟩ : C ×A) = g(⟨z,v⟩).

A fragment of signature S = A · S1 then is a program fragment
P : S− → S+ for which there exists a fragment Q of signature S1,
such that P equals A ·Q . In other words, P must behave like a frag-
ment of signature S1 that in addition passes around a value of typeA
unchanged and uninspected. The additional argument of type A
may be seen as a callee-save argument (although, strictly speaking,
we are talking about jumps here). The callee, P , saves this argument
and guarantees to give it back on exit. We call this guarantee of all
fragments of signature A · S1 the callee-save invariant.

Callee-save arguments are useful to address the problem that we
had with defining the functor for x 7→ x2 + x above. Let the signa-
ture S ′1 be a modification of S1 above with a callee-save argument:
sig add : int × int → int, square : int · (int → int) end. Then
we can define a fragment of signature functor(X : S ′1) → S2:

f .entry(x : int) = X .square.entry(⟨x ,x⟩)
X .add.ret(z : int) = f .ret(z)

X .square.ret(z : int × int) = let ⟨x ,y⟩ = z in f .add.entry(y,x)
The entry and exit labels for square now take a new callee-save
argument of type int. The callee-save invariant for int · (int →
int) guarantees that the x in the first line and the x in the third
line are the same values.

In this example, we have used a callee-save argument only
in square. It would also be possible to use (unit ∪ int) · S1 in
place of S ′1. Then, both add and square would have a callee-save
argument. The union type is useful to account for different uses of
the callee-save argument: in jumps to add nothing (unit) needs to
be stored, while in jumps to square an int is to be stored.

The reader may find it helpful to think of subexponentials as an
abstract form of stack frames. In machine programs, one usually
implements function calls using a call stack. Before a call, all local
data that is written to the current stack frame. To make a call, one
then writes the return address to the stack frame and jumps to
the destination. The stack frame can be considered as a callee-save
argument. Indeed, we will use the callee-save arguments provided
by subexponentials much like stack frames. We will use them to
store local data, as we have seen in the example above. We will
also use them to store an abstract form of a return address, see the
implementation of the contraction rule in Sec. 6.

Finally, signatures allow type quantification. Type quantification
can be seen as an alternative to type declarations in signatures. For
example, the SML signature functor(X : sig type t ; valд : int →
t end) → sig type t ; val f : X .t → t end can be understood as
∀α . functor(X : sig д : int → α end) → ∃β . sig f : α → β end.
Such a correspondence can be made precise in general [13], but we
do not need the general case here. However, type quantification is
bounded is bounded here, the intention being that α in ∀α ◁A. S1
ranges over all low-level types B that satisfy B ◁A.

The fragments of signature ∀α ◁A. S1 and of signature ∃α ◁A. S1
are the fragments of signature S1[A/α]. This definition reflects that
polymorphism is not visible at the implementation level. For now,
the reader should think of the quantification as ranging over all

types B with B◁A. This means that in the low-level implementation,
we can use A in place of the quantified variable, as any possible
value there can be encoded intoA. The introduction and elimination
rules of the quantifiers then amount to encoding and decoding
operations, see Sec. 8.

4 DEFUNCTIONALISING PCF INTOMODULES

In this section we outline how defunctionalisation can be defined as
a typed closure conversion that targets amodule calculus. Minamide
et al. [11] have defined typed closure conversion as a type-correct
translation to a type-safe programming language that replaces an
abstraction fnx ⇒ s with free variables ®x by a pair ⟨p, ®x⟩, in
which p is a pointer that identifies the code of the closed function
λ⟨®x ,x⟩. closure-convert(s). Application is implemented by a single
procedure apply(⟨p, ®v⟩,w) = (∗p)(®v,x), which invokes the closed
function identified by the pointer. For defunctionalisation, we want
to replace the pointer p with a tag t that identifies the function.

In the Introduction, we have outlined that to capture the essence
of realistic defunctionalisation methods requires more than just
to replacing the pointer with a tag. In realistic defunctionalisa-
tion methods, the tag alone is not enough to identify the function;
control-flow information must also be taken into account. There is
not a single apply-procedure that performs case distinction on all
possible tags, but many small apply-functions that branch only on
the tags that are statically known to be possible at a particular call
site. To translate an application, one needs the tag together with
the information which of these small apply-functions to use.

It seems natural to use a module system to keep track of how
the many small apply-procedures are defined and how they are
linked together. With a suitable module system, defunctionalisation
can be expressed as a form typed closure conversion into modules.
To explain the general idea, let us first outline it using Standard
ML as a module language. The reader should think of SML as
being restricted to first-order types and of SMLmodules (structures)
as representing fragments of low-level code, whose interface is
specified by the module type (signatures).

The following signatures specify the type of modules that are
suitable for representing the values and apply-functions that clo-
sure conversion should produce. Assume that the type t in these
signatures is restricted to a low-level type.

signature IN = sig signature IX→Y = sig
type t = int type t (* abstract *)

end functor T (X: IX ) : sig
structure T: IY
val apply: t * X.t -> T.t

end
end

These signatures can be used to represent values of call-by-value
pcf using just first-order data as follows. A pcf value of type X is
represented by a module V of type IX and a value v of type V.t.
For pcf values of type N, this amounts to just a value of type int,
so it is just a direct representation of the value. For pcf values
of type X → Y , the first-order type V.t represents the function
value. A typical first-order representation of a function would be
the tuple of its free variables. This type V.t is abstract, however,
so we cannot inspect the value v that is supposed to represent the
function. But the module V contains an apply function that we can
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use to apply the encoded function to any (encoded) argument. How
can one apply such a function to a given argument? Suppose we
have an encoding of a value of type X , i.e. a module X : IX and a
valuew : X.t. Let M := V.T(X). Then the result value of the function
application is encoded by the module M.T of signature IY and the
value of type M.T.t that one gets by evaluating M.apply(v,w).

With this representation of values, it is possible to represent the
terms of pcf as follows. A typing sequent x1 : X1, . . . , xn : Xn ⊢
t : Y maps to a module of type:
functor Mt (X1: IX1 ) ... (Xn: IXn ) : sig

include IY
val eval: X1.t * ... * Xn.t -> t

end

The function eval takes the values of the free variables of the
term and computes a representation of the term’s value (possibly
performing side-effects, if one allows constants that have any). The
value of the term is then represented by the module T and the value
of type T.t returned by eval.

There is more than one way to implement a translation from
pcf to modules according to this specification. If we allow our-
selves an operator to take the address of a function, then standard
typed closure conversion [11] becomes an instance of this scheme.
As outlined above, all application functions would be defined by:
fun apply((p, ®v),w) = (∗p)(®v,x).

To implement a defunctionalising translation, one chooses al-
gebraic data types to represent functions and implements apply
using case distinction. We outline this for a few examples.

Example 4.1. The term ⊢ λy.y+3 : (N→ N)may be represented
by the module:
functor M1 = struct

type t = unit
functor T(Y: IN) = struct

structure T: IN = struct type t = int end
fun apply ((f, y) : t * Y.t) : T.t = y + 3

end
fun eval() = ()

end

Since the term is a closed value, its value can be represented using
the unit type. The function eval produces this value. The apply
function implements function application. It takes the function
value and the argument y and returns y + 3.

Example 4.2. The term x : (N → N) ⊢ λy. x (y + 1) : (N → N)
may be translated to:1

functor M2 (X: IN→N) = struct
type t = X.t
functor T(Y: IN) = struct

structure T: IN = struct type t = int end
fun apply ((f, y) : t * Y.t) : T.t =

X.T(Y). apply(f, y+1)
end
fun eval(x : X.t) : t = x

end

The function term λy. x (y + 1) has a free variable x , whose value
fully identifies the function value, so we use it as the function code.

Example 4.3. The term x : (N → N) ⊢ ifz (x 2) then λy.y +
1 else λy. x (y + 3) : (N→ N) may be translated to:
1In the program we have written X.T(Y).apply(f, y+1) for readability. In Standard
ML one would need to define Z=X.T(Y) and can then use Z.apply.

functor M3 (X: IN→N) = struct
datatype t = Left of unit | Right of X.t
functor T(Y: IN) = struct

structure T: IN = struct type t = int end
fun apply ((f, y) : t * Y.t) : T.t =

case f of Left() => y + 1
| Right(x) => X.T(Y). apply(x, y+3)

end
fun eval(x : X.t) : t =

if X.T(struct type t=int end).apply(x, 2) = 0
then Left() else Right(x)

end

The term could evaluate to two different functions, so we add a tag
using an algebraic data type, so that we can distinguish both cases.

It is not hard to define a general translation that uses the tuple of
free variables to represent function abstractions and that adds tags
in case distinctions. In the next section, we shall do this, but with
low-level program fragments in place of Standard ML structures.

5 ANNOTATED PCF

We now define a defunctionalising translation from pcf to low-level
program fragments, considered as modules. It is compositional in
the sense that the low-level translation of a term is obtained by
composing the translations of its parts. Each translated part has a
well-defined signature and correctness can be shown by verifying
the parts independently.

We replace the SML signatures IX from above with signatures
for the low-level language. These signatures make visible more
low-level information than the SML signatures, such as callee-save
values. In order to record such additional information, we use a
pcf type system with added annotations. One should think of the
annotations as capturing the low-level implementation details that
will be visible in the interfaces of compiled low-level code. They are
not intended for the programmer and will be inferred automatically.

Annotated pcf types are defined by the grammar

X,Y ::= A · N | A · (X C−→B Y) ,
in whichA, B andC range over low-level types. We write just X for
unit · X . The pcf typing judgements are also annotated and now
have the form x1 : X1, . . . ,xn : Xn ⊢D t : Y, where t is a normal pcf
term, where the type Y and the Xi are annotated pcf types, and
where D is a low-level type.

The SML-signature IX from above is now replaced by the signa-
ture IJXK := ∃α ◁ BJXK.IJXKα , where IJXKα is defined by

IJA · NKα = A · (sig end)

IJA · (X C−→B Y)Kα = ∀β ◁ BJXK.A ·
(
functor(X : IJXKβ ) →

∃γ ◁ BJYK. sig
T : IJYKγ ,
apply : B · (α × X.tβ → Y.tγ )

end
)
,

where the bounds are BJB ·NK = unit and BJA · (X C−→B Y)K = C ,
and where the type X.tα denotes int if X is N and α otherwise.

This definition of IJXK can be obtained from IX by first remov-
ing all type declarations. Transparent declarations type t = int
can be substituted out. Abstract type declarations are replaced by
type variables and are quantified appropriately. This translation
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can be seen as an example of F-ing modules [13]. In addition to
these changes, IJXK contains low-level information in the form of
callee-save arguments likeA ·−, as well as bounds on quantification.

The definition ofIJA·(X C−→B Y)K shows that the annotationsA
and B represent subexponentials, i.e. they are the types of callee-
save arguments. Their particular choice will be heavily dependent
on implementation details, see Sec. 6. Note here that the scope of A
comprises thewhole type, whichmeans that all parts of the interface
contain a callee-save argument of this type. The subexponential
B · − appears only in apply and allows more precise types (it could
be removed at the expense of potentially making the type A larger).

