
Trace-based Just-in-time

Compilation for Lazy Functional

Programming Languages

Thomas Schilling

School of Computing

University of Kent at Canterbury

A thesis submitted for the degree of

Doctor of Philosophy

April 2013

i

Abstract

This thesis investigates the viability of trace-based just-in-time (JIT)

compilation for optimising programs written in the lazy functional

programming language Haskell. A trace-based JIT compiler optimises

only execution paths through the program, which is in contrast to

method-based compilers that optimise complete functions at a time.

The potential advantages of this approach are shorter compilation

times and more natural interprocedural optimisation.

Trace-based JIT compilers have previously been used successfully

to optimise programs written in dynamically typed languages such

as JavaScript, Python, or Lua, but also statically typed languages

like Java or the Common Language Runtime (CLR). Lazy evalu-

ation poses implementation challenges similar to those of dynamic

languages, so trace-based JIT compilation promises to be a viable ap-

proach. In this thesis we focus on program performance, but having

a JIT compiler available can simplify the implementation of features

like runtime inspection and mobile code.

We implemented Lambdachine, a trace-based JIT compiler which im-

plements most of the pure subset of Haskell. We evaluate Lamb-

dachine’s performance using a set of micro-benchmarks and a set of

larger benchmarks from the “spectral” category of the Nofib bench-

mark suite. Lambdachine’s performance (excluding garbage collection

overheads) is generally about 10 to 20 percent slower than GHC on

statically optimised code. We identify the two main causes for this

slow-down: trace selection and impeded heap allocation optimisations

due to unnecessary thunk updates.

Acknowledgements

I would like to thank my supervisor Simon Thompson for his advice

and support throughout this work. Our meetings helped clarify my

thoughts and helped direct my work.

I would like to thank in particular David Peixotto for his valuable

discussions about trace-based compilation and his help on an earlier

prototype of Lambdachine.

I would also like to thank my fellow Ph.D students who made my

time as a Ph.D student a great experince, notably Edward Barrett,

Matthew Mole, Edward Robbins and Martin Ellis.

Many thanks also to the anonymous reviewers of my papers for their

comments and feedback.

Contents

Contents iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Deforestation . 2

1.2 Fragile optimisations . 4

1.3 A virtual machine for Haskell . 6

1.4 Trace-based Just-in-time Compilation and Non-strict Evaluation . 7

1.5 Thesis Statement and Research Contributions 8

1.6 Other Uses of a VM-based System 10

1.7 Thesis Overview . 12

2 Background 13

2.1 Graph Reduction . 13

2.2 The Source Language . 15

2.3 Non-strict Evaluation . 18

2.3.1 Weak Head Normal Form 19

2.4 Implementing Lazy Evaluation . 20

2.4.1 Thunk Update . 22

2.4.2 Checking for Weak Head Normal Form 23

2.5 Partial Application and Over-application 25

2.6 Type Classes and Overloading . 28

iii

CONTENTS CONTENTS

2.6.1 Performance Overhead of Type Classes 29

2.6.2 Specialisation . 31

2.7 Dynamic Optimisation . 32

3 Trace-based Just-in-time Compilation 33

3.1 Functions vs. Traces vs. Regions 36

3.2 Trace JIT Compiler Overview . 42

3.3 Trace Selection . 45

3.3.1 Selecting Trace Heads . 46

3.3.2 False Loop Filtering . 49

3.4 Trace Recording . 50

3.4.1 Multi-stage Trace Recording 51

3.4.2 Hotness Thresholds . 51

3.4.3 End of trace Condition . 52

3.5 Trace Exits . 54

3.6 Trace Trees and Trace Linking . 55

3.7 Compiling Traces . 57

3.8 Code Cache . 58

3.9 Reacting to Workload Changes 59

3.10 Tiered Compilation . 60

3.11 Reusing GHC Bytecode . 60

3.12 Summary . 60

4 An Example 62

4.1 Core Haskell . 63

4.2 Bytecode . 65

4.3 Trace Compiler Intermediate Representation 66

4.4 Machine Code . 72

5 Implementation 75

5.1 Relationship between Lambdachine and LuaJIT 77

5.2 Bytecode Instruction Set . 79

5.2.1 Register-based Bytecode 80

5.2.2 Bytecode Format . 81

iv

CONTENTS CONTENTS

5.2.3 Bytecode Instruction Set 82

5.2.4 Heap Object Layout . 85

5.2.5 Stack Frame Layout . 86

5.2.6 Overapplication and Partial Application 87

5.2.7 Lambdachine bytecode and GRIN 90

5.2.8 Pointer Information . 90

5.2.9 Bytecode Interpreter . 91

5.3 Compiling Haskell to Bytecode 93

5.4 Detecting hot traces . 96

5.5 Trace Intermediate Representation 98

5.6 The Abstract Stack . 100

5.7 Snapshots . 102

5.8 Forward Optimisations . 103

5.8.1 Constant Folding and Algebraic Simplifications 103

5.8.2 Common Sub-expression Elimination 105

5.9 Heap Allocation . 106

5.9.1 Merging Heap Checks . 107

5.9.2 Handling Heap Overflows 107

5.9.3 Heap Checks and Side Exits 108

5.9.4 Garbage Collection . 110

5.10 Allocation Sinking . 112

5.10.1 The Abstract Heap . 113

5.10.2 Allocation Sinking and Loops 113

5.11 Trace Recording and Specialisation 115

5.11.1 Specialisation and Indirections 117

5.12 Register Allocation and Code Generation 118

5.12.1 Spilling Registers . 120

5.13 Switching between interpreter and bytecode 121

5.13.1 Restoring VM State from a Snapshot 122

5.14 Linking Side Traces with the Parent Trace 122

6 Evaluation 125

6.1 Implemented Features . 125

v

CONTENTS CONTENTS

6.2 Benchmarks . 127

6.3 Mutator Performance . 128

6.4 Trace Coverage and Trace Completion 130

6.5 Hotness Thresholds . 137

6.6 The problem with updates . 139

6.6.1 Unnecessary Updates . 140

6.7 Loop Optimisation . 142

6.8 Sharing analysis . 146

6.8.1 A dynamic sharing analysis 148

6.9 Summary . 153

7 Related Work 155

7.1 Implementation of Lazy Functional Languages 155

7.1.1 G-Machine and STG-Machine 155

7.1.2 GRIN . 156

7.1.3 ABC Machine . 156

7.1.4 Other . 157

7.2 Lambdachine as dynamic GRIN 157

7.3 Method-based JIT Compilation 158

7.4 Trace-based JIT Compilation . 158

7.4.1 Trace-based JIT Compilation for Haskell 159

7.5 Static Trace Compilation . 160

7.6 Register-based Bytecode . 161

7.7 Implementation of Fast Interpreters 163

7.8 Dalvik Virtual Machine . 163

7.9 LuaJIT . 166

7.10 Compiler-only Virtual Machines 167

7.11 Supercompilation . 168

8 Conclusions and Future Work 170

8.1 Feature Completeness . 171

8.2 Trace Selection . 172

8.3 Avoiding Unnecessary Updates 173

vi

CONTENTS CONTENTS

8.4 Portable and Checked Bytecode 173

8.5 Execution Profiling . 174

8.6 Representation Optimisation . 174

8.7 Conclusions . 178

Source Code Statistics 180

Full Benchmark Data 182

References 187

vii

List of Figures

2.1 Simple example of graph reduction. 14

2.2 The CoreHaskell language. 16

2.3 Possible layout of an object on the heap. 20

2.4 Evaluation code for the thunk of x + y * 2 (in pseudo-C). 21

2.5 Pointer tagging. 24

2.6 Sketch of a possible implementation of a generic apply primitive. 27

2.7 Implementation of the type class Eq. 30

3.1 Compilation units: methods, dynamic basic blocks, and traces. . . 35

3.2 Excessive code duplication due to tail duplication. 41

3.3 Overview of trace-based JIT compiler execution modes. 43

3.4 False loop filtering. 48

4.1 Overview of the Lambdachine infrastructure. 63

4.2 The example program in CoreHaskell form. 64

4.3 Compiled bytecode for upto and its local thunk ys 67

4.4 Bytecode for the sumAux function. 68

4.5 Compiled bytecode for the (+) selector and plusInt. 69

4.6 Trace IR for inner loop starting at sumAux. 71

4.7 Optimised Trace IR . 72

4.8 Trace IR compiled to machine code 73

5.1 Stages and intermediate formats used in Lambdachine. 76

5.2 Basic bytecode instruction formats. Bit 0 is the least significant

bit, bit 31 is the most significant bit. 82

viii

LIST OF FIGURES LIST OF FIGURES

5.3 Layout of a heap object and info tables. 85

5.4 Layout of an interpreter stack frame. 87

5.5 Cases that need to be handled by CALL and CALLT. 88

5.6 Basic structure of the interpreter code. 92

5.7 Bytecode compiler data structures 93

5.8 Translation of CoreHaskell expressions to bytecode. 94

5.9 Translation of CoreHaskell patterns to bytecode. 97

5.10 Näıve translation from interpreter (left) to IR code (right). 101

5.11 Translation using abstract stack from interpreter (left) to IR code

(right). 102

5.12 Common sub-expression elimination algorithm 106

6.1 Relative mutator time of GHC and Lambdachine with full static

optimisations (-O2); normalised to GHC mutator time. 129

6.2 Relative mutator time of GHC and Lambdachine minimal static

optimisations (-O0); normalised to GHC mutator time. No data

for Circsim and Lambda. 130

6.3 Relative total allocation and GC time, normalised to GHC 131

6.4 Trace completion for boyer benchmark (700 traces). 133

6.5 Trace completion for constraints benchmark (1616 traces). 133

6.6 Trace completion for circsim benchmark (849 traces). 134

6.7 Trace completion for lambda benchmark (892 traces). 135

6.8 Top part of the trace graph for the lambda benchmark. 136

6.9 Trace completion for wheelsieve2 benchmark (69 traces). 137

6.10 Relative mutator time for different hotness thresholds (root trace /

side trace), normalised to the performance of the default thresholds

(53/7) for each benchmark. 138

6.11 Optimised Trace IR for example from Chapter 4. 141

6.12 Optimised Trace IR with removed update and peeled loop. 143

6.13 Stream version of our running example. 147

6.14 Sharing behaviour of alloc and share functions. 151

8.1 In-memory representation of a list of integers. 174

8.2 Abstracting over the way lists are represented in memory. 176

ix

LIST OF FIGURES LIST OF FIGURES

8.3 Alternative implementation of unpack1. 177

x

List of Tables

5.1 Bytecode instruction format . 83

5.1 Bytecode instruction format . 84

5.2 Intermediate representation instructions and their formats 99

5.3 Intermediate Representation transformation rules 104

6.1 Trace Coverage and Completion Overview 132

1 Source Code Statistics . 181

2 Mutator performance for all benchmarks. 183

2 Mutator performance for all benchmarks. 184

2 Mutator performance for all benchmarks. 185

3 Hotness thresholds and their effect on performance. 186

xi

Chapter 1

Introduction

This thesis describes an implementation of the lazy functional programming lan-

guage Haskell.

Haskell emphasises program correctness and succinctness through a combina-

tion of features and language design decisions. Haskell separates pure computa-

tions from effectful, or impure, computations. A pure computation does not have

any side effects and its result depends only on its inputs. Side effects include

reading or writing files, writing to the terminal or reading or modifying muta-

ble state. A pure computation will produce the same result no matter when or

how often it is executed. Due to these properties pure portions of a program are

generally easier to test and can be made to execute in parallel.

Haskell also uses non-strict evaluation by default: arguments to functions are

only evaluated if (and when) their value is needed. This can be used, for instance,

to define custom control flow combinators:

myif :: Bool -> a -> a -> a

myif True e1 e2 = e1

myif False e1 e2 = e2

This function always needs to evaluate its first argument in order to determine

whether it is True or False, but it only evaluates one of e1 and e2, never both.

We say that myif is strict in its first argument.

While the Haskell Standard defines it as a non-strict language, most Haskell

implementations actually implement call-by-need which is also known as lazy

1

1. INTRODUCTION

evalualion. With lazy evaluation a variable is only evaluated once and the result

is shared between all uses of the same variable. For example:

f b x = myif b 42 (x + x * 3)

test b = f b (nthPrime 1000000)

The variable x is used twice and its value is only needed if b evaluates to

False. Nevertheless, in a call-by-need implementation of Haskell the expression

nthPrime 1000000 is evaluated at most once.

Apart from making it quite easy to implement custom control structures,

laziness can also enable better modularity as demonstrated by Hughes [1989].

Lazy evaluation allows separating the data consumer from the producer. The

producer is lazy and only produces data when demanded by a consumer. A basic

example of this is the following:

f n = sum (takeWhile (\x -> x < 142) (filter odd [n..n+100]))

The sum function takes a list of numbers as its argument and consumes them to

produce their sum. This in turn requires that takeWhile produces some values

which in turn it gets from filter which in turn gets it from the enumeration

expression [n..n+100] which lazily produces the numbers from n to n+100. As

soon as any of the consumers stops requesting values or any of the producers

stops producing values, the computation finishes.

This style of composition is very flexible and leads to many reusable combi-

nators. It also gives rise to interesting optimisation challenges for implementers

of Haskell compilers.

1.1 Deforestation

A näıve implementation of lazy evaluation unfortunately is rather inefficient. For

example, the following expression will allocate 3× n cons cells, one for each step

in the composition:1

1The expression (+1) is a function that adds one to its arguments; the function (*2) doubles
its argument.

2

1. INTRODUCTION

f1 n = sum (map (+1) (map (*2) [1..n]))

In this example, each composition step performs very little computation, so the

memory management overhead will impact performance significantly. We would

like a compiler to optimise this program into something similar to this less elegant

but more efficient program, which does not perform any allocation of lists:

f2 n = loop 1 0

where

loop i res =

if i > n

then res

else loop (i + 1) (res + (i*2) + 1)

The process of removing such short-lived intermediate data structures is called

deforestation (Wadler [1990]). The most widely used Haskell implementation, the

Glasgow Haskell Compiler (GHC), supports a number of deforestation techniques.

First, however, let us look at a technique that does not work well. The

two key optimisations that a Haskell compiler performs are simplification and

inlining. The problem is that sum, map, and [n..m] are all recursive functions.

Inlining a recursive function will give rise to another call to the same recursive

function. The question then becomes when to stop inlining and how to replace the

recursive function call to a recursive call to an optimised version of the original

function. A technique called supercompilation tackles these issues (Bolingbroke

and Peyton Jones [2010]; Mitchell [2010]), but so far no implementation has been

proven to be practical for everyday use.

Current practical implementations of deforestation rely on GHC’s support

for custom rewrite rules. A rewrite rule is an instruction to the compiler to

replace certain expressions with another (presumably more efficient) equivalent

expression. The rule

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

3

1. INTRODUCTION

will instruct the compiler to replace any program expression that matches the pat-

tern to the left of the equation to be replaced by the expression on the right hand

side. Some variables are quantified via forall and will match any expression.

This rule will apply to our example as follows:

sum (map (+1) (map (*2) [1..n])) [apply map/map]

⇒ sum (map ((+1).(*2)) [1..n]) [inline (.)]

⇒ sum (map (\x -> (+1) ((*2) x)) [1..n]) [simplify]

⇒ sum (map (\x -> (x * 2) + 1) [1..n])

The application of this rule has removed one intermediate list. We might be

tempted to add more rules to handle other combinations of functions, but that

will lead to an increasing number of rules for each new function we add.

The short cut deforestation (Gill et al. [1993]) and the stream fusion (Coutts

et al. [2007]) frameworks address this for functions operating on lists. Short cut

deforestation expresses all list consumers in terms of the function foldr and all

producers in terms of the function build. A single rewrite rule then performs the

deforestation step:

{-# RULES

"foldr/build" forall f c g. foldr c f (build g) = g c f

#-}

Stream fusion expresses all list producers in terms of streams, which store

a current state and a function that given the current state computes the next

element in the sequence and a new state. Stream functions are no longer recursive,

so GHC’s inliner can optimise streams like any other code.

1.2 Fragile optimisations

Each of these optimisation frameworks relies on the compiler to inline enough

definitions to expose the optimisation potential. This is nothing new and it is a

problem shared by all static optimisers. A concern more specific to Haskell is that

the performance difference between the optimised and the unoptimised version

4

1. INTRODUCTION

can be an order of magnitude.1

If for some reason the optimiser did not inline an important definition, then

the user has to either rewrite the program to the expected version or diagnose why

the compiler did not produce the expected efficient version and somehow modify

the program so that the compiler will optimise it. Neither choice is desirable.

Rewriting the program into a hand-optimised version loses most of the benefits

of using a high-level language like Haskell. Other programming languages like C

also provide better support for low-level optimisations, but at the cost of generally

higher implementation effort.

Analyzing why the compiler did not optimise the program as expected requires

a good understanding of the inner workings of the compiler, its intermediate

languages and patience. Once the reason is located the compiler somehow has

to be instructed to perform the desired optimisation step. Usually this is done

in the form of a rewrite rule or an annotation to the compiler (a “pragma”) to

inline a certain function more aggressively. Such instructions can be made part

of a library, though care must be taken to avoid negative side effects for some

users of the library; e.g., too much inlining can increase the size of the resulting

program and the time it takes to compile it. Other times the user must rewrite

the program to help the compiler perform the necessary optimisations. In any

case, all of these methods are fragile and may break with small changes to the

source program or with different versions of the compiler.

Another complication is that rewrite rules can be sensitive to the exact shape

of the program. For example, the map/map rule will not be applied if the program

looks as follows:

f ys = map (*2) (let z = length ys in map (+z) ys)

In this case, the compiler can push the outer map call inside the let binding, and

then the rule will apply. This does not work, however, if there is a function call

in between the nested call to map, then no simple local transformation can get

the rule to apply.

This thesis investigates one approach that has the potential to reduce this

fragility. Instead of only optimising the program at compile time, we also employ

1We show this in Chapter 6 for the benchmark SumStream in Table 2 on page 185.

5

1. INTRODUCTION

just-in-time (JIT) compilation to optimise the program at runtime. Not every-

thing is JIT compiled, only the parts that are executed frequently. These are also

the parts of the program where good performance is most important.

A JIT compiler operates at runtime which allows it to gather statistics about

the program’s behaviour at runtime. This profiling data can be used to inform

inlining decisions which in turn will enable further optimisations. A JIT compiler

is thus less likely to miss optimisation opportunities where they are most impor-

tant. The profiling data can furthermore be used to create specialised code and

the JIT compiler can perform speculative optimisations that would be impracti-

cal for a static compiler because a static compiler would have difficulty guessing

which speculative optimisations are worthwhile.

We cannot expect a JIT compiler to solve all performance problems. Never-

theless, the runtime statistics collected by the JIT compiler can be used to give

insights into where optimisation efforts should be spent. The availability of a JIT

compiler also enables features of a runtime system that are difficult to impossible

to achieve with only a static compiler, as discussed in the next section.

1.3 A virtual machine for Haskell

This thesis describes Lambdachine: a virtual machine for Haskell. It optimises

Haskell programs in two stages. First, the program is optimised statically using

GHC. While GHC would then translate the optimised program into machine

code, we instead generate a bytecode instructions. This bytecode is then loaded

at runtime and interpreted. The interpreter collects certain runtime statistics

which are then used to optimise the program at runtime.

Because the JIT compiler runs alongside the program it must be very efficient.

Any time the compiler spends optimising the program is time not spent executing

the user’s program. Before the JIT compiler optimises the program, the program

is also executed in a slower execution mode. Commonly this is done either through

an interpreter or a simple non-optimising code generator. Profiling must be used

to identify which parts of the program will benefit from being optimised by the

JIT compiler, that is, for which parts of the program the JIT compilation overhead

is likely to pay off over the total execution time of the program.

6

1. INTRODUCTION

There are two widely used styles of JIT compilers used to implement program-

ming languages: method-based JIT compilers and trace-based JIT compilers. A

method-based JIT compiler optimises one function at a time, while a trace-based

JIT compiler optimises traces—straight-line sequence of instructions with no in-

ner control flow.

Lambdachine uses a trace-based JIT compiler. This was done for a variety of

reasons, most importantly because a trace-based JIT compiler is comparatively

simple and it seems to be a good fit for the way Haskell programs are executed.

1.4 Trace-based Just-in-time Compilation and

Non-strict Evaluation

A trace-based JIT compiler starts by detecting frequent targets of branch in-

structions, and records the instructions executed after execution reached such a

target. The goal is to detect the inner loops of the program and then optimise

them as a whole, regardless of which functions were called inside of the loop.

This appears to fit well with non-strict evaluation where execution jumps around

between parts of different functions, but is always driven by some consumer.

The idea is to pick the right heuristics to detect loops inside strict consumers

and use the trace compilation machinery to remove the overheads introduced by

non-strict evaluation. Because the trace simply follows the execution of the pro-

gram it automatically optimises across function boundaries. The simple structure

of traces also simplifies the implementation of compiler optimisations which can

reduce the compilation time.

The downsides of a trace-based approach are that optimising across traces is

more difficult or may again increase the compiler’s implementation complexity.

This makes a trace compiler very sensitive to the trace selection heuristic, since

that will decide how much the trace compiler can optimise. Furthermore, since

traces do not contain inner control flow they must duplicate code occurring after

a control flow join point which can lead to excessive code duplication under some

circumstances.

7

1. INTRODUCTION

1.5 Thesis Statement and Research Contribu-

tions

This thesis investigates the applicability of trace-based just-in-time compilation to

a call-by-need language; specifically the Haskell programming language. We focus

on the performance and optimisation potiential. To this end, we implemented a

prototype which supports a meaningful subset of Haskell and evaluate it using a

set of micro benchmarks and application kernel benchmarks.

The research contributions of this thesis are:

• Our prototype, Lambdachine, supports integer and character types and

operations on them, string literals represented as byte arrays, and user-

defined data types (which includes almost all monads). Lambdachine also

supports GHC’s State# type, which is used to implement the IO monad, but

not the C foreign function interface which is required to actually perform

any input/output operations.

We rewrote benchmarks that print their output to instead compare the

benchmark result with the expected value. Lambdachine also does not yet

support arrays, mutable references or floating point numbers.

Haskell programs often use immutable tree structures and pure computa-

tions, which are supported by our subset. We do not expect I/O heavy

programs to benefit (or suffer) from a JIT compiler.

• We designed a bytecode instruction set with two design goals: (1) allow

the implementation of an efficient interpreter which is used before the JIT

compiler is invoked, and (2) preserve enough high-level information to allow

the JIT compiler to perform optimisations that take advantage of invariants

provided by the language semantics. Section 5.2 describes this bytecode

language.

• We implemented a compiler from GHC’s Core intermediate language to this

bytecode (Section 5.3) and an interpreter for the bytecode (Section 5.2.9).

The bytecode interpreter is not heavily optimised because in our bench-

marks only a small fraction of the execution time is spent in the interpreter.

8

1. INTRODUCTION

• We implemented a trace compiler that records traces via the interpreter and

compiles them to machine code (Sections 5.5–5.14). The trace compiler

uses some code and many of the implementation techniques of the open

source trace-based JIT compiler LuaJIT (Pall [2013]). The intermediate

language used by our trace compiler, the trace IR (Section 5.5), is similar in

format, but quite different in semantics from LuaJIT’s IR. The similarities,

however, allowed us to reuse large parts of LuaJIT’s register allocator and

code generator with few changes. The trace compiler, therefore, is very fast

(typically < 1ms per trace), but trace selection is a key ingredient to make

the optimiser effective.

• We implemented standard trace selection heuristics from the literature, but

they turned out not to be particularly effective for larger programs (Sec-

tion 6.4). Many traces have a low completion ratio; i.e., execution often

does not reach the end of the trace, but leaves the trace early. The trace

compiler optimises based on the assumption that traces are rarely exited

early, so a low completion ratio will make the optimiser less effective.

• We evaluate our prototype using six micro-benchmarks and four small ap-

plication kernel benchmarks (Chapter 6). While Lambdachine can beat

GHC’s static optimsier on all but one micro-benchmark, Lambdachine is

normally slower than GHC on larger benchmarks. We attribute this to

poor trace selection and an important optimisation not being applicable at

runtime.

• We identify that updates—the key difference between a call-by-name and a

call-by-need evaluator—are causing important optimisations from occurring

(Section 6.6). In particular, unnecessary updates are the problem and we

propose a dynamic tagging scheme to enable the JIT compiler to safely

determine at runtime whether an update can be omitted (Section 6.8).

A report about Lambdachine during an earlier state was published in Schilling

[2012]. This report included performance estimates for micro-benchmarks, but

no absolute performance numbers on actual hardware.

9

1. INTRODUCTION

Lambdachine is open source software. It is available at: https://github.

com/nominolo/lambdachine.

1.6 Other Uses of a VM-based System

This thesis focuses on the performance aspects of using a JIT compiler. There,

however, are other advantages of having an environment that can optimise a

program at runtime. We do not address these aspects in this thesis, but they are

interesting avenues for future research.

Better Introspection GHC allows programs to be compiled in different modes,

such as different profiling modes or with or without multi-threading sup-

port and others. For example, GHC version 7.0.4 supports the following

“ways”: prof (profiling support), eventlog (generate logs of runtime sys-

tem events), threaded (the multi-core runtime), debug (selects the debug

runtime), dyn (compiles for dynamic linking), ndp (enable nested data par-

allelism support), and other undocumented ways. Some ways may be com-

bined with others resulting in a total of 32 possible combinations. The

profiling mode changes the object layout and calling convention meaning

that all dependencies must also be compiled in profiling mode, thus users

often have to compile every library (at least) twice if they ever plan to use

profiling with their application.

In a virtual machine it is much simpler to change the calling convention

by including multiple interpreters in the runtime and changing the way

that optimised code is generated. Any code duplication occurs only once

in the runtime system and normally is restricted to fairly small parts. For

example, there are flexible interpreter designs which allow swapping the

implementation of individual instructions. The code of instruction whose

behaviour is unaffected by the mode need not be duplicated.

In some cases it may also be possible to switch the mode at runtime, or select

the execution mode for individual functions. This could be useful to track

down issues in a running production system while avoiding performance

degradation in the normal case.

10

https://github.com/nominolo/lambdachine
https://github.com/nominolo/lambdachine

1. INTRODUCTION

Dynamic Code Loading There is some support in GHC for loading compiled

code at runtime. Having a portable bytecode format combined with JIT

compilation could make this simpler and more flexible. One possible use

case is “hot-swapping”, which is updating a running program with a new

version. There are, however, other problems that are more difficult to solve,

such as how to ensure that all heap objects are updated to their new format.

Dynamic linking without performance overhead. Dynamic linking of libraries

has the potential to reduce the memory footprint of applications if multiple

applications use the same library. Multiple applications could share the

same library code at runtime, thus the library code only needs to be loaded

once.

This only works if that library is compatible with each application. Com-

patibility is expressed using an application binary interface (ABI) version

number. The ABI includes the semantic version as well as calling conven-

tion and other low-level details. If changes to the library do not require

changing the ABI version, then existing programs can transparently use

a new version of the library. Inlining across library boundaries, however,

inhibits reusability. If an application inlines functions from a library, then

the application depends no longer just depends on the interface of the li-

brary, but also on the particular implementation of the inlined function. To

maximize compatibility a static compiler thus would have to choose to not

inline functions across package boundaries, which may cause performance

degradation due to the overhead of additional function calls and missed

optimisations.

A compiler that operates at runtime does not have this issue because inlining

is performed at runtime and uses the code of whichever version of the library

is available at runtime.

Platform portability. Virtual machines have often been used to achieve plat-

form independence, the famous goal being “write once, run anywhere”. In

practice, it is very difficult to achieve full platform independence due to the

need to also abstract higher-level differences than the CPU architecture. For

11

1. INTRODUCTION

example, graphical user interfaces or I/O subsystems require good abstrac-

tions at the library level. Nevertheless, a virtual machine and a portable

bytecode can make it easier to obtain achieve portability.

Mobile code. Many modern applications use a distributed architecture consist-

ing of many programs running on different machines, possibly even at oppo-

site sides of the planet. Being able to send code as data from one machine

to another can be very useful. For example, consider an application that

runs analyses over financial data. A user in, say, New York, may run her

analysis over the stock data from, say, London’s stock market. Transmit-

ting all the stock data from London all the way across the Atlantic Ocean

over to New York would be a lot more expensive than sending the analysis

code to London to be executed on servers near where the data is hosted.

Being able to send across portable byte code which only later gets compiled

into platform-specific machine code can make implementing this feature

much easier. For example, Cloud Haskell (Epstein et al. [2011]) essentially

requires users to perform manual closure conversion and run the same pro-

gram binary on both machines.

1.7 Thesis Overview

The following Chapter 2 discusses some background to help understand the issues

involved in implementing Haskell efficiently. Chapter 3 then describes trace-based

just-in-time compilation and the design decisions that implementers of such a

compiler must face. To give a better understanding of the full compilation pipeline

Chapter 4 follows the transformation of a small Haskell program all the way to

machine code. Chapter 5 then describes our implementation, Lambdachine, in

detail. In Chapter 6 we discuss how well Lambdachine performs for a set of

benchmark programs and investigate the issues involved. Chapter 7 discusses

related work, and the final Chapter 8 discusses possible future work and concludes

this thesis.

12

Chapter 2

Background

This chapter discusses some background related to the implementation and opti-

misation of lazy functional programs, specifically Haskell.

2.1 Graph Reduction

Haskell’s execution model is based on graph reduction. Figure 2.1 shows a simple

example of graph reduction for the expression f (3 ∗ 7) where f = λx.(x + x).

The expression f (3 ∗ 7) is represented as a tree with the label “@” standing for

application. Evaluation proceeds by replacing the application of f to an argument

with the body of f . The formal parameter x is replaced by the argument. Since

the body of f mentioned x twice, the tree has now become a graph. Evaluation

of the + node now requires that the expression (3 ∗ 7) is evaluated as well.

Note how the expression (3 ∗ 7) was not evaluated until its value was actually

needed. It was also evaluated only once because the expression was shared by

both sides of the + node. This evaluation strategy is known as lazy evaluation

or call-by-need.

This example is only a conceptual model. Modern implementations do not al-

ways construct the graph in memory; the exact representation will instead depend

on the particular design of the implementation model.

Graph reduction has been implemented both on standard hardware as well as

using custom hardware. Because graph reduction is quite different from the tra-

13

2. BACKGROUND

f *

@

3 7

*

+

3 7

21

+

42f (3 * 7)

f = λx.(x + x)

Figure 2.1: Simple example of graph reduction.

ditional von-Neumann style execution model using custom hardware is appealing

and can be quite efficient (Naylor and Runciman [2008], Naylor and Runciman

[2010]). Unfortunately, it is nearly impossible to keep up with the amount of

money and effort spent to improve traditional hardware. Additionally, custom

hardware makes it difficult to interface with existing software written for standard

hardware.

Much research has gone into implementing graph reduction efficiently on stan-

dard general purpose processors. A number of abstract machines have been de-

veloped to serve as a suitable abstraction layer with a simple mapping from a

call-by-need source language and an efficient mapping from the abstract machine

to machine code of the target platform. These abstract machines include the

G-machine (Johnsson [1987], Augustsson [1987]), the Spineless G-machine (Burn

et al. [1988]), the Spineless Tagless G-machine (Peyton Jones [1992]), the ABC

machine (Plasmeijer and van Eekelen [1993]), and GRIN (Boquist [1999]; Boquist

and Johnsson [1996]).

The most widely used Haskell implementation, GHC, uses the Spineless Tag-

less G-machine (STG) (Peyton Jones [1992]). STG requires the use of a higher-

order construct, namely the use of indirect function calls. Boquist and Johnsson

[1996] used the GRIN language and whole-program analysis to translate a Haskell

program into only first-order constructs such as C’s switch statement or calls of

known functions.