The annotation C in A · (X C−→B Y) is the low-level type that
encodes functions of this type. To understand this recall first from
Sec. 3.2 that in the definition of low-level interfaces quantified type
variables are replaced by their upper bounds. This means that in
the low-level interfaces, the argument of type α × X.tβ to apply

will become C × X.tBJXK. The return type will become Y.tBJYK.
We write short CJXK for X.tBJXK, that is CJB · NK = int and

CJA · (X C−→B Y)K = C . One should think of CJXK as the low-level
code type that is being used to encode the pcf values of type X. In
particular, the type over a function arrow is the type that is used
for low-level closure encoding.

With this notation, we can spell out the low-level interface of
the program fragments of signature IJXK. A fragment of interface
IJNK is a program with an empty interface. This corresponds to
the fact that no code is necessary to implement IN. A fragment P of

signature IJA · (X C−→B Y)K has the interface shown in the figure
below. The three entry and exit points of P correspond to apply,
the module T and the functor argument X (from top to bottom).
Notice that A and B only have the role of callee-save arguments. In
essence, apply takes input C × CJXK (code of function value and
argument) and returns CJYK.

A× (B × (C × CJX K))

A× IJYK−
A× (B × CJYK)

A× IJYK+

A× IJX K+ A× IJX K−

P

Q
(4)

The signature Mt from the previous section adapts much like IX .
A judgement x1 : X1, . . . ,xn : Xn ⊢A t : Y will be translated to a
low-level module of signature:

∀α1 ◁ BJX1K. . . . ∀αn ◁ BJXnK.
functor(x1 : IJX1Kα1 ) . . . (xn : IJXnKαn ) → ∃γ ◁ BJYK. sig

eval : A · (X1.tαn × · · · × X1.tαn → Y.tγ ),
T : IJYKγ

end

(5)

We have now defined annotations to pcf types that allow us
to translate pcf types to low-level signatures directly. To be able
to implement these signatures, we need to instantiate the annota-
tions appropriately. The annotated pcf type systems records the
constraints on the annotations that will be needed in the imple-
mentation. The typing rules appear in Fig. 1. We use the following
notation. This definition of CJXK extends to contexts: CJΓK is de-
fined by CJemptyK = unit, CJx : XK = CJXK and CJ∆, x : XK =

CJ∆K × CJXK. A low-level value of type CJΓK is a tuple of the low-
level values that encode the values of the variables in Γ. We further
writeA · Γ for the context one obtains by replacing each declaration
x : B · X in Γ with x : (A × B) · X .

The subtyping rule forN allows us to replace any E ·N by unit·N.
This is justified, as IJNK is an empty signature. We will therefore
just write N for A · N.

Let us sketch the meaning of the annotations of rule (app). To
evaluate s t in call-by-value, one first evaluates s , then t and then
invokes the application code with the obtained function and ar-
gument values. The conclusion of (app) states that the eval-code
offers a callee-save value of type U (cf. (5)). When we jump to the
eval-code for s , we must remember this value together with the
values of the variables that we need to evaluate t . This is why we
require a callee-save argument of typeU × CJ∆K in the left premise
of (app). When we then jump to the eval-code for the argument t ,
we need to remember the value of typeU and the already computed
function value of typeC , which explains the annotationU ×C for t .
When we have both function and argument value, we invoke the
code for function application. But while doing so, we still need to
remember the value of type U that we need to return unchanged
at the end. This explains the appearance ofU in the type of s: it is
a callee-save argument for the apply-code.

One part of the type system that deserves comment are the rules
for joining interfaces. The joining judgement is used in rule (if)
to give both branches of the case distinction the same type. Since
the type system has a subtyping statement, the reader may expect
this to be just a common upper bound for the types of the two
branches. Here, however, joining may have actual computational
content. Take, for example the case where X1 and X2 are both

N
unit−−−−→B N. This means that both branches return a function that

is encoded without defunctionalisation tag. In this case X must

be N
unit+unit−−−−−−−−−→B N, i.e. the result has a tag of a single bit. This

corresponds to what we have done in Ex. 4.3. So joining amounts
to tagging in this case. It is explained in more detail in Sec. 6.

5.1 Typing Examples

Let t be a term of the form if0 . . . then f x1 else f x2. One derives

f : unit · (X C−→A N), x : X ⊢A f x : N using (app) and (var). From
two instances of this, one derives using (if) and (c) the judgement

f : (unit + unit) · (X C−→A N), x1 : X, x2 : X ⊢A t : N .

The annotation unit + unit says the that the apply-code in the
module for f has a callee-save argument of this type. This argument
will be used as an abstract form of the return address. The term t
contains two applications of f , so a jump to the apply-code for f in
the compiled code may have two different origins. With this jump
we pass along a callee-save value that identifies which of the two
applications we are currently evaluating. This is needed in general
so that we know where to continue with the computation when
the return label of apply is reached.

In the example, x1 and x2 have the same type, which is somewhat

restrictive. IfX is a function typeB · (N C−→E N), then this will mean
that both variables denote functions represented with exactly the
same closure representation, for example. This constraint can be
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var
x : X ⊢A x : X

Γ, x : X ⊢A t : Zsubl Y ≤ X
Γ, x : Y ⊢A t : Z

Γ ⊢B t : Xsubr X ≤ Y, A ◁ B
Γ ⊢A t : Y

Γ ⊢A t : Yw
Γ, x : X ⊢A t : Y

Γ, x : X, y : Y, ∆ ⊢A t : Z
e

Γ, y : Y, x : X, ∆ ⊢A t : Z
Γ, x : B · X , y : C · X ⊢A t : Y

c
Γ, z : (B +C) · X ⊢A t [z/x, z/y] : Y

zero
⊢A zero : B · N

⊢A t : B · Nsucc
⊢A succ(t ) : B · N

⊢A t : B · Npred
⊢A pred(t ) : B · N

Γ ⊢A×CJ∆1K×CJ∆2K s : N ∆i ⊢A ti : Xi X1 ⋎ X2 = X
if

Γ, ∆1, ∆2 ⊢A ifz s then t1 else t2 : X

Γ, x : X ⊢A t : Yfn
E · Γ ⊢F fn x ⇒ t : E · (X

CJΓK
−−−−→A Y)

Γ ⊢U ×CJ∆K s : X
C−→U Y ∆ ⊢U ×C t : X

app
Γ, ∆ ⊢U s t : Y

Γ, f : G ·
(
X

CJΓK
−−−−→A Y

)
, x : X ⊢A t : Y

fix (E + (H ×G)) ◁ H
H · Γ ⊢F fix f x ⇒ t : E · (X

CJΓK
−−−−→A Y)

Subtyping

A · N ≤ B · N

A2 ◁ A1 X2 ≤ X1 Y1 ≤ Y2 C2 ◁C1 D1 ◁ D2

A1 · (X1
D1−−→C1 Y1) ≤ A2 · (X2

D2−−→C2 Y2)

Joining Interfaces

A · N⋎ A · N = A · N

Y1 ⋎ Y2 = Y Xi = Bi · X X = (B1 + B2) · X

A · (X1
D1−−→C Y1)⋎ A · (X2

D2−−→C Y2) = A · (X
D1+D2−−−−−−→C Y)

Figure 1: Annotated PCF Typing

weakened using subtyping. To derive the same judgement with

x1 : X1 and x2 : X2, it suffices to take Xi to be Bi · (N
Ci−−→Ei N),

where Ei , Ci and Bi are such that B ◁ Bi and E ◁ Ei and Ci ◁C is
true for all i ∈ {1, 2}. Informally, this means that C is large enough
to encode either the value denoted by x1 or that denoted by x2.
We may choose C1 ∪C2, for example. The other bounds say that
both x1 and x2 provide at least as much space for callee-save values
as f requires of its argument.

The example illustrates that the type system captures some con-
trol flow information. When f is invoked, we have two pieces of
data, one of type unit + unit, corresponding to which copy the
call came from, and one of typeC1 ∪C2 for the function value. The
example also shows that the defunctionalisation method presented
here use a little less space than ones from the literature [3]. Even
though two functions can flow to the variable f , the closure can be
stored without tag. The information that would normally be stored
in the tag is already present in the return address (represented
abstractly here as a value of type unit + unit).

Another source of tagging is case distinction of higher type.
Consider a term s of the form if0 . . . then f else fnx ⇒ plusx y,
where plus is an externally defined addition function, that defines
a function by case distinction.

f : N
C−→A N, y : N ⊢A s : N

C+int−−−−−−→A N

The value of f is encoded using type C . The function fn x ⇒
plus x y is encoded by the tuple of its free variables, i.e. CJy : NK =
int. The two possible results of the case distinction are represented
using the sum type C + int.

For a slightly larger example, consider the following term step:
fn f ⇒fn x⇒ let x1 = pred(x ) in let x2 = pred(pred(x )) in

ifz x1 then 1 else ifz x2 then 1 else plus (f x1) (f x2)

It can be used to define a Fibonacci function by fix f x ⇒ step f x .

We have step : A ·
(
(B + B) · (N E−→S N)

unit−−−−→C B · (N E×E−−−−→D N)
)
,

where the annotation S is (D × int × E) ∪ (D × int). The func-
tion f is encoded using type E. The annotation S reflects that f is
applied twice. In the first call, the callee-save argument contains x2
and f , corresponding to int × E, while the second time it contains
the int-value f x1.

6 TRANSLATING ANNOTATED PCF

We next outline a direct translation from annotated pcf to low-level
fragments. It goes by induction on typing derivations and maps
a derivation Π of x1 : X1, . . . ,xn : Xn ⊢A t : Y to a low-level pro-
gram LΠM of the signature in (5). This means that LΠM is a fragment
of the following form.

A× CJx1 : X1, . . . , xn : XnK

IJXnK+

A× CJYK

IJXnK−

IJX1K+ IJX1K−
...

...

...

IJYK− IJYK+
LΠM

The topmost entry- and exit-point belong to the eval-function in
the signature (5). The entry- and exit-points below come from the
module T . The other ports are there to connect functor arguments.

The translation from annotated pcf to such low-level program
fragments goes by induction on the typing derivation. We spell out
representative cases, beginning with (var), where LΠM is:

A× CJX K A× CJX K

IJX K− IJX K+

IJX K−IJX K+

1

The block named 1 is the identity (note CJx : XK = CJXK).
The translation of rule (fn) is such that the closure is represented

by the tuple of the values of the variables in Γ. It is given by:
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(app)

LΠsM

LΠtM

U × CJΓ,∆K U × CJYK

IJYK−

IJ∆K+

IJΓK+

IJYK+

IJ∆K−

IJΓK−

1 2

7

5

6

4

83

(if)

LΠsM
LΠt1M

LΠt2M

21A× CJΓ,∆1,∆2K A× CJX K

IJΓK−IJΓK+

IJ∆1K+

IJ∆2K+
IJ∆1K−

IJ∆2K−

IJX K− IJX K+4

3

5

Figure 2: Translation of Representative Rules

E · LΠtM

F × CJΓK F × CJΓK

E × (A× CJYK)E × (A× (CJΓK× CJX K))

E × IJYK−

E × IJX K+
E × IJYK+

E × IJX K−

IJE · ΓK+ IJE · ΓK−2 3

1

Thus, block 1 for eval is the identity. It returns the tuple of variables
in Γ as the term’s value. The next three entry and exit wires are

the three components of IJE · (X
CJΓK
−−−−→A Y)K, as spelled out in (4).