14

2. BACKGROUND

2.2 The Source Language

Figure 2.2 shows our input language, called CoreHaskell. CoreHaskell is a simple,

untyped subset of Haskell. We do not require users to write programs in this

language. Rather, it is intended to be produced as the output of some Haskell

compiler front-end. In fact, CoreHaskell is the output of GHC’s CorePrep pass

with the types erased. It is designed to make allocations (let) and the order of

evaluation (case) explicit.

Operationally, let x = b in e causes b to be allocated on the heap and stores

a reference to that heap object in x. If b is a constructor application then an

object with that constructor is allocated. If b is a variable, a function with no

free variables, or a constructor with no arguments then no allocation is necessary

and x will simply be assigned a reference to the static object denoted by b. For

any other terms an object is allocated on the heap that encodes the unevaluated

expression. Section 2.4 discusses this further.

Let-expressions are recursive, thus the binding b may refer to itself through

the variable x. If the let expression contains multiple bindings they may refer to

each other. For example,1

let one = CInt 1 in

let l = Cons one l in

l

constructs an infinitive list of ones, whereas the expression

let one = CInt 1 in

let two = CInt 2 in

let l1 = Cons one l2

l2 = Cons two l1

in l1

returns an infinite list alternating between one and two.

1We use CInt as the constructor for heap-allocated Ints and write Cons and Nil for Haskell’s
list constructors (:) and [].

15

2. BACKGROUND

Variables
x, y, z, f, g

Primitives
p ::= + | − | < | ≤ | ...

Constructors
K ::= True | False | Cons | ...

Literals
` ::= 1 | 2 | ... | ’a’ | ’b’ | ...

Atoms
a ::= ` Literal

| x Variable reference

Terms
e ::= a Atom

| f a Function application
| p a Saturated primitive application
| K a Saturated constructor application

| let x = b in e Recursive let / allocation
| case e of (x) ρ→ e Pattern matching

Binders
b ::= λx.e Lambda abstraction

| e Other expression

Patterns
ρ ::= K x Constructor pattern

| ` Literal pattern
| Wildcard

Programs

p ::= f = e Top-level definition

Figure 2.2: The CoreHaskell language.

16

2. BACKGROUND

The case expression is used both to evaluate expressions and for pattern

matching. Pattern matching only operates on the outermost constructor. The

variable after the of keyword is bound to the result of evaluating the expression.

Haskell supports nested patterns, but CoreHaskell only supports matching on

the outermost constructor. Nested matches in Haskell can be translated into

multiple case expressions in CoreHaskell. For instance:

evenLength :: [a] -> Bool -- In Haskell

evenLength [] = True

evenLength [x] = False

evenLength (x:y:xys) = evenLength xys

-- In CoreHaskell

evenLength list =

case list of

[] -> True

x:xs ->

case xs of

[] -> False

y:xys -> evenLength xys

Applications of constructors and primitives must always be saturated, that is,

the number of arguments must match exactly the number of formal parameters of

the constructor or primitive. Haskell expressions that partially apply constructors

or primitives must be translated into appropriate λ-terms. For example, the

Haskell expression

consFive :: [Int] -> [Int]

consFive = (5:)

when translated into CoreHaskell becomes

five = CInt 5

consFive = λ xs -> Cons five xs

17

2. BACKGROUND

2.3 Non-strict Evaluation

Haskell uses non-strict evaluation by default. This means that arguments to a

function are not evaluated before they are passed to the function. Arguments are

only evaluated if the called function actually needs its value. For example, given

the following definition of the function double

double :: Int -> Int

double x = x + x

a strict language would evaluate the expression double (3 * 4) as follows:

double (3 * 4) ⇒
double 12 ⇒
12 + 12 ⇒
24

In a non-strict language this expression is evaluated as follows:

double (3 * 4) ⇒
(3 * 4) + (3 * 4) ⇒
12 + (3 * 4) ⇒
12 + 12 ⇒
24

In this example, the expression (3 * 4) was evaluated twice. That is, the

compiler chose to implement Haskell’s non-strict semantics using call-by-name.

If the evaluated expression does not have any side effects then the compiler can

cache the result. This is known as call-by-need or lazy evaluation. The evaluation

sequence becomes:

double (3 * 4) ⇒
let x = 3 * 4 in x + x ⇒
let x = 12 in x + x ⇒
let x = 12 in 24

18

2. BACKGROUND

The value of x is no longer needed and will eventually be garbage collected.

While the Haskell standard only prescribes a non-strict evaluation strategy,

almost all Haskell implementations actually implement non-strictness using call-

by-need instead of call-by-name.

2.3.1 Weak Head Normal Form

Non-strictness also means that expressions are evaluated only as much as needed

and no further. Evaluation stops as soon as it reaches a data constructor. Argu-

ments of the constructor are not evaluated. For example, given a function

f :: a -> List a

f x = Cons x Nil

then evaluating the expression f (6 * 7) only performs a single reduction

step (that of applying the function):

f (6 * 7) ⇒
Cons (6 * 7) Nil

The argument 6 * 7 is not evaluated since Cons already is a constructor.

More formally, evaluation reduces an expression to weak head normal form.

Definition 1. An expression is in weak head normal form (WHNF) if either of

these conditions hold:

• It is of the form C e1 · · · en where C is a constructor of arity n, and

e1, · · · , en are arbitrary expressions. This includes zero-arity constructors.

• It is a partial application, i.e., it is of the form f e1 · · · ek where f is a

function of arity n, k < n, and e1, · · · , en are arbitrary expressions.

• It is a literal.

In our core language (Section 2.2), evaluation is triggered by case expressions

which also supports pattern matching on the result.

19

2. BACKGROUND

Header Constructor fields / Free variables

Code for evaluating
the object to weak
head normal form

Constructor tag,
Garbage collector

meta data

Heap:

Static:

Figure 2.3: Possible layout of an object on the heap. The payload for thunk x +

y * 2 would consist of the values for x and y. The code for evaluating the thunk
to weak head normal form is shown in Figure 2.4.

Since unevaluated expression are represented as heap-allocated objects, some

operations on primitive types obey strict evaluation rules. For example, an ex-

pression of type Int, i.e., a heap-allocated fixed-precision integer, may be an

unevaluated expression, but a value of type Int#, which represents an underlying

machine integer, is always in normal form. These primitive types, however, are

implementation-specific and are used mostly by low-level code. We discuss thes

2.4 Implementing Lazy Evaluation

Unevaluated expressions are typically implemented using heap-allocated objects

called thunks that contain the free variables of the expression and a pointer to

the code for reducing the expression to WHNF. A call-by-need implementation

then overwrites the thunk with its evaluation result, while a call-by-name imple-

mentation would not.

For instance, the expression x + y * 2 contains two free variables, thus its

thunk may look as shown in Figure 2.3. The object header identifies the object

20

2. BACKGROUND

1 Object *x = Node[1]; // load free variable "x"

2 if (!inWHNF(x))

3 x = EVAL(x);

4 Object *y = Node[2]; // load free variable "y"

5 if (!inWHNF(y))

6 y = EVAL(y);

7 int x_raw = UNBOX_INT(x);

8 int y_raw = UNBOX_INT(y);

9 int result_raw = x_raw + y_raw * 2;

10 Object *result = BOX_INT(result_raw);

11 UPDATE(Node, result);

12 return result;

Figure 2.4: Evaluation code for the thunk of x + y * 2 (in pseudo-C).

layout to the garbage collector and contains a pointer to the code that evaluates

the thunk to WHNF. Figure 2.4 shows this evaluation code for our example

expression in pseudo-C.

The code first loads the values of the free variables via the special Node variable

(lines 1 and 4). The Node variable always points to the currently evaluated

thunk. It thus serves a similar role as the this or self variable in object-oriented

languages.

Both x and y may itself be thunks, so they first must be evaluated to WHNF.

The implementation of inWHNF and EVAL is discussed in Section 2.4.2. Now that

x and y are guaranteed to be in WHNF their payload values can be extracted to

compute the expression’s result.

The UNBOX INT operation extracts the integer from a heap-allocated integer

object (which must be in WHNF). This can be implemented in different ways.

For example, in GHC heap-allocated integers are heap objects with a single field.

Retrieving the integer value thus requires a memory load. Other implementations

may choose to use a tagging scheme to indicate if a value is a pointer to a heap

object or an integer. Retrieving the integer value would then amount to removing

the tag bits.

21

2. BACKGROUND

2.4.1 Thunk Update

After computing the result, BOX INT turns it back into an object reference either

by tagging, or by allocating a heap object. This object (result) is then used to

update the current thunk with its value (line 11).

Updating of thunks distinguishes lazy evaluation from other forms of non-

strict evaluation. Note that updating is only necessary if there is a possibility

that the thunk is evaluated again in the future.

Updating can be implemented either by directly overwriting the thunk object

with the new object, or by using an indirection. Using an indirection means that

we overwrite the header word of the thunk with another header that indicates

that the object has been evaluated. The payload of the object (which previously

contained the free variables of the expression) is then overwritten with a pointer

to the new value. If the same object is evaluated again the evaluation code will

immediately return the cached value.

Directly overwriting the thunk seems like a reasonable choice, however, it

causes some complications:

1. The new object may be larger than the thunk. In that case we have to

support a way to split objects, or also support using an indirection.

2. Even assuming the size of the object is not an issue, we would still have

to copy the whole object. An indirection only requires two memory writes

(one for the header, and one for the pointer to the new value).

3. In a concurrent implementation we may want to atomically replace the

thunk with its new value. This also favours a solution with fewer writes.

GHC chooses to use indirections and employs some help from the garbage col-

lector to reduce the amount of pointer-chasing required. Whenever the garbage

collector traverses the heap, it automatically rewrites all pointers to an indirec-

tion to point to the indirectee instead. In the long run this removes almost all

indirections. The implementation described in this thesis uses the same tech-

nique.

22

2. BACKGROUND

2.4.2 Checking for Weak Head Normal Form

There are a number of ways to check whether a value is in WHNF. One way,

is to look up the meta data associated with the object using information from

the header. In GHC, the header is actually a pointer to the meta data (the info

table). Checking if the object is in WHNF could then be done by checking a bit

in the info table:

bool isWHNF(Object *o) { // inlined at each use site

InfoTable *info = o->header;

return info->isWHNF;

}

This requires following two pointers, one to load the pointer to the info table

from the object, and another to then load the bit from the info table itself.

Checking whether an object is in WHNF is a very frequent operation, so this can

cause a lot of overhead.

The bit indicating whether an object is in normal form could be stored in the

header itself, but that would require either masking that bit whenever the pointer

to the info table needs to be followed (if the bit is stored with the pointer to the

info table), or a larger header (if the bit is stored separately from the pointer).

For a long time GHC instead decided to never perform this check and uncon-

ditionally evaluate objects. The code for evaluating an object that is already in

WHNF would return immediately and return a pointer to the object itself as the

result. Evaluation still requires dereferencing two pointers, but if the object is

not in WHNF then that would have been necessary anyway.

It turns out that in practice, most calls to isWHNF would return true, though.

Therefore, if isWHNF could be implemented efficiently the performance of many

programs could be improved. Marlow et al. [2007] performed these measurements

and evaluated two tagging schemes to exploit this fact. Both schemes exploit the

fact that on a 64 bit architecture all objects are aligned at a multiple of 8 bytes (64

bits). This implies that any pointer to such an object must be a multiple of 8 and

thus all three least significant bits must be 0. Similarly, on a 32 bit architecture

objects will be aligned at a 4-byte boundary, so the two least significant bits will

23

2. BACKGROUND

top 61 bits of pointer to object tag

61 bits 3 bits

Figure 2.5: Pointer tagging. Because objects are aligned at 8 byte boundaries on
a 64 bit architecture (or 4 bytes on a 32 bit architecture), the lowest 3 bits can
be used to store other information (2 bits on a 32 bit architecture).

always be 0. This leaves room to store extra information in those bits provided

that we ensure that this extra information is removed when dereferencing the

pointer.

Marlow et al. [2007] evaluated two uses of these extra bits:

Semi-tagging. Only the least significant bit, call it t, is used to store whether the

pointed-to object is in normal form. If t = 1, then the object is guaranteed

to be in WHNF. If the t = 0, then the object may not be and we must

evaluate it.

Constructor tagging. All available bits are used to encode a 2-bit or 3-bit

number c. If c > 0 then the pointed-to object is in normal form and its tag

is c. For example, for a list c = 1 could be the “[]” constructor, and c = 2

could mean the “(:)” constructor. If c = 0 then the object might not be in

WHNF and it must be evaluated. If an object has more constructors than

can be represented with c, it is always safe to use c = 0.

In both cases a pointer is almost always dereferenced in a context where the

value of t/c is known. That means, no bit masking is necessary. To get the true

address of a pointer p we simply access the address p − t or p − c, respectively.

The evaluation code always returns a tagged pointer and the garbage collector

will add the right tag to each pointer to an object in the heap.

The semi-tagging scheme improved performance over an implementation with-

out tagging by on average 7% to 9%. Marlow et al. [2007] argue that the increase

24

2. BACKGROUND

in performance is mostly due to the reduced number of mispredicted branches

(due to the indirect function call employed by EVAL).

The pointer tagging scheme performed even better, improving performance by

on average 12.8% to 13.7%. Branch mispredictions have been reduced the same

way as semi-tagging. The additional speedups are due to cache effects. A case

expression normally has to look up the tag of the target from the info table (two

pointer indirections). By storing the tag in the pointer, this look-up is avoided.

As Marlow et al. [2007] note, this level of improvement is indeed quite im-

pressive because GHC was already a mature compiler at the time this dynamic

optimisation was added. It could mean, that this moved GHC very close to

the peak efficiency of Haskell’s execution environment. It could also mean that

there is more potential in using dynamic optimisation to improve performance of

Haskell program.

2.5 Partial Application and Over-application

In Haskell a function f of type A -> B -> C can be implemented in two different

ways. Most commonly it will be implemented as a function that requires two

arguments (of types A and B) and then returns a result of type C. It could also be

implemented as a function which expects a single argument (of type A) and then

returns another function which expects a single argument (of type B) and then

returns a result of type C. The Haskell type system does not distinguish these two

cases, but an implementation of Haskell usually will due to efficiency concerns.

This ambiguity can be used to make programming in Haskell more convenient.

For example, regardless of how f is implemented, applying it to one argument

returns a function of type B -> C. We do not have to distinguish these two

expressions:

λ x -> f a x ≡ f a

The problem is, if f is implemented as a function that expects two arguments,

it has to be translated dynamically into something equivalent to the left-hand side

of the above equality. We can avoid this overhead if the function being called is

25

2. BACKGROUND

known at compile time. The compiler will look up which way f is implemented

and generate an efficient calling sequence. For example, if f takes two arguments,

then the compiler will supply both arguments at once. Otherwise, the compiler

will translate a call like f x y to:

case f x of g -> g y

The compiler cannot do this if the function is a variable and the compiler does

not know which function will be invoked at runtime. The compiler will then have

to use a generic function call mechanism. GHC will translate this to a call to

the right variant of its apply primitives (Marlow and Peyton Jones [2004]). The

apply primitive, or the equivalent mechanism in the push/enter model (Marlow

and Peyton Jones [2004]), must dynamically handle each of the three possible

cases:

Exact Application If the function expected exactly the number of arguments

that it was called with, then the function is simply called with the given

number of arguments.

Partial Application If the function expected more arguments than were sup-

plied, we must construct a partial application on the heap, which is referred

to as a PAP. A PAP contains a pointer to the function being applied and

all the arguments that have already been applied.

Over-application If the function expected fewer arguments than it was given,

then the additional arguments must be saved and applied later. That is, the

function is first called with the number of arguments it expected and once

the function returns, the function’s result—which must be a function—is

called with the remaining arguments.

Figure 2.6 shows pseudo-code that handles all these cases for the case where

a function is applied to two arguments. If the function argument is a thunk, it

has to be evaluated first. The result must then be either a function or a partial

application. In each case we must consider many possibilities.

In practise, a fair amount of executed function calls are calls to unknown

functions (around 20%, but varying widely), but the vast majority of these calls

26

2. BACKGROUND

1 /* Applies the function f to the two pointer arguments arg1 and arg2 */

2 Object *apply_pp(Object *f, Object *arg1, Object *arg2)

3 {

4 if (!inWHNF(f))

5 f = EVAL(f);

6 if (isFunction(f)) {

7 switch (arity(f)) {

8 case 1: { /* too many args / over-application */

9 Object *g = invoke(f, arg1);

10 return apply_p(arg2); /* apply the remaining arg */

11 }

12 case 2: /* exact application */

13 return invoke(f, arg1, arg2);

14 default: { /* too few args / partial application */

15 Object *pap = alloc_pap2(f, arg1, arg2);

16 return pap;

17 }

18 } else { /* f is a PAP */

19 switch (pap_arity(f)) {

20 ...

21 }

22 }

23 }

Figure 2.6: Sketch of a possible implementation of a generic apply primitive.

27

2. BACKGROUND

are exact calls (Marlow and Peyton Jones [2004]). Nevertheless, each of these

calls of an unknown function must go through the above decision process, adding

overhead.

2.6 Type Classes and Overloading

Another interesting feature for Haskell implementers are type classes (Wadler

and Blott [1989]). A type class is a mechanism for overloading functions to work

over different types. For example, the type class for types whose values can be

compared for equality is called Eq in Haskell. Two implementations of Eq for

booleans and lists may look as follows.

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x /= y = not (x == y) -- default implementation

instance Eq Bool where

False == False = True

True == x = x

_ == _ = False

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

If we use the operators defined by the Eq type class on a concrete type, the

compiler automatically figures out which implementation to use. The more inter-

esting feature is that type classes can be used to abstract over the implementation

of certain operations. For example, the function elem works over any type that

is an instance of Eq.

elem :: Eq a => a -> [a] -> Bool

28

2. BACKGROUND

elem _ [] = False

elem x (y:ys) = x == y || elem x ys

Type classes usually also have associated laws that must hold for each imple-

mentation. For example, == should describe an equivalence relation and therefore

should be reflexive, symmetric and transitive. These properties are not enforced

by the Haskell compiler, but programs may break in subtle ways if such properties

do not hold.

Type classes are commonly implemented using dictionaries. A dictionary is a

record of functions (or constants) that implement the operations of the type class.

The type class definition is translated by the compiler into a type declaration of

the dictionary type. Type class instances are translated into values of this type.

Figure 2.7 shows the result of applying this transformation to the Eq type class.

The dictionary type for Eq simply contains two functions which implement

the two operations (Line 1). The type class methods take a dictionary as an

additional argument, look up their implementation in that dictionary then tail-

call the implementation with the appropriate arguments (Lines 2–4).

The implementation of the instance Eq Bool is stored in the dictionary dictEqBool

(Line 6). The dictionary for Eq [a] is actually a function (dictEqList) be-

cause the instance declaration had the constraint Eq a. The intuitive reading

of the instance Eq a => Eq [a] is: “If the type a supports testing for equality,

then equality for lists of type a is defined as follows.” The function dictEqList

translates this intuition into the more operational “Given an implementation of

equality for type a, this function provides an implementation of equality for [a].”

The dictionary passed to dictEqList is indeed passed on to the implementation

of the operations where it is used eventually in the implementation of (==) on

Line 29.

2.6.1 Performance Overhead of Type Classes

In order to invoke the equality operation on lists we must construct a dictionary to

pass to (==). This means that dictionaries may actually be dynamically allocated

(Lines 22,32). In the case of lists a new dictionary will be allocated for each

29

2. BACKGROUND

1 data DictEq a = DictEq (a -> a -> Bool) (a -> a -> Bool)

2 (==), (/=) :: DictEq a -> a -> a -> Bool

3 (==) (DictEq eq _) x y = eq x y

4 (/=) (DictEq _ ne) x y = ne x y

5 -- instance Eq Bool where ...

6 dictEqBool :: DictEq Bool

7 dictEqBool = DictEq dictEqBool_eq dictEqBool_ne

8 dictEqBool_eq, dictEqBool_ne :: Bool -> Bool -> Bool

9 dictEqBool_eq x y =

10 case x of

11 False -> case y of

12 False -> True

13 True -> False

14 True -> y

15 dictEqBool_ne x y = not ((==) dictEqBool x y)

16 -- instance Eq a => Eq [a] where ...

17 dictEqList :: DictEq a -> DictEq [a]

18 dictEqList dict = DictEq (dictEqList_eq dict)

19 (dictEqList_ne dict)

20 dictEqList_eq, dictEqList_ne :: DictEq a -> a -> a -> Bool

21 dictEqList_eq dict xs ys =

22 let dictEqListA = dictEqList dict in

23 case xs of

24 [] -> case ys of

25 [] -> True

26 _ -> False

27 (x:xs’) -> case ys of

28 [] -> False

29 (y:ys’) -> (==) dict x y

30 && (==) dictEqListA xs’ ys’

31 dictEqList_ne dict xs ys =

32 let dictEqListA = dictEqList dict in

33 not ((==) dictEqListA xs ys)

Figure 2.7: Implementation of the type class Eq.

30

2. BACKGROUND

recursive call. Fortunately, in this example, the compiler can optimise this easily

by inlining (==) at each use site.

Other overheads cannot be eliminated so easily. For example, consider the

expression from Line 29

(==) dict x y

Inlining removes the overhead of the function call, but the resulting expression

cannot be optimised any further:

case dict of

DictEq eq _ -> eq x y

The expression eq x y is a call of an unknown function which is more ex-

pensive than a call to a known function. This inefficiency is simply the cost of

abstraction. It is also no less efficient than calling a virtual method call in, say,

the C++ programming language, which is also implemented via indirect func-

tion calls. When the dictionary is statically known the compiler can, of course,

remove the pattern match and directly call the implementation. Inlining may

expose further optimisation opportunities.

2.6.2 Specialisation

In order to optimise functions that abstract over type classes we need speciali-

sation. The following is the elem function translated to use explicit dictionary

arguments:

elem :: DictEq a -> a -> [a] -> Bool

elem dict x l =

case l of

[] -> False

(y:ys) -> (==) dict x y || elem x ys

We can create a specialised version of this function for arguments of type

Bool. This involves duplicating all code and substituting dictEqBool for the

dict argument. After further optimisation we get this more efficient version:

31

2. BACKGROUND

elem_Bool :: Bool -> [Bool] -> Bool

elem_Bool x l =

case l of

[] -> False

(y:ys) -> dictEqBool_eq x y || elem_Bool x ys

Like inlining, specialisation requires code duplication. This may enable subse-

quent optimisations which may eventually shrink the amount of code, but a static

compiler must carefully evaluate the trade-off between better performance and

size of the compiled code. Increased code size can negatively affect compilation

time or even performance due to worse (instruction) cache utilization.

Automatic specialisation is difficult in practice, because a polymorphic func-

tion and all the functions that it calls must be specialised. If multiple parts of a

large program require the same specialisation of a function, then it could poten-

tially be shared, but that would often be insufficient and it would work against

inlining.

C++ templates use essentially this technique. Any polymorphism is elimi-

nated by specialising each use site to the desired monomorphic type. Sharing of

specialised code fragments can reduce the total amount of generated code, but

the amount of generated code can still be excessive. A common work-around is

to instantiate templates to use a generic pointer type (void *) which can then

be shared across multiple usage sites. This effectively disables specialisation and

corresponds to the use of polymorphic types in Haskell.

2.7 Dynamic Optimisation

A program optimiser that executes at program run time can perform specialisa-

tion based on the program’s actual behaviour. Rather than having to be prepared

for every possibility, the optimiser can specialise the code based on the commonly

encountered argument patterns and provide a slower fallback for the uncommon

case.

The next chapter discusses the techniques used in this work to implement

such a dynamic optimiser.

32

Chapter 3

Trace-based Just-in-time

Compilation

Just-in-time (JIT) compilation is commonplace in modern implementations of

programming languages and virtual machines. In contrast to ahead-of-time com-

pilation, where a program is first compiled and then run, just-in-time compilation

occurs while (or immediately before) the program is running. It is commonly em-

ployed to improve the performance of interpreter-based systems, such as, for ex-

ample, the Java Virtual Machine (JVM) (Lindholm and Yellin [1999]), JavaScript

runtimes (V8; Gal et al. [2009]), or binary translators such as IA-32 (Baraz et al.

[2003]).

Because compilation is delayed until runtime, JIT compilers may incorporate

information collected at runtime into optimisations. For example, a static Java

compiler may implement virtual function calls using indirect branches. This is

costly since hardware branch prediction has difficulties predicting the target such

branches which in turn causes pipeline stalls. A JIT compiler could instead

compile each call site to a direct branch to the method of the most commonly

encountered type, preceded by a check that the object type is indeed as expected.

If this check fails, the execution falls back to the indirect branch technique. It

is mainly for this reason that JIT compilation is very popular for dynamically

typed languages such as JavaScript where a basic operator such as “+” may do

many different things depending on the types of its arguments at runtime (ECMA

33

3. TRACE-BASED JUST-IN-TIME COMPILATION

International [2011]). A JIT compiler can potentially compile multiple versions,

specialised to the commonly occurring argument types.

One important decision in designing a JIT compiler is to ask what constitutes

a compilation unit. The traditional compilation unit of a whole file or module

is generally too large. Since compilation is interleaved with program execution,

compilation now counts towards the program’s execution time. Compiling large

sections of the program at once can cause a substantial delay in the program and

would be too disruptive. Compiled code also increases the memory usage of the

program, which leads to another reason to minimize the total amount of compiled

code. A better strategy, then, is to compile smaller units and only those that are

executed most frequently.

Common choices of compilation units for dynamic optimisation systems are:

Dynamic Basic Block A dynamic basic block (Smith and Nair [2005], Chapter

2) is a sequence of dynamically executed instructions starting from the

target of a branch and ending with the next branch. A dynamic basic

block may include several static basic blocks, for example if one static basic

block has a “fall-through” branch to one of its successors. For example,

in Figure 3.1 (middle), basic blocks A and B get merged into one dynamic

basic block because they are linked by a fall-through branch. Because B

later becomes the target of a branch, another dynamic basic block is created

which only contains B. This technique is often used in binary translators

where the program’s higher-level structure is not known.

Method/Function The natural compilation unit for implementations of most

programming languages is a single function (or method). Since static com-

pilers normally also compile a single function at a time, this means that the

same techniques used for static compilation can be used in the JIT compiler

(assuming that they can run quickly enough). It also makes it easy to inter-

face compiled and interpreted code if both use the same calling convention.

In Figure 3.1 (left), the compiler has a choice to compile each function sep-

arately (blocks A-G, and blocks H-K), or inline the called function (H-K) into

the outer function and compile the complete control-flow graph at once.

34

3. TRACE-BASED JUST-IN-TIME COMPILATION

B

C D

E

A

F

G

H

I J

K

call

 return

A

B

C

E

H

I

D

B

E

K

J

K

F

G

B

C

E

H

J

K

F

D

E

H

K

F

Interpreter

I

Method Dynamic Basic Block Trace

Figure 3.1: Compilation units: methods, dynamic basic blocks, and traces.

35

3. TRACE-BASED JUST-IN-TIME COMPILATION

Trace A trace is a linear sequence of instructions with a single entry point and

one or more exit points. A trace does not contain any inner control-flow

join points—execution either continues on the trace or it exits the trace.

As a special case, a trace may form a loop, i.e., the last instruction of the

trace may jump back to the beginning of the same trace. Traces are not

restricted to a single function, but are allowed (and often do) include parts

of several functions. If there are multiple frequently executed control flow

paths in a function, then these must be covered using multiple traces. As

shown in Figure 3.1 (right), this can cause a fair amount of duplication,

but this duplication may provide more opportunity for specialisation and

removal of redundancies.

Region This is the most general compilation unit and allows basic blocks from

several functions to be included in the compilation unit. All basic blocks

must be related via control-flow edges, but control-flow within a region is

unrestricted. In particular, a region may include several loops and several

control-flow join points.

Because this thesis is concerned with implementing a language runtime rather

than a binary translation system, we do not consider dynamic basic blocks since

their scope for optimisation is too small.

3.1 Functions vs. Traces vs. Regions

We now discuss the trade-offs between the choices of compilation units.

Detection of hot code In order to determine which parts of a program are

worth optimising, a JIT compiler needs to perform some form of profiling.

The choice of profiling method determines the runtime overhead and the

accuracy of the profiling data. Commonly chosen profiling methods either

involve counters or statistical profiling using a timer interrupt.

A statistical profiler can be used if the compilation unit is a function (Arnold

et al. [2000]). The profiler interrupts the program at a fixed time interval

(e.g., whenever the thread scheduler interrupts the program) and inspects

36

3. TRACE-BASED JUST-IN-TIME COMPILATION

the call stack. Methods that occur frequently at or near the top of the stack

are considered as hot and are compiled to machine code. The profiling data

may also be used to inform inlining decisions.

Profiling using counters is applicable regardless of the choice of compilation

unit. The profiler counts, e. g., the number of times a function is called, or

the number of times that a particular basic block is called.

Scope for optimisation If the compilation unit is too small, there is very little

room for the compiler to perform any optimisations (apart from removing

the overhead of the interpreter). The compilation unit should therefore be

of reasonable size and preferably span multiple functions to enable inter-

procedural optimisations.

A function can provide reasonable scope for optimisations if combined with

inlining of smaller functions called from within the function. Since programs

spend most of their time in loops, it is important that a compiler can

optimise a whole loop at a time whenever possible. In imperative languages

loops tend to be contained fully within a function (e.g., because they are

implemented using for or while statements) and are easy to recognize.

Because of the importance of loop optimisations, the compiler may choose

to, e. g., inline functions more aggressively if they are called from within a

loop. Even if the language implementation supports tail call optimisations,

they may not be optimised to the same degree.

In functional languages, loops are implemented as (tail-)calls to recursive

functions. If a loop is implemented using mutually recursive functions,

detecting the loop becomes more difficult. For example, if a loop spans two

mutually recursive functions f and g then the compiler has to inline g fully

inside f (or vice versa) to optimise the whole loop.

In a trace or region compiler loop detection is part of the trace selection

mechanism. The compilation unit therefore often is a loop to begin with.

Optimisations on a trace or region are also naturally interprocedural be-

cause the selected traces often span multiple functions. The quality of the

selected traces, however, is important. If a hot inner loop requires more

37

3. TRACE-BASED JUST-IN-TIME COMPILATION

than one trace, then the trace compiler may produce much less efficient

code due to missed optimisation opportunities. Selection of high-quality

traces is an active area of research (see Section 3.3).

Applicable optimisations In a method compiler, the whole function is visible

to the optimiser. Methods called from within the compiled method are

either inlined either fully or not at all. Having access to the whole method

allows some optimisations which require proving that a certain condition

cannot happen. For example, escape analysis (Choi et al. [1999]) tries to

determine whether a local variable’s value is stored in a place where it

may be observed by other threads. A trace compiler may have to assume

that a value escapes even if it does not, because the trace compiler cannot

“see” the off-trace code (or chooses not to look at it in order to speed up

compilation).

Some of this can be ameliorated by doing limited static analysis and embed-

ding this information into the program. For example, a dead-code analysis

may benefit from knowing the live variables at each branch point. That

way, the trace compiler can determine whether a variable is live on an off-

trace path. Even if conventional optimisations would be ineffective, a trace

compiler can achieve the same effect via other optimisations. For exam-

ple, while escape analysis cannot be applied effectively to traces, allocation

sinking (Section 5.10, Ardö et al. [2012]) and forms of partial evaluation

(Bolz et al. [2011]) can be used to achieve a similar effect.

Compilation overhead Since a function can contain more complex control

flow, a function compiler is also more complex and thus more difficult to

make fast. Optimisations in a method or region compiler work in a way

very similar to static compilers. If there are control-flow join points, then

analyses must be iterated until a fixed point is reached. Keeping the pro-

gram in SSA form helps keep such iteration to a minimum, but it cannot be

avoided in general, and establishing and maintaining SSA form during opti-

misations has some overhead. One of the bigger disadvantages of a method

compiler is that it compiles the full function, which may include a large

amount of code that is not actually executed very often. Inlined functions

38

3. TRACE-BASED JUST-IN-TIME COMPILATION

increase the optimisation problem even further (although some parts of the

inlined function may turn out to be dead code) and thus inlining has to be

rather conservative.

In contrast, a trace compiler can be extremely simple. Often a single pass of

forward optimisations (e.g., constant propagation, algebraic simplification,

removal of redundant operations) and a single pass of backward optimi-

sations (e.g., dead code elimination) is enough. No iteration is necessary.

Both forward and backwards passes can be implemented as a pipeline of

simple optimisations. This makes a trace-based compiler both simpler and

requiring less compilation overhead than a method-based compiler (assum-

ing both generate the same amount of code) (Gal and Franz [2006]).

Higher compilation overhead may be less of a problem for long-running

systems where it can be amortised over the total run time of an application.

For shorter programs compilation time is more important, possibly at the

expense of absolute performance. Note that a faster compiler can also more

quickly adapt to changing runtime behaviour of the application.

Size of compiled code The size of the compiled code can influence the memory

footprint of the application. On memory-constrained devices (e.g., mobile

devices or shared servers) this can be an important factor. In a function-

based compiler code size can be controlled by varying the degree to which

aggressive inlining is performed.

Because a trace cannot contain any joining control flow nodes (except at

the entry) any code occurring after such a merge point is duplicated (e.g.,

blocks E, H, K, and F in Figure 3.1). This is known as tail duplication. Tail

duplication can enable additional optimisation by propagating information

from before the diverging control flow paths. A function compiler will have

to assume that code after the merge point could have been reached through

either path. On the other hand, tail duplication can cause large amounts

of duplicated code for certain extreme cases. Figure 3.2 shows how tail

duplication can increase code size. In this example, the basic block E

has been duplicated four times. A trace compiler has to protect against

excessive duplication, but in small amounts it can be beneficial if it enables

39

3. TRACE-BASED JUST-IN-TIME COMPILATION

additional code specialisation.

Integration of compiled and interpreted code A method compiler only needs

to be able to call and be called from interpreted functions. A more difficult

problem in a method compiler is the technique by which a running function

is replaced with an optimised version of the same function, called on-stack

replacement (OSR) (Soman and Krintz [2006]).

A trace compiler needs to be able to switch back to the interpreter at any

exit point. The integration with the interpreter is tighter, which means that

the design decisions of the virtual machine can have a larger effect on the

performance of the whole program. For example, a trace compiler cannot

change the size of a function’s activation frame if execution may fall back

to the interpreter to execute some other part of the function.

A region-based compiler avoids the tail-duplication problems of a trace-based

compiler and also avoids compiling unused code. However, it is also more com-

plicated than either trace-based or method-based compilers since it must be able

to deal both with control flow joins and also integrate well with the interpreter

in case execution leaves the compiled region.

We did not consider implementing a region-based compiler because of the

higher implementation cost. Instead we chose to implement a trace-based JIT

compiler for Lambdachine. There were two reasons for this:

Implementation Effort A trace compiler is simpler overall to implement than a

method compiler. Of course, the trade-offs change if we can reuse an existing

implementation. There are a number of open source projects that can be

used. A commonly used library for JIT compilers, particularly method-

based compilers, is LLVM (Lattner and Adve [2004]).

LLVM is certainly very powerful and can generate high-quality code, but it

is relatively slow as a JIT compiler. LLVM performs optimisations using a

sequence of simple optimisation passes, some of which may be run multiple

times. This makes it easier to implement new optimisation passes, but op-

timisation passses that combine multiple optimisations are typically faster

(yet harder to maintain).

40

3. TRACE-BASED JUST-IN-TIME COMPILATION

A

B1 B2

C

D1 D2

E

A

B1

C

D1

E

B2

C

D1

E

D2

E

D2

E

F

F

Figure 3.2: Excessive code duplication due to tail duplication. Because traces
cannot contain merging control flow, blocks occurring after control flow merge
points are duplicated. For certain control flow patterns that can lead to some
basic blocks being duplicated many times.

Fortunately, there is a high-quality open source trace-based JIT compiler

available, namely LuaJIT (Pall [2013]). We therefore chose to base our

implementation on LuaJIT as we estimated the cost of using LuaJIT to

be not much higher than LLVM. LuaJIT’s code generator, in turn, takes

advantage of the special structure of traces and has been heavily optimised

with high compilation speed in mind.

Optimisation/Effort Trade-off The choice of compilation unit affects which

optimisations can be performed efficiently or at all. For example, a trace-

based JIT compiler automatically performs partial inlining which is hard to

implement in a pure method compiler. Similarly, a trace-based JIT cannot

41

3. TRACE-BASED JUST-IN-TIME COMPILATION

on its own decide if a variable is live-out (but it can take advantage of

liveness information provided by the bytecode compiler).

We felt that the optimisations that can be implemented easily and effec-

tively in a trace-based JIT compiler are sufficient.

The alternative of porting GHC’s (essentially method-based) optimisation

passes to a lower-level intermediate representation did not promise to enable

significantly more powerful optimisations and would be much more difficult

to implement. Support for speculative optimisations only possible in a JIT

compiler would have required additional effort.

Looking back, we still consider this analysis as valid. Since we did not imple-

ment a method-based compiler it is difficult to compare the implementation effort

involved, but we have not discovered any issues that would be significantly easier

to solve in a method-based compiler. The biggest issue specific to trace-based

compiler is the design of trace selection strategy which is discussed further in Sec-

tion 3.3. While this is not needed in a method-based compiler, we expect inlining

decisions to be a related non-trivial design aspect of a method-based compiler.

We now explore in more detail the design decisions involved in the implemen-

tation of a trace-based JIT compiler. Throughout this chapter we remark which

of the possible choices were made in Lambdachine.

3.2 Trace JIT Compiler Overview

A trace-based JIT compilation system typically has three modes:

Interpret. Execute bytecode using interpreter.

Record. Execute bytecode using interpreter and additionally record each exe-

cuted instruction.

Native. Execute compiled machine code.

An optimised trace compiled to machine code is called a fragment and is stored

in the fragment cache. The high-level behaviour, shown in Figure 3.3, consists of

the following phases:

42

3. TRACE-BASED JUST-IN-TIME COMPILATION

Interpret until
possible start of
trace instruction

Trace exists
for target?

Fragment Cache
(Machine code)

Increment
hot counter

Counter
exceeds

threshold?

yes

no

Emit intermediate
code and interpret

until possible start of
trace instruction

no

yes

failed guard

End of trace
condition?

no

Optimise
trace yes

Emit code into
fragment cache,

link traces, recycle
hot counter

abort recording

Figure 3.3: Overview of trace-based JIT compiler execution modes.

43

3. TRACE-BASED JUST-IN-TIME COMPILATION

1. Execution starts in the interpreter (top left in Figure 3.3). Certain in-

structions may be potential trace head, that is, a trace may start at that

instruction. If the interpreter encounters such an instruction it first checks

the fragment cache to ascertain whether a trace for that trace head already

exists. If so, execution is transfered to the machine code of the respective

fragment until the machine code falls back to the interpreter.

If no trace exists for a given trace head, the hotness counter associated with

that trace head is incremented. If the hotness counter exceeds the hotness

threshold, the interpreter is switched into recording mode (phase 2 below).

Otherwise, execution continues normally in the interpreter. If execution

switches from compiled code back to the interpreter, another hot counter

is incremented and may trigger a switch to recording mode. Section 3.3

discusses different techniques for discovering and selecting traces.

2. When the interpreter is in recording mode it continues to interpret instruc-

tion, but also records the executed instructions. This is usually done by

emitting instructions of an intermediate representation into a compilation

buffer.

Under some circumstances recording may fail. Since recording is speculative

it could happen that the program takes an execution path that does not

produce a suitable trace, e. g., an exception is thrown by the program, or

garbage collection is triggered. In this case the recorded code is discarded

and the interpreter switches back to normal execution.

Recording normally finishes when a loop is detected. A trace may also be

completed when the interpreter reaches the start of an existing traces. The

decision about when to stop recording can influence the performance of the

generated code as well as the total amount of code generated. Section 3.4.3

discusses these trade-offs.

3. If trace recording completes successfully, the recorded intermediate code

is optimised and compiled to machine code. The machine code is placed

in the fragment cache and execution continues in the interpreter. If the

compiled trace starts at the exit of another trace, the parent trace, then

44

3. TRACE-BASED JUST-IN-TIME COMPILATION

the two traces may be linked together so that if the parent trace exits,

execution is transferred directly to the child trace. Section 3.6 discusses

multiple techniques for trace linking.

Execution need not start in an interpreter. Some systems eschew an inter-

preter in favour of a fast baseline compiler. A baseline compiler makes sense if

implementing a fast interpreter would be difficult. For example, implementing a

fast interpreter for x86 instructions is difficult due to the cost of decoding x86

instructions. By translating a basic block at a time with minimal optimisations,

the baseline compiler can achieve good performance at the cost of using additional

memory.

However, if the design of the interpreter is under our control it is possible to

write a very efficient interpreter, which is ultimately more flexible. In a direct-

threaded interpreter (Ertl and Gregg [2003]) switching execution mode is as easy

as replacing the pointer to the dispatch table. The dispatch table is an array

of pointers to the implementation of each opcode. A baseline compiler usually

needs to generate new code for each execution mode instead and thus has higher

memory overhead.

Lambdachine uses an interpreter instead of a baseline compiler. This is for

a number of reasons. An interpreter is easier to implement and test; it has

lower memory overhead since it does not need to store any generated machine

code. The bytecode is register based which reduces the dispatch overhead of the

interpreter (Section 5.2.1, Section 7.6). Lambdachine’s interpreter is implemented

in C++. Section 7.10 discusses systems that use a baseline compiler instead of

an interpreter.

3.3 Trace Selection

A key to good performance of a trace-based JIT compiler is the quality of the

selected traces. If the selected traces are too short, the scope for optimisations is

too small. Longer traces are preferable, but they will only pay off the recording

and compilation time if they are executed frequently and if execution remains on

the trace most of the time.

45

3. TRACE-BASED JUST-IN-TIME COMPILATION

Another problem is that traces must be created speculatively. Traces must be

created before the program actually spends a lot of time actually executing that

particular code path. If the wrong traces are selected the overhead of invoking

the JIT compiler will not pay off. For this reason, trace selection schemes focus

on detecting hot loops as any long running program must execute some kind of

loop.

A metric for estimating the quality of selected trace is how many traces are

required to account for X% of the program’s execution time. The X% cover set

is defined as the smallest set of regions that comprise at least X% of program

execution percentage (Bala et al. [1999]). A commonly used metric therefore is

the size of the 90% cover set (Bala et al. [1999]; Hiniker et al. [2005]).

Finally, the mechanism to detect traces must not cause too much profiling

overhead. Most implementations use simple counter-based profiling. Method-

based JIT compilers sometimes use periodic stack sampling to detect which meth-

ods are called frequently, but that does not work for detecting traces.

Trace-based JIT compilers therefore use counter-based profiling. Certain pro-

gram points are identified as potential trace heads, that is places where a trace

may start, and each has an associated hotness counter. If a trace is recorded and

compiled, the counter for its trace head may be recycled since execution will be

diverted into the fragment cache from now on.

3.3.1 Selecting Trace Heads

We now discuss different mechanisms for identifying trace heads:

Next executed tail (NET) Every loop must contain at least one backwards

branch. The next executed tail heuristic considers every target of a back-

wards branch a potential trace head (Bala et al. [1999, 2000]; Duesterwald

and Bala [2000]). A backwards branch is any branch to a lower address

than the current program counter. This implies that where traces may

start depends on some arbitrary aspects, such as the static layout of the

program code in memory. It also means that every function call (recursive

or not) gives rise to at least one potential trace head. Either the function

46

3. TRACE-BASED JUST-IN-TIME COMPILATION

itself is considered a trace head, or the return point after the call site is a

candidate.

While inaccurate and somewhat random, NET is useful where we do not

have higher-level knowledge of the program structure. It is therefore quite

popular for binary translation systems (e.g., Bala et al. [2000]; Bruening

et al. [2003]).

Natural loop first (NLF) If more knowledge about the higher-level structure

of the program is available, it makes sense to have special instructions

that mark the beginning of a loop. For example, a for or while loop

can be translated to a special bytecode instruction (Pall [2009]). Recursive

functions or gotos (if the language supports them) may also give rise to

loops, so a strategy must be in place to detect those, for example, by using

NLF for these types of branches.

The Maxpath VM (Bebenita et al. [2010b]) for Java does not use a special

bytecode instruction to mark loop heads, but uses static analysis during

bytecode verification to detect loops.

NLF has the advantage of being more predictable about where traces start

and it reduces the number of counters required (since fewer program points

are considered potential loop headers). Traces are more likely to start in

natural places, especially in programs that rely mainly on loops and less on

recursion.

Last Executed Iteration (LEI) Another way to detect loops is to keep track

of the last n branch targets in a branch history buffer and only consider

branches to a target in this buffer. Like NET only targets of backwards

branches are considered potential trace head. LEI is thus a refinement of

NET. While LEI has higher runtime overhead due to the need to maintain

the buffer and hash table, it does need fewer counters since fewer targets

are potential trace heads. LEI was proposed by Hiniker et al. [2005], who

showed that on the SPECint2000 benchmarks it requires fewer traces to

achieve 90% coverage and fewer region transitions than NET.

47

3. TRACE-BASED JUST-IN-TIME COMPILATION

void f() {
 for (A) {
 g();
 B;
 g();
 C;
 }
}

void g() {
 P;
}

A

P

B

P

C

P

B

C

(a)

P

P

B

C

A

P

P

B

C

A

(b) (c) (d)
Trace 1 Trace 2

Figure 3.4: False loop filtering: (a) shows the imperative source program; (b)
is the control flow graph corresponding to the source program; (c) shows the
selected trace using NET or LEI without without false loop filtering (assuming
P occurs at an address lower than A); (d) is the selected trace with false loop
filtering.

The branch history buffer may provide enough information to build a trace

directly without interleaving interpretation and trace recording.

All trace selection schemes also consider side exits as potential trace heads.

This ensures that all paths through a hot loop are compiled into traces and not

just the one path that happened to be detected first.

Lambdachine uses NET, because it is simple and we do not have a special

bytecode for loops—all loops are implemented via tail-calls. We do some false

loop filtering (see below), but the resulting traces are not very good (Section 6.4).

48

3. TRACE-BASED JUST-IN-TIME COMPILATION

3.3.2 False Loop Filtering

Both NET and LEI may detect false loops that can arise due to function calls.

Consider the example code of Figure 3.4a. The loop inside function f contains

two calls to the function g. If the code for g occurs at a lower address than the

code for f, then each call is a backwards branch and both NET and LEI will

consider the entry point of g as a potential trace head. Furthermore, since each

iteration of the loop in f contains two calls to g, the hotness counter for g reaches

the hotness threshold first. The trace recorder then starts recording the basic

block P, followed by a return to, say, basic block B. Following B execution will

again enter g, so the trace recorder has found a loop and recording concludes

(Figure 3.4c).

Unfortunately, this trace will execute at most one iteration of its loop. The

second iteration will always leave since the correct return point is the basic block

C, not B. The problem is that the trace represents a false loop: the second basic

block P occurred in a different context than the first, that is, the return address

on the call stack was different.

False loop filtering (Hayashizaki et al. [2011]) prevents the trace recorder from

stopping at such false loops by keeping track of the relevant calling context during

trace recording. The calling context consists of the top part of the stack frame.

Hayashizaki et al. [2011] also describe various ways how the relevant parts of the

stack frame can be collected on the fly. They also ensure that proper (non-tail)

recursive calls are correctly detected as true loops.

The trace selected with false loop filtering applied is shown in Figure 3.4d.

It contains the same number of basic blocks as the original loop (Figure 3.4b),

provides better optimisation potential, and only contains one trace exit.

Note that since the trace starts at P, other calls to function g may cause

execution to enter the Trace 2, but will then quickly bail out because, again,

the calling context was different. Avoiding this requires a mechanism to have

multiple traces for the same program point and a means to distinguish them

based on calling context. For example, the trace starting at P could be annotated

with the return address, namely B. When the interpreter reaches the start of B,

then instead of always entering the same trace, it would have to examine the

49

3. TRACE-BASED JUST-IN-TIME COMPILATION

current return address and pick a trace to be entered (or record a new one).

The root problem in this example is that the trace does not start at a natural

loop. A potentially better strategy would abort recording the trace starting at

P once the trace recorder detects that the edge from C to A is part of primitive

loop (the for statement). The trace recorder could then continue recording, but

using A as the trace head. We are, however, not aware of any trace-based JIT

compiler that implements this strategy.

LuaJIT reduces the need for false loop filtering by giving preferred treatment

to natural loops.1 Even though P will get hot first and LuaJIT will create a trace

containing just P, but LuaJIT is reluctant to create a trace that returns outside

of the current stack frame. Soon after the second trace will be created starting at

the for loop and inline both calls to g. LuaJIT does create traces that increase or

decrease the stack size, but does with effectively higher hotness thresholds than

natural loops. These heuristics rely on the source language being used a certain

way. It is not necessarily applicable to trace-based compilers for a different source

language.

3.4 Trace Recording

Once a trace head reaches the hotness threshold a popular strategy is to simply

switch the VM into trace recording mode and continue executing. This strategy

is speculative in that there is no guarantee that the recorded trace is actually the

most frequently executed trace starting at that trace head. If, say, a loop has

two traces A and B and the loop executes trace A 90% of the time and trace B

for the remaining 10%, then with 90% probability this strategy will select trace

A and later on trace B will become a side trace of trace A. If we are unlucky

and record trace B first then we may lose some optimisation opportunities in the

common path since trace A will now become a side trace of B.

1Conversation on the luajit mailing list: http://www.freelists.org/post/luajit/

Tracing-of-returns,1

50

http://www.freelists.org/post/luajit/Tracing-of-returns,1
http://www.freelists.org/post/luajit/Tracing-of-returns,1

3. TRACE-BASED JUST-IN-TIME COMPILATION

3.4.1 Multi-stage Trace Recording

A common strategy to protect against accidentally selecting a suboptimal trace

first is to have two hotness thresholds. The first threshold triggers a lightweight

form of recording to gather statistics about the trace. In this mode we could,

for example, record just one bit for each conditional branch and a compressed

address for indirect branches (Hiniker et al. [2005]). Another approach would

be to collect all traces observed in this mode into a trace tree structure (see

Section 3.6) annotated with the execution frequency of each branch.

The second hotness threshold then triggers actual compilation to machine

code. The trace compiler can now use the information from the first phase to

choose which trace to compile or which way to arrange multiple recorded traces.

Of course, since the lightweight recording phase only observes a small number of

traces there is still a chance that a suboptimal trace is selected.

The downside of such an approach is that a profiled execution mode adds over-

head, which has to pay off in improved trace selection. Hiniker et al. [2005] did

not determine the performance overhead of the additional time spent in record-

ing mode. Bebenita et al. [2010b] recompile a complete trace tree (a collection

of traces, see Section 3.6) each time a new trace is added to it. Collecting sev-

eral traces together and compiling them together later may be beneficial in that

setting.

Lambdachine does not use multi-stage recording. Any successfully recorded

trace is compiled to machine code. Our low trace completion ratio (Section 6.4)

suggests that the added complexity may be worth it. Any changes to the trace

selection heuristics will likely shift the trade-offs, so it is difficult to consider both

independently.

3.4.2 Hotness Thresholds

The choice of hotness threshold can be an important aspect of the performance

of a tracing JIT compiler. If the hotness threshold is too low, the selected traces

may not actually be executed very frequently and the compilation overhead will

never pay off. If the hotness threshold is too high, then too much time will be

spent in the slower execution mode.

51

3. TRACE-BASED JUST-IN-TIME COMPILATION

In general, the best threshold will be highly dependent upon the executed

program. A trace compiler has to guess the future behaviour of the program,

based on a very short profiling period. Even with a profiling phase there is

always a chance that recorded code is no longer needed shortly after the JIT

compiler has compiled it.

One advantage of tracing JIT compilers is that due to the simple structure of

traces, optimising the trace and emitting machine code can be implemented very

efficiently. A low compilation overhead will repay itself more quickly, thus the

compilation threshold can be relatively low. JIT compilers with slower compilers

generally choose higher thresholds which will manifest itself in longer warm-up

periods, i.e., the virtual machine will take longer to before the program is running

at peak performance. For example, the Java Hotspot VM has two modes, client

mode (Kotzmann et al. [2008]) and server mode (Dimpsey et al. [2000]). Server

mode is optimised for best peak performance and chooses more expensive JIT

compilation and high hotness thresholds but suffers from longer start-up times.

This mode makes most sense for long-running applications such as servers. Client

mode is meant for applications that prioritise quicker startup times over peak

performance: for instance, applications with a graphical interface.

Commonly used hotness thresholds for tracing JIT compilers are quite low.

Dynamo (Bala et al. [2000]) settled on a hotness threshold of 50 after evaluating

a range of possible values between 15 and 100 (Bala et al. [1999]). LuaJIT uses

multiple (user-configurable) thresholds depending on the kind of trace: root traces

have a default hotness threshold of 56 and side traces have a hotness threshold

of 10. Gal et al. [2009] chose a very low threshold of 2 for their JavaScript JIT

compiler, because JavaScript programs typically run for a very short time.

Lambdachine sticks with standard of around 50, but most benchmarks worked

well with any value between 10 and 100 (Section 6.5).

3.4.3 End of trace Condition

Recording continues until either it is aborted or an end-of-trace condition is en-

countered. A possible reason for aborting a trace is that the program throws an

exception, which is usually a rare occurrence. This indicates that the recorded

52

3. TRACE-BASED JUST-IN-TIME COMPILATION

trace is unlikely to be the common case, so many trace compilers do not support

traces that include throwing exceptions. Trace recording is also aborted if the

trace becomes too long. This is to guard against cases where the trace selection

heuristic has failed. For instance, execution has likely left the loop that initiated

recording of the trace.

It is possible that trace recording will fail each time it attempts to record a

certain trace (e.g., due to some failure of the trace selection heuristics, or due to

an unsupported feature in the trace compiler). Since execution in recording mode

is more expensive than normal execution, such repeated trace recording attempts

can be detrimental to overall performance. To prevent such slow-downs trace

compilers employ a mechanism that bounds the number of recording attempts

per potential trace entry point (e.g., Gal et al. [2009]). If recording a trace from a

particular program location fails too many times, that program location is black

listed.

Trace recording may complete successfully if any of the following conditions

is encountered:

Loop back to entry This is the ideal case. The recorded trace loops back to

the point where recording was started. The trace now represents a proper

loop and can be fully optimised, including important optimisations such as

loop unrolling or loop invariant code motion.

Loop back to parent The recorded trace must be a side trace and execution

has reached the entry point of the root trace. It is harder to optimise side

traces well unless we are willing to modify the root trace (and possibly other

side traces) as well.

Inner loop False loop filtering (Section 3.3.2) detects if a trace contains an inner

loop and treats it specially. Assuming the loop is not a false loop, the trace

compiler will cut off the trace before the inner loop. The cut-off trace

will immediately fall back to the interpreter upon completion, but this will

quickly trigger the creation of another trace. Hopefully this trace will now

form a proper loop and can be optimised fully.

Start of existing trace During recording we have encountered the start of an

53

3. TRACE-BASED JUST-IN-TIME COMPILATION

existing trace. For their Dynamo system, Bala et al. [2000] decided to stop

recording at that point at the last instruction of the compiled trace would

jump directly to the existing trace. Wu et al. [2011] argue that this reduces

optimisation potential, and instead suggest that tracing should continue in

this situation. This leads to longer traces, but combined with false loop

filtering, trace truncation and trace path profiling it leads to overall better

performance with relatively small increase in code size.

Lambdachine stops at all of these conditions. If an inner loop is detected, we

do not cut off the trace at the beginning of the inner loop, but at the end. This

is purely to simplify the implementation; the compiler would need to maintain

additional meta data to be able to revert the trace recorder state to an earlier

point in the trace.

3.5 Trace Exits

When a guard fails and execution leaves the trace, execution must switch back to

the interpreter (or to unoptimised machine code). This requires that the virtual

machine is left in a suitable state for the interpreter to continue. This mainly

concerns the contents of the stack, whose values will normally be held in registers

throughout the trace. On exiting the trace the values in registers must now

quickly be written to their respective stack locations.

Many implementations use exit stubs, short pieces of code consisting mainly

of store instructions that perform the necessary writes. The guard on the trace

is implemented as a conditional branch to the exit stub. The end of the exit

stub then consists of a jump to a VM routine that transfers control back to the

interpreter. Exit stubs are often located at the end of the trace, but they may be

located anywhere in jump range of the trace.1 Exit stubs are used by Dynamo

(Bala et al. [1999]) and DynamoRIO (Bruening [2004]).

Exit stubs are an efficient way to restore the VM state, but they take up

space and may cause fragmentation of the machine code area. If a side exit gets

hot then the exit stub is no longer needed and its memory can be reclaimed.

1On some architectures conditional branches have a limited jump distance.

54

3. TRACE-BASED JUST-IN-TIME COMPILATION

Exit stubs, however, have various sizes, so this will lead to some fragmentation.

Bruening [2004] (Chapter 6) describes the complexities involved in managing exit

stubs.

Bruening [2004] also showed that, in DynamoRIO, exit stubs could take up

on average about 20% of the compiled machine code. Storing exit stubs in a

separately managed area of the heap enabled a reduction of over more than half

of the required memory space by allowing the memory of no longer needed exit

stubs to be recycled.

Another approach is to simply save the contents of all registers on trace exit

and then use meta-data stored with the trace to reconstruct the VM state. For

example, this meta-data could simply be a mapping from stack location to the

name of the register that holds its value (if any). This approach is used by LuaJIT

(Pall [2009]). We can think of trace exits stubs as a compiled version (or partial

evaluation) of such a meta-data interpreter. The interpreted method is slower

but avoids the need to generate extra code.

Note that trace exits should be a relatively rare event since frequently taken

side exits will be turned into side traces. The number of times an exit stub is

executed thus depends directly on the hotness threshold for starting side traces.

Compiled side exits are hence only worthwhile if this threshold is sufficiently large

or the cost of restoring the VM state is comparatively high.

3.6 Trace Trees and Trace Linking

A single trace only covers one path through the control flow graph. If multiple

paths through the same graph are hot then multiple traces are needed to cover

all the hot paths. Transitioning from one trace to the other must be efficient,

too.

Of particular importance is the case of attaching a side trace to another trace’s

hot exit (due to a guard that fails a lot). We will call the trace to which the side

trace is attached the parent trace.

One option is to overwrite the last branch of the exit stub to jump directly

to the start of the side trace. The downside of this approach is that all values

held in registers in the parent trace are first written back to the stack only to be

55

3. TRACE-BASED JUST-IN-TIME COMPILATION

read back from the stack in the new trace. It would be better (i.e., require fewer

instructions and less memory traffic) if the side trace could read values directly

from the register locations of the parent trace.

One strategy is to use trace trees instead of single traces as the compilation

unit (Bebenita et al. [2010b]; Gal and Franz [2006]; Gal et al. [2009]). A trace tree

consists of a root trace and all its attached side traces. When a new side trace

is attached the whole trace tree is recompiled. The advantage of this method is

that optimisations can see the whole trace tree and switching from the root trace

to a side trace has little overhead. In particular, because the register allocator

can make sure that matching register assignments are used throughout each side

trace. The downside of this approach is that the compilation overhead increases

because the whole trace tree is recompiled. Staged recording can mitigate this

overhead: instead of recompiling the trace tree each time a new side exit becomes

hot, the trace recorder simply waits a bit longer to see if other side exits become

hot, too, and then adds them all to the trace tree. Another option is to wait

before the first trace is compiled and then compile the whole trace tree only once.

A simpler approach is trace coalescing. The trace compiler keeps track of the

mapping between registers and stack slots, i.e., the same meta-data that is needed

to restore the VM state on a trace exit. This mapping is then used in the compiler

for the side trace. Instead of emitting a load from a stack slot, the trace compiler

emits a read from the register that held the contents of that stack slot in the

parent trace. This technique is used by LuaJIT (Pall [2013]). LuaJIT’s register

allocator works last-instruction-to-first. This means, the register chosen by the

parent trace may not be available and a move instruction must be inserted. Still,

move instructions are fairly cheap on modern out-of-order processors, and trace

coalescing still avoids both unnecessary memory traffic and the complexities of

trace trees.

Lambdachine uses trace coalescing, partly for simplicity, and partly because

much of the trace compiler code is adapted from LuaJIT. Changing the code to

support trace trees would have required non-trivial changes. Given that trace

trees are not clearly better (due to repeated recompilation), we did not pursue

this possibility.

56

3. TRACE-BASED JUST-IN-TIME COMPILATION

3.7 Compiling Traces

Due to the lack of inner control flow in traces, it is very simple to perform opti-

misations. Trace compilers commonly structure most optimisations as a simple

pipeline through which each instruction is passed. Commonly implemented opti-

misations are:

• Constant propagation

• Constant folding

• Strength reduction / algebraic simplifications

• Copy propagation

• Redundant guard removal

• Common sub-expression elimination

• Redundant load removal. If a load is preceded by a load from (or store to)

the same location, and the loaded (stored) value is still in a register, then

the load is replaced by a reference to that register.

Not all of these optimisations are applicable in all settings. For instance, Bala

et al. [1999] classifies some of these optimisations as aggressive because they may

change the expected behaviour of the source program under some circumstances

(e.g., volatile memory reads or writes).

Bebenita et al. [2010a] also perform more elaborate optimisations on guards:

• Guard implication. Remove a later guard if it is implied by an earlier guard.

• Guard hoisting. Replace an earlier guard by a later guard if the later guard

implies the earlier guard. The later guard can then be removed (due to

guard implication). This causes the trace to be exited at an earlier exit

than strictly necessary, but if we assume that exits are taken infrequently,

then this is unlikely to be a problem.

Some optimisations cannot be performed using a simple pipeline, but are

nevertheless very useful:

57

3. TRACE-BASED JUST-IN-TIME COMPILATION

• Dead code elimination

• Loop invariant code motion

• Loop unrolling

Memory access optimisations like redundant load removal must insure that

no other store can write to the same location in the time between the first load

or store. This is done using some kind of alias analysis. In some source languages

additional semantic information may be available to improve alias analysis, e.g.,

an object read may not alias with a read of an array element.

If we assume that execution is unlikely to leave the trace at a side exit, then

performing more speculative optimisations can become beneficial. For example,

code sinking consists of moving instructions off-trace and only perform them if the

execution leaves the trace. An example of this kind of optimisation is allocation

sinking (Section 5.10).

Lambdachine most of the above optimisations except for guard implication or

guard hoisting. Loop unrolling was implemented in an earlier prototype, but not

in the implementation described here. It was deprioritised because its usefulness

is reduced due to a difficult issue in optimising lazy evaluation as described in

Section 6.6.

3.8 Code Cache

The optimised code is placed into the code cache. For side traces, the exit point

of the parent trace is patched to delegate to the new side trace; for root traces

the relevant data structures are updated so that the interpreter will switch to the

compiled code.

The fragment cache can be simply a memory pool and the trace compiler

allocates chunks of memory from it and places the compiled code in that memory.