The entry point with type E×(A×(CJΓK×CJXK)) is the entry point
for apply. In addition to the two callee-save arguments of type E
andA, it gets the function and argument values as input. This entry
point is defined to jump to the eval-code for t . The result will be
returned at the exit of type E × (A × CJYK), which is where apply
passes its return value. Thus, function application for fnx ⇒ t is
defined by jumping to the evaluation code for t . Finally, the blocks
2 : ⟨⟨e,x⟩,y⟩ 7→ ⟨e, ⟨x ,y⟩⟩ and 3 : ⟨e, ⟨x ,y⟩⟩ 7→ ⟨⟨e,x⟩,y⟩ are just
there to reorganise the callee-save arguments in the context (Rather
than defining these blocks explicitly, we state just how they map a
value at the entry label to a value at the exit label. The labels are
clear from the control-flow graph.)

The translation of rule (app) in Fig. 2 implements the description
of the typing rule given above. To evaluate the application, one
first evaluates s , which is what block 1 : ⟨u, c⟩ 7→ ⟨⟨u,π∆(c)⟩,πΓ(c)⟩
does. In its definition we write πΓ and π∆ for the evident projections
from CJΓ,∆K to CJΓK and CJ∆K respectively. Block 1 thus puts the
values in ∆ in a callee-save argument for later use and jumps to
the eval-code for s . Block 2 : ⟨⟨u,d⟩, f ⟩ 7→ ⟨⟨u, f ⟩,d⟩ takes the
result of the evaluation of s , i.e. the function value f . It retrieves the
values in ∆ from the callee-save argument (by invariant, d must be
π∆(c)), puts the function value f in a callee-save argument for later
use and jumps to the eval-code for t . This code passes its result x
to block 3 : ⟨⟨u, f ⟩,x⟩ 7→ ⟨(), ⟨u, ⟨f ,x⟩⟩⟩, which now constructs
the pair ⟨f ,x⟩ of function value and argument and jumps with it to
the apply-code for s . The result is passed to block 8, which returns

it. This and the remaining blocks are defined by 4, 6, 8 : ⟨(),x⟩ 7→ x
and 5, 7 : y 7→ ⟨(),y⟩. They connect the code provided by t to s
appropriately for application, as outlined above.

Next we show the contraction rule (c), which records control-
flow information by tagging callee-save arguments. In the case
of (c), we define LΠt M to be the following program fragment.

LΠtM

A× (CJΓK× CJX K)

IJYK−

(B + C)× IJXK+

IJΓK+

1 A× CJYK

IJYK+

(B + C)× IJXK−

IJΓK−

3
2

3′

Block 1 : ⟨a, ⟨c, z⟩⟩ 7→ ⟨a, ⟨⟨c, z⟩, z⟩⟩ is the entry point for eval,
which takes as input a callee-save value a and the values of the
variables in the context. It duplicates the value of z and invokes
the eval-code of t . The effect is that t is evaluated with the value z
for both the variables x and y. Should the program for t jump to
the interface entry point belonging to either the variable x or y
(that is, the code for application if they are functions), then this
jump is forwarded to z by blocks 3 : ⟨b,v⟩ 7→ ⟨inl(b),v⟩ and
3′ : ⟨c,v⟩ 7→ ⟨inr(c),v⟩. In the callee-save argument, these blocks
add a tag to record whether the jump came from x or y. When the
code for z returns by a jump to its exit label, block 2 : ⟨e,v⟩ 7→
case e of inl(b) ⇒ exit.top(⟨b,v⟩); inr(c) ⇒ exit.bottom(⟨c,v⟩)
performs a case distinction over the callee-saved value and branches
to the return point for either x or y.

The translation of contraction shows how return addresses are
encoded as tags in callee-save arguments. This tagging relates di-
rectly to defunctionalisation [15]. In practice, one may use an n-ary
contraction rule, so that one does not need to go through a binary
decision tree and can branch directly. It is also possible to use actual
addresses and direct jumps in a low-level language with pointers.

The implementation of (if) in Fig. 2 is such that the eval-code
first evaluates s and then, depending on the result, jumps either
to the eval-code for t1 or t2. This is implemented by defining
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1 : ⟨a, c⟩ 7→ ⟨⟨a,π∆1 (c),π∆2 (c)⟩,πΓ(c)⟩ and 2 : ⟨⟨a, c1, c2⟩,n⟩ 7→
let b = eq(n, 0) in case b of inl(y) ⇒ exit.top(⟨a, c1⟩); inr(y) ⇒
exit.bot(⟨a, c2⟩).

Next, the module T with entry labels IJXK− and exit labels
IJXK+ must be provided. Depending on whether t1 or t2 was eval-
uated, this fragment should behave like the T provided by t1 or
that by t2. To implement this, fragment 3 tags the result value
of the if-then-else with just enough information so that we can
identify from it which T to use. Fragments 4 and 5 then make
use of this information to branch to the right code. The rules for
joining interfaces in Fig. 1 formalise what information is encoded

in fragment 3. For example, if t1 : N
C1−−→A N and t2 : N

C2−−→A N,

then ifz . . . then t1 else t2 will have type N
C1+C2−−−−−→A N. In this

case, fragment 3 maps ⟨a, c1⟩ on the topmost input to ⟨a, inl(c1)⟩
on its output and ⟨a, c2⟩ on the other input to ⟨a, inl(c2)⟩. If X
is N

C1+C2−−−−−→A N, then fragment 4 only has one non-vacuous en-
try point of type A · ((C1 +C2) × int) (for apply). It is defined by
⟨a, ⟨c,n⟩⟩ 7→ case c of inl(c1) ⇒ exit.top(⟨a, ⟨c1,n⟩⟩); inr(c2) ⇒
exit.bottom(⟨a, ⟨c2,n⟩⟩). The fragment 5 is the identity in this case;
it just passes on the returned value of the function (an integer).

We state a simple correctness result, which follows from Theo-
rem 8.1 in Sec. 8.

Corollary 6.1 (Correctness). Suppose Π derives ⊢A t : B · N.
Then t reduces to a value v in a standard call-by-value operational

semantics if and only if we have LΠM : ⟨a, ()⟩ 7→ ⟨a,v⟩ for any closed

low-level value a : A.

7 ANNOTATION INFERENCE

We have described a translation from annotated pcf to the low-
level language. To use this translation for the compilation of pcf it
remains to find annotations for any given pcf program.

A type inference algorithm can be developed using a standard
approach. One can first eliminate the subtyping rules by closing all
other rules under subtyping. The resulting rules are all ordinary
pcf rules with type annotations. The task then reduces to decorat-
ing ordinary pcf typing annotations, obtained by standard type
inference, with annotations. We choose a fresh type variable for
each annotation and solve the side-conditions. All side-conditions
have the form A ◁ α , i.e. with a type variable as upper bound, and
can be solved for one type variable at a time [4, 16]. To solve for β ,
one gathers all constraints with β as an upper bound, say B1 ◁ β ,
. . . , Bn ◁ β . If β is not free in the Bi , then β := B1 ∪ · · · ∪ Bn is a
solution. Otherwise β := µβ . B1 ∪ · · · ∪ Bn solves the constraints.

Theorem 7.1. If Γ ⊢ t : X in pcf, then there exist a derivable

sequent Γ1 ⊢ t1 : X1 in annotated pcf, such that Γ = |Γ1 |, t = |t1 | and
X = |X1 |, where | − | denotes the removal of all type annotations.

Note that the algorithm implements just one of many ways
of solving constraints. Different solutions correspond to different
choices of how to manage low-level details. They can be made
without modifying the translation to low-level code, simply by
controlling type inference. In many cases the low-level language
will have access to a stack that can store callee-save arguments.
A stack may be added to the low-level language as a type Stack
with (Stack ×A)◁ Stack for all A (implemented by push and pop).

Then, onemay use Stack for callee-save annotations and use typing
sequents have the form Γ ⊢Stack t : X. What is stored in callee-save
arguments is then just a stack pointer. With some further linearity
analysis, it is possible to realise Stack using a machine stack.

Of theoretical interest is the possibility to solve the constraints
by taking all annotations to be ω := µα . unit+α . This corresponds
to exponentials in the Geometry of Interaction, see e.g. [9]. It is
possible because we have A ◁ ω for all A. However, it does not
seem suitable for implementation in practice, as the encoding and
decoding functions realising A ◁ ω can be expensive. It would be
more efficient to use a type of trees in place of ω, which results in
data storage much like in abstract machines [5, 10].

Type annotation inference can also be understood as simple
space usage analysis. For example, onemay be interested in constant
space programs, e.g. for embedded applications or for hardware
synthesis [7]. A sufficient condition for restricting to constant space
programs is that the ◁-constraints can be solved without recursive
types. This rules out (fix), but tail recursion on first-order types is
still possible with the typing rule below.

Γ, f : unit ·
(
N

CJΓK
−−−−→A N

)
, x : N ⊢A t : N

tailfix
(E × A) · Γ ⊢F tailfix f x ⇒ t : E · (N

CJΓK
−−−−→A N)

It is also possible to modify rule (fix) to capture recursion with
bounded depth n by taking H to be E + (E ×G) + · · · + (E ×Gn ).

8 CORRECTNESS

We have defined the translation from annotated pcf to the low-level
language directly, in order to be able to make all low-level imple-
mentation choices visible. Once one has understood the signatures
of the translated low-level program fragments, it is not hard to
work directly on this level, e.g. for implementing the translation.
However, in the presence of recursion, proving correctness at this
level of detail would be very unwieldy.

In this section we outline how the translation can be factored in
two steps: a typed closure conversion to a polymorphic λ-calculus,
which is then implemented in the low-level language. To verify the
whole translation, it then suffices to show these two steps correct.

The first step can be understood as a variant of the typed closure
conversion method from [17], which translates call-by-value pcf
into a polymorphic λ-calculus. Here we replace the target λ-calculus
with a calculus int′ that has a direct low-level implementation. The
resulting translation from pcf to the low-level language amounts to
the translation described in Sec. 6. Already in [17], the idea of using
the calculus int [16] is mentioned. However, just using int as is
would not quite allow us to capture the low-level invariants from
Sec. 6. More importantly, the equational theory from [16] does not
suffice for the correctness argument from [17].

8.1 The Calculus INT
′

We introduce the calculus int′, a generalisation of int [16]. The
types of int′ are defined by the following grammar, in which A
ranges over low-level types.

X ,Y := [A] | A → X | I | X ⊗ Y | X ⊸ Y | A · X
| ∀α ◁A.X | ∃α ◁A.X
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Compared to int, the subexponential A ·X is now a first class type
(not restricted to appear only as inA ·X ⊸ Y ), there are existential
types and quantification over low-level types is bounded.

With the given space constraints, we cannot define the full type
system of int′ in detail. The terms and typing rules for int are
adapted from [16].

The reader may think of int′ as a sub-system of System F. It
has all the standard terms from System F, in particular abstraction
λx : X . t , application s t , type abstraction Λα . t and type application
t A. There are also standard terms for pairs and existential types.
These terms are given types with a linear type system that makes
low-level implementation details explicit. This is what the types I ,
X ⊗Y , X ⊸ Y ,A ·X and ∀α ◁A.X and ∃α ◁A.X are for. The type
A ·X may be understood as a bounded version of the exponential !X
from Linear Logic, in the spirit of Bounded Linear Logic [8]. Indeed,
contraction of a variable x : (A+B) ·X gives x1 : A ·X and x2 : B ·X .