The fragment cache may allow portions of memory to be freed again, or it may

only allow flushing the whole cache at once. Being able to remove traces also

means being able to unlink traces which requires maintaining the necessary meta

data (Bruening [2004]). As discussed in Section 3.5, it can be worthwhile to

58

3. TRACE-BASED JUST-IN-TIME COMPILATION

manage exit stubs differently from the main trace data due their potentially

shorter lifespan.

Bruening [2004] showed that the amount of fragment cache memory needed

varies significantly based on the application. Standard benchmarks required be-

tween 30 KB and 700 KB; complete applications required multiple megabytes.

Imposing a size limit on the code cache can seriously reduce performance if the

limit is too low. Bruening [2004] also developed a heuristic that automatically

resizes the fragment cache. The fragment cache would evict old fragments in

FIFO order, but keep a history of recently evicted traces. If new traces occur

frequently in this history then the fragment cache is likely too small and must be

increased.

Lambdachine currently has an unbounded cache which did not cause issues,

because our benchmarks are small. This issue needs to be revisited once the

implementation matures.

3.9 Reacting to Workload Changes

A trace is compiled and optimised for the behaviour that was observed when the

trace was recorded. If the behaviour of the program changes later on, it might

be worthwhile to re-optimise the program for the new behaviour. If the program

runs through several phases then the code generated for the previous phase may

no longer be needed and can be discarded.

Dynamo (Bala et al. [2000]) used a simple heuristic to detect such phase

changes: if a phase changes, then new parts of the program will become hot and

will cause an increase of the rate at which new traces are be created. If a the

trace creation rate would suddenly increase Dynamo would then flush the code

cache, i.e., discard all compiled code. The reasoning is that much of that code

will probably be no longer needed. Since the trace compiler is very efficient, any

code that was discarded erroneously will quickly be re-compiled.

59

3. TRACE-BASED JUST-IN-TIME COMPILATION

3.10 Tiered Compilation

Some just-in-time compilers like the Java HotSpot VM allow users to specify

one of two compilation modes. The server mode trades off start-up performance

for better peak performance. As the name suggests, it is intended for long-

running applications such as web servers. The client mode in turn prioritises

short compilation times over peak performance (Kotzmann et al. [2008]).

Lambdachine at this point does not support any optimisations where spending

more time in the JIT compiler could lead to better overall performance. Compi-

lation times are very short, thus start-up perfomance is not an issue, either. This

could change if the compiler becomes more complex in the future.

3.11 Reusing GHC Bytecode

GHC contains both a static code generator as well as an interpreter. Could this

existing interpreter be extended with a JIT compiler? The answer is: yes, but

we chose not to.

The GHC interpreter is stack-based and not particularly optimised for best

interpreter performance. It also does not support certain features such as un-

boxed tuples (which are used to implement the IO monad, for example). While

it supports most other language features, it is meant to instead integrate well

with compiled code. This introduces some complications. For example, the call-

ing convention of interpreted code is different from compiled code, thus special

adapter stack frames are needed to interface one with the other. To avoid these

design constraints, and to be able to obtain a very high-perfomance interpreter,

we decided to use a custom bytecode instruction set and interpreter.

3.12 Summary

This chapter introduced the basic working principles of a trace-based JIT com-

piler and discussed many of the interrelated design aspects of an implementation.

Lambdachine is based on LuaJIT and thus adopts many of its design decisions:

60

3. TRACE-BASED JUST-IN-TIME COMPILATION

• We use simple traces rather than trace trees. Trace linking is done using

trace coalescing.

• We do not use exit stubs and instead use low hotness thresholds for side

traces.

• To detect loops we use a variant of NET, together with false loop filtering

and a simple form of trace truncation.

• The trace optimisation engine works similarly to LuaJIT’s. It consists of a

rule-based rewrite engine for constant folding, algebraic optimisations, con-

stant propagation, redundant load removal, and redundant guard removal.

Dead code elimination is performed as part of code generation.

• The size of the trace cache is currently unlimited.

Several implementation details had to be adapted to the idiosyncrasies of lazy

evaluation. These and further details of our implementation are described in

Chapter 5.

61

Chapter 4

An Example

To give a better big picture idea of how our trace compiler for Haskell works,

we now follow the execution of one program from its Haskell source code to the

compiled machine code for the x86-64 architecture. Our example program simply

computes the sum of a sequence of numbers:

upto :: Int -> Int -> [Int]

upto lo hi =

if lo > hi then Nil

else Cons lo (upto (lo + 1) hi))

sumAux :: Num a => a -> [a] -> a

sumAux acc l =

case l of

Nil -> acc

Cons x xs -> let !acc’ = x + acc in sumAux acc’ xs

test = sumAux 0 (upto 1 100000)

This chapter follows the transformation of the program by the Lambdachine

tool chain.

62

4. AN EXAMPLE

LCC
GHC API

Typechecker

Core-to-Core
(Optimiser)

Haskell
Source

CorePrep/
CoreHaskell

Core-to-
Bytecode

Lambdachine
Bytecode

LCVM

Interpreter

Trace SelectorTrace
Compiler

Fragment
Cache

Figure 4.1: Overview of the Lambdachine infrastructure.

4.1 Core Haskell

The code is sent to GHC where it is type checked and translated into a subset of

Haskell called Core. Most of the static optimisations are performed on programs

in this representation. The program is then sent through the CorePrep pass which

establishes certain invariants.

CorePrep corresponds to our CoreHaskell with explicit type information. The

type information is only needed to derive information for the garbage collector,

so we omit it in this chapter.

The invariants provided by CoreHaskell are in particular that all allocation is

made explicit through let-expressions and all evaluation is made explicit through

63

4. AN EXAMPLE

1 upto = λ (from :: Int) (to :: Int) ->

2 case from of from1 { I# x ->

3 case to of to1 { I# y ->

4 case x ># y of _ {

5 False ->

6 let ys =

7 case +# x 1 of x’ { _ ->

8 let x’’ = I# x’ in

9 upto x’’ to1 }

10 in

11 from1 : ys

12 True -> [] } } }

13 sumAux = λ (dNum :: Num a) (acc :: a) (l :: [a]) ->

14 case l of _ {

15 [] -> acc

16 : z zs ->

17 case (+) dNum z acc of acc’ { _ ->

18 sumAux dNum acc’ zs } }

19 test4 = I# 0

20 test3 = I# 1

21 test2 = I# 100000

22 test1 = upto test3 test2

23 test = sumAux fNumInt test4 test1

Figure 4.2: The example program in CoreHaskell form.

case-expressions. For our example, the program after this phase is shown in

Figure 4.2.

The top-level name upto is bound to a function with two arguments. The first

case expression evaluates from to WHNF, binds the evaluated result to from1

and then pattern matches on the result to extract the unboxed integer x. The

I# constructor is the constructor for heap-allocated integers, i.e., values of type

Int. The hash (“#”) character is not special, it is treated like a regular character

by GHC. By convention, names of primitive operations and types contain “#” in

their names, and so do a few constructors for basic types. For example, Int#

is the name for the type of unboxed machine integers. The type Int is defined

simply as:

64

4. AN EXAMPLE

data Int = I# Int#

Variable x from Figure 4.2 therefore has type Int#. The second case ex-

pression then evaluates the second argument and extracts the unboxed integer y

from it. Using >#, the greater-than operator for comparing unboxed integers, the

code then makes a control-flow decision between the two cases. If the comparison

returned True, upto simply returns a reference to the [] closure. Otherwise,

upto first allocates a thunk ys on the heap. The thunk will contain the current

values of the two free variables x and to1 of the expression on the right hand

side. Finally, another heap object is allocated with constructor “:” and the two

fields from1 and ys.

The second function, sumAux, used the Num type class, so it receives an extra

argument which is the type class dictionary (dNum) for Num. This dictionary is then

used to look up the implementation of addition using (+). Note that (+) only

requires one argument, but it will return a function that expects two arguments.

GHC Core does not distinguish between such a function and a function that

expects three arguments and then returns a value. The case expression ensures

that the result of the addition is evaluated to normal form and then bound to the

variable acc’. Finally, sumAux calls itself recursively.

The three closures test2, test3, and test4 are simply statically allocated

Ints. The two closures test and test1 are constant applicative forms (CAFs),

that is, they are top-level thunks. CAFs are allocated on the heap when the

program is first loaded into memory. However, they are not immutable since,

like any other thunk, a CAF must be updated with its value after it has been

evaluated.

4.2 Bytecode

The program in CoreHaskell form is then translated to Lambdachine’s own byte-

code format. The translation is relatively straight-forward. A case expression

translates to an EVAL instruction potentially followed by a CASE and LOADF (“load

field”) instructions to extract fields out of a heap-allocated object. Constants are

stored in a literal table and referred to by an index by the LOADK instruction

65

4. AN EXAMPLE

(“load constant”). A let expression is translated into a corresponding allocation

instruction. The ALLOC1 instruction allocates objects with exactly one field, and

ALLOC allocates objects with 2 or more fields. Both instructions use a different

encoding, hence the difference in the opcode name.

Each thunk is translated into its own info table. In our example, the thunk

for the expression stored in variable ys is called cl upto ys. The LOADFV (“load

free variable”) instruction is used to load a value from the currently evaluated

object into a register.

There are two call instructions, CALL and CALLT. The CALL instruction is

evaluated in a new stack frame and the result of the call can be loaded into

a register via MOV RES. The CALLT instruction denotes a tail call which can be

implemented as a jump. The arguments to CALLT must be in registers r0 through

rn. This invariant is enforced by the register allocator by inserting any necessary

MOVE instructions. Both instructions are used by the bytecode for sumAux as

shown in Figure 4.4

Every allocation instruction, EVAL, and every call instruction is also annotated

with a list of live pointer registers. These are registers that contain pointers into

the heap and whose value may be used later during execution. This information

will be used by the garbage collector to detect which heap objects may still be

needed by the program — any other objects can be discarded.

Since sumAux uses the Num class to perform addition, Figure 4.5 shows the

relevant bytecode from its implementation. Both are straightforward; (+) simply

loads the second field of its argument (the Num dictionary) and returns it; plusInt

evaluates both its arguments (of type Int), extracts the unboxed integers, adds

them, and re-boxes the result of the addition and returns it.

The Lambdachine bytecode compiler, lcc, stores this bytecode in a file on

disk which is later loaded into memory by the Lambdachine runtime, lcvm.

4.3 Trace Compiler Intermediate Representation

After the program’s bytecode is loaded into the memory, the runtime starts eval-

uating the entry closure. In this example we would specify test as the entry clo-

sure. Certain branch instructions such as CALLT or EVAL cause a hotness counter

66

4. AN EXAMPLE

1 upto:

2 Function Payload=[]

3 literals:

4 0: info 0x10024d790 (cl_upto_ys)

5 1: info 0x100208d10 (:)

6 2: clos 0x1002006a0 ([])

7 code (arity=2/[**]) function takes two arguments, both pointers
8 0: FUNC r4 the function uses 4 registers
9 1: EVAL r0 evaluate first argument (from)

10 3: MOV_RES r0, 0 store result of evaluation in r0

11 4: EVAL r1 evaluate second argument (from)
12 6: MOV_RES r1, 0

13 7: LOADF r2, r0, 1 unpack integer x from from

14 8: LOADF r3, r1, 1 unpack integer y from to

15 9: ISLE r2, r3 ->13 if x < y jump to 13

16 11: LOADK r0, 2 load pointer to empty list closure
17 12: RET1 r0 return that as the result
18 13: LOADK r3, 0 load info table for thunk cl_upto_ys

19 14: ALLOC r1, r3, r2, r1 allocate the thunk
20 17: LOADK r2, 1 load info table for cons (:)
21 18: ALLOC r0, r2, r0, r1 allocate cons cell
22 21: RET1 r0 return it

23 cl_upto_ys:

24 Thunk Payload=[-*] the thunk has two free variables, the second is a pointer
25 literals:

26 0: 1 (i)

27 1: info 0x100208d50 (I#)

28 2: clos 0x100203248 (upto)

29 code (arity=0/[])

30 0: FUNC r3

31 1: LOADFV r0, 1 load the first free variable (x)
32 2: LOADK r1, 0 load the literal 1 into r1

33 3: ADD r0, r0, r1 integer addition
34 4: LOADK r1, 1 load info table for boxed integers (I#)
35 5: ALLOC1 r0, r1, r0 allocate the boxed integer
36 7: LOADFV r1, 2 load the second free variable (to1)
37 8: LOADK r2, 2 load the a pointer closure for upto
38 9: CALLT r2(r0*,r1*) call upto

Figure 4.3: Compiled bytecode for upto and its local thunk ys

67

4. AN EXAMPLE

1 sumAux‘info:

2 Function Payload=[]

3 literals:

4 0: clos 0x100202ec0 (+)

5 1: clos 0x100203250 (sumAux)

6 code (arity=3/[***])

7 0: FUNC r5

8 1: EVAL r2 {r0*,r1*}

9 3: MOV_RES r2, 0

10 4: CASE r2 [tags 1..2]

11 1: ->17

12 2: -> 6

13 6: LOADF r3, r2, 1

14 7: LOADK r4, 0 ; clos 0x100202ec0 (+)

15 8: CALL r4(r0*)

16 9: MOV_RES r4, 0

17 10: CALL r4(r3*,r1*)

18 12: MOV_RES r1, 0

19 13: LOADF r2, r2, 2

20 14: LOADK r3, 1 ; clos 0x100203250 (sumAux)

21 15: CALLT r3(r0*,r1*,r2*)

22 17: MOV r0, r1

23 18: EVAL r0 {}

24 20: MOV_RES r0, 0

25 21: RET1 r0

Figure 4.4: Bytecode for the sumAux function.

associated with the target address to be decremented. If a hotness counter reaches

zero, the interpreter switches to recording mode. The interpreter continues to ex-

ecute the program, but before each instruction is executed an equivalent sequence

of instructions in the JIT compilers internal intermediate representation (IR) is

appended to a buffer, the IR buffer. In this section we will use a C-like syn-

tax to denote IR instructions. An IR instruction usually corresponds to a single

assembly instruction on a RISC machine.

The sequence of IR instructions follows very closely the implementation of the

interpreter. For example, the instruction ADD r1, r2, r3 is translated into the

following IR instructions:

t1 = base[2]

68

4. AN EXAMPLE

1 GHC.Num.+‘info:

2 Function Payload=[]

3 code (arity=1/[*])

4 0: FUNC r1

5 1: EVAL r0 {}

6 3: MOV_RES r0, 0

7 4: LOADF r0, r0, 2

8 5: EVAL r0 {}

9 7: MOV_RES r0, 0

10 8: RET1 r0

11 GHC.Base.plusInt‘info:

12 Function Payload=[]

13 literals:

14 0: info 0x100208d50 (I#)

15 code (arity=2/[**], frame=2)

16 0: FUNC r2

17 1: EVAL r0 {r1*}

18 3: MOV_RES r0, 0

19 4: EVAL r1 {r0*}

20 6: MOV_RES r1, 0

21 7: LOADF r0, r0, 1

22 8: LOADF r1, r1, 1

23 9: ADD r0, r0, r1

24 10: LOADK r1, 0 ; info 0x100208d50 (GHC.Types.I#‘con_info)

25 11: ALLOC1 r0, r1, r0 {r0,r1}

26 13: RET1 r0

Figure 4.5: Compiled bytecode for the (+) selector and plusInt.

t2 = base[3]

t3 = t1 + t4

base[4] = t3

The base variable points to the first item in the current stack frame. Just like

in the interpreter, both operands must first be loaded from the stack frame into a

register, then they are added together and the result is written back into the stack

frame. Of course, if the next instruction reads from the same location, we can

avoid both writing to and reading from memory by just keeping the result in a

register. This kind of optimisation is performed on the fly, before any instruction

69

4. AN EXAMPLE

is appended to the IR buffer. For instance, the bytecode sequence

ADD r0, r0, r1

SUB r1, r0, r2

MUL r0, r1, r0

is translated into the following sequence of IR instructions

t1 <- base[0] ; ADD r0, r0, r1

t2 <- base[1]

t3 <- t1 + t2

t4 <- base[2] ; SUB r1, r0, r2

t5 <- t3 - t4

t6 <- t3 * t5 ; MUL r0, r1, r0

base[0] = t6

If the value of register r1 is no longer needed later in the code, then we need

not write its value back onto the stack and omit the write altogether.

For control-flow instructions we emit guards. Consider the execution of the

instruction EVAL r0 where r0 pointed to a heap-allocated integer. We would

simply emit a guard which verifies that this is still the case.

1 〈assume t holds contents of r0〉
2 if (info(t) 6= &I#_info_table) goto exit1;

The expression info(t) extracts the pointer to the info table from the object’s

header. Normally, this is simply the first word of the object in the heap. The

guard only compares the address of the info table against the expected address.

The info table itself need not be read.

If r0 was a thunk when the trace was recorded, we will emit a guard for the

info table followed by the IR instructions for evaluating the thunk.

1 〈assume t holds contents of r0〉
2 if (info(t) 6= thunk1_info_table) goto exit1;

3 〈code for evaluating thunk1〉

70

4. AN EXAMPLE

1 entry: ; sumAux

2 ; FUNC r5

3 ; EVAL r2

4 Object *t1 = base[2]

5 if (info(t1) 6= &cl_upto_ys)

6 goto exit1;

7 ; --- cl_upto_ys ---

8 ; Node = t1

9 ; FUNC r3

10 ; LOADFV r0, 1

11 int t2 = t1[1]

12 ; LOADK r1, 0

13 ; ADD r0, r0, r1

14 int t3 = t2 + 1

15 ; LOADK r1, 1

16 ; ALLOC1 r0, r1, r0

17 Object *t4 = new I#(t3)

18 ; LOADFV r1, 2

19 Object *t5 = t1[2]

20 ; LOADK r2, 2

21 ; CALLT r2(r0, r1)

22 ; no guard needed since

23 ; r2 contains a constant

24 ; --- upto ---

25 ; FUNC r4

26 ; EVAL r0

27 if (info(t4) 6= I#) goto exit2

28 ; MOV_RES r0

29 ; EVAL r1

30 if (info(t5) 6= I#) goto exit3

31 ; MOV_RES r1

32 ; LOADF r2, r0, 1

33 int t6 = t4[1]

34 ; LOADF r3, r1, 1

35 int t7 = t5[1]

36 ; ISLE r2, r3 ->13

37 if (t6 > t7) goto exit4

38 ; LOADK r3, 0

39 ; ALLOC r1, r3, r2, r1

40 Object *t8 =

41 new cl_upto_ys(t6, t5)

42 ; LOADK r2, 1

43 ; ALLOC r0, r2, r0, r1

44 Object *t9 = new Cons(t4, t8)

45 ; RET1

46 ; UPDATE

47 update (t1, t9)

48 ; -- return to sumAux ---

49 ; MOV_RES r2, 0

50 ; CASE r2 [tags 1..2]

51 ; 1: ->17

52 ; 2: -> 6

53 if (info(t9) 6= &Cons) goto exit5

54 ; LOADF r3, r2, 1

55 Object *t10 = t9[1]

56 ; LOADK r4, 0

57 ; CALL r4(r0)

58 Object *t11 = base[0]

59 ; --- entering (+) ---

60 ; FUNC r1

61 ; EVAL r0

62 if (info(t11) 6= &NumDict) goto exit6

63 ; LOADF r1, 2

64 t12 = t11[2]

65 ; EVAL r0

66 if (info(t12) 6= &plusInt) goto exit7

67 ; MOV_RES r0

68 ; RET1 r0

69 ; -- return to sumAux ---

70 ; MOV_RES r4, 0

71 ; CALL r4(r3, r1)

72 t13 = base[1]

73 if (info(t12) 6= &plusInt) goto exit8

74 ; --- plusInt ---

75 ; FUNC r2

76 ; EVAL r0

77 if (info(t10) 6= &I#) goto exit9

78 ; MOV_RES r0, 0

79 ; EVAL r1

80 if (info(t13)) 6= &I#) goto exit10

81 ; MOV_RES r1, 0

82 ; LOADF r0, r0, 1

83 int t14 = t10[1]

84 ; LOADF r1, r1, 1

85 int t15 = t13[1]

86 ; ADD r0, r0, r1

87 int t16 = t14 + t15

88 ; LOADK r1, 0

89 ; ALLOC1 r0, r1, r0

90 Object *t17 = new I#(t16)

91 ; RET1 r0

92 ; -- return to sumAux ---

93 ; MOV_RES r1, 0

94 ; LOADF r2, r2, 2

95 Object *t18 = t9[2]

96 ; LOADK r3, 1

97 ; CALLT r3(r0,r1,r2)

98 base[1] = t17

99 base[2] = t18

100 goto entry;

Figure 4.6: Trace IR for inner loop starting at sumAux.

71

4. AN EXAMPLE

1 entry:

2 Object *t1 = base[2]

3 if (info(t1) 6= &cl_upto_ys)

4 goto exit1;

5 int t2 = t1[1]

6 int t3 = t2 + 1

7 Object *t4 = new I#(t3)

8 Object *t5 = t1[2]

9 if (info(t4) 6= I#) goto exit2

10 if (info(t5) 6= I#) goto exit3

11 int t6 = t3 t4[1]

12 int t7 = t5[1]

13 if (t6 > t7) goto exit4

14 Object *t8 = new cl_upto_ys(t6, t5)

15 Object *t9 = new Cons(t4, t8)

16 update (t1, t9)

17 if (info(t9) 6= &Cons) goto exit5

18 Object *t10 = t4 t9[1]

19 Object *t11 = base[0]

20 if (info(t11) 6= &NumDict) goto exit6

21 t12 = t11[2]

22 if (info(t12) 6= &plusInt) goto exit7

23 t13 = base[1]

24 if (info(t12) 6= &plusInt) goto exit8

25 if (info(t10) 6= &I#) goto exit9

26 if (info(t13)) 6= &I#) goto exit10

27 int t14 = t3 t10[1]

28 int t15 = t13[1]

29 int t16 = t14 + t15

30 Object *t17 = new I#(t16)

31 Object *t18 = t8 t9[2]

32 base[1] = t17

33 base[2] = t18

34 goto entry;

Figure 4.7: Optimised Trace IR

Figure 4.6 shows the executed bytecode and the recorded trace IR for a single

iteration of the loop induced by sumAux. There are a number of redundancies.

• Object t9 was allocated on the trace (Line 44), hence the guard at Line 53

will always succeed and can be omitted. The same optimisation can be

applied for t4 (Line 17) and the guard at Line 27 and at a few other places.

• Loading a field from an object that has been allocated on the trace can be

replaced by a reference to the value that was used to initialise the field. For

example, t10 (Line 55) can be replaced by t4 since its value was stored at

field 1 when t9 was allocated (Line 44). This optimisation is always valid

if the object is immutable. For mutable objects we would have to check

whether there could have been any intervening write to the same location.

• The guard at Line 73 is the same as Line 66 and can be omitted.

4.4 Machine Code

Figure 4.8 shows how the IR is translated to x86-64 machine code. Three registers

have predetermined purposes and are not used by the register allocator.

72

4. AN EXAMPLE

1 entry:

2 ; Object *t1 = base[2]

3 mov rcx, rbp[16]

4 ; if (info(t1) 6= &cl_upto_ys)

5 ; goto exit1;

6 mov r13, cl_upto_ys

7 cmp [rcx], r13

8 jne _exit1

9 ; int t2 = t1[1]

10 mov rbx, [rcx + 8]

11 ; int t3 = t2 + 1

12 mov r8, rbx

13 add r8, 1

14 ; reserve 80 bytes

15 lea r12, [r12 + 80]

16 ; check for heap overflow

17 cmp r12, [rsp]

18 ja heapoverflow

19 ; Object *t4 = new I#(t3)

20 mov rdi, I#

21 mov [r12 - 80], rdi

22 mov [r12 - 72], r8

23 lea r10, [r12 - 80] ; r10 = t4

24 ; Object *t5 = t1[2]

25 mov rbx, [rcx + 16]

26 ; if (info(t5) 6= I#) goto exit3

27 cmp [rbx], rdi ; rdi = I#

28 jne _exit3

29 ; int t6 = t3

30 ; int t7 = t5[1]

31 mov r14, [rbx + 8]

32 ; if (t6 > t7) goto exit4

33 cmp r8, r14

34 jg _exit4

35 ; t8 = new cl_upto_ys(t6, t5)

36 mov [r12 - 64], r13 ; cl_upto_ys

37 mov [r12 - 56], r8

38 mov [r12 - 48], rbx

39 lea rbx, [r12 - 64] ; rbx = t8

40 ; Object *t9 = new Cons(t4, t8)

41 mov r9, Cons

42 mov [r12 - 40], r9

42 mov [r12 - 32], r10

43 mov [r12 - 24], rbx

44 lea r9, [r12 - 40] ; r9 = t9

45 ; update (t1, t9)

46 mov rdx, IND

47 mov [rcx], rdx

48 mov [rcx + 8], r9

49 ; Object *t10 = t4

50 ; Object *t11 = base[0]

51 mov rcx, [rbp]

52 ; if (info(t11) 6= &NumDict) ...

53 mov rsi, NumDict

54 cmp [rcx], rsi

55 jne _exit6

56 ; t12 = t11[2]

57 mov rsi, [rcx + 16]

58 ; if (info(t12) 6= &plusInt) ...

59 mov r11, plusInt

60 cmp [rsi], r11

61 jne _exit7

62 ; t13 = base[1]

63 mov rdx, [rbp + 8]

64 ; if (info(t13)) 6= &I#) ...

65 cmp [rdx], rdi

66 jne _exit10

67 ; int t14 = t3

68 ; int t15 = t13[1]

69 mov rdx, [rdx + 8]

70 ; int t16 = t14 + t15

71 add rdx, r8

72 ; Object *t17 = new I#(t16)

73 mov [r12 - 16], rdi

74 mov [r12 - 8], rdx

75 lea rdx, [r12 - 16]

76 ; Object *t18 = t8

77 ; base[1] = t17

78 mov [rbp + 8] = rdx

79 ; base[2] = t18

80 mov [rbp + 16] = rbx

81 ; goto entry;

82 jmp entry

Figure 4.8: Trace IR compiled to machine code

• Register rbp is the base pointer. The virtual machine stack is kept separate

from the C stack.

73

4. AN EXAMPLE

• Register r12 is the heap pointer and points to the first byte available to

the memory allocator. The heap pointer must always be less than the heap

limit. Allocating memory from the heap is done simply by incrementing

the heap pointer by the number of bytes needed. If that would move the

heap pointer past the heap limit, then a heap overflow has occurred and

execution leaves the trace. The heap overflow handler may then trigger

garbage collector or select a new allocation region.

• Register rsp points to the top of the C stack at which some of the virtual

machine’s data is stored. For example, the address [rsp] contains the value

of the current heap limit.

All other register can be freely used for storing intermediate results of the

compiled trace code.

Most IR instructions map to one or two assembly instructions. Large literals,

i.e., those that require more than 32 bits to encode cannot be used as an immedi-

ate in x86-64, so they must first be loaded into a register. The register allocator

tries to keep constants in a register if enough registers are available.

Allocation is split into two parts: (1) a heap check reserving the required

number of bytes in the heap, and (2) initialising that memory. The trace optimiser

combines multiple heap checks into a single heap check to reserve the memory for

all allocations on the trace. If execution leaves the trace at a side exit, some of

that reserved memory may have to be given back to the memory allocator. The

first allocation on a trace will trigger a heap check and is followed by the code

to initialise the first-allocated object. All remaining allocations simply need to

initialise the memory that has previously been reserved by the combined heap

check.

Each object initialisation sequence in Figure 4.8 is followed by a lea instruc-

tions which puts a pointer to the beginning of the object into the target register.

The lea instruction stands for “load effective address” and does not actually

perform any memory access. An instruction lea dest, [ptr + offset] simply

stores the value of the addition ptr + offset in register dest.

74

Chapter 5

Implementation

This chapter provides a detailed account of the implementation details of Lamb-

dachine, our trace-based JIT compiler for Haskell. Lambdachine currently only

targets the 64 bit x86 architecture (a. k. a. x86-64 or amd64).1 Its source code

can be found at https://github.com/nominolo/lambdachine.

The organisation of this chapter largely follows the path of a program through

the optimisation pipeline, which is shown in Figure 5.1.

The front-end, lcc, compiles GHC’s core language into the bytecode format.

This translation is rather simple and follows from the bytecode semantics. It is

described in Section 5.3.

The bytecode format and related architectural decisions such as the layout of

stack frames and heap objects is described in Section 5.2

The trace recorder is responsible for translating the semantics of a recorded

instruction into the trace intermediate representation, or just trace IR, for short.

The generated IR instructions are not directly written into a buffer, but are

rewritten on-the-fly. The trace IR instruction set is described in Section 5.5.

Section 5.11 describes how bytecode instructions are mapped to trace IR instruc-

tions. Section 5.8 explains the forward optimisation pipeline which optimises IR

instructions on-the-fly before emitting them to the trace IR buffer.

Some optimisations propagate information from the end of the trace to the

beginning. Such backward optimisations are done after recording completed suc-

1There are no fundamental limitations to support other architectures; it is simply a matter
of implementation effort.

75

https://github.com/nominolo/lambdachine

5. IMPLEMENTATION

CorePrep/
CoreHaskell

Bytecode

Trace IR
(on the fly) Machine Code

Trace IR
(Buffer)

Trace IR
(Buffer)

LCC

Trace Recorder

Forward Optimisations

Backward Optimisations

Register Allocation &
Code Generation

Figure 5.1: Stages and intermediate formats used in Lambdachine. We start after
GHC has parsed, type checked, (optionally) optimised the Haskell program and
finally translated it into the CorePrep/CoreHaskell form. From there, lcc trans-
lates it into Lambdachine’s bytecode format. The bytecode is then loaded by the
Lambdachine runtime system (lcvm) and interpreted. Eventually, some of the
bytecode instructions are detected as hot and the trace recorder converts them
into the trace intermediate representation (IR). The generated IR instructions
are optimised on the fly and either eliminated or placed into the IR buffer. After
recording has completed, additional optimisations may be performed on the IR
buffer. Finally, the IR instructions are turned into machine code. Register alloca-
tion and dead code elimination are integrated with the machine code generation
pass.

76

5. IMPLEMENTATION

cessfully. Lambdachine currently does not use this stage. The only currently

used backwards optimisation is dead code elimination, but that is integrated into

code generation. The allocation sinking optimisation (Section 5.10) if combined

with loop optimisation would require a backwards optimisation pass.

After all trace IR optimisations have been performed, the trace IR instructions

are translated into machine code. The code generation pass operates backwards,

that is, it generates the last instruction of the trace first and generates the first

machine code instruction last. This is done to avoid a separate pass for deter-

mining the live ranges, needed by the register allocator. By operating backwards,

register allocation can be performed immediately before the machine code in-

struction is written. The information used by the register allocator includes live

variable information which can be used to simultaneously perform dead code

elimination during register allocation.

Section 5.13 explains how switches between interpreter and compiled machine

code are implemented. Finally, Section 5.14 describes how multiple traces are

linked together efficiently.

5.1 Relationship between Lambdachine and Lu-

aJIT

Lambdachine’s runtime system, which includes the JIT compiler, is implemented

in C++, but many architectural decisions and a certain amount of code were

derived from the open source LuaJIT1 implementation which is written in C

(Pall [2009, 2013]). This section explains the relation between these two code

bases.

LuaJIT is a trace-based JIT compiler for the programming language Lua

(Ierusalimschy et al. [2006]). Lua is a dynamically typed language designed to

be easily embeddable in other programs, for instance, as a scripting language in

computer games. Lua is an imperative language, but it does support first-class

functions. Its main data structure is a hash map (called “table”).

1LuaJIT version 1 was actually a method-based compiler, and only version 2 is trace-based.
In this thesis, we simply write “LuaJIT” to refer to version 2 unless otherwise stated. LuaJIT
is available at http://luajit.org/

77

http://luajit.org/

5. IMPLEMENTATION

Even though the semantics of Lua and Haskell are very different, there are a

number of components of a JIT compiler that are largely language independent.

For example, aspects such as register allocation and code generation are almost

independent of the source language. This also applies to the design of data

structures used by the JIT compiler itself. Many JIT compiler optimisations can

also be implemented in a very similar manner. In particular, the following design

decisions were taken from LuaJIT:

• The in-memory layout of the bytecode instructions.

• The in-memory layout of the IR instructions as well as the internal organi-

sation IR buffer and references to other IR instructions.

• There is some overlap in the IR instruction set semantics.

• The use of an abstract stack and snapshots.

• The code generator and register allocator are almost identical. We also use

trace coalescing (see Section 3.6), which can be seen as part of the register

allocator.

• Our loop optimisations are based on LuaJIT’s. While recent versions of

LuaJIT support allocation sinking, the implementation of Lambdachine was

started earlier and Lambdachine’s implementation of allocation sinking was

done independently of LuaJIT’s.

Of course, since Haskell and Lua are quite different languages, Lambdachine

differs from LuaJIT in a number of significant ways:

• The semantics of the bytecode instruction set is very different. It is based

mostly on the Spineless Tagless G-Machine and GRIN.

• The implementation of the interpreter is therefore also different.

• The layout of heap objects and the implementation of the garbage collector

are completely different. Lambdachine instead uses GHC as the inspiration

for these aspects.

78

5. IMPLEMENTATION

• Lua values are tagged with their type information. Lambdachine does not

use tagged values, so pointer information (required by the garbage collector)

must be provided in a different way. Some pointer information is stored in

the bytecode itself, other information is accessible from a heap object’s

header.

• The method of root trace selection is different. LuaJIT relies mainly on

source-level loop constructs (like for loops) and has a less sophisticated

mechanism for detecting hot functions. Lambdachine must detect all loops

based on calls and tail call instructions since there are no loop constructs

in the language. Haskell’s support for partial- and over-application also

interacts with trace selection.

• The semantics of the trace IR instructions differ in some aspects. Since

trace IR instructions are fairly low-level, arithmetic and logic instructions

are the same for both. Due to the different design of data structures in both

languages, however, trace IR instructions for allocation and object access

differ.

Basing the implementation of Lambdachine on LuaJIT was very helpful in

achieving good JIT compilation performance with relatively little effort. It will

also make it easier to support new instruction set architectures by adapting the

code from LuaJIT. Nevertheless, Haskell and Lua are sufficiently different to make

Lambdachine a non-trivial implementation effort. Appendix 8.7 gives a break-

down of how much of Lambdachine’s implementation is shared with LuaJIT.

The VM code shares about 35% with LuaJIT, and if we include unit tests and

the bytecode compiler (lcc) it reduces to 20%. We therefore feel confident in the

claim that Lambdachine consists of a significant amount of original work.

5.2 Bytecode Instruction Set

Lambdachine’s bytecode instruction set design is based on Boquist’s GRIN lan-

guage Boquist [1999]; Boquist and Johnsson [1996] and the Spineless Tagless

79

5. IMPLEMENTATION

G-machine (STG) (Peyton Jones [1992]). Section 5.2.7 discusses the relation

between Lambdachine’s bytecode and GRIN.

Lambdachine’s bytecode uses an explicit EVAL instruction to reduce an argu-

ment to WHNF. Unlike STG, the CASE statement always assumes that its ar-

gument is already in normal form. The following example translation illustrates

this (assume x and f local variables in the surrounding context:

case x of

Left y -> y

Right z -> f z

⇓

EVAL x

CASE x

Left: ->L1

Right: ->L2

L1: LOADF y, x, 1

RET1 y

L2: LOADF z, x, 1

CALLT f, z

An instruction LOADF x, p, o loads the field at offset o of the objected pointed

to by p and stores the result in x. RET1 simply returns from the function, and

CALLT is a tail-call.

5.2.1 Register-based Bytecode

Lambdachine’s bytecode is register-based rather than stack-based. In a stack-

based interpreter operands are pushed onto an operand stack. Operations then

pop their inputs off the operand stack and push the result back onto the stack.

This leads to compact bytecode, but may requires more administrative instruc-

tions, that is, instructions that merely manipulate the contents of the stack and

80

5. IMPLEMENTATION

do not contribute to the program’s computation. For example, in an imperative

language, code such as x = a * b + c might be translated into:

push a ; stack = a : []

push b ; stack = b : a : []

mul ; stack = (a * b) : []

push c ; stack = c : (a * b) : []

add ; stack = ((a * b) + c) : []

store x ; stack = []

In an interpreter, the overhead of dispatching an instruction (decoding the

instruction opcode and arguments and selecting the right implementation) often

dominates the execution time. A register-based bytecode allows instructions to

read and write operands anywhere in the stack. These stack locations are often

called virtual registers and must be encoded with the instruction. The size of

a single instruction thus increases, but the total number of executed instruction

decreases. In a register-based bytecode, the above expression would be translated

to:

; assume: a = r0, b = r1, c = r3, x = r2

mul r4, r0, r1 ; tmp = a * b

add r2, r4, r3 ; x = tmp + c

Davis et al. [2003] motivated the use for register-based bytecode and Shi et al.

[2005] showed the overall performance advantages of this bytecode design.

5.2.2 Bytecode Format

Lambdachine uses the same simple instruction format as LuaJIT with a few

extensions for instructions with an arbitrary number of arguments.

The size of each bytecode instruction is a multiple of 4 bytes. Most instruc-

tions are 4 bytes, but some instructions take multiple arguments and thus need

more than 4 bytes to encode. Additionally, information about live pointer data

is encoded into the instruction stream at call, evaluation and allocation instruc-

tions. This information is used by the garbage collector. The first 4 bytes of each

instruction are always one of the two formats shown in Figure 5.2.

81

5. IMPLEMENTATION

Opcode
0781516232431

Opcode

A

AD

B C
Bits

Format ABC

Format AD

Figure 5.2: Basic bytecode instruction formats. Bit 0 is the least significant bit,
bit 31 is the most significant bit.

Having fields be multiples of a byte avoids the need to use bit shifting and

masking operations which helps reduce instruction decode overhead.

In our current implementation the on-disk bytecode format is the same as

the in-memory format. This does not have to be the case. We expect future

versions of Lambdachine to use a different format for on-disk storage which is

then translated to the internal format by the bytecode loader. This will make

it easier to add bytecode validation checks, improve portability and backwards

compatibility.

5.2.3 Bytecode Instruction Set

Instructions can take three kinds of operands:

• R: A virtual register.

• R+: A variable number of virtual registers.

• N: An integer constant.

• J: An address encoded as an offset from the end of the current instruction.

• P: Pointer information encoded inline into the instruction stream.

• J+: A variable number of jump offsets (used only by the CASE instruction).

Table 5.1 shows most of Lambdachine’s instructions. Only a few primitive

instructions are omitted.

82

5. IMPLEMENTATION

Table 5.1: Bytecode instruction format

Opcode Format Semantics

ISLT RRJ Branch if less than (signed integer)

ISGE RRJ Branch if greater than or equal (signed integer)

ISLE RRJ Branch if less than or equal (signed integer)

ISGT RRJ Branch if less than (signed integer)

ISLTU RRJ Branch if less than (unsigned integer)

ISGEU RRJ Branch if greater than or equal (unsigned integer)

ISLEU RRJ Branch if less than or equal (unsigned integer)

ISGTU RRJ Branch if greater than (unsigned integer)

ISEQ RRJ Branch if equal (signed or unsigned)

ISNE RRJ Branch if not equal (signed or unsigned)

JMP J Branch unconditionally

CASE RJ+ Case analysis on constructor tag

NEG RR Negate (signed integer)

ADDRR RRR Addition (signed and unsigned integer)

SUBRR RRR Subtraction (signed and unsigned integer)

MULRR RRR Multiplication (signed and unsigned)

DIVRR RRR Division (signed integer)

REMRR RRR Modulo (signed integer)

BNOT RR Bitwise not (signed and unsigned integer)

BAND RRR Bitwise and (signed and unsigned integer)

BOR RRR Bitwise or (signed and unsigned integer)

BXOR RRR Bitwise xor (signed and unsigned integer)

BSHL RRR Logical bit shift left (signed and unsigned integer)

BSHR RRR Logical bit shift right (signed and unsigned integer)

BSHL RRR Arithmetic bit shift right (signed and unsigned integer)

BROL RRR Bit rotate left (signed and unsigned integer)

BROR RRR Bit rotate right (signed and unsigned integer)

MOV RR Register to register move (any type)

MOV RES RN Load result of last function call into register

Continued on next page

83

5. IMPLEMENTATION

Table 5.1: Bytecode instruction format

Opcode Format Semantics

LOADF RRN Load a field from a closure

LOADFV RN Load free variable of current closure

LOADBH R Load pointer to black hole into register

LOADSLF R Load pointer to current closure into register

INITF RRN Initialise field with value

LOADK RN Load literal into register

ALLOC1 RRRP Allocate closure with payload size 1

ALLOC RR+P Allocate closure with payload size > 1

ALLOCAP RR+P Allocate an application thunk

CALLT RNP Tail call a function

CALL RR+P Call a function

RET1 R Return a single result

RETN R Return multiple results

EVAL RP Evaluate to weak head normal form

UPDATE RR Update thunk with indirection to other closure

FUNC R Marks beginning of a function/thunk

IFUNC R Marks a function/thunk that should not be JIT compiled

JFUNC RN Redirects execution to a compiled trace

IRET RN Return, but target cannot start a new trace

JRET RN Return and execute the given trace

SYNC − Refresh internal interpreter state (for mode switching)

STOP − Stop the interpreter

Most instructions write their result into a register which is always the first

operand.

A sequence of byte code is accompanied by a literal table which holds constants

that cannot be encoded directly in the instruction stream. Such literals are mostly

references to function info tables, string literals, or statically allocated closures.

The LOADK instruction loads a literal (described by its offset in the literal table)

and copies it into the specified register.

84

5. IMPLEMENTATION

TypeSizeTag

Payload pointer information
Frame-

sizeArityNo. of literals

No. of InstructionsNo. of bitmaps

Bytecode Instructions

⋮

Bitmaps for byte code pointer information

⋮

bit 031

Literal Table

⋮

Payload / Object fieldsHeader

Info Table

Figure 5.3: Layout of a heap object (left) and info tables (right). Grey parts are
only present for object types with code attached.

Branch instructions perform a test and transfer control to the instruction at

the specified object if the test succeeded. Arithmetic and bit operations work as

expected.

5.2.4 Heap Object Layout

All heap objects have the same basic layout, shown in Figure 5.3, which is very

similar to GHC’s. Each heap object has a header which contains a pointer to a

(statically allocated) info table. The rest of the object contains the payload, i.e.,

values of the fields of a constructor or the free variables of a thunk or closure.

The info table contains a “Type” field, which describes the type of object that

it represents. Commonly used object types are:

• CONSTR: The object describes a constructor with fields.

85

5. IMPLEMENTATION

• FUN: The object is a function. The info table will also include the function’s

code.

• THUNK/CAF: The object describes a thunk or a CAF (top-level thunk, see

below). The info table will also include the code to evaluate the thunk.

• PAP: The object represents a partial application of a function. See Sec-

tion 5.2.6.

• IND: The object is an indirection. When a thunk is updated with a new

value the original thunk’s info table is overwritten with the indirection info

table and its payload is overwritten with a pointer to the value.

A CAF, short for constant applicative form, is a thunk whose free variables

are all statically allocated. CAFs are allocated in mutable memory when the

program starts and, like any other thunk, are evaluated and updated when their

value is first needed1. Updated CAFs must be added to the garbage collector’s

roots because an updated CAF will contain a pointer into the program’s heap.

The other fields used by all info tables are the size of an object and a bitmap

describing which payload fields are pointers. For large objects, the field may just

store a reference into a table of larger bitmaps. For constructor objects, the info

tables also stores the constructor tag.

For objects with code attached, the info tables contains the bytecode and

associated meta data. Bytecode may contain embedded pointer data (see Sec-

tion 5.2.8) which is stored alongside the bytecode.

5.2.5 Stack Frame Layout

Figure 5.4 shows Lambdachine’s stack frame layout. Virtual registers are ac-

cessed relative to the Base pointer. Register ri is at byte address Base + i ×
sizeof(Word). Each bytecode object specifies its frame size, which is the num-

ber of virtual registers used by the code.

Each frame stores the Node pointer, which points to the closure currently

being evaluated. It is used to access free variables. A frame also stores the return

1CAFs do not contain any payload, so the bytecode loader reserves memory for the pointer
of the indirection.

86

5. IMPLEMENTATION

return
PC Node r0 r1 r2

BasePrev. Base

increasing addresses

Top

Figure 5.4: Layout of an interpreter stack frame with frame size 3.

PC, which is the address of the bytecode where execution will continue if a return

instruction is executed, and a pointer to the previous stack frame.

A function of n arguments receives them in registers r0 through r(n−1). The

CALL instruction takes a list of registers, creates a new stack frame and copies

the contents of the registers into adjacent locations in the new frame. The Node

pointer in the called function’s frame will point to the function’s closure.

The CALLT instruction implements tail calls which re-use the same frame.

CALLT therefore requires all arguments to already be in registers r0 through

r(n− 1). CALLT sets the current node pointer to the called function and jumps

to the function’s body.

In fact, if the number of arguments to CALL and CALLT is not known statically,

the instructions must check whether the called function actually expects the same

number of parameters as there are arguments specified in the instruction. Most

of the time this will be true, but not always, as discussed next.

5.2.6 Overapplication and Partial Application

Figure 5.5 shows the possible cases that may occur when calling a function and

how the stack must be adjusted.

Initially, both CALL and CALLT set up the stack frame so the called function

is stored in the Node position and all arguments are in their expected positions.

We now must distinguish five cases.

• If the item is a function (closure type is “FUN”) then we need to inspect the

87

5. IMPLEMENTATION

x1 ...f xn

x1 ...ApK(n) xn f

f = Thunk/CAF

...

f = FUN
arity(f) = n

f = FUN, arity(f) < n, m = arity(f), m' = m + 1

xm' ...ApK
(n-m) xn f x1 ... xm

f = FUN
arity(f) > n

f = PAP(g,y1,…,ym)

y1 ...g ym x1 ... xn

ENTER

Allocate
PAP(f,x1,…,xn)

and return it

Figure 5.5: Cases that need to be handled by CALL and CALLT.

88

5. IMPLEMENTATION

arity of the function.

– If the arity matches the number of arguments, we just execute its code.

– If the function expects more arguments then supplied (partial appli-

cation), then we create a partial application (PAP) and return to the

parent stack frame. A PAP is a heap object that holds the function

and all arguments provided so far.

– If the function expects fewer arguments than supplied (overapplica-

tion), then we need to apply the function’s result to the remaining

arguments.. To this end we create an application continuation stack

frame underneath the frame for f. A stack frame for n-ary application

continuation, written ApK(n), retrieves the result of the parent frame

and applies it to n arguments.

• If the called function is a thunk or CAF (top-level thunk), then we turn the

current frame into an application continuation that applies all arguments

and evaluate the thunk in a new frame.

• Finally, if the function is a partial application, then we extract the function

and all arguments from the PAP and add them to the current frame. We

then apply the same case analysis again. Note that (as an invariant) the

function field in a PAP objects must always be a FUN, thus this case is

encountered at most once per function call.

The above analysis becomes more complicated in the actual implementation,

because we need to ensure accurate pointer information for each argument. Every

argument can come in (at least) two forms (pointer and non-pointer), so for every

application continuation ApK(n) there are 2n possible closures. Since only very

few of these will ever be used in practice, we generate application closures on

demand at runtime. The implementation of the two call instructions are by far

the most complicated portion of the interpreter.

89

5. IMPLEMENTATION

5.2.7 Lambdachine bytecode and GRIN

Like high-level GRIN, our bytecode uses explicit eval and apply instructions,

and the bytecode’s case instruction requires its argument to already be in normal

form. The bytecode’s case instruction also only examines the object tag. Object

fields must be loaded one by one using the relevant load instructions.

GRIN (as well as GHC, Marlow and Peyton Jones [2004]) distinguishes be-

tween calls to known function and unknown functions. For calls to known func-

tions the compiler knows the exact number of arguments and can emit a direct

call to the function since no over- or partial-application can occur. For calls to un-

known functions GRIN uses the generic apply function. Lambdachine currently

does not distinguish between those cases on the level of bytecode instructions. If

better interpreter performance becomes desirable, adding a new instruction type

for statically known functions would be a low-hanging fruit.

Boquist’s GRIN had high-level and low-level variants of many of its opera-

tions. For example, the initial translation from the core language into GRIN

constructs would include polymorphic eval, apply and pattern matching with

variable bindings. Further optimisation passes over the GRIN language would

then turn all these constructs into first-order constructions that can be mapped

easily onto a RISC machine architecture. Lambdachine’s bytecode is very similar

to low-level RISC except for EVAL and call instructions.

Boquist required program-analysis to efficiently turn polymorphic occurrences

of eval and apply into first order constructs. In Lambdachine’s bytecode lan-

guage we keep these constructs polymorphic and optimise them later using just-

in-time compilation. In the interpreter EVAL is implemented like in STG using an

indirect call. Calling unknown functions also performs an expensive runtime case

analysis on the arity of the called function. Again, we rely on the JIT compiler

to later specialise the program to the cases actually occurring in practise.

5.2.8 Pointer Information

Allocation instructions are annotated with the set of pointer registers that were

live before the instruction (the “live-ins”); call and eval instructions are annotated

with the pointer registers that are live after the instruction (the “live-outs”). The

90

5. IMPLEMENTATION

difference stems from the different uses of this pointer information.

Garbage collection is only triggered by allocation instructions:1, namely if the

allocation instruction fails to reserve memory. The pointer information from the

failing allocation instruction is then used to find the roots of the current frame.

The return address of the current frame will point to an instruction following a call

or an eval instruction. The pointer information from that instruction describes

the roots of the corresponding frame.

5.2.9 Bytecode Interpreter

Lambdachine’s interpreter is written in C++. We use the “labels as values”

C extension2 to allow easy mode switching. The basic structure is shown in

Figure 5.6.

A pointer to the implementation of each interpreter instruction is stored in

a global dispatch table. There is one dispatch table for each mode supported by

the interpreter (currently “normal”, “recording”, and “debug”). The interpreter

maintains a pointer to the currently active dispatch table.

Upon entry to each instruction, the local variable opA contains the contents

of the A part of the instruction (cf. Figure 5.2), and opC contains the contents of

the D part. If an instruction uses the ABC format, then it first has to decode the

B and C components from the opC. Decoding is followed by the implementation

of the instruction. Finally, the instruction must transfer control to the following

instruction. To do this, it needs to extract the opcode of the next instruction

(pointed to by pc) and pre-decode the A and D parts. Finally, we need to look up

the address of the implementation of the next instruction in the active dispatch

table and jump to it.

The reason for pre-decoding parts of the next instruction is to hide the delay

introduced by the final indirect branch. A modern out-of-order processor can

execute the these instruction in parallel with the branch execution.

LuaJIT uses the same techniques (and this bytecode format is designed specif-

ically to allow efficient interpretation), but its interpreter is implemented in hand-

1In future versions of Lambdachine, a stack overflow may trigger a stack resize which in
turn may trigger garbage collection.

2http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

91

http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

5. IMPLEMENTATION

typedef void *AsmFunction;

int interpret(Capability *cap, InterpreterMode mode) {

// Dispatch table for normal execution mode.

static const AsmFunction dispatch_normal[] = {
..., &&op_ADD, ...

};

// Dispatch table for recording mode.

static const AsmFunction dispatch_record[] = ...;

const AsmFunction *dispatch; // Active dispatch table

Word *base; // base[i] = register i

BcIns *pc; // points to *next* instruction

uint32_t opA, opB, opC, opcode;

if (mode == INTERP_MODE_NORMAL)

dispatch = dispatch_normal;

...

// Implementation of integer addition (signed/unsigned)

op_ADD:

// Decode B and C operands from pre-decoded D part

opB = opC >> 8;

opC = opC & 0xff;

// Implementation of instruction:

base[opA] = base[opB] + base[opC];

// Dispatch next instruction:

BcIns next = *pc;

opcode = next.opcode;

opA = next.a; // Pre-decode A

opC = next.d; // Pre-decode D

++pc;

// Jump to implementation of next instruction.

goto *dispatch[opcode];

...

}

Figure 5.6: Basic structure of the interpreter code.

92

5. IMPLEMENTATION

Concatenating instructions:

〈i1, · · · , in〉 ⊕ 〈j1, · · · , jm〉 , 〈i1, · · · , in, j1, · · · , jm〉

Bytecode objects:
bco ::= Functionn(I) Function of arity n and code I

| Thunk(I) Thunk with evaluation code I

| Constr(lit) Static data structure

Global bytecode compiler environment
Γ ::= x→ bco

Figure 5.7: Bytecode compiler data structures

written assembly. This gives better performance since C/C++ compilers gener-

ally do not optimise such large dispatch tables well. For the time being, we chose

to prioritise ease of interpreter evolution over absolute performance.

5.3 Compiling Haskell to Bytecode

The bytecode compiler, lcc, interfaces with the GHC API to parse and type check

the Haskell source file. The input Haskell code is then translated into GHC’s Core

language and optionally optimised via the GHC API. Finally, lcc takes the result

of this transformation and translates it into Lambdachine’s bytecode. Translation

to bytecode is split into two phases, (1) translation to bytecode instructions and

(2) virtual register allocation. The final bytecode is then written to a bytecode

file to be loaded later by the virtual machine (lcvm).

The bytecode compiler translates the program into a collection of bytecode

objects (Figure 5.7). Bytecode objects are thunks, functions, or static data struc-

tures. Bytecode objects are later turned into info tables or static closures (or

both) and then written to disk. The full implementation also computes all infor-

mation required by the garbage collector, but we omit this here for clarity.

Figure 5.8 shows the translation of CoreHaskell to our bytecode. This transla-

tion assumes an infinite number of temporary variables (with the same name as in

CoreHaskell) which are later mapped to virtual registers via a register allocation

pass. The translation scheme for expressions

93

5. IMPLEMENTATION

Result(Ret, x) = RET1 x
Result(Bind y, x) = MOVE y, x

Var
EJxK, C,Γ 〈EVAL x; MOV RES x;Result(C, x)〉,Γ

Lit
t fresh

EJ`K, C,Γ 〈LOADK t, `;Result(C, t)〉,Γ

Tailcall
I = 〈MOVE r0, x1; · · · ; MOVE r(n− 1), xn; CALLT f, n〉

EJf x1, · · · , xnK,Ret,Γ I,Γ

Call
EJf x1, · · · , xnK,Bind y,Γ 〈CALL f, x1 · · · , xn; MOV RES y〉,Γ

Data
t1, t2fresh I = 〈LOADK t1, K; ALLOC t2, t1, x1, · · · , xn;Result(C, t2)〉

EJK x1, · · · , xnK, C,Γ I,Γ

DataBind
EJK x1, · · · , xnK,Bind x,Γ I1,Γ

′ EJeK, C,Γ′ I2,Γ
′′

EJlet x = K x1, · · · , xn in eK, C,Γ I1 ⊕ I2,Γ′′

Rename
EJeK, C,Γ I,Γ′

EJlet x = y in eK, C,Γ 〈MOVE y, x〉 ⊕ I,Γ′

Fun

EJe1K,Ret,Γ I1,Γ
′

I2 = 〈MOVE x1, r0; · · · ; MOVE xm, r(m− 1)〉
I3 = 〈LOADFV y1, 1; · · · ; LOADFV yn, n〉 {y1, · · · , yn} = fv(e1)

t, t1 fresh Γ′′ = Γ′ ∪ {t 7→ Functionm(I2 ⊕ I3 ⊕ I1)}
I4 = 〈LOADK t1, t; ALLOC x, t1, y1, · · · , yn〉

EJe2K, C,Γ′′ I5,Γ
′′′

EJlet x = λx1 · · ·xm.e1 in e2K, C,Γ I4 ⊕ I5,Γ′′

Thunk

EJe1K,Ret,Γ I1,Γ
′

I2 = 〈LOADFV y1, 1; · · · ; LOADFV yn, n〉 yi ∈ fv(e1)
t, t1 fresh Γ′′ = Γ′ ∪ {t 7→ Thunk(I2 ⊕ I1)}

I3 = 〈LOADK t1, t; ALLOC x, t1, y1, · · · , yn〉 EJe2K, C,Γ′′ I4,Γ
′′′

EJlet x = e1 in e2K, C,Γ I3 ⊕ I4,Γ′′′

Figure 5.8: Translation of CoreHaskell expressions to bytecode.

94

5. IMPLEMENTATION

EJeK, C,Γ I,Γ

is a function of three inputs and produces two outputs. The three input

parameters are:

• The expression e to be translated.

• The binding context C in which the expression was found. A context Ret

means that the result of the expression should be returned; a context Bind y

means that the result of the expression should be assigned to variable y.

• The global environment Γ, which collects all info tables.

The result of the translation is a sequence of bytecode instructions, I, and an

updated global environment Γ.

Rule Var simply reduces the value pointed to by x to WHNF and then stores

or returns the result, depending on the context. The translation scheme poten-

tially generates a lot of unnecessary MOVE, LOADF, and LOADFV instructions. The

register allocator will try to allocate both source and target of a MOVE instruction

to the same register and then delete the move instruction. A simple dead code

elimination analysis can be used to remove LOADF and LOADFV instructions as

well.

Rule Tailcall translates a function call in a return context into a proper tail

call. To implement tail calls efficiently, we require that all n tail call arguments

are in registers r0 through r(n−1). The actual tail call can then be implemented

simply by a jump to the start of the function’s bytecode.

Any other function call must create a new stack frame and is translated to a

CALL instruction by Rule Call. Our full implementation also supports functions

which return multiple arguments. These arise from uses of unboxed tuples, a GHC

extension (GHC Team [2011]). Multiple arguments are returned by placing the

n results in registers r0 through r(n− 1) and then returning via RETN. The caller

can then retrieve the ith result via MOV RES xi, i. This is implemented by leaving

the result inside the now-dead stack frame, that is, right above the top of the

stack. This means that the caller must retrieve all results before it can issue a

new CALL as that will overwrite the results.

95

5. IMPLEMENTATION

Rules Data and DataBind handle the allocation of a heap object with con-

structor K. Both simply translate to the multi-argument ALLOC instruction. We

assume that an appropriate info table has been added to the global environment

Γ, which describes the tag and garbage collector meta data for the object. For

each constructor K there also exists a wrapper function of the same name that

simply passes on all its arguments to ALLOC and returns the resulting pointer.

When a constructor is passed as an argument to another function, a reference to

the wrapper function is used.

Rules Fun and Thunk handle the allocation of functions and thunks, re-

spectively. In each case we use LOADFV to load the value of a free variable from

the heap into a local register. A function receives its n arguments in registers

r0 through r(n − 1), so we use MOVE instructions to load them into temporary

registers. Recall that the register allocator will later attempt to remove these

MOVE instructions. The instructions for setting up the arguments and reloading

the free variables is then combined with the body of the bound expression and

packaged up in a new (global) info table. The code from the allocation site then

constructs a new heap object with the appropriate info table and the values of the

free variables at the allocation site. If an expression has no free variables, we can

replace the instruction ALLOC x, f by LOADK x, closure(f), that is, we can move the

function or thunk (actually a CAF) to the top-level. Normally, GHC will have

performed this transformation before our translation to bytecode is invoked.

Figure 5.9 shows Rule Case which handles the translation of case expressions.

It delegates to two helpers: CJρ→ eK, x, C,Γ I,Γ generates the code for all

the case alternatives and the CASE bytecode instruction which dispatches to the

right case alternative via a branch. The PJρK, x tag, label, I scheme generates

the code for extracting the bound pattern variables from the scrutinized heap

object.

5.4 Detecting hot traces

We use a simple counter-based hotness detection scheme. The target of any

CALL, CALLT, EVAL, or RET instruction can cause a hot counter to be updated.

Hot counters are in fact initialised to the hotness threshold and then decremented

96

5. IMPLEMENTATION

Case
EJe1K,Bind x,Γ I1,Γ

′ CJρ→ eK, x, C,Γ′ I2,Γ
′′

EJcase e1 of (x) ρ→ eK, C,Γ I1 ⊕ I2,Γ′′

Alts

PJKi xiK, x ti, Li, Ii (i ∈ {1, · · · , n})
EJeiK, C,Γi I ′i,Γi+1 (i ∈ {1, · · · , n})
L fresh label I ′′i = Ii ⊕ I ′i ⊕ 〈JMP L〉

I = 〈CASE x {ti : Li | i ∈ {1, · · · , n}}〉 ⊕ I ′′1 ⊕ · · · ⊕ I ′′n ⊕ 〈L :〉
CJK1 x1 → e1; · · ·Kn xn → enK, x, C,Γ1 I,Γn+1

Unpack
L fresh label

PJK x1 · · ·xnK, x tag(K), L, 〈L :; LOADF x1, x, 1; · · · ; LOADF xn, x, n〉

Figure 5.9: Translation of CoreHaskell patterns to bytecode.

on each event. The hot counter’s target is considered hot if the hot counter

reached zero. The interpreter is then switched to recording mode and the hot

counter is reset to its initial value.

We only consider backwards branches, that is branches to a bytecode instruc-

tion with a lower in-memory address. Each bytecode sequence starts with the

special FUNC instruction. We can overwrite this instruction with JFUNC to directly

enter a trace. We can also overwrite it with IFUNC which prohibits the instruction

from ever being considered as a potential trace head. This is useful, for example,

for bytecode that is part of the runtime system such as application continuations

(cf. Section 5.2.6). Similarly, we can replace a RET instruction by IRET to prevent

the return target from ever being considered a potential trace head.

If execution leaves a trace, a generic routine is invoked that saves the contents

of all registers and restores the virtual machine state before transferring control

back to the interpreter (see Section 5.13.1). This generic routine also decrements

a hot counter for the particular side exit. If this hot counter reached zero, then

execution in the interpreter continues in recording mode.

We perform false loop filtering (cf. Section 3.3.2) as part of the trace recorder.

The trace recorder maintains a list of all branches performed while in trace record-

ing mode as well as their stack level. If a true loop is detected, the trace recorder

97

5. IMPLEMENTATION

completes. In the case of a false loop, recording simply continues.

5.5 Trace Intermediate Representation

The trace recorder is responsible for translating the behaviour of each executed

interpreter instruction into an equivalent sequence of instructions in the trace

compiler’s intermediate representation (IR). Instructions emitted into the trace

IR buffer are optimised on the fly before being appended to the trace IR buffer.

The trace IR uses a fixed-width instruction format (same as LuaJIT’s). This

helps with memory management and compactness. Each IR instruction stores the

opcode, the result type, and up to two operands. Instructions that require more

than two operands (e.g., allocation) use one of the operands to store a reference

to an auxiliary structure that stores the remaining operands.

The advantage of this format is that every trace IR instruction is only 64 bits

wide, and references to the result of other instructions are simply 16 bit indexes

into the trace IR buffer. A more traditional format of separately heap-allocated

IR instructions would be more flexible, but would also require higher memory

overhead for compiler data structures. For example, on a 64 bit architecture, a

single reference to another instruction would require 8 bytes of memory, which

can hold a single IR instruction in our (i.e., LuaJIT’s) instruction encoding.