In addition, int′ also has a base type [A] and a call-by-value
function type A → X . The type [A] is intended to represent a
computation that returns a value of type A. There are monadic
terms (return and let) for this type. The type A → X represents
a call-by-value function space that takes as argument low-level
values of typeA. There are special abstraction and application terms
fn x : A ⇒ t and t(v) for this type. For example, an incrementation
operation may be given type succ : int → [int] and the term
(fn x : int ⇒ let y = succ(x) in return(x ,y)) has type int →
[int × int].

The terms and types of int′ have a direct low-level interpre-
tation. The types represent the interfaces of low-level programs,
exactly as the signatures in Sec. 3.2 do. The signatures there may in
fact be considered as special cases of int′ types:A → B corresponds
to A → [B]; and functor(X : S1) → S2 corresponds to S1 ⊸ S2;
and I is the empty signature; and sig X1 : S1, . . . ,Xn : Sn end cor-
responds to S1 ⊗ · · · ⊗ Sn .

The terms of int′ represent program fragments. A term t : X
represents a fragment LtM : X− → X+ (the definitions ofX− andX+
are as for signatures). For example, a term t : ∀α ◁A.X represents a
fragment shown in the figure below. If, for some B with B ◁A, one
connects the fragments in and out obtained from B ◁A as shown,
then the resulting fragment corresponds to the term t B.

LtMin out
X−[B/α] X−[A/α] X+[A/α] X+[B/α]

For existential types, if s is a term of type X [B/α], then pack(B, t)
has type ∃α ◁ A.X whenever B ◁ A. This term represents the
following fragment:

LsMout
X−[A/α] X−[B/α] X+[B/α] X+[A/α]

in

The constructions in Sec. 3.2 can be read as describing application
terms for A → [B] and X ⊸ Y .

8.2 Correctness

To show correctness of the translation from Sec 6, we now first
translate pcf into int′ in such a way that the low-level interpreta-
tion of the resulting int′ terms agrees (up to simplification) with
the programs from Sec. 6.

With the above view of signatures as special cases of int′ types,
the signatures from Sec. 6 can be seen as int′ types. We define a

translation that takes a derivationΠ of the annotated pcf judgement
x1 : X1, . . . ,xk : Xk ⊢S t : Y in to an int′ term TCC

′(Π) of the type
in (5). We define it such that the translation from Sec. 6 appears as
a (slightly simplified) direct description of LTCC ′(Π)M.

The definition of TCC ′(Π) follows the lines of the typed closure
conversion from [17]. However, it needs to be modified to produce
an efficient low-level implementation. Consider, for example, the
case for application, i.e. whereΠ ends with rule (app). If we writeΠs
and Πt for the sub-derivations of the two premises, then TCC

′(Π)
has a definition of the following form, which is much like in [17].

TCC
′(Π) = Λ ®α . λ®x ®y. let pack(α , ⟨Tf , evalf ⟩)= TCC ′(Πs ) ®α ®x in

let pack(β , ⟨Tx , evalx ⟩)= TCC ′(Πt ) ®α ®y in

let pack(ρ, ⟨Ty , apply⟩)= Tf β Tx in

pack(ρ, ⟨Ty , eval⟩)
In [17], the term eval, is defined to be

fn ⟨®x , ®y⟩ ⇒ let vf = evalf (®x) in
let vx = evalx (®y) in apply(⟨vf ,vx ⟩).

This means that eval first computes function value, then argument
value, and then invokes the application code for the function.

In this paper we use a slightly different implementation of eval
that defines the same function (extensionally), but that has a better
low-level implementation. The low-level implementation of eval
above is not optimal with respect to its space usage. It stores the vari-
ables in ®x until apply(⟨vf ,vx ⟩) returns, even though they could be
disposed of earlier. Hence we use a more space efficient implemen-
tation of eval that discards these values earlier. This optimisation
is already reflected in the type annotations (one may choose to
use eval as above, but then needs to weaken the type annotations).

Besides adding low-level annotations, one must also extend the
interpretation of (if), which was restricted to base types in [17]
for simplicity. To do so, one defines an int′ term join : IJX1KA1 ⊗
IJX2KA2 ⊸ IJXKA1+A2 whenever X1 ⋎ X2 = X. The term is
defined by induction on the derivation of the latter. It represents
the low-level programs 4 and 5 in the translation of (if) in Sec. 6
that join the interfaces of Lt1M and Lt2M into a single one.

Having defined TCC
′(Π), the task is then to show:

Theorem 8.1. Suppose Π derives ⊢A t : B · N. Then t reduces to
a value v in a standard call-by-value operational semantics if and

only if we have LTCC ′(Π)M : ⟨a, ()⟩ 7→ ⟨a,v⟩ for any closed low-level

value a : A.

To show this, we would like to use the proof from [17], but
the equational theory of int from [16] is insufficient to do so,
e.g. because its extension to recursion is unclear.

To support reasoning like in [17], we define a notion of equality
that lets us ignore low-level annotations and consider terms as
if they were System F terms. The idea is that two terms whose
types differ only up to low-level annotations (e.g. because they
use callee-save arguments differently) may still be considered as
implementing the same program. With bounded quantification and
unrestricted subexponentials A · X , such a generalisation appears
to be necessary to allow a useful reasoning. We formalise it by
defining a logical relation LtM ∼X ,ρ JtK that relates the low-level
program LtM obtained from an int′-term t to a standard domain-
theoretic interpretation JtK that ignores low-level annotations and
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interprets t as if it were a System F-term. At base type, the logical
relation allows us to conclude that LtM returns a number n if and
only if JtK = n. This means that we may use the domain-theoretic
interpretation JtK, i.e. to ignore low-level annotations, and still
obtain useful results about low-level programs.

With these definitions, we can use the argument from [17] with
very few modifications to show correctness. The term TCC

′(Π) is
not the same TCC(Π) from [17] intensionally, but has the same
(extensional) domain-theoretic denotation. The proof from [17] can
then be used to show correctness of the denotational interpreta-
tion. One uses a logical relation to relate pcf to the denotational
interpretation of TCC(Π), as in [17]. To relate TCC(Π) to low-level
programs, we use the logical relation ∼X ,ρ outlined above.

While Thm. 8.1 applies only to closed terms of base type, the
two logical relations can also be used to give a specification of
the low-level program fragments obtained by translating (possibly
open) terms of higher-order type. A possible application would be
to link the translated low-level programs to low-level code written
by hand or produced by other compilers. Note that the choice of
closure representation is abstract and the encoding of closures may
be different for each abstraction.

9 CONCLUSION

Defunctionalisation is often presented as a whole-program trans-
formation, which makes modular reasoning and implementation
difficult. The translation of a part of a program may depend on
global choices and these choices are also visible in the interfaces
of produced code fragments. In this paper we have shown how to
define and reason about defunctionalisation in a simple modular
way. By relating it to a typed closure conversion and managing the
low-level details in int′, we were able to obtain a strongly compo-
sitional correctness proof for a realistic defunctionalisation method
that is almost as simple as one for typed closure conversion alone.

An annotated type system for pcf captures all the global infor-
mation that are needed for defunctionalisation; the correctness
argument works for any possible choice of annotations. In a trans-
lation from pcf to the low-level language, one must make many
encoding choices (closure encoding, implementation of callee-save
arguments, etc), some of which can be made in many ways. The
annotated type system allows flexible control over such choices by
recording only constraints, as opposed to making ad hoc choices.
Its types contain enough information to specify interfaces and a
call-by-value calling-convention for compiled low-level code.

The annotated type system may be useful for separate com-
pilation. For example, one to defer the choice of (some) closure
representation to linking time. This can be done on the level of
annotates pcf types. One may use type variables for all annota-
tions in the types of public functions and record the ◁-constraints.
The module can then be compiled so that the in- and out-terms
corresponding to the pending constraints are left undefined. The
constraints are then solved at linking time and concrete code for
the in- and out-terms is inserted then. Another option for sepa-
rate compilation would be to use a standard closure representation
using pointers for public functions of a module and use defunc-
tionalisation internally. Our method makes it easy to use different
closure representation in different places.

A simple implementation of type inference, translation to the
low-level language and from there to machine code via llvm can
be found at http://www.github.com/uelis/modular. It demonstrates
that type inference and the translation can be implemented effi-
ciently, and also that effectful operations can be added without
problem. For a meaningful performance evaluation, the implemen-
tation is currently too simple (it uses a naive garbage collector,
for example). One may nevertheless look at a few example pcf-
programs to check that the generated machine code is reasonable.
The raytracing example from folder Tests is tail-recursive and
translates to a low-level program that does not use the heap. The
code runs in 1.6s without inlining and 0.6s with inlining on an x64
Intel i7-4770. Version of the same example take 1.7s and 2.6s when
compiled with ocamlopt 4.02.3 and MLton 20100608 respectively.
The reason may well be the quality of llvm. For a higher-order
example euler that computes digits of e (using streams represented
by functions), the implementation produces a program that exe-
cutes in 0.35s, versus 0.24s for OCaml and 0.13s for MLton. This
result is most likely due to unnecessary heap allocations because
the optimisation from Sec. 7 is currently not implemented, so that
each recursive call incurs heap allocation and copying.
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A PCF

For reference, we include the typing rules for our variant of pcf in
Fig. 3.

B LOW-LEVEL LANGUAGE

For low-level programs, the typing rules for values are shown in
Fig. 4. In these rules, Γ is a value context, a finite mapping from
variables to low-level types. To define the well-typed low-level
programs, we define a judgement Γ | Φ ⊢ b that identifies well-
typed bodies of blocks. Therein, Φ is a label context, which is a list
of declarations of the form f : ¬A, expressing that the block with
label f takes arguments of type A. For each label, Φ must contain
at most one declaration. The typing rules for this judgement are
defined in Fig. 5.

A program fragment P is well-typed in context Γ if there exists
a label context Φ such that, for each block definition f (x : A) = b
in P , both Γ, x : A | Φ ⊢ b is derivable and f : ¬A is in Φ.

The operational semantics for low-level program fragments is
defined for closed low-level programs. For a closed program frag-
ment P it is given by a relation b1 →P b2, which expresses that
body termb1 reduces to body termb2. It is defined to be the smallest
relation transitive relation satisfying f (v) →P b[v/x] if p contains
a block definition f (x : A) = b, and such that the following basic
transitions hold.

let ⟨x ,y⟩ = ⟨v,w⟩ in b →P b[v/x ,w/y]
case inl(v) of inl(x) ⇒ b1; inr(y) ⇒ b2 →P b1[v/x]
case inr(w) of inl(y) ⇒ b1; inr(y) ⇒ b2 →P b2[v/y]

let foldµα .A(x)= foldµα .A(v) in b →P b[v/x]
let inA,B (x)= inA,B (v) in b →P b[v/x]

We omit the straightforward transition for the primitive operations
add, mul, etc.

We consider two closed programs P ,Q : A → B equal if they
are equal extensionally. Write P : v 7→ w if jumping to the (wlog
single) entry label entry(v) →∗

P exit(w). Two programs are equal
if P : v 7→ w holds if and only if Q : v 7→ w does.

C ANNOTATED PCF

C.1 Translation

We give the missing cases for the translation from Sec. 6.
For defining the translation, it is convenient to use the follow-

ing notation. Recall that A ◁ B was defined in terms of encod-
ing and decoding programs in and out. For working with them,
it is convenient to use the notation let y = inA◁B (v) in b1 and
let inA◁B (x)=w in b2 for definable fragments with the follow-
ing behaviour. In the fragment let y = inA◁B (v) in b1, the value v
must have typeA. When executing this fragment, it encodesv as an
element of B, as the in program would do, binds the result to y and
then executes b1. The other fragment does the analogous decoding.