Table 5.2 lists all trace IR instructions currently supported by Lambdachine.

The first group of instructions like LT, GT, etc. are guards and do not produce

a result. All guards have an associated snapshot (see Section 5.7) which de-

scribes how to adjust the virtual machine state for the interpreter if the guard

fails. Arithmetic comparisons like LT have type information which describes, for

example, whether signed or unsigned comparison should be used.

The next group in Table 5.2 are simple arithmetic and logic instructions of one

or two arguments. Again, some instructions are overloaded and store additional

type information.

The third group of instructions access or modify memory. Storing a value in

a field1 requires three parameters (pointer to object, offset, and value to write),

1Writing to a field is only used for mutable data types and for initialising mutually recursive
data.

98

5. IMPLEMENTATION

Opcode Oper. 1 Oper. 2 Description
LT ref ref Guard: less than
GE ref ref Guard: greater than or equal
LE ref ref Guard: less than or equal
GT ref ref Guard: greater than
EQ ref ref Guard: equal
NE ref ref Guard: not equal
EQRET ref ref Guard: expected return address
EQINFO ref ref Guard: expected info table
NEINFO ref ref Guard: any other info table
HEAPCHK lit Guard: heap overflow check
ADD, SUB, ref ref Addition, Subtraction, etc.
etc.
NEG ref Negation
BAND, BOR, ref ref Bitwise and, bitwise or, etc.
etc.
BNOT ref Bitwise not
FREF ref lit Reference to an object field
FLOAD ref Load a field
SLOAD lit lit Load a stack slot
NEW ref lit Allocate new object
FSTORE ref ref Initialise field of recursive structure
UPDATE ref ref Update a thunk with an indirection
SAVE lit Write current snapshot to stack
KINT cst A constant encodable in 32 bits
KWORD cst A constant encodable in 64 bits
KBASEO cst A constant offset relative to the base pointer
NOP No operation
BASE lit lit Denotes a reference to the base pointer
FRAME lit lit Marker for a pushed stack frame
RET lit lit Marker for a return from a stack frame
LOOP Marks the beginning of an unrolled loop
PHI ref ref Marks a loop-variant value (SSA Φ node)

Table 5.2: IR instructions and their formats.

99

5. IMPLEMENTATION

but our IR format only allows two operands. We therefore split a store operation

into two instructions:

r ← FREF addr offset

FSTORE r value

For consistency, the first argument to FLOAD (“load field”) also takes a refer-

ence to an FREF (“field reference”) instruction.

The first argument to NEW is a reference to the info table of the object, the

second is an index into a separate structure that describes the contents of the

fields of the object.

Normally, we avoid all writes to the stack (i.e., the contents of the virtual

registers) and keep track of the contents the stack via an abstract stack (Sec-

tion 5.6). Most of the time, we only write the values back to the stack when

execution leaves the trace. Sometimes, however, we have to actually write the

values back to the stack, for example because the original function call was not

tail-recursive. SAVE is then used to force values to be written to the stack.

The fourth group describes IR instructions that represent the values of con-

stants. The code generator later tries to encode these into the instruction that

uses them. KBASEO represents pointers that are computed by adding a constant

offset to the current base pointer (which may be different for each invocation of

a trace or even for each loop iteration). Such “constants” are used to represent

the “previous base” pointer of a stack frame (cf. Figure 5.4).

The final group are meta instructions that do not correspond to machine code

instructions. If a backwards optimisation wants to remove an instruction from

the buffer it simply overwrites them with NOP. BASE is used to refer to the current

value of the base pointer. LOOP, FRAME, and RET are used by the loop optimiser.

PHI instructions are used to denote loop-variant variables. They correspond to Φ

instructions from static single assignment form (SSA) (Cytron et al. [1991]).

5.6 The Abstract Stack

The interpreter reads all its inputs from the stack and also writes its results back

to the stack. If we translated this behaviour näıvely into the recorded IR code, we

100

5. IMPLEMENTATION

r2 = r1 + r0 t1 ← SLOAD 1
t0 ← SLOAD 0
t2 ← ADD t1 t0

SSTORE 2 t2
r3 = r2 * r3 t3 ← SLOAD 2

t4 ← SLOAD 3
t5 ← MUL t3 t4

SSTORE 3 t5
r1 = r3 - r0 t6 ← SLOAD 3

t7 ← SLOAD 0
t8 ← SUB t6 t7

SSTORE 1 t8

Figure 5.10: Näıve translation from interpreter (left) to IR code (right).

would get many redundant memory reads and writes. For example, Figure 5.10

shows an example translation for a sequence of assembly instructions.

Instead of emitting code that reads values from and write values to the real

stack, we instead simulate the effect of these instructions using an abstract stack.

The abstract stack simply consists of a finite map from each stack slot to a

reference to an IR instruction that produced that value. More precisely, let

ReadSlot and WriteSlot be the primitives that read values from the stack, and let

S[i] denote the value of the abstract stack at location i, then accessing the stack

works as follows:

• ReadSlot(i): If S[i] is defined, then return the reference at S[i]. Otherwise,

emit the IR instruction r ← SLOAD i and update S[i] := r.

• WriteSlot(i, r): S[i] := r, and mark S[i] as written.

Figure 5.11 shows how the abstract stack avoids the need for redundant stack

reads and writes. Figure 5.11 uses the notation [a, b, c, d] as a short form for

S = {1 7→ a, 2 7→ b, · · · } and uses − to stand for an undefined value. Underlined

values indicate that the value has been written.

We also store an abstract base pointer that indicates which entry in the ab-

stract stack currently corresponds to virtual register r0. Call instructions create

101

5. IMPLEMENTATION

Interpreter Generated IR Abstract Stack
r2 = r1 + r0 t1 ← SLOAD 1 [−, t1,−,−]

t0 ← SLOAD 0 [t0, t1,−,−]
t2 ← ADD t1 t0 [t0, t1, t2,−]

r3 = r2 * r3 t4 ← SLOAD 3 [t0, t1, t2, t3]
t5 ← MUL t2 t4 [t0, t1, t2, t5]

r1 = r3 - r0 t8 ← SUB t5 t0 [t0, t8, t2, t5]

Figure 5.11: Translation using abstract stack from interpreter (left) to IR code
(right).

stack frames as they would for the real stack. Return instructions also generate

guards for the expected return address, and if the stack frame was created on the

trace then such a guard will be redundant and be optimised away. Lambdachine

currently allows the stack to grow 250 entries (machine words) below or above its

position relative to size on entry to the trace. Accordingly, during trace recording

the abstract stack may underflow or overflow. We simply abort recording in these

cases. Some of our benchmarks triggered a trace recording to be aborted due to

this condition, but the trace recorder will quickly find another trace, so this does

not appear to be a problem in practise.

5.7 Snapshots

If execution leaves the trace at a guard, we have to make sure that the necessary

values are written back into the real stack. For this purpose before emitting a

guard, we store a copy, i.e., a snapshot of the abstract stack before each guard.

This snapshot only needs to store the values that were written to the abstract

stack. A snapshot is implemented simply as a sequence of slot number/IR refer-

ence pairs. Additionally, it stores the current position of the base pointer (relative

to its value at the trace entry point) and the program counter. If execution leaves

the trace then we re-enter the interpreter at that program point.

102

5. IMPLEMENTATION

5.8 Forward Optimisations

IR instructions are not emitted directly to the IR buffer, but are instead sent

through an optimisation pipeline. This pipeline performs forward optimisations,

that is, optimisations which require only forward data flow analyses. This in-

cludes constant folding, common subexpression elimination (CSE), store-to-load

forwarding, and many algebraic simplifications.

Each time the trace recorder wants to emit an instruction it puts it into a

special one-instruction buffer and attempts to apply a number of rewrite rules to

the instruction. Rules may rewrite this instruction in place and then either re-

quest it to be emitted to the buffer, or request the rule engine to apply more rules

on the result. A rule may also return with a reference to an existing IR instruc-

tion, in which case the to-be-emitted instruction will be dropped. Otherwise, the

instruction is appended to the IR buffer.

The trace recorder records one instruction at a time, thus forward optimisa-

tions are interleaved with execution. If the trace recorder finishes successfully,

e.g., by finding a loop, the remaining optimisations are performed on the IR

buffer. If trace recording is aborted, the contents of the IR buffer are simply

discarded.

5.8.1 Constant Folding and Algebraic Simplifications

Most of the rules used by the rule rewriting engine apply algebraic simplifications

including constant folding. Other rules implement optimisations like load-to-load

forwarding or reading from an object that was allocated on the heap. Table 5.3

lists a large subset of the rules employed by Lambdachine.

Suppose that the trace recorder wants to emit the instruction ADD 3 5. This

matches the pattern ADD k1 k2 where k1, k2 are literals, so we apply constant-

folding and replace the to-be-emitted instruction with the literal 8. More pre-

cisely, we add an instruction KINT 8 to the buffer and return a reference to that.

For a more complicated example, consider the instruction SUB x 5. The sec-

ond rule for SUB transforms this into ADD x -5. This may have exposed new

optimisation potential, so we try to match the transformed instruction against

the optimisation rules again. Now consider the case that the buffer already con-

103

5. IMPLEMENTATION

ADD k1 k2 ⇒ k1 + k2
ADD r 0 ⇒ r
ADD (ADD r k1) k2 ⇒ ADD r (k1 + k2)
ADD (ADD r k1) 0 ⇒ ADD r k1
ADD r1 r2 ⇒ ADD r2 r1 if r1 < r2

1

SUB k1 k2 ⇒ k1 − k2
SUB r k ⇒ ADD r (−k)
SUB 0 r ⇒ NEG r
SUB r r ⇒ 0
SUB (ADD r1 r2) r1 ⇒ r2
SUB (ADD r1 r2) r2 ⇒ r1
SUB (SUB r1 r2) r1 ⇒ r2
SUB r1 (ADD r1 r2) ⇒ SUB 0 r2
SUB r1 (ADD r2 r1) ⇒ SUB 0 r2
SUB (ADD r1 r2) (ADD r1 r3) ⇒ SUB r2 r3
SUB (ADD r1 r2) (ADD r3 r1) ⇒ SUB r2 r3
SUB (ADD r2 r1) (ADD r1 r3) ⇒ SUB r2 r3
SUB (ADD r2 r1) (ADD r3 r1) ⇒ SUB r2 r3
EQ k1 k2 ⇒ Drop if k1 = k2
NE k1 k2 ⇒ Drop if k1 6= k2
EQINFO c k ⇒ Drop if info(c) = k c is static closure.
FLOAD (FREF (NEW k [k1 · · · kn]) i) ⇒ ki
EQINFO (NEW k1 [· · ·]) k2 ⇒ Drop if k1 = k2

Table 5.3: IR Transformation Rules. Variables k only match literals, r matches
any reference. Arithmetic simplifications assume integer arithmetic. Floating
point arithmetic is only optimised in certain rare cases to preserve correctness.

tains an instruction x = ADD y 7. The candidate instruction now matches the

pattern ADD (ADD r k1) k2, so we replace the candidate instruction by ADD y 2.

This instruction is appended to the IR buffer and a reference to it is returned

to the trace recorder. The instruction x = ADD y 7 may have become dead code

(because x may no longer be referenced). We do not check for this immediately

and simply rely on dead code elimination (performed as part of code generation)

to discard this instruction later on.

Rules for guards (if applicable) either drop the guard completely, or predict

that the guard will always fail. The latter may only happen during loop optimi-

sations, in which case it would predict that the next iteration through the trace

104

5. IMPLEMENTATION

will always exit the trace. In that case the trace recorder should either try to

record a longer trace (effectively unroll the loop for another iteration) or discard

the current trace.

5.8.2 Common Sub-expression Elimination

The purpose of common sub-expression elimination (CSE) in our setting is to

find an existing instruction in the IR buffer with the same opcode and the same

operands. While the source code rarely contains duplicate code, it can occur

rather frequently as the result of other optimisations. We thus perform CSE

before emitting almost any instruction. Only instructions with observable side

effects bypass the CSE optimisation step.

With the following auxiliary structures (adapted from LuaJIT) CSE can be

implemented very efficiently, i.e., without a linear search through the full IR

buffer.

The IR buffer maintains an array of references (opcodeChain) that maps each

possible IR opcode to the most recently emitted instruction of that opcode (or

nil, if no such instruction exists). Each IR instruction in turn contains a field that

contains a reference to the previous instruction of the same opcode. Together this

gives us for each opcode a linked list of all instructions with that opcode.

With this in place CSE can be implemented as described in Figure 5.12.

Since CSE tries to find existing instructions with a given opcode the algorithm

only needs to traverse the linked list for the given opcode. If there is no existing

instruction of that opcode the loop condition (line 5) will fail and CSE terminates

immediately.

If there are multiple instructions of the given opcode there is still no need

to look at all these instructions. Since the IR buffer is automatically in SSA

form (due to the structure of traces), it is impossible to reference the result of

an instruction before the instruction is defined. In other words, an instruction

that includes a reference to r must be defined after r. The linear search loop

(lines 5-10) thus need not search beyond limit which is set to the larger (i.e.,

later occurring) of the two input references (line 4).

In practice the linear search loop rarely runs for more than one iteration. It is

105

5. IMPLEMENTATION

1: function OptCSE(opc : Opcode; op1, op2 : IRRef)
2: ref, limit : IRRef
3: ref← opcodeChain[opc]
4: limit← max(op1, op2)
5: while ref > limit do . False if ref = nil
6: if buffer[ref].op1 = op1 ∧ buffer[ref].op2 = op2 then
7: return ref
8: end if
9: ref← buffer[ref].prev

10: end while
11: return nil
12: end function

Figure 5.12: Common sub-expression elimination. This function takes the op-
codes and operands of an instruction and tries to find an instruction with the
same opcode and operands in the buffer. If such an instruction is found, it re-
turns a reference to it. Otherwise, it returns nil.

therefore efficient to run CSE before emitting each instruction into the IR buffer.

5.9 Heap Allocation

Allocation of objects on the heap is done using sequential allocation (also known

as bump pointer allocation. The generated code for allocating an object with two

fields (for example) looks as follows:

Hp += 3; // 1. Reserve space (3 words).

if (Hp > HpLim) // 2. Check for overflow.

goto heap overflow;

Hp[-3] = Header; // 3. Initialise object.

Hp[-2] = Payload1;

Hp[-1] = Payload2;

Object *p = (Object *)&Hp[-3]; // Pointer to allocated object

The heap pointer (Hp) points to the next free byte in the allocation area. If

the heap pointer points past the heap limit pointer (HpLim), then there is no

more space left in the current allocation area and we either need to select a new

106

5. IMPLEMENTATION

allocation area or invoke the garbage collector. Allocating memory for an object

then consists of simply incrementing the heap pointer by the desired amount of

memory and checking for a heap overflow. The object is then initialised and the

allocation is complete.

5.9.1 Merging Heap Checks

In the IR we separate allocation into two instructions. HEAPCHK reserves the

desired amount of memory and checks for a heap overflow. Since a heap overflow

may cause execution to leave the trace, HEAPCHK is a guard. NEW initializes the

reserved memory and cannot fail.

Multiple heap checks can be combined into one by reserving memory for sev-

eral objects at once. For instance, the IR code on the left is translated into the

machine code on the right:

HEAPCHECK #5 Hp += 5

if (Hp > HpLim) goto _exit

D = NEW A [B C] Hp[-5] = A

Hp[-4] = B

Hp[-3] = C

D = &Hp[-5]

F = NEW E [D] Hp[-2] = E

Hp[-1] = D

F = &Hp[-2]

5.9.2 Handling Heap Overflows

For reasons that are described in the following section, Lambdachine’s heap is

divided into blocks of a fixed size, which means that heap check failures are fairly

frequent. Most of the time, a heap check failure means that the current block

is full and we need to grab a new free block. Only once there are no more free

blocks is it necessary to invoke the garbage collector.

The default behaviour of falling back to the interpreter if a guard fails could

be very expensive. For example, let us assume a block has a size of 32 KBytes

107

5. IMPLEMENTATION

and consider a loop that allocates 128 bytes per iteration. That means that every

256th iteration of the loop the heap check would fail and we would execute one

iteration of the loop in the interpreter. Assume the interpreter is about 10×
slower than the compiled machine code, then this strategy increases the running

time to (255 + 10)/256 ≈ 1.035 or by about 3.5 percent.

Normally, frequently failing guards cause a side trace to be attached, but that

is not possible in this case. In the common case, a failing heap check just means

that we need to mark the current block as full, update the heap pointer and heap

limit and continue execution. We generate special code that calls back into the

runtime system to try and grab the next free chunk and re-enter the trace with

the updated heap pointer and heap limit. No other program state is affected, it is

always safe to re-enter the trace right before the heap check guard. Only if there

are no more free blocks available and the garbage collector needs to be invoked

does execution leave the trace.

It is possible to invoke the garbage collector directly from the trace, but that

would require generating meta data which describes which registers and stack

slots may contain pointers into the heap. This information is already available in

the interpreter, so it is simpler to just require that the garbage collector is only

invoked from the interpreter.

5.9.3 Heap Checks and Side Exits

Because we combine multiple heap checks into one heap check that requests mem-

ory for multiple allocations, there is a chance that we request more memory than

needed. If execution leaves the trace at a side exit not all of that reserved memory

is needed. It is easy to compute the amount of overallocation at each exit point

and then store it with the snapshot data. We can use this information in the

following ways.

The easiest way to avoid overallocation is to simply decrement the heap

pointer if the side exit is taken. That means, we either decrement the heap

pointer when switching back to the interpreter, or when entering a side trace.

We only need to consider side traces because the only places where a trace may

transfer control to a root trace is at the end of a trace, where there will never be

108

5. IMPLEMENTATION

overallocation.

A side trace that needs to do allocation will include its own heap check. We

can combine decrementing the heap pointer with the increment of the heap check.

Let o be the number of bytes overallocated by the parent trace, and let s be the

number of bytes allocated in the side trace, then a = s − o is the number of

bytes that the adjusted heap check needs to allocate. If a ≤ 0 then the “heap

check” will always succeed and can be omitted completely (if a = 0) or simply

decrements the heap pointer. If a > 0 then we might be tempted to simply

increment the heap pointer by a smaller amount. That, unfortunately, will cause

problems if the heap check fails.

When a heap check fails and the garbage collector has grabbed a new block,

the heap pointer will most likely point to the beginning of a block. This means

we now have to increment the heap pointer by the full amount (s), because there

will not have been any overallocation. Incrementing the heap pointer by a smaller

amount will cause heap corruption as the initialisation code will now write outside

the current block and will most likely overwrite data of an adjacent block. We

can fix this by pre-incrementing the heap pointer by o before retrying the heap

check. This increment, however, could cause another heap overflow which would

require grabbing another block. A simpler solution is to simply not combine the

heap pointer adjustments into one operation.

Therefore, given a side trace where the parent trace over-allocated 10 words

on entry we generate the following code for the side trace’s based on the amount

of memory allocated on the side trace:

• If the side trace requires ≤ 10 words, we simply decrement the heap pointer:

HEAPCHECK #4 => Hp -= 6

• If the side trace requires > 10 words, we first decrement the heap pointer

by 10 and then increment it by the desired amount. If the heap check fails,

execution will re-enter the trace right before the increment instruction, and

will therefore request all the memory needed by the trace:

HEAPCHECK #15 => Hp -= 10

109

5. IMPLEMENTATION

retry: Hp += 15

if (Hp > HpLim) goto _exit

5.9.4 Garbage Collection

Lambdachine uses a simple copying garbage collector (Cheney [1970]; Jones et al.

[2012], Chapter 4). A copying garbage collector copies all live objects into a new

memory region. Objects that were not copied are garbage and are discarded.

A copying garbage collector has the nice property that its cost is proportional

to the number of live objects, rather than the size of the heap. In particular, if

an object is allocated and becomes unreachable by the time the garbage collector

is invoked no work is required to free the object. A copying garbage collector also

avoids fragmentation since surviving objects are automatically compacted.

The disadvantage of a copying collector is that (a) it requires extra space and

(b) that long-lived objects may get copied many times.

Problem (a) occurs if a copying collector is implemented in a näıve way. The

available heap is split into two regions of equal size, the to-space and the from-

space. New objects are allocated into the to-space until it is filled up. The

meaning of the two spaces is then swapped and all live objects from the from-

space are copied over into the to-space. All objects remaining in the from-space

are dead and are simply discarded. Allocation proceeds into the to-space.

The problem with this approach is that there is always one half of the heap

that is not used by the program. A common solution is to split the heap into

blocks.1 When the allocator has filled all blocks assigned to the program, the

garbage collector copies surviving objects into a reserved set of blocks. The

number of reserve blocks required is determined by the survival rate r of the

heap objects. If the program heap consists of N blocks, we need

M = drNe

extra blocks to hold the surviving objects. For functional languages, r may be as

low as 0.05 (Sewe et al. [2012]). Splitting a heap into blocks can also have other

uses, for example, a unit of collection in a multi-processor system (Detlefs et al.

1Some objects, such as large arrays, may be allocated outside these blocks.

110

5. IMPLEMENTATION

[2004]). Since blocks are relatively easy to implement and using blocks changes

the frequency of heap overflows, we included them in Lambdachine to help with

getting a fair comparison with a static compiler.

A common solution to problem (b) is the use of a generational garbage col-

lector (Jones et al. [2011]). A generational collector splits the heap into multiple

areas, called generations which are collected with decreasing frequency. New

objects are allocated into the nursery (the youngest generation). If the nurs-

ery gets filled up only the nursery is garbage collected. Objects that survive a

certain number of nursery collections are moved (promoted) into the next gener-

ation. If that generation is filled up then both it and the nursery are collected.

In principle there could be any number of generations, but the most common

configurations seem to be two generations (nursery and mature space) or three

generations (nursery, aging space, and mature space).

Building a generational garbage collector, however, is not easy and time-

intensive to get right (there is very little room for error). For this reason, Lamb-

dachine does not currently use a generational collector.

Our trace compiler does not optimise the garbage collector routines, thus we

do not expect JIT compilation to affect garbage collection performance directly.

Still, there are certainly indirect effects:

• Allocation rate: The JIT compiler may eliminate some allocations, and thus

decrease the frequency at which the garbage collector is invoked.

• Object demographics : The JIT compiler eliminates mainly short-lived ob-

jects, thus the survival ratio of the remaining objects is likely higher. This

may have an effect on the efficiency of the garbage collector.

In addition, choosing a simpler garbage collector design may also affect the

performance of the mutator:

• Barriers : A generational collector uses write barriers to enforce certain

invariants. A write barrier is some code that is run whenever a value is

written to an object. Depending on the cost of this barrier code, it may

have a non-trivial impact on the mutator’s execution time.

111

5. IMPLEMENTATION

• Locality : Garbage collection disturbs the CPU’s caches. Different garbage

collection strategies may therefore affect whether the mutator’s working

set is in the cache or not and thus have a significant influence (in either

direction) on the program’s run time.

Unfortunately, we have to leave the examination of the impact of these effects

to future work.

5.10 Allocation Sinking

We use snapshots to avoid emitting memory writes for scalar variables and only

perform them in bulk when leaving the trace or when the trace needs to build

up a stack frame. Conceptually, we are pushing these writes down into side exits

thereby performing code sinking. We can take this idea further and do the same

to heap allocations which we call allocation sinking.

If an object is allocated on the trace, but is unlikely to survive the full trace

because a pointer to it is only mentioned in side exits, then it is probably beneficial

to perform this allocation only if execution leaves the trace on a side exit. In the

(hopefully) common case where execution does not leave the trace, the allocation

will then be avoided.

Conceptually, we rewrite the program as follows:

...

Object *o = new Cons(x, y);

if (x == 0) goto exit; // o escapes

...

⇓
...

if (x == 0) {
Object *o = new Cons(x, y);

goto exit; // o escapes

}
...

112

5. IMPLEMENTATION

Allocation sinking often increases register pressure. Instead of keeping one

pointer to the allocated data in a local variable (i.e., in a machine register or

on the stack), we now have to keep all values stored in the object in a local

variable. If we run out of registers this may cause more values to be allocated

on the stack. Still, avoiding the allocation will lead to fewer invocations of the

garbage collector, and thus will probably improve performance overall.

There is a more complicated interaction with the garbage collector. Since

allocation sinking removes only very short-lived objects it increases the survival

rate of the objects seen by the garbage collector. This will have an effect on

the trade-offs chosen by the garbage collector. For example, a copying collector’s

efficiency increases as the survival rate decreases since its overhead is proportional

to the live objects. If the live ratio increases, a mark-sweep collector or a hybrid

scheme may become more appropriate.

Even if a side exit is taken frequently and a side trace is attached, allocation

sinking may still provide a performance advantage. A sunken allocation is in-

herited by the side trace which can then sink the same allocation again, so that

the allocation is only performed if execution actually leaves the side trace. Side

traces are discussed further in Section 5.14.

5.10.1 The Abstract Heap

To implement allocation sinking we simply extend the idea of the abstract stack

to an abstract heap. Each NEW instruction adds a new entry to the abstract heap.

When we take a snapshot of the stack, we also take a snapshot of the heap.1

When reconstructing the virtual machine state from the snapshot we now also

have to interpret the heap snapshot and perform the necessary allocations.

5.10.2 Allocation Sinking and Loops

Allocation sinking as described above is only useful if the allocation is performed

on the trace and no reference to the allocated object reaches the end of the trace.

1Since most data types in Haskell are immutable, we do not actually need to store anything.
The snapshot will contain a reference to the NEW instruction and we simply mark that instruction
as sunken. For mutable data types we may reference the stores that have been made, or perform
an actual copy of the current contents of the object according to the abstract heap.

113

5. IMPLEMENTATION

For many traces an object is allocated in one iteration of the trace and becomes

garbage in the next iteration. To optimise these cases we need loop optimisations.

The current version of Lambdachine does not have loop optimisations enabled.

An earlier version of Lambdachine had a working implementation of loop unrolling

and allocation sinking. Loop peeling (see Section 6.7) first creates a loop header

and a loop body. Loop-variant variables are made explicit through the use of

Φ-nodes. All Φ-nodes are placed immediately at the beginning of the loop body.

A Φ-node

x1 ← Φ(x0, x2)

is read as: the loop variable x1 has the value of x0 the first time the loop is

executed and the value of x2 in any future iteration. The variable x2 is typically

initialised after x1.

Allocation sinking now determines which allocations cannot be sunken and

sinks all other allocations. An allocation is unsinkable if any of the following

conditions holds:

1. The result of the allocation is written to the stack or to an object allocated

outside of the trace (e.g., through an update instruction).

2. A allocation depends on the result of the same allocation site from an earlier

iteration. In other words, the allocation’s value dependencies contain a cycle

and that cycle must include at least one Φ-node. For example:

x0 ← · · ·
t1 ← new Int(23)

t2 ← new Int(42)

loop : x1 ← Φ(x0, x2)

y1 ← new Cons(t1, x1)

x2 ← new Cons(t2, y1)

The value of x2 depends on y1 which depends on x1 which in turn depends

on x2. Both x2 and y1 are unsinkable since they are part of the same cycle.

3. The result of the allocation is (transitively) referenced from an unsinkable

114

5. IMPLEMENTATION

allocation. In the above example both t1 and t2 are unsinkable because they

are referenced from the unsinkable y1 and x2, respectively.

It turns out that the need to perform thunk updates in Haskell makes most

objects unsinkable (via the first and the last condition above). Section 6.6 explains

this issue in more detail.

5.11 Trace Recording and Specialisation

The trace recorder has some freedom in how it translates the recorded interpreter

instruction into an equivalent sequence of IR instructions. The choices largely

relate to how much we specialise the IR instructions to the observed values.

A classic example is to specialise a computation of xn on the n argument.

pow x 0 = 1

pow x n = x * pow (n - 1)

We could specialise a call (pow x 3) to the exact value of the second argu-

ment. This effectively unrolls the loop and would result in the expression: x * x

* x * 1. As a trace this would look something like this:

x0 = base[0]; // load ‘‘x’’ argument

n0 = base[1]; // load second argument

if (n0 != 3) goto exit1;

x1 = x0 * x0;

x2 = x1 * x0;

... // use x2 as result of call

This would indeed be very efficient if the second argument is always 3, but if

there are many calls to pow with many different values for the second argument,

then this would lead to a huge number of traces.1

The trace recorder therefore always has to balance optimisation potential

through specialisation against an increase in the number of traces required to

1If the trace recorder detects that the second argument is a compile-time constant, then it
is more likely that this kind of specialisation is worthwhile.

115

5. IMPLEMENTATION

cover all hot paths of the program. Lambdachine’s current trace recorder is

relatively conservative and only specialises on control flow, and rarely on values.

Both EVAL and call instructions specialise on the info table of the evaluated

or called object (EQINFO). If the called object is a static closure (i.e., a top-level

function or thunk) then this guard will be automatically be removed by the trace

IR optimiser.

The CASE instruction will usually specialise on the info table of its argument.

In some cases, however, it is worthwhile to check that the argument’s info table

is not a certain info table. Consider the program:

data X = A | B | C | D | E | F | G

f :: X -> Int

f x = case x of

A -> 5

_ -> 42

If the trace recorder records the second path, it should really emit a check

that the info table of x is not the one for the A constructor rather than create a

trace for each constructor B through G. The trace recorder will emit NEINFO under

these circumstances.

Return instructions simply emit a guard to check for the return address. The

return address implies the size of the caller’s stack frame, so no further check is

required for the value of the previous base pointer’s value.

For updates, the story is a bit more complicated. When updating top-level

thunks (CAFs) some extra work needs to be done to add the updated CAF as a

root to the garbage collector. We could just emit a test for whether the updated

object is a CAF or a regular THUNK, but that does require two memory reads:

one to read the pointer to the info table out of the object’s header, and another to

read the object type out of the info table. In practice, we will know the info table

of the updated object already, because an update always follows the evaluation

of a thunk and the trace will usually include both the code for evaluating the

thunk and the update; the guard for the info table of the thunk will subsume the

guard introduced by the update. The second indirection (to extract the object

116

5. IMPLEMENTATION

type from the info table) can be optimised away because info tables are never

modified.

5.11.1 Specialisation and Indirections

An update overwrites the thunk with an indirection to the value to which it

was evaluated. This is implemented by overwriting the info table pointer in the

object’s header with a pointer to the special IND info table; and the first payload

word is overwritten by a pointer to the value.

The implementation of EVAL will follow the indirection and return a pointer

to the value. It therefore may seem sensible that the trace recorder should emit

two guards:

// we evaluated object: x

if (info(x) != IND_info)

goto exit1;

y = x[1]; //

if (info(y) != Cons_info)

goto exit2;

...

This works (and is currently implemented in Lambdachine), but there is an

important issue to be considered. The garbage collector removes indirections to

remove the additional memory access costs. That, however, also means that the

first guard above will always fail for any object that has survived at least one

garbage collection pass. If the object has been allocated recently, on the other

hand, then the check for the indirection is fine and useful.

If the evaluated object is more likely to be one that has already been processed

by the garbage collector, then we would like the trace to contain the following

code:

L: if (info(x) != Cons_info)

goto pre_exit1;

...

117

5. IMPLEMENTATION

pre_exit1:

if (info(x) != IND_info)

goto exit1;

x = x[1] // follow indirection

goto L;

On the other hand, if it is more likely that the object is an indirection, the

following could would be preferable:

if (info(x) != IND_info)

goto L;

x = x[1];

L: if (info(x) != Cons_info)

goto exit1;

Lambdachine currently does not generate either of these variations, yet. In

fact, the interaction between specialisation and trace quality remains largely un-

explored. Section 6.4 suggests that there is room for improvements, but we have

to leave that to future work.