Case (zero): LΠM must have type void+A× unit → void+A×
int. As void is the empty type, it suffices to give a program of type
A × unit → A × int, which we define by ⟨a, ()⟩ 7→ ⟨a, 0⟩.

Case (succ): Write Πt for the derivation of the premise of this
rule. After simplification as in the case for (zero), LΠt M amounts
to a program A × unit → A × int that computes the value of t .

We obtain LΠM by appending to LΠt M a block that increments the
return value.

The case for (pred) is treated analogously.
Case (if): The translation of this rule is already given in Sec. 6,

but it remains to define the fragments 3, 4 and 5. To define them,
we use the side condition X1 ⋎ X2 = X from the premise of (if).
For any derivation Π of X1 ⋎ X2 = X, we define three programs
bΠ : CJX1K + CJX2K → CJXK and inΠ : IJX1K− + IJX2K− →
IJXK− and outΠ : IJXK+ → IJX1K+ + IJX2K+. Then we take
A · bΠ , inΠ and outΠ for 3, 4 and 5, respectively.

The programs bΠ , inΠ and outΠ are defined by induction on Π.
In the base case A · N ⋎ A · N = A · N, the programs outΠ and
inΠ are vacuous, as their interfaces are void. For bΠ we choose
the program (x 7→ case x of inl(y) ⇒ y; inl(z) ⇒ z). In the
induction case, Π ends with the joining rule for functions. In this
case, we let bΠ be the identity and define the other two programs
in Fig. 6. Blocks 1, 5 and 6 perform case distinction over D1 +D2 or
B1 + B2. Programs 2, 3 and 4 are b, out and in from the induction
hypothesis for Y1 ⋎Y2 = Y.

Cases (subl) and (subr): To translate these rules, we define, for
any derivation Π of X ≤ Y, low-level programs inΠ : IJYK− →
IJXK− and outΠ : IJXK+ → IJYK+. The definition goes by in-
duction on the derivation Π. The base case for N is trivial, as the
interfaceIJNK consists of empty types. IfΠ endswith the subtyping
rule for functions, then we write ΠX and ΠY for the subderivation
deriving its two premises and the desired programs as in Fig. 7.

Case (fix): The implementation of recursion is shown in Fig. 8.
For clarity the interface of the program obtained by translating
the premise is also shown there. The translation of the conclusion
implements recursion in a standard way. By the side condition on
(fix), the typeH can encode values that represent a call stack for the
recursion. Recursive calls are managed by using a callee-save value
of type H to represent the call stack. For example, if the program
jumps to the application code for the recursive function f , then
it jumps to block 2′ in the figure. This block “pushes” the current
stack frame д on the stack h and jumps with the resulting stack h′
to the application code for t . If t is finished with evaluation, it jumps
to block 5. If the call stack h is empty, then this block returns the
result, otherwise it pops off the topmost stack frame д and acts like
a return from a recursive call.

C.2 Examples

For Examples 4.1-4.3, the translation to the low-level language is
spelled out in detail in Fig. 9.

C.3 Algorithmic Formulation of Typing Rules

The algorithmic typing rules used in the proof of Theorem 7.1 are
shown in Fig. 10. There, we write Γ ◁ ∆ if Γ has the form x1 : A1 ·
X1, . . . ,xn : An · Xn and ∆ has the form x1 : B1 · X1, . . . ,xn : Bn ·
Xn and we have Ai ◁ Bi for i = 1, . . . ,n. This restricted form of
subtyping is enough for type inference.

D CORRECTNESS

D.1 Organising Low-Level Programs

We define the type system for int′ and define the logical relation
that relates int′ terms to low-level programs.
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var
x : X ⊢ x : X

Γ ⊢ t : Yw
Γ, x : X ⊢ t : Y

Γ, x : X , y : Y , ∆ ⊢ t : Z
e

Γ, y : Y , x : X , ∆ ⊢ t : Z
Γ, x : X , y : X ⊢ t : Y

c
Γ, z : X ⊢ t [z/x, z/y] : Y

zero
⊢ zero : N

⊢ t : Nsucc
⊢ succ(t ) : N

⊢ t : Npred
⊢ pred(t ) : N

Γ ⊢ s : N ∆1 ⊢ t1 : X ∆2 ⊢ t2 : Xif
Γ, ∆1, ∆2 ⊢ ifz s then t1 else t2 : X

Γ, x : X ⊢ t : Yfn
Γ ⊢ fn x ⇒ t : X → Y

Γ ⊢ s : X → Y ∆ ⊢ t : Xapp
Γ, ∆ ⊢ s t : Y

Γ, f : X → Y , x : X ⊢ t : Y
fix

Γ ⊢ fix f x ⇒ t : X → Y

Figure 3: Call-by-Value PCF

Γ, x : A ⊢ x : A Γ ⊢ () : unit Γ ⊢ n : int
Γ ⊢ v : A Γ ⊢ w : B

Γ ⊢ ⟨v, w ⟩ : A × B

Γ ⊢ v : A
Γ ⊢ inlA+B (v) : A + B

Γ ⊢ v : B
Γ ⊢ inrA+B (v) : A + B

Γ ⊢ v : Ai i ∈ {1, 2}
Γ ⊢ inAi ,A1∪A2 (v) : A1 ∪ A2

Γ ⊢ v : A[µα .A/α ]
Γ ⊢ foldµα .A(v) : µα .A

Figure 4: Typing of Low-Level Values

Γ ⊢ v : A op ∈ Prim(A, B) Γ, x : B | Φ ⊢ b
Γ | Φ ⊢ let x = op(v) in b

Γ ⊢ v : A × B Γ, x : A, y : B | Φ ⊢ b
Γ | Φ ⊢ let ⟨x, y ⟩ =v in b

Γ ⊢ v : A + B Γ, x : A | Φ ⊢ b1 Γ, y : B | Φ ⊢ b2
Γ | Φ ⊢ case v of inl(x ) ⇒ b1; inr(y) ⇒ b2

Γ ⊢ v : µα .A Γ, x : A[µα .A/α ] | Φ ⊢ b
Γ | Φ ⊢ let foldµα .A(x )=v in b

Γ ⊢ v : A ∪ B Γ, x : A | Φ ⊢ b
Γ | Φ ⊢ let inA,B (x )=v in b

Γ ⊢ v : A
Γ | Φ, f : ¬A, Ψ ⊢ f (v)

Figure 5: Typing of Low-Level Blocks

6
A× (C × CJYK)

A× IJYK+

A× (B1 + B2)× IJXK−

A× (C × CJY1K)

A× IJY1K+

A×B1 × IJX K−

A× (C × CJY2K)

A× IJY2K+

A×B2 × IJXK−

inΠ =

6′

4

2

outΠ =

A× (C × ((D1 + D2)× CJXK)

A× IJYK−

A× (B1 + B2)× IJXK+

1

3

5

A× (C × (D1 × CJXK)

A× IJY1K−

A×B1 × IJX K+

A× (C × (D2 × CJXK)

A× IJY2K−

A×B2 × IJXK+

Figure 6: Joining of Interfaces in the Translation of (if)

The int′ typing judgement has the form Ω | Γ | Φ ⊢ t : X , where
Ω = α1 ◁A1, . . . ,αn ◁An is a context declaring type variables and
their bounds, where Γ = y1 : B1, . . . , ym : Bm is a context declaring
value variables, and where Φ = x1 : X1, . . . , xk : Xk is a context
declaring module interface variables. In these contexts, the Ai and
Bj range over low-level types and the Xl range over int′ types. A
derivation Π of the typing judgement Ω | Γ | Φ ⊢ t : X represents a
low-level program, called LΠM in a slight abuse of notation, of the
following type.

Y − Y +

X+
1 X−

1

...
...
...

X+
k X−

kLΠM

The program LΠMmay contain free occurrences of the type variables
from Ω and the value variables from Γ. The intention is that a
closed term of type X translates to a low-level fragment of type
X− → X+. For an open term like t above, the intention is that
program fragments X−

1 → X+1 , . . . , X
−
k → X+k are connected to it

using iapp from Fig. 17. These fragments may come from closed
terms, for example. Then one obtains a fragment of type Y− → Y+
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A2 × (D2 × CJX2K)

A2 × IJX2K−
1

idA1 × inΠX

3

A1 × (D1 × CJX1K)

outΠ =

A2 × IJY2K+

inΠ =

2 A1 × IJX1K−

A1 × IJY1K+idA1 × outΠY

A1 × CJY2K

A1 × IJX1K+

4

idA2 × outΠX

6

A2 × CJY1K

A1 × IJY1K−
5 A2 × IJX2K+

A2 × IJY2K−idA2 × inΠY

1 : 〈a, 〈d, x〉〉 7→ 〈inA2CA1(a), 〈inD2CD1(d), inCJX2KCCJX1K(x)〉〉
2, 3 : 〈a, x〉 7→ 〈inA2CA1(a), x〉

4 : 〈a1, y2〉 7→ let inA2CA1(a2) = a1 in let inCJY1KCCJY2K(y1) = y2 in 〈a2, y1〉
5, 6 : 〈a1, x〉 7→ let inA2CA1(a2) = a1 in 〈a2, x〉

Figure 7: Translation of Subtyping

Interface of translation of premise Γ, f : G ·
(
X

CJΓK
−−−−→A Y

)
, x : X ⊢A t : Y:

LΠtM

A× ((CJΓK×D)× CJX K) A× CJYK

IJYK− IJYK+

IJX K−

G× (A× (D × CJX K))

G× IJYK−

G× IJX K+

IJX K+

G× (A× CJYK)

G× IJYK+

G× IJX K−

IJΓK−IJΓK+

Translation of conclusion H · Γ ⊢F fix f x ⇒ t : E · (X
CJΓK
−−−−→A Y):

H · LΠtM

E × IJYK−

F × CJΓK F × CJΓK

E × (A× (CJΓK× CJX K)) 2 E × (A× CJYK)

E × IJYK+

E × IJX K−E × IJX K+

1

3

4

5

6

7

8 9

IJH · ΓK−IJH · ΓK+
2′

3′

4′

1 : 〈f, v〉 7→ 〈f, v〉
2 : 〈e, 〈a, 〈c, x〉〉〉 7→ let h= inE+H×GCH(inl(e)) in 〈h, 〈a, 〈〈c, c〉, x〉〉〉

2′ : 〈h, 〈g, 〈a, 〈d, x〉〉〉〉 7→ let h′= inE+H×GCH(inr(〈h, g〉)) in 〈h′, 〈a, 〈〈d, d〉, x〉〉〉
3, 4 : 〈e, y〉 7→ let h= inE+H×GCH(inl(e)) in 〈h, y〉

3′, 4′ : 〈h, 〈g, y〉〉 7→ let h′= inE+H×GCH(inr(〈h, g〉)) in 〈h′, y〉
5, 6, 7 : 〈h, y〉 7→ let inE+H×GCH(z) =h in case z of inl(e)⇒ exit top(〈e, y〉)

inr(〈h, g〉)⇒ exit bottom(〈h, 〈g, y〉〉)
8 : 〈〈h, x〉, y〉 7→ 〈h, 〈x, y〉〉
9 : 〈h, 〈x, y〉〉 7→ 〈〈h, x〉, y〉

Figure 8: Translation of Recursion
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• The term from Example 4.1 may be annotated as follows: ⊢A λy.y + 3 : B · (N unit−−−−→C N).
Its (slightly simplified) low-level translation is:

eval.entry(a : A, u : unit) = eval.ret(a, ())
apply.entry(b : B, c : C, ⟨f ,y⟩ : unit × int) =

let r = add(y, 1) in apply.ret(b, c, r )

• The term from Example 4.1 may be annotated as follows: x : B · (N C−→D N) ⊢A λy. x (y + 1) : B · (N C−→D N).
Its (slightly simplified) low-level translation is:

eval.entry(a : A, x : C) = eval.ret(a,x)
apply.entry(b : B, d : D, ⟨f ,y⟩ : C × int) =

let z = add(y, 1) in
x .apply.entry(b,d, ⟨f , z⟩)

x .apply.ret(b : B, d : D, r : int) = apply.ret(b,d, r )

Here, the labels x .apply.entry and x .apply.ret are the entry and exit labels of IJB · (N C−→D N)K belonging to the variable x . In all
definitions, all but the last argument are callee-save arguments.

• Next we give the translation of the term from Example 4.3. In this term, the variable x is used twice. To understand the translation
of the term, it may be useful to first look at the translation without the contraction on x , i.e. where two different variables x1 and x2
are used for the two occurrences of x :

x1 : unit · (N
C1−−→A×C2 N), x2 : B · (N C2−−→D N) ⊢A ifz (x1 3) then λy.y + 1 else λ.x . x2 (y + 1). : B · (N unit+C2−−−−−−−→D N).

The translation of this judgement is as follows. Here again, in all definition only the last argument is interesting; the rest are all
callee-save arguments.

eval.entry(a : A, ⟨f1, f2⟩ : C1 ×C2) = x1.apply.entry((), ⟨a, f2⟩, ⟨f1, 3⟩) // Evaluation starts by applying x1 to 3.
x1.apply.ret(u : unit, ⟨a, f2⟩ : A ×C2, r : int) = // Function x1 returns the result r of its appli-

cation. The other arguments are callee-save ar-

guments that are unchanged since the jump to

x1 .apply .entry. With the value r , we can con-

tinue evaluation.

let z = eq(r , 0) in
case z of inl() ⇒ eval.ret(a, inl())

inr() ⇒ eval.ret(a, inr(f2))
apply.entry(b : B, d : D, ⟨f ,y⟩ : (unit +C2) × int) = // A caller asks to apply function value f to y . De-

pending on the tag of the function, we can either

return the result immediately (left case), or we

need jump to the application code for function x2.

let y′ = add(y, 1) in
case f of inl() ⇒ apply.ret(b,d,y′)

inr(f2) ⇒ x2 .apply.entry(b,d, ⟨f2,y′⟩)
x2 .apply.ret(b : B, d : D, r : int) = apply.ret(b,d, r )

Let us now come to the term from Example 4.3. It may be typed as

x : (unit + B) · (N C−→(A×C)∪D N) ⊢ ifz (x 3) then λy.y + 1 else λ.x . x (y + 1) : B · (N unit+C−−−−−−→D N),
which translates to:

eval.entry(a : A, f : C) = x .apply.entry(inl(), inA×C,(A×C)∪D (⟨a, f ⟩), ⟨f , 3⟩) // Evaluation starts by applying x to 3.
x .apply.ret(s : (unit + B), u : (A ×C) ∪ D, r : int) = // The application of x returns r ; the callee-save

arguments s contains the information, which of

the two applications in the terms it was (note the

actual arguments of x .apply .entry in the other

blocks). A case distinction jumps to the right des-

tination.

(In this block we allow ourselves to continue with

let-definitions in the branches of the case. Strictly

speaking, only jumps are allowed there and one

would need to define new blocks for the two

branches.)

case s of inl() ⇒ let inA×C,(A×C)∪D (a, f )=u in

let z = eq(r , 0) in
case z of inl() ⇒ eval.ret(a, inl())

inr() ⇒ eval.ret(a, inr(f )⟩)
inr(b) ⇒ let inD,(A×C)∪D (d)=u in

apply.ret(b,d, r )
apply.entry(b : B,d : D, ⟨f ,y⟩ : (unit +C) × int) =

let y′ = add(y, 1) in
case f of inl() ⇒ apply.ret(b,d,y′)

inr(f2) ⇒ x .apply.entry(inr(b), inD,(A×C)∪D (d), ⟨f ,y′⟩)

Figure 9: Translation of Examples 4.1-4.3
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var
x : X ⊢A x : X

Γ ⊢A t : Xw
Γ, ∆ ⊢A t : X

Γ, x : X, y : Y, ∆ ⊢A t : Z
e

Γ, y : Y, x : X, ∆ ⊢A t : Z
Γ, x : B · X , y : C · X ⊢A t : Y

c (B +C) ◁ D
Γ, z : D · X ⊢A t [z/x, z/y] : Y

zero
⊢A zero : B · N

⊢A t : B · Nsucc
⊢A succ(t ) : B · N

⊢A t : B · Npred
⊢A pred(t ) : B · N

Γ, x : X ⊢A t : Y
abs CJΓK ◁ D , E · Γ ◁ Γ′

Γ′ ⊢F fn x ⇒ t : E · (X D−−→A Y)

Γ ⊢A s : D · (X C−→U Y) ∆ ⊢B t : X
app U × CJ∆K ◁ A, U ×C ◁ B, unit ◁ D

Γ, ∆ ⊢U s t : Y
Γ ⊢B s : N ∆1 ⊢A t1 : X1 ∆2 ⊢A t2 : X2 X1 ⋎ X2 = X

if A × CJ∆1K × CJ∆2K ◁ B
Γ, ∆1, ∆2 ⊢A ifz s then t1 else t2 : X

Γ, f : G ·
(
X D−−→A Y

)
, x : X ⊢A t : Y

rec CJΓK ◁ D, (E + (H ×G)) ◁ H, H · Γ ◁ Γ′

Γ′ ⊢F fix f x ⇒ t : E · (X D−−→A Y)

Figure 10: Algorithmic Annotated PCF typing

that corresponds to t with the free variables x1, . . . ,xk bound to
the fragments.

The typing rules for int′ are shown in Figs. 11–16. This variant
of int′ has first-class types A · X with rules adapted from linear
logic. We omit rules for union types and recursive types, as we need
these types only to solve ◁-constraints. The rules make reference
to a judgement Ω ⊢ A ◁ B, which we define to mean that A′ ◁ B′

holds, where A′ and B′ are the closed types obtained from A and B
by replacing each type variable from Ω with its upper bound.

The translation from int′ to the low-level language is defined
directly by induction on the typing derivation. We refer to [14, 16]
for details on the translation for all but existential types. In most
cases the translation is essentially forced by the interfaces. Looking
at the interfaces of the programs for the premises of any rule often
suggests how to construct the program in the conclusion. Let us
outline a few examples.

The type X ⊸ Y can be understood as a type that explains
low-level program linking. We outline the case for application
of a closed term f of type X ⊸ Y to a closed argument. The
term f represents a low-level program fragment p : X+ + Y− →
X− + Y+. It can be understood as a fragment that is intended to
be linked to a fragment with interface X ; the result of linking is
a fragment with interface Y . Suppose we have closed a term д of
type X , which represents a low-level program fragment q : X− →
X+. Then function application f д then represents the low-level
program iapp(p,q) defined in Fig. 17.

The typeA → X captures value passing. A term f of typeA → X
represents a low-level program fragment r : A × X− → X+. It
expects to be given a value of type A together with any input.
The fragment can be seen as a function from A to X as follows.
Suppose we have a value v : A. Then we can construct the program
fragment vapp(r ,v) from Fig. 17.

The introduction for existential types is interpreted using pack
from Fig. 17.

The interpretation of the abstraction λx :X . t is essentially the
identity and determined by the types. The abstractions fn x ⇒ t
andΛα . t are interpreted using the combinators vabs and tabs from
Fig. 17. The box around p should be understood as an operation
that binds the variable x that may appear free in p. It is defined

by modifying each block, so that the value of the variable x is
passed around unchanged as the first argument of each block, rather
than appearing freely. For example f (y) = д(v) becomes f (z) =
let ⟨x ,y⟩ = z inд(⟨x ,v⟩) and other blocks are changed analogously.
The program differs from A · p in that the first component may be
read in the places where x is free in p.

For existential types, the introduction rule is interpreted using
pack. The elimination rule is interpreted by substituting A for α in
LtM (the interpretation of the derivation of the right-hand premise)
and then connecting the program LsM.

In addition to the terms in the typing rules, we assume a constant
for tail composition

compA,B,C : unit · (A → [B]) ⊸ unit · (B → [C]) ⊸ (A → [C])
(composition is definable in int′, but it would keepA in a callee-save
argument when evaluating the second function, i.e. the subexpo-
nential for the second argument would not be unit), a strength

strA,B,C : B · (A → [C]) ⊸ (A × B → [C × B])
and a fixed-point combinator

fixX ,A,B : B · (A · X ⊸ X ) ⊸ X

where unit + (B ×A) ◁ B.
In this paper, we do not add low-level annotations to the terms of

int′. The terms express only what a program computes. The same
term may have different typing derivations, which correspond to
different low-level implementations of the same behaviour.

In the rest of this section we make this precise in which sense
the low-level program obtained from a derivation implements the
term. We first define a denotational semantics for the terms, which
defines the behaviour of terms. Then we define how low-level pro-
grams implement this behaviour. Informally, the rest of this section
should be clear. It just says that the low-level implementation of
int′ correctly implements its terms when one ignores the type
annotations.

D.2 Denotational Semantics

The meaning of terms is defined by a standard domain theoretic
semantics. We interpret int′ types by ω-cpos and terms by contin-
uous functions.
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Ω | Γ | x : X ⊢ x : X
Ω | Γ | Φ ⊢ t : Y

Ω | Γ | Φ, x : X ⊢ t : Y
Ω | Γ | Φ, Ψ, Ψ′, Φ′ ⊢ t : Z
Ω | Γ | Φ, Ψ′, Ψ, Φ′ ⊢ t : Z

Figure 11: Typing Rules for int
′
: Axiom and Structural Rules

Γ ⊢ v : A
Ω | Γ | − ⊢ return(v) : [A]

Ω | Γ | Φ ⊢ s : [A] Ω | Γ, x : A | Ψ ⊢ t : [B]
Ω | Γ | Φ, A · Ψ ⊢ let x = s in t : [B]

Γ ⊢ v : A + B Ω | Γ, x : A | Φ ⊢ s : X Ω | Γ, y : B | Φ ⊢ t : X
Ω | Γ | Φ ⊢ case v of inl(x ) ⇒ s ; inr(y) ⇒ t : X

Figure 12: Typing Rules for int
′
: Basic Computations

Ω | Γ, x : A | Φ ⊢ t : X
Ω | Γ | A · Φ ⊢ fn x ⇒ t : A → X

Ω | Γ | Φ ⊢ t : A → X Ω | Γ ⊢ v : A
Ω | Γ | Φ ⊢ t (v) : X

Figure 13: Typing Rules for int
′
: Value Passing

Ω | Γ | Φ, x : X ⊢ t : Y
Ω | Γ | Φ, x : unit · X ⊢ t : Y

Ω | Γ | Φ, x : A · B · X ⊢ t : Y
Ω | Γ | Φ, x : (A × B) · X ⊢ t : Y

Ω | Γ | Φ ⊢ t : X
Ω | Γ | A · Φ ⊢ t : A · X

Ω | Γ | Φ, x : A · X ⊢ t : Y Ω ⊢ A ◁ B
Ω | Γ | Φ, x : B · X ⊢ t : Y

Ω | Γ | Φ, x : A · X , y : B · X ⊢ t : Y
Ω | Γ | Φ, z : (A + B) · X ⊢ t [z/x, z/y] : Y

Figure 14: Typing Rules for int
′
: Subexponentials

A type environment ρ is a mapping from type variables to closed
low-level types. Each low-level type is interpreted as the ordinary
set JAKρ consisting of the set of closed values of type A[ρ], where
(−)[ρ] is the type substitution that replaces α with ρ(α).

int′ types are interpreted as ω-cpos. We define an ω-cpo JX Kρ
for each type X inductively as follows:

J[A]Kρ = (JAKρ )⊥
JA · X Kρ = JX Kρ

JX ⊸ Y Kρ = JX Kρ ⇒ JY Kρ
J∀α ◁A.X Kρ =

∏
B typeJX Kρ[α 7→B]

JA → X Kρ = JX KJAKρ
ρ

J∃α ◁A.X Kρ =
∑
B typeJX Kρ[α 7→B]

Here, ⇒ denotes the ω-cpo of continuous functions,
∏

and XA

denote products and Σ denotes coproducts. Notice that the denota-
tional semantics ignores low-level annotations, so it is essentially a
semantics of Idealised Algol.