5.12 Register Allocation and Code Generation

Code generation for a trace starts with the last instruction and proceeds back-

wards until it reaches the first instruction. This enables registers to be allocated

on the fly. Register allocation requires knowledge of the live ranges of variables,

that is the range of instructions from its definition to its last use. Live ranges

are used to determine which registers are available at a given program point.

They are also used to guide which variables to store on the stack (spill) instead

of registers if there are no more registers available.

If register allocation proceeds backwards we will encounter the last use of a

variable first. We can easily find its definition site from the variable name since

variables are just references to their defining IR instructions. Because instructions

118

5. IMPLEMENTATION

form a linear sequence, the length of the live range is simply the delta of the indices

of the two instructions.

The register allocator maintains the following data structures:

Spill ::= N | none Reg ::= rax | rcx | · · · | none

• The current allocation Alloc : IRVar → Reg × Spill maps each variable to

its currently allocated register and spill slot. A value may be held both

in a register and a spill slot at the same time. In the implementation this

mapping is stored inside each instruction.

• Cost : Reg → IRVar × N maps each register to the variable whose value

it currently holds as well as the estimated cost of not keeping this value

in a register. The mapping of Cost must be consistent with Alloc, that is,

whenever Cost(r) = (x, n) then Alloc(x) = (r, s) for each register r.

Code generation now proceeds as follows. For each instruction, starting with

the last instruction and working backwards to the first instruction, the code

generator performs the following steps:

1. If the instruction defines an output, ensure that the output variable is al-

located to a register, then mark that register as free. If the variable has a

spill slot assigned emit the necessary store.

2. Allocate a register for each input to the instruction. If the input is a con-

stant then its value may have to be loaded into a register first if the constant

cannot be encoded as an immediate argument to the instruction. If no reg-

ister is available, this will also cause spill code to be emitted.

3. Finally, the instruction is encoded with the assigned registers for each of the

operands. In the x86 architecture most instructions store the instruction’s

result in one of the input operands. The IR instructions do not enforce

this restriction, so these instructions are often require an additional move

instruction to be emitted.

119

5. IMPLEMENTATION

Snapshots are treated like instructions with many inputs and no outputs: each

variable mentioned in the snapshot is allocated to a register. The one difference

is that if no register is available, the variable is allocated directly on the stack

and no register is spilled. Variables used only in a snapshot are also marked as

weakly allocated which makes them more likely to be spilled if there are no free

registers available.

5.12.1 Spilling Registers

The goal of spilling is to decide which register to free up by evicting its current

contents. Ideally, the register whose eviction would cause the least performance

overhead should be chosen, but this is difficult to predict at compilation time, so

heuristics must be used.

If the register currently holds the value of a constant its value can easily

be reloaded on demand. On x86-64, even 64-bit constants can be loaded using

a single instruction, but on most other architectures constants may have to be

(re-)loaded from read-only memory.

If no constants can be spilled, weakly referenced registers should be spilled

which are registers that hold values only referenced from snapshots. Such values

are only needed if execution leaves the trace at the associated side exit, which is

hopefully less common.

If no registers satisfy the above criteria a spill decision must be made based

on the usage of the variables. A simple heuristic is to spill the register with

the longest remaining live range (Poletto and Sarkar [1999]). Another simple

heuristic is to count the number of uses of each variable, but that information is

more expensive to compute and does not appear to be better overall (Sagonas and

Stenman [2003], Section 5.3). Since code generation works backwards, the register

with the longest remaining lifetime is simply the register whose IR variable is

defined first.

Finally, if the trace contains an unrolled loop, then the spill heuristic will

prefer to keep loop-variant variables in registers and instead spill loop-invariant

values.

The Cost mapping encodes all these heuristics into a single integer cost value.

120

5. IMPLEMENTATION

To spill a register we simply evict the register with the lowest cost. The spill cost

is computed when a register is allocated and need not be adjusted later on, so no

additional computation is required.

Unlike many register allocators described in the literature, Lambdachine’s al-

locator does not spill the full live range of a variable, but spilling occurs whenever

another instruction requires a free register. This means that we have to be careful

when managing spill slots. A spill slot cannot always be reused when the defin-

ing instruction has been emitted. A spill slot can only be marked as free when

all interfering variables, that is, all variables whose live ranges overlap with the

spilled variable, have been defined. This information is not readily available, so

we simply do not reuse spill slots.

5.13 Switching between interpreter and byte-

code

The code generator for x86-64 reserves three registers for special purposes:

• rbp is the base pointer.

• r12 is the heap pointer.

• rsp points to the top of the C stack.

We use rsp, i.e., the C stack, to access additional state from within the trace.

For example, [rsp + 0] contains the value of the heap limit pointer (for heap

overflow checks) and [rsp + 8] points to the end of the stack (for stack overflow

checks). Spill slots are also stored on the C stack.

Entering a trace thus requires to first set up the contents of the C stack and

then jumping to the first machine code instruction of the trace.

The C stack also stores the ID of the currently executing trace. This ID is set

when entering a trace from the interpreter and it must also be updated each time

execution switches to another trace. This ID is needed by the code that restores

the VM state in case of a failing guard with no attached side trace.

121

5. IMPLEMENTATION

5.13.1 Restoring VM State from a Snapshot

Many trace compilers generate custom code to restore the VM state, so-called exit

stubs. We need one exit stub for each trace exit. If a trace has many potential

exit points, this can amount to a significant amount of code. Furthermore, if

an exit is taken frequently, then a side trace will be attached and the exit stub

becomes dead code.

To avoid the overheads associated with exit stubs—code size, compilation

time, and management of memory for exit stubs—we chose to use LuaJIT’s strat-

egy of employing a generic exit handler that is shared by all exits.

Each compiled trace consists of the compiled machine code, the final contents

of the IR buffer, and an array of snapshots. When a guard fails it jumps to a

small routine that saves the contents of all registers, pushes the exit number onto

the stack and invokes the generic stack restoration routine, restoreSnapshot.

The restoreSnapshot routine reads the current trace ID from the C stack, uses

the trace ID to look up the trace IR buffer and snapshots, and then uses the exit

ID to look up the snapshot corresponding to the taken exit.

Each IR instruction in the IR buffer has been annotated by the code generator

with the register or stack slot (or both) of where its result has been stored. Each

entry in a snapshot is a reference to an IR instruction. Together with the saved

register’s contents, restoreSnapshot can restore the contents of each stack slot by

simply iterating over the snapshot entries.

Using a generic routine is slower for each exit than simply executing pre-

generated code. To balance this cost, we use (like LuaJIT) a lower hotness

threshold for side exits than for root traces. Lambdachine currently uses a hotness

threshold of 53 for root traces and 7 for side traces.

5.14 Linking Side Traces with the Parent Trace

Snapshots can also be used to simplify linking of side traces with the parent’s

guard. Consider the following excerpt of a trace:

...

if (info(x) != Cons_info) {

122

5. IMPLEMENTATION

// snapshot = [0:x, 1:y, 3:z, 4:x]

// register allocation: x:rax, y:rcx, z:rsi

goto exit4;

}

Now assume this guard fails frequently and a side trace is recorded. We would

like to avoid writing the values of x, y, and z to memory, but rather read them

directly from registers rax, rcx, and rsi. We therefore emit place holder IR

instructions at the beginning of the side trace as follows:

x’ = base[0], Inherited

y’ = base[1], Inherited

z’ = base[3], Inherited

We also initialise the abstract stack of the side trace to:

{0 7→ x’, 1 7→ y’, 3 7→ z’, 4 7→ x’}

While recording the side trace any read from, say, virtual register r0 will

become a reference to x’. Once recording completed the code generator will

compile all IR instructions into machine code, but will stop right before the

placeholder instructions. At this point, the register allocator may have chosen

different registers for x’, y’, z’ than what was chosen for x, y, z. The code

generator now emits a sequence of moves to make sure that the contents of x and

x’, etc. match up. For example, for the register assignment:

{ x 7→ rax, x’ 7→ rcx,

y 7→ rcx, y’ 7→ rax,

z 7→ rsi, z’ 7→ rdi }

the code generator might emit the following code:

mov rdx, rax ; tmp = rax

mov rax, rcx ; rax = rcx

mov rcx, tmp ; rcx = tmp

mov rdi, rsi

123

5. IMPLEMENTATION

This example shows that sometimes we need a temporary register to imple-

ment a swap operation. Ideally we want the side trace to use the same register as

the parent. The register allocator supports register hints which causes defines a

preferred register for an instruction, but the allocator will only use that register

if it is free. It will not spill any already allocated register to free up the preferred

register.

Nevertheless, even if the code generator has to emit some move instructions,

the result is generally much more efficient than writing to memory in the parent

and then reading them from memory on the side trace.

124

Chapter 6

Evaluation

This chapter describes our performance evaluation of the trace-based JIT com-

piler. We start with an evaluation of the run time performance (Section 6.3)

followed by an investigation of the quality of the selected traces (Section 6.4).

In the second part of this chapter we explore how lazy evaluation prevents some

important optimisations (Section 6.6) and suggest a method that may help such

optimisations to be applicable in many cases (Section 6.8).

6.1 Implemented Features

While Lambdachine does not yet support all Haskell features, it does implement

a set of features chosen to support meaningful benchmarks. In particular, Lamb-

dachine supports the following Haskell features:

• Basic types such as Char, Word, Int. And all operations on them.

• Algebraic data types.

• Arbitrary precision integers via the integer-simple library.

• Efficient string literals stored in memory as C-style strings.

• The special State# data type which is used internally by the IO and ST

monads.

125

6. EVALUATION

The runtime system can record all instructions and implements a simple copy-

ing garbage collector (described in Section 5.9.4). The heap is split into blocks

of 32 kilobytes. We do not simply use a conservative garbage collector (such as

Boehm and Weiser [1988]) because it would make allocation more expensive and

thus could noticeably change the trade-offs involved.

While the complete memory manager code is only about 950 lines of C++ code

(not counting comments), it was still rather expensive in terms of implementation

cost, because bugs in the garbage collector are notoriously difficult to debug. We

tried to keep the implementation as close as possible to GHC’s copying collector

in order to reduce the risk of introducing subtle bugs.

Lambdachine’s garbage collector is not generational, which means that long-

lived data structures can introduce significant overhead due to repeatedly being

copied during collection. For our performance evaluation we therefore disregard

garbage collection performance, and concentrate on mutator performance, i.e.,

the time spent actually executing the program. Unfortunately, the two cannot

be separated fully, because a garbage collector rearranges objects in memory and

may therefore affect cache utilization of the program. We advise the reader to be

aware of this caveat when interpreting the results in this chapter.

Lambdachine at this stage does not yet support all features of Haskell’98.

Notably, Lambdachine does not yet support the following features:

• Floating point arithmetic (anything involving Double or Float).

• Arrays, either mutable or immutable.

• Mutable variables. These can be seen (and implemented) as mutable arrays

of length one.

• Foreign function calls. This also implies that there are no I/O functions.

• Threads or any other kind of concurrency.

• Asynchronous exceptions.

In particular the lack of any support for I/O means that Lambdachine can

not yet run regular Haskell programs which all start with a main function which

126

6. EVALUATION

will almost always invoke a function like print to produce some output. We

instead rewrote all our test and benchmark programs to evaluate to a value of

type Bool. Expected output can be tested by comparing it to a string literal, and

it is usually straightforward to rewrite a program to test for an expected value.

GHC implements arbitrary precision integers (type Integer) either using the

GNU Multiple Precision arithmetic library (GMP) or using a linked list of words

called integer-simple. Using GMP is much more efficient (it uses arrays under

the hood), but requires special support from the garbage collector. Lambdachine

uses integer-simple and comparisons with GHC use a version of GHC compiled

with integer-simple as well.

6.2 Benchmarks

To evaluate the performance of Lambdachine we collected a number of micro

benchmarks and also modified a number of benchmarks from the spectral set of

the Nofib benchmark suite (Partain [1993]) to not use I/O.

The micro benchmarks are:

• sumupto1 : This benchmark simply calculates the sum of fixed-size integers

(Int) from 1 to 200000000. The core of the benchmark is simply: sum

(upto 1 n), however, with a custom implementation of both sum and upto

that is specialised to Int. Because we are using custom implementations of

these functions, no shortcut fusion will occur.

• sumupto2 : Like sumupto1, but sum is generalised to work over any instance

of the Num type class. Both sum and upto are marked as NOINLINE which

essentially disables any optimisations by the static optimiser. The JIT

compiler ignores NOINLINE annotations. We use this benchmark to simulate

what happens if GHC for some reason decides not to inline a definition that

is actually hot.

• sumquare: This tests nested loops by calculating sum [a * b | a <-

[1..n], b <- [a..n]], again specialised to type Int.

127

6. EVALUATION

• sumstream: Is an implementation of sumupto1, but uses streams instead of

lists. The full program is shown in Figure 6.13 on page 147.

• wheel-sieve2 : This benchmark is from the imaginary section of Nofib. It

computes the 40,000th prime number using the method described in Runci-

man [1997].

• tak : Is another benchmark from the imaginary section of Nofib. It consists

of a single function that calls itself many times recursively.

The larger benchmarks from the spectral section of Nofib are:

• boyer : A term rewriter.

• constraints : Solves the n queens constraint solving problem using 5 different

algorithms.

• circsum: A circuit simulator.

• lambda: Evaluates a lambda calculus term twice: once using a simple eval-

uator and once using a monadic evaluator.

6.3 Mutator Performance

Since Lambdachine has a much simpler garbage collector than GHC, we only

compare the times spent executing the user program (mutator time) and exclude

garbage collection time.

Figure 6.1 shows the relative mutator time of Lambdachine when the code has

been compiled with full static optimisations (GHC’s -O2 command line option).

Note, that since Lambdachine uses GHC in the bytecode compiler it gets the

same optimisations, although, the compilation result is not always completely

the same because both use the GHC API a bit differently.

Note that we include JIT compilation overhead in the mutator time. Most

benchmarks run less than 1 second (when optimised). Benchmarks for JIT com-

pilers often measure peak-performance by discarding the first few iterations of a

128

6. EVALUATION

 0

 0.5

 1

 1.5

 2

SumFromTo1

SumFromTo2

SumSquare

SumStream

Tak
WheelSieve2

Boyer
Constraints

Circsim

Lambda

GHC
JIT

Figure 6.1: Relative mutator time of GHC and Lambdachine with full static
optimisations (-O2); normalised to GHC mutator time.

benchmark to give the JIT compiler time to compile the benchmark kernel. We

did not do this.

Figure 6.1 shows that Lambdachine can in some cases improve runtime per-

formance over GHC-compiled code. This is most likely due to improvements in

code locality and due to additional interprocedural optimisations in the case of

SumFromTo2. For other benchmarks the JIT compiler adds overheads of up to

105%. We suspect that this is due to poor trace selection and is discussed in

the following sections. The SumStream micro benchmark consists of a single loop

which Lambdachine does not yet optimise very well (loop variables are currently

written to and read from the stack on each iteration).

Figure 6.2 compares the speedup of Lambdachine over code that has not been

optimised statically. While the JIT compiler manages to improve perfomance for

most benchmarks, it causes additional slowdown for at least two benchmarks.

Again, we suspect that this is caused by a failure of the trace selection heuristics.

Figure 6.3 compares the memory behaviour and garbage collector performance

of GHC and Lambdachine. The second bar in each group shows the relative

amount of total bytes allocated throughout the program. For some benchmarks,

Lambdachine allocates a little bit less or a little bit more total memory, likely

due to different object layout than GHC. This does not explain the large differ-

129

6. EVALUATION

 0

 0.5

 1

 1.5

 2

SumFromTo1

SumFromTo2

SumSquare

SumStream

Tak
WheelSieve2

Boyer
Constraints

Circsim

Lambda

GHC
JIT

Figure 6.2: Relative mutator time of GHC and Lambdachine minimal static
optimisations (-O0); normalised to GHC mutator time. No data for Circsim and
Lambda.

ences for benchmarks WheelSieve2, Circsim, and Lambda. This difference may be

caused by differences in static optimisations, or it may point to a bug in Lamb-

dachine. The third bar in each group shows the total GC time relative to GHC.

Lambdachine uses a non-generational copying collector. When the survival rate

of allocated objects is very low, then such a collector can be very efficient. Long-

lived objects, however, are copied repeatedly. GHC uses a generational garbage

collector. Objects that live long are only collected during more expensive, but

less frequent major collections. Accordingly, Lambdachine’s garbage collector

does well when the survival rate is very low (e.g., SumFromTo1, SumSquare) and

worse on benchmarks where some heap objects live longer (e.g., Circsim).

The full benchmarks result can be found in the Appendix on page 182.

6.4 Trace Coverage and Trace Completion

We suspect that our larger benchmarks are negatively affected by the trace se-

lection scheme picking traces that do not provide enough optimisation potential

or that may not run for long enough.

One way evaluate the quality of the selected traces is to measure the trace

130

6. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

SumFromTo1

SumFromTo2

SumSquare

WheelSieve2

Boyer
Constraints

Circsim

Lambda

GHC
Alloc
GC-Time

Figure 6.3: Relative total allocation and GC time, normalised to GHC

completion ratio. We call the execution of a trace complete if execution reaches

the end of the trace and does not leave at a side exit. For a trace represent-

ing a loop this means that we executed a single iteration. We define the trace

completion ratio as:

Completion.Ratio =
Completions

Completions + Exits
× 100%

where Completions is the number of times execution reached the end of the trace

and Exits is the number of times execution left the trace through a side exit.

In general we want the trace completion ratio to be high, especially for traces

that are executed many times. Side traces are attached very quickly, so switching

back and forth between compiled code and the interpreter is not a big issue. Poor

trace completion rate, however, reduces the optimisations potential, since we only

optimise within a single trace.

Table 6.1 shows a summary of the trace behaviour for five of our benchmarks

with a non-trivial number of traces. The “effective trace completion rate” weighs

the completion rate by the number of times a trace was executed. We see that

all of our benchmarks have a rather poor completion rate of less than 50%.

The remaining columns in Table 6.1 show the minimum number of traces that

were needed to cover a certain percentage of the program’s execution time. For

131

6. EVALUATION

Table 6.1: Trace Coverage and Completion Overview

Benchmark Effective Traces required to cover Total
Compl.Ratio 50% 90% 95% 99% Traces

WheelSieve2 47% 3 4 5 18 69
Boyer 25% 12 78 113 208 700
Constraints 36% 15 85 128 246 1616
Circsim 27% 14 94 158 335 849
Lambda 35% 4 16 18 25 892

instance, 50% of the time spent executing benchmark lambda was shared between

only four traces.

We actually use the number of times a trace was entered as an approximation

for the amount of time spent executing it. If a trace has a low completion rate,

this will attribute more time to that trace than was actually spent executing it.

Nevertheless, it gives a general idea of the relative execution frequency of traces.

To gain a better understanding of where these poor completion rates are

coming from we use scatter plots that plot execution frequency against completion

ratio.

The figures shown in this section use scatter plots containing one point per

trace. We plot the number of times the trace was entered on y-axis against

the trace completion ratio (in percent). We would prefer to have the highest

concentration of points in the top-right corner indicating that the most frequently

executed traces have a high completion ratio. Because there quite a large amount

of clustering, we show two plots for each data set: an exact scatter plot and a

smoothed scatter plot. The smoothed scatter plot gives a better picture of where

the highest concentration of points are at the expense of accuracy.

Figure 6.4 shows the results for the boyer benchmark. We see a high concentra-

tion of traces with medium execution count (around 1000), but good completion.

The top left corner is, unfortunately, a bit too populated indicating a number of

traces with high execution count but very poor completion ratio.

For the constraints benchmark, shown in Figure 6.5, the pattern looks worse.

There is a clustering around 100% completion ratio, but also a large cluster

132

6. EVALUATION

0

2

4

6

0 25 50 75 100
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

Figure 6.4: Trace completion for boyer benchmark (700 traces).

0

2

4

6

0 25 50 75 100
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

Figure 6.5: Trace completion for constraints benchmark (1616 traces).

133

6. EVALUATION

0

2

4

6

0 25 50 75 100
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

0 20 40 60 80 100

0
2

4
6

Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

Figure 6.6: Trace completion for circsim benchmark (849 traces).

around 0%. Furthermore, there are many traces with execution counts < 100, for

which compilation time probably does not pay off.

Figure 6.6 shows the distribution of traces for the circsim benchmark. This

graph looks a bit better. There is again a cluster of traces with completion ration

close to 100% and decent execution counts (around 10000). Unfortunately, there

is also a dense area in the top left. Due to the higher execution count of those

traces (10, 000− 10, 000, 000), their poor completion ratio pulls down the overall

completion ratio of the program.

The data for the lambda benchmark, shown in Figure 6.7, exhibits behaviour

that is most likely either a bug in our implementation, or pathological behaviour

of the trace selection scheme. A closer look at the trace data reveals that the

trace compiler generates very long sequences of traces.

Figure 6.8 shows a node for each trace and each side trace contains has an

edge that points to its parent. The label on the edge denotes at which of the

parent’s exit points the side trace starts. There are three traces that cause a long

chain of traces to follow: 17, 322, and 324. Each chain is almost 300 traces long,

neither of which ever runs to completion. In fact, each trace exits once through

each of 7 exits and all the remaining times through exit 29. The pattern is the

same for all the subsequent traces except the last one. Trace 17 is entered 3960

134

6. EVALUATION

0

2

4

6

0 25 50 75 100
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

0 20 40 60 80 100

1
2

3
4

5
6

7
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

Figure 6.7: Trace completion for lambda benchmark (892 traces).

times, trace 18 is entered 3946 times. That, in turn, is only a tiny fraction their

ancestor, trace 12, which completes 3,995,972 out of 3,999,963 times it is entered.

The time spent executing these traces is not much of an issue. The time spent

recording and compiling as well as the memory they take up will be an issue.

This particular case may be a bug in the implementation. Nevertheless, an

implementation should be able to protect against such pathological cases (regard-

less of the cause). A simple strategy is to limit the total number of side traces

and their nesting depth.

Finally, Figure 6.9 shows that the wheelsieve2 benchmark suffers from a clus-

ter of traces with close to zero completion rate around 10, 000 trace executions.

Traces with good completion ratios tend to have lower execution counts.

Clearly, trace selection is in need of improvement. All of our larger bench-

marks have clusters of traces with completion ration close to zero percent. This

indicates wrong specialisations (e.g., too aggressive) on the side of the trace

recorder, on the one hand, and perhaps bugs in our implementation. It is likely

that these deficiencies are the reason for Lambdachine comparing unfavourably

to GHC for these benchmarks.

Diagnosing trace selection issues is often not easy. Programs are first opti-

mised by GHC which already makes it harder to relate it back to the source

135

6. EVALUATION

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

��

�

��

��

�

��

�

��

�

��

�

��

�

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

	�

��

	�

��

	�

��

	�

��

	�

��

	�

��

	�

��

		

��

	

��

	�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

	

��

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

�	

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

���

�

���

�

���

�

���

�

���

���

�

��	

�

��

�

���

�

���

�

���

��

���

�

���

�

���

�

���

�

���

�

��	

��

�

���

�

���

�

���

�

���

��

���

�

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

�	

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�	�

��

�		

��

�	

��

�	�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
	

��

�

��

�
�

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

��	

��

��

��

���

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

�

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

		�

��

		�

��

		�

��

		�

��

		�

��

		�

��

		�

��

			

��

		

��

		�

��

	
�

��

	
�

��

	
�

��

	
�

��

	
�

��

	
�

��

	
�

��

	
	

��

	

��

	
�

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	��

��

	�	

��

	�

��

	��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	

��

�

��

��

��

	�

��

	�

��

	�

��

	�

��

	�

��

	�

��

	�

��

		

��

	

��

	�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

	

��

��

��

��

��

�

Figure 6.8: Top part of the trace graph for the lambda benchmark.

136

6. EVALUATION

0

2

4

6

0 25 50 75 100
Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

0 20 40 60 80 100

0
1

2
3

4
5

6
7

Completion.Ratio

lo
g1

0(
C

om
pl

et
io

ns
 +

 E
xi

ts
)

Figure 6.9: Trace completion for wheelsieve2 benchmark (69 traces).

program. Relating traces back to the optimised program also is not straightfor-

ward. Ultimately, we would like to develop tools both to improve trace selection

heuristics, and also to help users running programs on top of Lambdachine to

diagnose which parts of the program are not optimised well.

6.5 Hotness Thresholds

Lambdachine uses simple counters to detect the hot parts of a program. The

hotness threshold determines when a particular section of the program is consid-

ered hot. In this section we determine what effect the hotness threshold has on

program performance and the number of traces that are created.

Lambdachine uses two (potentially) different hotness thresholds. One for root

traces and one for side traces. The root trace threshold determines when a target

of a branch executed by the interpreter is considered hot. The side trace threshold

determines when a side exit is considered hot and a side trace is attached.

Figure 6.10 compares the relative mutator time for each of our benchmarks

compared to our default thresholds. All programs were compiled with full static

optimisations (-O2). We tested four root trace thresholds (103, 53, 23, 11) and

137

6. EVALUATION

 0

 0.5

 1

 1.5

 2

SumFromTo1

SumFromTo2

SumSquare

SumStream

Tak

103/103
103/53
103/23
103/11
103/7

53/53
53/23
53/11
53/7

23/23
23/11
23/7

11/11
11/7

 0

 0.5

 1

 1.5

 2

WheelSieve2

Boyer
Constraints

Circsim

Lambda

103/103
103/53
103/23
103/11
103/7

53/53
53/23
53/11
53/7

23/23
23/11
23/7

11/11
11/7

Figure 6.10: Relative mutator time for different hotness thresholds (root trace /
side trace), normalised to the performance of the default thresholds (53/7) for
each benchmark.

138

6. EVALUATION

combinations with smaller or equal side trace thresholds (103, 53, 23, 11, 7).1 We

normalised the performance of each benchmark to our default settings (53/7).

Most of our micro benchmarks, with the exception of Tak, are not sensitive to

the hotness threshold. The SumSquare benchmark is negatively affected if root

and side trace thresholds are the same. If both thresholds are the same then we

may form a root trace just moments before we would form a side trace to cover

the same path. The side trace will be created soon after and link with the newly

created root trace. This apparently reduces the quality of the traces overall. For

the tak benchmark the root threshold seems to be the most important one.

The Boyer, Circsim and Constraints benchmarks are less sensitive to the

hotness threshold. The Constraints works slightly better for larger side trace

thresholds. Lower thresholds tend to create more traces which negatively affects

compilation overhead.

Overall, there are no clearly optimal trace selection thresholds. Our default of

53/7 appears to be a reasonable choice, but additional benchmarks may suggest

better defaults in the future.

Selecting good traces appears to be difficult. While some of our benchmarks

are on par with GHC despite issues with selecting good traces, other benchmarks

perform poorly in comparison.

There is another issue why Lambdachine stays below its performance poten-

tial. This has to do with Haskell’s use of lazy evaluation and its of updates.

6.6 The problem with updates

While the Haskell specification (Peyton Jones [2003]) only specifies that Haskell

programs have non-strict semantics, all widely used implementations actually

implement lazy evaluation. This means that each thunk is updated (overwritten)

with its value after it has been evaluated. If the same thunk is evaluated again,

then eval will simply return the value with which the thunk was updated. This is

safe, because Haskell’s type system guarantees that thunk evaluation code cannot

1We picked prime numbers as parameters as we expected these to be less likely to occur as
loop counts in benchmarks.

139

6. EVALUATION

have side effects.1

Omitting the update could dramatically increase the runtime of some pro-

grams. An extreme example is the following well-known, and rather clever im-

plementation of a function that returns the nth Fibonacci number and relies on

lazy evaluation to do this efficiently.

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fib n = fibs !! n

The list fibs initially contains only the first two numbers in the Fibonacci

sequence. When the fib function is first invoked with an argument n > 1, fibs

is evaluated until it has length n + 1. If fib is later invoked with an argument

m < n, then the result has already been computed previously and fib simply

returns that element from the list.

An implementation of Haskell that does not use lazy evaluation and instead

uses call-by-name would turn the above function into the exponentially less effi-

cient, but constant-space, version:

fibs2 _ = 1 : 1 : zipWith (+) (fibs2 ()) (tail (fibs2 ()))

fib’ n = fibs2 () !! n

which is about as efficient as the näıve (non-memoizing) recursive implementation

of calculating the nth Fibonacci number.

6.6.1 Unnecessary Updates

On the other hand, performing unnecessary updates can have a negative effect

on performance. In the case of Lambdachine they inhibit allocation sinking and

make certain traces dramatically less efficient. Figure 6.11 shows the final trace

IR buffer for the example from Chapter 4 which computes the expression (sum

[1..n]).

1The user may circumvent the type system by using functions such as unsafePerformIO to
produce thunks that are not guaranteed always to produce the same result. However, if the user
chooses to use such functions then it is the user’s responsibility to ensure that such properties
hold. Safe Haskell (Terei et al. [2012]) can be used to track or exclude Haskell modules that
use features which may be used to circumvent the type system.

140

6. EVALUATION

1 entry:

2 Object *t1 = base[2]

3 if (info(t1) 6= &cl_upto_ys)

4 goto exit1;

5 int t2 = t1[1]

6 int t3 = t2 + 1

7 Object *t4 = new I#(t3)

8 Object *t5 = t1[2]

9 if (info(t5) 6= I#) goto exit3

10 int t7 = t5[1]

11 if (t3 > t7) goto exit4

12 Object *t8 = new cl_upto_ys(t3, t5)

13 Object *t9 = new Cons(t4, t8)

14 update (t1, t9)

15 Object *t11 = base[0]

16 if (info(t11) 6= &NumDict) goto exit6

17 t12 = t11[2]

18 if (info(t12) 6= &plusInt) goto exit7

19 t13 = base[1]

20 if (info(t13)) 6= &I#) goto exit10

21 int t15 = t13[1]

22 int t16 = t3 + t15

23 Object *t17 = new I#(t16)

24 base[1] = t17

25 base[2] = t8

26 goto entry;

Figure 6.11: Optimised Trace IR for example from Chapter 4.

The object pointed to by t1 has been allocated outside of the trace. This

means that the object may be shared, i.e., that may be is reachable through some

other pointer stored somewhere in the program’s heap or stack. Lambdachine

currently does not have an easy way of determining if there could be such a

pointer to that object. Therefore, to be on the safe side, Lambdachine will always

perform the update.

The following example shows an example program where this update is nec-

essary:

-- may use huge amounts of memory

range = upto 1 1000000000

test = sumAux 0 range

141

6. EVALUATION

-- possibly other references to ‘‘range’’

For this code, the compiled trace shown in Figure 6.11 is optimal since the thunks

produced by upto are indeed shared and the trace must construct the list of

numbers as a side effect.

The more common case, however, does not require an update:

-- runs fine

-# NOINLINE root #-

root limit = sumAux 0 (upto 1 limit)

test = root 1000000000

The new thunk upto 1 limit is created each time root is called and sumAux

only touches each thunk once.

We would like to optimise this example to a trace that does not use any

allocation at all. Using allocation sinking and loop optimisations we can do just

that. If we omit the update of t1 on Line 14 in Figure 6.11, then the allocation

of t9 becomes dead code which in turn makes t4 dead code.

6.7 Loop Optimisation

Without loop optimisations, however, we cannot remove all allocations. For ex-

ample, the thunk t8 is live until the end of the trace. On the next iteration of the

loop it becomes t1 which is last used in Line 7. We have to remove allocations

across loop iterations.

We can do that using loop peeling. Loop peeling consists of creating another

copy of the loop which then loops back to right before the copy. In other words,

we split the code into two parts: one for the first iteration, and one for all the

other iterations.