Terms are interpreted relative to a type environment ρ, a value
environment σ and a module environment ϕ. A value environment
assigns meaning to value variables. A variabley of typeA is mapped
to an element of JAKρ . A module environment maps int′ variables
to their denotation; a variable of type x is mapped to an element of
JX Kρ . The interpretation of a term t of type X is then defined as a
function JtK that maps ρ, σ and ϕ to JtKρ,σ ,ϕ ∈ JX Kρ . It is defined
by induction on t in Fig. 18. We use π1 and π2 to denote the strict
projection functions.

D.3 Relating Implementation and Denotation

Define a family of relations ∼X ,ρ between low-level programs and
elements of JX Kρ by induction on the type X :

• p ∼[A],ρ d iff: p : unit → A[ρ] and p : () 7→ v iff d = ⌊v⌋.
• p ∼A ·X ,ρ d iff: there exists q with p = A · q and q ∼X ,ρ d .
• p ∼X ⊗Y ,ρ d iff: there existp1,p2 andd1,d2 withp = p1⊗p2

and d = ⟨d1,d2⟩ and p1 ∼X ,ρ d1 and p2 ∼Y ,ρ d2.
• p ∼X⊸Y ,ρ f iff: wheneverq ∼X ,ρ d , then iapp(p,q) ∼Y ,ρ

f (d).
• p ∼A→X ,ρ f iff: for allv ∈ JAKρ , we have vapp(p,v) ∼X ,ρ

f (v).
• p ∼∀α◁A.X ,ρ f iff: we have tappX (p,B) ∼X ,ρ[α 7→B] f (B)

for all B ◁A.
• p ∼∃α◁A.X ,ρ f iff: there exist B,q,d , such that f = (B,d)

and p = pack(q,B) and q ∼X ,ρ[α 7→B] d .

This definition is extended to terms in context in a logical way. Let
JΩK be the set of all type environments ρ, such that (α ◁ B) ∈ Ω
implies ρ(α) ◁ B. If Γ is the value context y1 : B1, . . . ,yn : Bn , then
JΓKρ is a the set of environments σ that map yi to JBi Kρ , for
i = 1, . . . ,n. If Φ is x1 : X1, . . . ,xn : Xn , and ϕ is an environment
mapping each xi to JXi Kρ , and if we have pi ∼Xi ,ρ ϕ(xi ) for all
i = 1, . . . ,n, then we write ®p ∼Φ,ρ ϕ. With this notation, we ex-
tend ∼ to the denotations of terms as follows. Write q ∼Ω |Γ |Φ,X f

if, whenever ρ ∈ JΩK, σ ∈ JΓKρ and ®p ∼Φ,ρ ϕ, then we have
iapp(q[ρ][σ ], ®p) ∼X ,ρ fρ,σ ,ϕ .

Finally, in order to account for recursion, we close the relation
under limits. We write p ≈Ω |Γ |Φ,X f if there exist ω-chains (pi )i≥0,
(fi )i≥0 with p =

⊔
i pi and f =

⊔
i fi and pi ∼Ω |Γ |Φ,X fi for all i .

Here, we consider low-level programs as partial functions from
low-level values to low-level values with the usual ordering.

With these definitions, we have the following fundamental lemma,
which says that the low-level implementation of a typing derivation
for a term t implements the denotation of t , according to ≈. For



Defunctionalisation as Modular Closure Conversion PPDP’17, October 9–11, 2017, Namur, Belgium

Ω | Γ | Φ, x : X ⊢ t : Y
Ω | Γ | Φ ⊢ λx : X . t : X ⊸ Y

Ω | Γ | Φ ⊢ s : X ⊸ Y Ω | Γ | Ψ ⊢ t : X
Ω | Γ | Φ, Ψ ⊢ s t : Y

Ω | Γ | Φ ⊢ s : X Ω | Γ | Ψ ⊢ t : Y
Ω | Γ | Φ, Ψ ⊢ s ⊗ t : X ⊗ Y

Ω | Γ | Φ ⊢ s : X ⊗ Y Ω | Γ | Ψ, x : X , y : Y ⊢ t : Z
Ω | Γ | Φ, Ψ ⊢ let ⟨x, y ⟩ = s in t : Z

Figure 15: Typing Rules for int
′
: Functions and Pairs

Ω, α ◁ A | Γ | Φ ⊢ t : X
Ω | Γ | Φ, Ψ ⊢ Λα . t : ∀α ◁ A.X

Ω | Γ | Φ ⊢ t : ∀α◁A.X Ω ⊢ B ◁ A
Ω | Γ | Φ, Ψ ⊢ t B : X [B/α ]

Ω | Γ | Φ ⊢ t : X [B/α ] Ω ⊢ B ◁ A
Ω | Γ | Φ, Ψ ⊢ pack(B, t ) : ∃α◁A.X

Ω | Γ | Φ ⊢ s : ∃α◁A.X Ω, α ◁ A | Γ | Ψ, x : X ⊢ t : Y
Ω | Γ | Φ, Ψ ⊢ let pack(α, x )= s in t : Y

Figure 16: Typing Rules for int
′
: Quantification

p

iapp(p, q) =

q

vapp(r, v) =
x 7→ 〈v, x〉 r

tapp∀αCA.X(s,B) = sin out
X−[B/α] X−[A/α] X+[A/α] X+[B/α]

Y − Y +

X+

pack∃αCA.X(s,B) = sout
X−[A/α] X−[B/α] X+[B/α] X+[A/α]

in

p

A×B1

A×Bn

π2 C1

A× Cm

x : A

...
...

vabs(p, x) =

q[A/α]

B1[A/α]

Bn[A/α]

C1[A/α]

Cm[A/α]

...
...

tabs(q, α,A) =

Figure 17: Combinators for the Interpretation of int
′

JxKρ,σ ,ϕ = σ (x)
Js ⊗ tKρ,σ ,ϕ = ⟨JsKρ,σ ,ϕ , JtKρ,σ ,ϕ ⟩

Jlet ⟨x ,y⟩ = s in tKρ,σ ,ϕ = JtKρ,σ ,ϕ[x 7→π1(JsKρ,σ ,ϕ ),y 7→π2(JsKρ,σ ,ϕ )]
Jλx : X . tKρ,σ ,ϕ = (d ∈ JX Kρ 7→ JtKρ,σ ,ϕ[x 7→d ])

Js tKρ,σ ,ϕ = JsKρ,σ (JtKρ,σ ,ϕ )
Jfn x : A ⇒ tKρ,σ ,ϕ = (v ∈ JAKρ 7→ JtKρ,σ [x 7→v],ϕ )

Jt(v)Kρ,σ ,ϕ = JtKρ,σ ,ϕ (v[σ ])
Jreturn(v)Kρ,σ ,ϕ = v[σ ]

Jlet x = s in tKρ,σ ,ϕ =

{
⊥ if JsKρ,σ ,ϕ = ⊥
JtKρ,σ [x 7→v],ϕ if JsKρ,σ ,ϕ = v

Jcase v of inl(x) ⇒ s; inr(x) ⇒ tKρ,σ ,ϕ =

{
JsKρ,σ [x 7→w ],ϕ if v[σ ] = inl(w)
JtKρ,σ [x 7→w ],ϕ if v[σ ] = inr(w)

JΛα . tKρ,σ ,ϕ = (B 7→ JtKρ[α 7→B],σ ,ϕ )
Jt BKρ,σ ,ϕ = JtKρ,σ ,ϕ (JBKρ )

Jpack(A, t)Kρ,σ ,ϕ = (JAKρ , JtKρ,σ ,ϕ )
Jlet pack(α ,x)= s in tKρ,σ ,ϕ = JtKρ[α 7→π1(JsKρ,σ ,ϕ )],σ ,ϕ[x 7→π2(JsKρ,σ ,ϕ )]

JfixX Kρ,σ ,ϕ = fixed point combinator on JX Kρ

Figure 18: Denotational Semantics of int
′
Terms
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closed values of base type, this means that the low-level program
returns the correct result. The lemma is proved by induction on the
derivation.

Lemma D.1. If Π derives Ω | Γ | Φ ⊢ t : X , then LΠM ≈Ω |Γ |Φ,X JtK.

In the rest of this section, give an outline for the proof of this
lemma, which uses the following substitution lemmas.

LemmaD.2 (Value Substitution). vapp(vabs(p,x),v) = p[v/x].

Lemma D.3 (Type Substitution). For all p : ®B → ®C whose free

value variables all have a type not containing α , we have:

tapp ®B, ®C (tabs(p,α ,B),A) = p[A/α]

Proof of Lemma D.1. The proof goes by induction on the deriva-
tion Π, of which we show a few cases.

Case:

Ω | Γ ⊢ v : A
Ω | Γ | − ⊢ return(v) : [A]

The program LΠM is the block (⟨⟩ 7→ v). Suppose ρ ∈ JΩK and
σ ∈ JΓKρ . Then, iapp(LΠM[ρ][σ ], ε) is (⟨⟩ 7→ v[σ ]).

By definition of the semantics, we have Jreturn(v)Kρ,σ ,ϕ =
v[σ ], so we get (⟨⟩ 7→ v[σ ]) ∼[A],ρ v[σ ], which is the same as
iapp(LΠM[ρ][σ ], ε) ∼[A],ρ Jreturn(v)Kρ,σ ,ϕ . The required asser-
tion follows by taking constant ω-chains.

Case:

Ω | Γ, x : A | Φ ⊢ t : X
Ω | Γ | A · Φ ⊢ fn x ⇒ t : A → X

The induction hypothesis gives LΠt M ≈Ω |Γ,x : A |Φ,X JtK, so there ex-
ist (pi ) and (fi )with LΠt M =

⊔
pi and f =

⊔
fi andpi ∼Ω |Γ,x : A |Φ,X

fi .
Assume ρ ∈ JΩK, σ ∈ JΓKρ and ®p ∼A ·Φ ϕ. By definition, ®p must

have the form A · ®q, where ®q ∼Φ ϕ.
Let v ∈ JAKρ . It suffices to show

iapp(vabs(pi ,x)[ρ][σ ],A · ®q) ∼A→X (v 7→ (fi )ρ,σ [x 7→v],ϕ ),
as we have

⊔
i vabs(pi ,x) = vabs(LΠt M,x) and also⊔

i
(v 7→ (fi )ρ,σ [x 7→v],ϕ ) = (v 7→

⊔
i
(fi )ρ,σ [x 7→v],ϕ )

= (v 7→ fρ,σ [x 7→v],ϕ )
= Jfn x ⇒ tKρ,σ ,ϕ

We have to show

vapp(iapp(vabs(pi ,x)[ρ][σ ],A · ®q),v) ∼X (fi )ρ,σ [x 7→v],ϕ ,

by definition of ∼A→X . We calculate:

vapp(iapp(vabs(pi ,x)[ρ][σ ],A · ®q),v)
= vapp(iapp(vabs(pi [ρ][σ ],x),A · ®q),v)
= vapp(vabs(iapp(pi [ρ][σ ],q),x),v)
= iapp(pi [ρ][σ ,x 7→ v], ®q)

The hypothesis gives

iapp(pi [ρ][σ [x 7→ v]], ®q) ∼X (fi )ρ,σ [x 7→v],ϕ ,

which concludes this case.
Case:

Ω | Γ | Φ ⊢ t : A → X Ω | Γ ⊢ v : A
Ω | Γ | Φ ⊢ t(v) : X

The induction hypothesis gives LΠt M ≈Ω |Γ,x : A |Φ,A→X JtK, so there
exist (pi )i≥0 and (fi )i≥0 with LΠt M =

⊔
pi and f =

⊔
fi and

pi ∼Ω |Γ,x : A |Φ,A→X fi .
Let ρ ∈ JΩK, σ ∈ JΓKρ be given and assume ®q ∼Φ ϕ. In order to

show the required iapp(vapp(JtK[ρ][σ ],v[σ ]), ®q) ≈X Jt(v)Kρ,σ ,ϕ
it suffices to show the assertion

iapp(vapp(pi [ρ][σ ],v[σ ]), ®q) ∼X (fi )ρ,σ ,ϕ (v[σ ])
for all i .

The induction hypothesis gives

iapp(pi [ρ][σ ], ®q) ∼A→X (fi )ρ,σ ,ϕ ,
which implies

vapp(iapp(pi [ρ][σ ], ®q),v[σ ]) ∼X (fi )ρ,σ ,ϕ (v[σ ]),
by definition. We now note

vapp(iapp(pi [ρ][σ ], ®q),v[σ ]) = iapp(vapp(pi [ρ][σ ],v[σ ]), ®q),
so thatwe get iapp(vapp(pi [ρ][σ ],v[σ ]), ®q) ∼ (fi )ρ,σ ,ϕ (v[σ ]), which
is just what we had to show.

Case:

Ω,α ◁A | Γ | Φ ⊢ t : X
Ω | Γ | Φ, Ψ ⊢ Λα . t : ∀α ◁A.X

This case follows from the substitution lemma, from which we get
the equation tapp(tabs(p,α ,A),B) = p[B/α].

Case:

Ω | Γ | Φ ⊢ t : ∃α◁A.X Ω, α ◁A | Γ | Ψ, x : X ⊢ s : Y
Ω | Γ | Φ, Ψ ⊢ let pack(α ,x)= t in s : Y

Let ρ ∈ JΩK, σ ∈ JΓKρ be given and assume ®q ∼Φ ϕ. and ®r ∼Ψ ψ .
The induction hypothesis gives us both

iapp(pi [ρ][σ ], ®q) ∼∃α◁A.X (fi )ρ,σ ,ϕ
and

iapp(ri [ρ[α 7→ B]][σ ], (®r ,p′)) ∼Y (дi )ρ[α 7→B],σ ,(ψ ,f ′)

whenever p′ ∼X f ′ for some chains with LΠt M =
⊔
pi and JtK =⊔

fi and LΠs M =
⊔
ri and JsK =

⊔
дi .

The program iapp(Llet pack(α ,x)= t in sM[ρ][σ ], (®q, ®r )) is the
same as the program

iapp(LsM[ρ,α 7→ A][σ ], (®q, iapp(LtM[ρ][σ ], ®r ))),
by definition. So it suffices to show

iapp(ri [ρ,α 7→ A][σ ], (®q, iapp(pi [ρ][σ ], ®r )))
∼ (дi )ρ,σ ,(ψ ,(fi )ρ,σ ,ϕ ).

From iapp(pi [ρ][σ ], ®r ) ∼∃α◁A.X (fi )ρ,σ ,ϕ we get (fi )ρ,σ ,ϕ =
(B, f ′i ) and iapp(pi [ρ][σ ], ®r ) = pack(p′i ,B) and p

′
i ∼X ,ρ[α 7→B] f

′
i .

The hypothesis for s yields iapp(ri [ρ[α 7→ B]][σ ], (®r ,p′i )) ∼Y
(дi )ρ[α 7→B],σ ,(ψ ,f ′i ). Now observe

iapp(ri [ρ,α 7→ A][σ ], (®r , pack(p′i ,B)))
= iapp(ri [ρ,α 7→ B][σ ], (®r ,p′i )),

which can be seen using the following transformations and the
above substitution lemma.
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ri[ρ, α 7→ A][σ]
p′iout in

ri[ρ, α 7→ A][σ]
p′ioutin

=

tapp(ri[ρ][σ], B)
p′i

=

We obtain that iapp(ri [ρ,α 7→ A][σ ], (®r , pack(p′i ,B))) is∼Y -related
to (дi )ρ[α 7→B],σ ,(ψ ,f ′i ). Because we also have iapp(pi [ρ][σ ], ®r ) =
pack(p′i ,B), this is just as required. □

D.4 Typed Closure Conversion from

Annotated PCF to Int’

We spell out in detail the case for (app) in the definition of TCC ′(Π)
that is outlined in the main text.

Γ ⊢U×CJ∆K s : X
C−→U Y ∆ ⊢U×C t : X

app
Γ, ∆ ⊢U s t : Y

To simplify the notation, we consider an equivalent definition of the
translation, where a typing derivation Π of x1 : X1, . . . ,xk : Xk ⊢S
t : Y in annotated pcf (Fig. 1) is translated to an int′-derivation
TCC

′(Π) of the following int′ judgement:

Ω | − | x1 : IJX1Kα1 , . . . ,xk : IJXk Kαk ⊢ TCC ′(t) : MJYKS,C
with

Ω = α1 ◁ BJX1K, . . . ,αk ◁ BJXk K
C = unit × CJX1Kα1 × · · · × CJXk Kαk

(We have used an alternative definition in the main text, as the int′
type system had to be omitted.)

In the case for (app) the induction hypothesis derives

Ω | − | IJΓKΩ ⊢ TCC ′(s) : MJunit · (X C−→U Y)KU×CJ∆K,CJΓKΩ

and
Θ | − | IJ∆KΘ ⊢ TCC ′(t) : MJXKU×C,CJ∆KΘ .

Both TCC
′(s) and TCC ′(t) are terms of existential type. Unpack-

ing them and the pairs they contain gives us type variables α ◁C
and β ◁ BJXK and module variables

f : unit ·
(∀β ◁ BJXK.IJXKβ ⊸ MJY KU ,α×CJXKβ

)
ef : (U × CJ∆KΘ) · (CJΓKΩ → [α])
x : IJXKβ
ex : (U ×C) · CJ∆KΘ → [CJXKβ ]

The term (f β x) can be given type MJY KU ,α×CJXKβ . We define
the required term of type MJY KU ,CJΓ,∆KΩ,Θ to be

let pack(ρ, ⟨y,a⟩)= f β x in pack(ρ, ⟨y, e⟩)
for a suitable term e : U · (CJΓ,∆KΩ,Θ → [CJYK]).

We want to define e to be a function that takes an argument of
type CJΓ,∆KΩ,Θ, then first extracts CJΓKΩ and CJ∆KΘ-components
and then evaluates ef and ex in this order. The result can then be

used to invoke a, which returns the desired value of type CJYK.
While we evaluate ef , we must keep CJ∆KΘ for later use. Then,
when we evaluate ex , we must keep the value returned by ef , so
that at the end we have both this value and the value returned by ex .
We implement this as follows.

Using strength and composition constants, one can define a
term seqA,B,C,D for space-efficient sequential composition of two
functions with the following type.

B · (A → [C]) ⊸ C · (B → [D]) ⊸ (A × B) → [C × D]
(The strength gives terms t1 : B · (A → [C]) ⊸ (B ×A → [B ×C])
and t2 : C · (B → [D]) ⊸ (C × B → [C × D]). One then defines
swapping functionsA×B → [B ×A] and B ×C → [C ×B] and uses
the composition combinator.)

Using this term, we can define a suitable term for the sequential
composition of ef and ex using the rules for subexponentials (note:
α ◁C):

...

ef : CJ∆K · Z1, ex : α · Z2 ⊢ seq ef ex : Z3
ef : CJ∆K · Z1, ex : C · Z2 ⊢ seq ef ex : Z2

ef : (U × CJ∆K) · Z1, ex : (U ×C) · Z2 ⊢ seq ef ex : U · Z3
In this derivation, we use the abbreviations Z1 = A → [α], Z2 =
CJ∆KΘ → [CJX K] and Z3 = A × CJ∆KΘ → [α × CJX K].

This shows that the types of ef and ex are sufficient to define a
term implementing sequential evaluation of ex after ef with type
U · (CJΓ,∆KΩ,Θ → [α × CJX Kβ ]). Since the variable a has type
U · (α × CJΓKΩ → [CJYK]), which means that we can complete
the definition of e with the desired type.

We end with a brief outline of Theorem 8.1.

Theorem 8.1. Suppose Π derives ⊢A t : B · N. Then t reduces to
a value v in a standard call-by-value operational semantics if and

only if we have LTCC ′(Π)M : ⟨a, ()⟩ 7→ ⟨a,v⟩ for any closed low-level

value a : A.

The prove it, one first shows that TCC ′(Π) is correct with respect to
the equational theory induces by the denotational semantics of int′.
This means that for reasoning one can completely ignore low-level
annotations, and that all equations used in [17] are available in this
sense. This means that one can carry out the equational reasoning
of [17] unchanged: One defines two logical relations ≤X and ≥X
by induction on the type X, such that TCC ′(Π) ≤X JtK expresses
that TCC ′(Π) implements only behaviour that is found in the de-
notational semantics JtK of t , and TCC

′(Π) ≥X JtK expresses that
TCC

′(Π) implements at least all behaviour found in JtK. To deal with
the more general (if), e.g. in ≤X , one shows that (Ai ,ai , ci ) ≤Xi fi
for i = 1, 2 implies (A1 +A2, join(a1 ⊗ a2),di ) ≤X fi , where d1 =
inl(c1) and d2 = inr(c2) and where join : IJX1KA1 ⊗IJX2KA2 ⊸
IJXKA1+A2 is the term used in the interpretation of (if). The rea-
soning goes as in [17]. Using Lemma D.1, one then concludes from
TCC

′(Π) ≤X JtK and TCC
′(Π) ≥X JtK that, for any closed a, we

have LTCC ′(Π)M : ⟨a, ()⟩ 7→ ⟨a,v⟩ if and only if JtK = ⌊v⌋. The re-
sult then follows from soundness and adequacy of the denotational
semantics of pcf.
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