This approach makes it very simple to split a loop into a loop header which

contains the loop-invariant bits and a loop body which only contains loop-variant

parts of the program. This approach was pioneered by LuaJIT and has also been

added to PyPy (Ardö et al. [2012]).

142

6. EVALUATION

1 entry:

2 Object *t1 = base[2]

3 if (info(t1) 6= &cl_upto_ys)

4 goto exit1;

5 int t2 = t1[1]

6 int t3 = t2 + 1

7 Object *t5 = t1[2]

8 if (info(t5) 6= I#) goto exit3

9 int t7 = t5[1]

10 if (t6 > t7) goto exit4

11 Object *t8 = new cl_upto_ys(t3, t5)

12 Object *t11 = base[0]

13 if (info(t11) 6= &NumDict) goto exit6

14 t12 = t11[2]

15 if (info(t12) 6= &plusInt) goto exit7

16 t13 = base[1]

17 if (info(t13)) 6= &I#) goto exit10

18 int t15 = t13[1]

19 int t16 = t3 + t15

20 Object *t17 = new I#(t16)

21 // abstract stack: [t11, t17, t8]

22 loop:

23 ; t1 7→ t8 was: Object *t1’ = base[2]

24 if (info(t8) 6= &cl_upto_ys) ...

25 ; t2 7→ t3 was: int t2’ = t8[1]

26 int t3’ = t3 + 1 ; t3 7→ t3’

27 ; t5 7→ t5 was: Object *t5’ = t8[2]

28 if (info(t5) 6= I#) goto exit3

29 ; t7 7→ t7 was: int t7’ = t5[1]

30 if (t3’ > t7) goto exit4

31 Object *t8’ = new cl_upto_ys(t3’, t5) ; t8 7→ t8’

32 ; t11 7→ t11 was: Object *t11’ = base[0]

33 if (info(t11) 6= &NumDict) goto exit6

34 ; t12 7→ t12 was: 12’ = t11[2]

35 if (info(t12) 6= &plusInt) goto exit7

36 ; t13 7→ t17 was: t13’ = base[1]

37 if (info(t13)) 6= &I#) goto exit10

38 ; t15 7→ t16 was: t15’ = t13[1]

39 int t16’ = t3’ + t16 ; t16 7→ t16’

40 Object *t17’ = new I#(t16’) ; t17 7→ t17’

41 ; abstract stack: [t11, t17’, t8’]

42 ; due to allocation sinking:

43 ParallelAssign([t11, (t17), (t8), t16, t3, t5],

44 [t11, (t17’), (t8’), t16’, t3’, t5])

45 goto loop

Figure 6.12: Optimised Trace IR with removed update and peeled loop.

143

6. EVALUATION

After loop peeling we end up with the program in Figure 6.12.

The loop peeling step works as follows. We start at the beginning of the

trace and emit a new copy of the instruction through the regular optimisation

pipeline. This will take into account the current contents of the abstract stack.

For example, the first instruction t1 = base[2] gets optimised to a reference to

t8 since that is the value currently stored in abstract stack slot 2. Any future

reference to t1 in the original code will become a reference to t8 in the copied

code. We store this information in a mapping and rename inputs to copied

instructions before emitting them into the IR buffer. The guard on t1 will now

become a guard on t8. The new guard is now trivially satisfied and can be

removed. This continues until we have fully processed the original loop.

At the end of loop unrolling we obtain a new abstract stack. In Figure 6.12

this abstract stack is:

[t11, t17’, t8’]

At the end of the copied loop, we want to jump back to the beginning of

the copied loop (not the beginning of the trace), so we have to make sure that

the next execution around the loop uses the new values. We implement this by

emitting an assignment:

t17 = t17’

t8 = t8’

Because t17, t17’, t8, and t8’ are heap allocated structures and because we

may have code that references their fields directly, we also have to ensure that

those optimised field references use the right values. We therefore have to emit

additional assignments:

t16 = t16’ ; due to t17 = t17’

t3 = t3’ ; due to t8 = t8’

t5 = t5 ; due to t8 = t8’, unnecessary

Readers familiar with SSA will recognize these assignments as serving the

same purpose as Φ nodes. Indeed, our compiler does emit PHI instructions to

144

6. EVALUATION

represent these moves and attempts to make most of these move instructions

unnecessary by allocating the same register to both sides.

Both t17 and t8 are heap-allocated objects and we would like to avoid actually

performing the allocation. In this example, all allocations can be sunken, so the

register allocator does not actually assign a register to any of t17, t17’, t8, and

t8’. Assuming register allocation can assign the same register to both t3 and

t3’, and to both t16 and t16’ we end up with the following, very efficient loop:

... initial part of trace unchanged

loop:

int t3 = t3 + 1;

if (t3 > t7) goto exit4;

int t16 = t3 + t16;

goto loop;

This loop corresponds to a fully deforested and unboxed version of the orig-

inal program and will likely be much more efficient than the version shown in

Figure 6.11.

Unfortunately, this whole optimisation can be foiled by a single update in-

struction. In general we cannot safely remove the update and thus cannot take

advantage of such powerful optimisations. There are two workarounds:

• One option is to make it explicit that we do not wish to cache the result

of upto. This can be done by using streams instead of lists. A version of

our example program is shown in Figure 6.13. A stream is a (co-inductive)

structure consisting of an initial state and a function to compute a new

state and a possible output from a given state. For the uptoS function

the state is simply the next value in the sequence. The sumAuxS function

simply keeps computing and summing the next value in the sequence until

it reaches the end of the stream. The loop in sumAuxS is tail-recursive and

hence runs with constant stack size.

Coutts et al. [2007] showed that the same technique can also be used to

improve static optimisations. Their framework, however, designed to be

used transparentely in place of conventional list-based APIs.

145

6. EVALUATION

Our current implementation does not implement this loop optimisation and

hence we lose out to GHC on this benchmark (SumStream in Table 2).1

• Another option is to obtain the necessary information to prove that an

update is unnecessary. The optimisation potential then depends on how

accurate this information is.

It is worth mentioning, however, that such automatic analyses require spe-

cial tools for the user. If an expression has type Steam Int, then the user

knows what optimisations to expect. An expression of type [Int], in turn,

may or may not get optimised away and subtle changes to the program

could have dramatic effects on the efficiency of the resulting program. More

concretely, duplicating a stream duplicates the stream’s state, whereas du-

plicating a list that is used as a stream will now cause all the output of

the stream to be stored. Since duplication is not represented in the type

system the user has to consult more lower-level parts of the system (e.g.,

the compiler’s internal structures) to detect when inadvertent sharing is

affecting performance.

The following section discusses how existing Haskell implementations have

performed sharing analysis statically and how we might adapt them to work well

in Lambdachine.

6.8 Sharing analysis

The safety requirement for avoiding updates is that the thunk to be updated is

not shared. This means that there is no possibility that eval will be called again

on the same thunk at any point in the program’s future.

One way to prove that a thunk is non-shared is to perform a static sharing

analysis. The key trade-off for such an analysis is precision versus implementation

complexity and performance. For Haskell, one such analysis was described in

Wansbrough and Peyton Jones [2000]. It used subtyping as a restricted form of

1An earlier version of our implementation did support this optimisation, but due to the
problem with updates has “bit-rotted” because other parts of the implementation were priori-
tised.

146

6. EVALUATION

data Stream a = forall s. Stream !s (s -> Step s a)

data Step s a

= Done

| Skip s

| Yield a s

sumAuxS :: Num a => a -> Stream a -> a

sumAuxS acc0 (Stream s0 next) = go acc0 s0

where

go !acc s =

case next s of

Done -> acc

Skip s’ -> go acc s’

Yield x s’ ->

let !acc’ = x + acc in go acc’ s’

uptoS :: Int -> Int -> Stream Int

uptoS lo hi = Stream lo next

where

next :: Int -> Step Int Int

next i = if i > hi then Done

else let !s’ = i + 1 in

Yield i s’

test n = sumAuxS 0 (uptoS 1 n)

Figure 6.13: Stream version of our running example.

147

6. EVALUATION

polymorphism to reduce the technical complexity of the analysis. Unfortunately,

this system is difficult to implement and does not identify a significant fraction

of unshared thunks for most programs.

More recently Hage et al. [2007] described an analysis that uses a mechanism

similar to type classes to track sharing information, which may be simpler to

implement than a system based on more complicated forms of subtyping. Their

operational semantics also requires that heap objects are annotated with whether

they are shared or not. It would require further investigation how this would be

implemented in a high-performance implementation.

Boquist’s GRIN compiler integrated a sharing analysis into the global points-

to analysis which is required for optimising eval. GRIN’s whole-program analysis

uses an abstract interpretation with an abstract heap. Of course, in our setting

we would like to avoid having to perform a whole-program analysis.

6.8.1 A dynamic sharing analysis

Given that a fully static analysis is likely to be either very difficult to implement,

or not very precise, it is worth considering how a dynamic sharing analysis might

work.

One option is to integrate it with the garbage collector by using a reference

counting mechanism. Unfortunately, reference counting tends to be very expen-

sive to implement because of the large number of object writes it generates. Each

time a new reference to an object is created, the reference count stored inside the

object must be updated. Some of these reference updates can be optimised away

by performing a local analysis, but this is unlikely to remove very many reference

updates. Furthermore, the reference must be stored somewhere in the object.

Haskell programs tend to use many small objects (e.g., cons cells), thus adding

an extra field to every object could prove expensive. In a concurrent setting we

additionally may have to use atomic operations to update the reference count of

objects which introduces additional costs.

So, if full reference counts are too expensive then perhaps we can use simpler

reference counts? One option is to use single-bit “sticky” reference counts. Such

a reference count only denotes two states: single reference (1) or possibly more

148

6. EVALUATION

than one reference (ω). Because this is imprecise, if the reference count ever

reaches ω it never goes back down to 1 (hence the term “sticky”). Since this is

only one bit it can potentially be stored in the object header without adding any

further storage requirements for heap objects. A garbage collector can then use

this information to immediately recycle the memory for objects if the reference

count is 1. All other objects must be collected later using some other garbage

collection mechanism.

A sticky reference count would use a minimum number of bits to maintain

the desired sharing information. We lose some accuracy since a shared object can

never be unshared (except, perhaps, after the garbage collector has run). Still,

there are potential drawbacks with this scheme. When we want to duplicate a

pointer to an object, we have to either:

1. Unconditionally update the object’s reference count. In a parallel imple-

mentation this write may have to be atomic, too.

2. We can avoid the unconditional write by reading the current value first, and

only update it if the object has not been shared, yet. Note, that since the

object has not yet been shared, we do not need to use an atomic write.

In either case, we require a memory access even if we do not want to access

the object.

An alternative strategy is to attach the sharing information to the pointer,

rather than the object. In Lambdachine, objects on the heap are always allocated

at a multiple of the underlying hardware’s word size. On the x86-64 architecture

this means an object is always aligned at a multiple of 8 bytes, thus the 3 least

significant bits of a pointer to a heap object must all be 0. We can use any of

these bits to store whether the object at the target address may be shared. We

write shared(p) ∈ {1, ω} to refer to the value of this bit:

• If shared(p) = 1 then the pointer p is the only pointer to that object. A

pointer returned from any of the ALLOC instructions will have this property.

• If shared(p) = ω then there may be other pointers, in registers or from some

object in the heap, to the same object.

149

6. EVALUATION

A newly-allocated object is guaranteed to be unshared. We use a local static

analysis to track when a pointer is duplicated. If it is, then the program is

rewritten (at compile time) to use the special dup primitive which takes a pointer

that may or may not be shared and returns a pointer that is shared and can be

used any number of times. Operationally, if q = dup p then shared(q) = ω and

q points to the same heap object that p did. The variable p must not be used

anywhere else in the program (but q may).

Another way of viewing this is as transforming the program into a version

that can be typed via linear logic (e.g., Turner et al. [1995]) and requiring that

each variable which is annotated with ω to goes through a use of dup first.

This alone is not enough, though. Consider the following simple program:

alloc x = Cons x Nil

share y = let z = alloc y in

case dup z of

z2 -> Cons z2 (Cons z2 Nil)

test = sum (share (4 + 5))

The argument y to the share function is used only once, so the pointer stored

inside the Cons cell in the function alloc will be tagged as unique (shared(x) =

shared(y) = 1). The reference returned from alloc is also unique, since the Cons

cell was just allocated. That same reference, however, is now duplicated in the

body of share. The problem is that sharing is a transitive property: sharing

a pointer to a formerly unshared object makes all objects reachable from that

object shared, too. In other words, y is now shared, but its value has already

been stored in another heap object.

A simple, but potentially very inefficient, approach would be to recursively

mark all reachable from a shared objects as also shared. This would require

memory writes. There would be no race conditions, though, because we only

need to touch objects that were previously unshared. In fact, the traversal would

stop at any reference already marked as shared. Such an approach could perhaps

150

6. EVALUATION

Cons

x Nil

 1 ω

Cons

x Nil

 1 ω

z

Cons

1

1

ω

Cons

 ω

1

ω

a) b)

Figure 6.14: Sharing behaviour of alloc and share functions.

be workable if combined with garbage collection work, for example, where shared

objects are moved into a different area of the heap.

Instead of tagging the transitive closure eagerly, we apply tagging lazily. Note

that any path to a shared object (e.g., the thunk (4 + 5) in our example) from

the roots (i.e., from local variables) has to follow a pointer tagged as shared. It

is thus enough to propagate the tag information whenever we follow a pointer.

More precisely, for any LOADF q, p, n instruction that loads a pointer field q from

the object p, we ensure:

shared(q) = shared(p) t shared(p[n])

where

x t y =

ω, if x = ω ∨ y = ω

1, otherwise

This load instruction can be implemented in four instructions of x86-64 as-

sembly by exploiting the fact that bitor(x, 0) = x:

151

6. EVALUATION

mov q, p

and q, 1 Extract sharing bit from pointer

and p,−2 Clear sharing bit in pointer(−2 = bitnot(1))

or q, [p+ 8 ∗ n] Read field and combine sharing bit

On RISC-style architectures it can also be implemented in four instructions

but requires one additional temporary register:1

and tmp, p, 1

and p, p,−2

load q, p, 8 ∗ n
or q, q, tmp

If the sharing bit of p is known to be 1 (for example, because the pointer

variable has been shared in the current function), this then simplifies to:

mov q, [p+ 8 ∗ n− 1]

or q, 1

The JIT compiler may choose to selectively specialise on the value of the shar-

ing bit and emit suitable guards. For example, the compiler will want to generate

different thunk evaluation code for shared thunks versus unshared thunks, but if

no optimisations would be enabled later on (other than avoiding the tagging/un-

tagging code), then the trace could remain polymorphic.

Since we have not implemented this analysis we cannot give any estimate to

how well it might perform. The static part of introducing dup calls is fairly simple

as we only have to check for variables that are shared syntactically. The changes

to the execution mechanism are also very small, so overall it is indeed fairly simple

to implement. A full evaluation of this scheme would also have assess both the

accuracy and the performance impact of this scheme.

First, since objects can never be unshared, the sharing information would

still be an overapproximation. It would be interesting how many dynamically

unshared objects would be tagged as shared.

1 The upcoming 64-bit ARM architecture seems to allow 8 tag bits in pointers than need
not be masked before dereferencing a pointer. This would avoid one instruction.

152

6. EVALUATION

Second, extracting a pointer out of an object becomes more expensive. This

is likely to be a common operation, so it could have a significant impact on

the overall performance. It also further complicates traces selection because we

now may have to come up with another heuristic for when to specialising on the

sharing state of an object. On the other hand, the optimisations it enables could

lead to an overall performance improvement. Sharing can also be useful for other

components of the runtime system like the garbage collector and could lead to

performance improvements there.

6.9 Summary

While Lambdachine does not yet support full Haskell, we were able to evaluate

its performance using a number of small benchmarks. The results are mixed

(Section 6.3). While Lambdachine performs well on some microbenchmarks even

improving performance slightly over GHC-generated machine code, it does per-

form worse on larger benchmarks with a slowdown of up to about 2× (Figure 6.1).

One particularly important issue is the poor behaviour of the trace selection

heuristics (Section 6.4. Some benchmarks produce a very large amount of traces

which are rarely executed fully (Table 6.1). This works against the assumptions

made by the trace optimiser and is likely the main reason why Lambdachine

performs poorly on some benchmarks.

We evaluated the impact of various hotness thresholds on mutator perfor-

mance (Section 6.5). Most benchmarks’ performance was largely unaffected by

our tested range of hotness thresholds, but for two benchmarks the performance

did vary noticably. The hotness threshold affects which traces are selected, so

this again points to a weakness in the trace selection heuristics.

Apart from issues with trace selection, we also discussed an important opti-

misation issue that limits the optimisation potential of the JIT compiler. While

it is useful that the JIT compiler can be used in addition to a static optimiser like

GHC, we would like to be able to more effectively optimise code that GHC was

not able to (e.g., due to conservative inlining). The JIT compiler’s lack of knowl-

edge about which updates can be omitted prevents such important optimisations

(Section 6.6). We propose a possible analysis that could provide this information

153

6. EVALUATION

in Section 6.8, but it is very hard to estimate whether the runtime overheads of

this analysis will pay off overall.

154

Chapter 7

Related Work

In this chapter we mention related work, mainly concerning the efficient imple-

mentation of functional programming languages. Just-in-time compilation is an

active research area and JIT compilers for many widely used programming lan-

guages are under active development. Aycock [2003] provides a general overview

of work in this area; in this chapter we focus on notable recent research.

7.1 Implementation of Lazy Functional Languages

The evaluation model of lazy functional languages is notably different from the

Von-Neumann model implemented by most widely available hardware platforms.

Early work focused on efficient methods of executing lazy functional programs on

standard hardware. This was done by devising abstract machines that bridge the

semantic gap between the two execution models. An abstract machine must be

close enough to the high-level language to make compiling to it straightforward.

At the same time, it must be possible to implement the operations of the abstract

machine efficiently.

7.1.1 G-Machine and STG-Machine

The G-Machine (Augustsson [1987]; Johnsson [1987]) is a stack-based abstract

machine that first constructs a representation of the program’s expression graph in

on the heap which is then evaluated by modifying the graph data structure. The

155

7. RELATED WORK

G-machine was later refined to the spineless G-machine (Burn et al. [1988]) which

eliminated some redundant memory allocations. Peyton Jones [1992] introduced

the Spineless Tagless G-machine (STG) which still serves as the foundation of

today’s most widely used Haskell implementation, GHC (GHC Team [2011]).

The term “tagless” refers to STG’s method of efficiently looking up the evaluation

code for a graph node (see Section 5.2.4).

STG’s implementation details have been refined a number of times. Marlow

and Peyton Jones [2004] modified the calling convention, and Marlow et al. [2007]

re-introduced a limited form of tagging. Efforts to support parallel execution

(Marlow et al. [2009]) further affected various aspects of the implementation.

7.1.2 GRIN

Boquist’s GRIN language (Boquist [1999]; Boquist and Johnsson [1996]) is an-

other abstract machine. More precisely, GRIN can be seen as a family of abstract

languages of various abstraction levels. The GRIN compiler gradually rewrites

the use of higher-level constructs into lower-level constructs until the program

can straightforwardly be translated into machine code.

The GRIN optimisation pipeline relies very heavily on whole-program opti-

misation to eliminate the need for expensive abstract machine constructs. GRIN

also uses interprocedural (a.k.a., global) register allocation essentially giving each

function a custom calling convention.

7.1.3 ABC Machine

The Clean programming language (Brus et al. [1987]) is based on the ABC ma-

chine (Plasmeijer and van Eekelen [1993]). The ABC machine is named after its

three stacks: the argument stack, the basic value stack (or operand stack), and

the control stack. There also is a parallel version of the ABC machine, called

pABC (Plasmeijer and van Eekelen [1993]).

156

7. RELATED WORK

7.1.4 Other

The Reduceron (Naylor and Runciman [2008, 2010]) is a processor designed to

efficiently implement graph reduction. It is designed to take advantage of paral-

lelism offered by the use of custom hardware. The processor uses six independent

memory units to reduce the single memory bus as a bottle neck. It also performs

some simple dynamic analysis in parallel to the evaluator. The Reduceron im-

plementation described by Naylor and Runciman [2010] runs on an FPGA at a

clock frequency of 96 MHz whereas state of the art Intel hardware at the time

ran at about 2.5 to 3 GHz. Programs running on the Reduceron are about 4×
slower than the same programming compiled by GHC and running on 2010 Intel

hardware (Core 2 Duo).

7.2 Lambdachine as dynamic GRIN

The key idea of GRIN is that using whole-program analysis and optimisation

higher-order constructs such as EVAL and apply can be lowered into first-order

constructs such as C-style switch statements. Conceptually, EVAL is implemented

as a large C switch statement that considers any possible tag that its argument

could have. Since this case analysis would be very inefficient Boquist performs a

whole-program analysis to determine which tags could potentially occur at each

call site of EVAL. The code of EVAL would then be inlined at each call site, but

all impossible cases of the switch statement can be omitted.

Lambdachine does essentially the same transformation, but instead of rely-

ing on whole-program analysis to detect possible cases, the possible cases are

explored lazily. Code is only generated for cases that occur frequently enough.

Instead of a switch statement, the guards used by Lambdachine are simply if

statements. The polymorphic apply primitive is treated the same way. Any

use of a polymorphic apply is specialised to the most common monomorphic

instantiations.

GRIN’s static approach has one key advantage, though. GRIN’s global pro-

gram analysis is a heap points-to analysis combined with a sharing analysis. The

points-to analysis determines the possible shapes of the heap node pointed to by

157

7. RELATED WORK

each variable in the program. The points-to analysis is combined with a sharing

analysis. This sharing analysis is crucial: it improves the accuracy of the analysis

and it also allows the omission of updates. As explained in Section 6.6, omit-

ting updates can be crucial to expose further optimisations. The sharing analysis

proposed in Section 6.8 essentially embeds the information collected by GRIN’s

static sharing analysis into runtime data structures. While a runtime analysis is

potentially more precise than a static analysis, it does, of course, also introduce

a runtime cost.

Both GRIN and Lambdachine take advantage of the first-order nature of

the resulting program. Knowledge about the concrete shape of objects (i.e.,

constructor, or which thunk) can be used to optimise later parts of the program.

7.3 Method-based JIT Compilation

The implementers of the object-oriented Self programming language developed

many techniques that are now widely used, many of them are described in Hölzle

[1994]. This includes polymorphic inlining caching (Hölzle et al. [1991]) and

deoptimisation (Hölzle et al. [1992]).

The optimisation techniques pioneered by Self are now used by Java compilers

such as the HotSpot VM (Kotzmann et al. [2008]). The use of JIT compilation

required efficient optimisation techniques (e.g., Click [1995]) and the JVM has

been a major driver for developing further dynamic optimisations. For example,

Shankar et al. [2008] observe a program’s memory allocation behaviour and tune

the inlining heuristic to remove many short-lived object allocations.

7.4 Trace-based JIT Compilation

The Dynamo system (Bala et al. [1999, 2000]) was the first system to use traces

to optimise programs at runtime. Dynamo worked at the machine code level

and managed to improve runtime performance for programs that were compiled

with less aggressive static optimisation levels. Dynamo only ran on the PA-RISC

architecture. The DynamoRIO project (Bruening [2004]; Bruening et al. [2003])

adapted Dynamo’s ideas and built a transparent optimisation framework for Intel

158

7. RELATED WORK

hardware running Linux or Windows as the operating system. The goal of having

a transparent, multi-threaded system lead to design constraints which ultimately

caused performance to be worse than native execution.

Gal and Franz [2006] introduced trace-based optimisation of Java programs

using trace trees. Their implementation (Gal et al. [2006]) was aimed at devices

where low memory usage was more important than best performance. Trace trees

later found their way into the TraceMonkey compiler for JavaScript (Gal et al.

[2009]), but it has since been replaced by a method-based compiler.

The PyPy system (Rigo and Pedroni [2006]) allows authors to derive a vir-

tual machine implementation from a language interpreter written in RPython, a

statically typed language with a syntax similar to Python. Using annotations,

PyPy can also derive a trace-based JIT compiler for the virtual machine (Bolz

et al. [2009]). PyPy is also the name of an implementation of Python using the

PyPy framework. Other programming languages have been implemented using

the PyPy framework, for example PHP (Homescu and Şuhan [2011]).

LuaJIT is perhaps the most successful trace-based JIT compiler. We describe

it in more detail in Section 7.9.

Inoue et al. [2011] used an existing method-based compiler for Java and added

a trace-based JIT. Programs compiled by the trace-based JIT compiler were on

average slightly slower (5%) than those compiled by the method JIT compiler.

One problem was the quality of selected traces which they later improved via false

loop filtering (Hayashizaki et al. [2011]) and refined trace selection strategies (Wu

et al. [2011]).

7.4.1 Trace-based JIT Compilation for Haskell

Peixotto [2012] investigated how to take advantage of low-level optimisations to

speed up Haskell programs. He found that Haskell’s execution model makes it

difficult to expose enough optimisation potential to a static compiler and proposed

to use trace-compilation. He evaluated utilizing DynamoRIO to this end, but that

did not lead to performance improvements, mostly because DynamoRIO could

not optimise indirect function calls (which arise from the way GHC implements

evaluation and function return). Peixotto also implemented a static trace-based

159

7. RELATED WORK

optimisation scheme where the program is run once and the program is rewritten

statically to use traces selected based on the profiling data collected during the

first run. The rewritten program then gets compiled again (using LLVM). The

rewritten program did indeed have better optimisation potential and lead to an

average performance improvement of 5% over the unmodified program. Peixotto

notably did not use side traces and each basic block occured in at most one trace.

This suggests that there is room for further performance improvements.

7.5 Static Trace Compilation

Before traces found they way into dynamic compilers, they were used to optimise

programs statically. Fisher [1979, 1981] introduced trace scheduling to translate

linear microcode into horizontal microcode, that is, code where parallelism has

been made explicit. Fisher optimised traces statically and relied on a profile run

to pick the best trace.

The Multiflow compiler (Lowney et al. [1993]) was a continuation of this work

and with the goal to build an industrial-strength trace compiler for hardware

with very large instruction words (VLIW). The Multiflow compiler targeted ar-

chitectures that could issue up to 28 instructions simultaneously. One motivation

for pursuing this approach was the promise that the hardware could be very

simple if instruction-level parallelism (ILP) is exploited by the software. Mod-

ern high-performance architectures use out-of-order execution to exploit ILP. An

out-of-order CPU can also work around pipeline stalls more easily. Such stalls

occur frequently due to memory accesses. A VLIW processor would simply stall

the complete pipeline.

Static trace compilers select a sequence of basic blocks as the compilation

unit and can use any instruction scheduling algorithm to optimise such a trace.

The instruction scheduler may move instructions without restrictions (except

for instruction dependencies, of course). In particular, an instruction may be

moved to a different basic block. This requires compensation code to be added if

execution leaves at a point after the original point, but before the new point of

the instruction.

The Transmeta Crusoe processor uses a VLIW architecture internally but

160

7. RELATED WORK

can run x86 code by dynamically translating it to the internal code format. The

dynamic translator, called Code Morphing Software (CMS), translate the x86

source program into a collection of traces of VLIW traces which are kept in

a trace cache. By choosing a different dynamic translator, the same could also

“natively” execute other binary programs such as Java bytecode or ARM machine

code. Similarly, if future versions of the hardware support new features (e.g.,

wider instruction words) then only the translator needs to be updated to take

advantage of the new hardware features.

Modern CPU implementations dynamically translate the source instruction

set (e.g., x86) into an internal instruction set. Trace caches are sometimes used

internally to remember the last sequence of decoded instructions. This trace

cache then only caches a single trace. The trace cache can increase performance

as instruction issue rate is no longer limited by the rate at which instructions are

decoded. It may also decrease power consumption since the instruction decoder

is now idle.

7.6 Register-based Bytecode

Traditionally, many bytecode architectures were mostly a stack-based architec-

ture. They are easy to implement and lead to a compact representation of the

code. Some architectures use multiple stacks, but it usually involves an operand

stack onto which arguments are pushed. Operations pop their arguments off the

stack and push results back onto the stack.

Platforms that use a stack-based architecture are too numerous to mention.

Notable examples include the Java Virtual Machine (Lindholm and Yellin [1999])

and the Common Language Infrastructure (ECMA International [2012], used by

the .NET platform).

More recently, some new architectures are using register-based bytecodes. In

a register-based architecture operations can read and write their arguments from

arbitrary locations of the current stack frame. This means that the instruction

encoding becomes larger because each instruction now needs to store the stack

frame offset of each input and output operand. While each instruction becomes

larger the total instruction count gets smaller, because fewer administrative in-

161

7. RELATED WORK

structions such as pushes, pops, or instructions that modify the ordering of the

stack. It also allows common sub-expression elimination, constant propagation

and a few other optimisations that are not always possible (or beneficial) in a

stack-based architecture.

Davis et al. [2003] found that by using a stack-based format the total num-

ber of instructions executed was reduced by about 35% at about 45% increase

of memory traffic due to the larger bytecode format. For an interpreter this

increased memory traffic does not necessarily translate into large runtime over-

heads, however, as an implementation would simply load, say, four bytes at a

time instead of one byte at a time. Thus the bytecode size increase will most

likely only affect the cache efficiency.

Register-based bytecode formats are attractive for implementations where

good interpreter performance is desirable. Interpreter performance is dominated

by the overhead to decode and dispatch instructions, thus reducing the num-

ber of instructions dispatched by the interpreter can have a positive impact on

the interpreter’s performance. Shi et al. [2008] found that using a register-based

bytecode format lead to a speedup over a stack-based format of 1.48× if the

interpreter is implemented using a C switch statement and still 1.15× if the

more efficient inline-threaded dispatch technique is used. Architectures based on

a register-based bytecode include LuaJIT 2 (Pall [2013]), Lua 5.1 (Man [2006]),

Dalvik (Section 7.8).

Implementation details often significantly affect performance. For example,

LuaJIT 2 uses a simpler bytecode format compared to Lua 5.1 and uses an inter-

preter which is hand-written in assembly, while the standard Lua 5.1 interpreter

is written in C and uses a simple switch statement. The LuaJIT 2 interpreter is

on average over 3× faster on 32-bit x86 and around 2× faster on 64-bit x86 and

(32-bit) ARM.1

1On an Intel Core2 E8400 3.0 GHz x86 processor, and a Texas Instruments OMAP4460 1.2
GHz Cortex-A9 ARM processor. Details at http://luajit.org/performance.html.

162

http://luajit.org/performance.html

7. RELATED WORK

7.7 Implementation of Fast Interpreters

Apart from the design of the bytecode format, the implementation technique

can have a large impact on the complexity and performance of the interpreter.

The simplest interpreters use a simple C switch statement, but (depending also

on the C compiler used) this is often not particularly efficient. More efficient

implementations use either compiler-specific C language extensions, hand-written

assembler code, various forms of code generation, or a combination of these.

The main overhead of an interpreter is the instruction dispatch and decode

work. Instruction dispatch requires either an indirect branch or a sequence of

binary branches. Either of these is difficult to predict by the hardware, so tech-

niques have been developed to reduce these overheads (Casey et al. [2007]).

A techniques without code generation is threaded code (Bell [1973]) where

each bytecode implementation directly transfers control to the next instruction

instead of jumping back to a central switch statement. This improves perfor-

mance on modern hardware because it improves branch prediction. Even better

performance can be achieved using various amounts of code generation. Inline-

threading (Gagnon [2002]; Gagnon and Hendren [2003]) copies the implementa-

tion of bytecode instructions into a buffer and executes the resulting code directly.

Context-threading (Berndl et al. [2005]) generates a call instruction for each non-

branch bytecode and custom code for branch instructions. This exposes the pro-

gram’s control flow to the hardware branch predictor which greatly reduces the

number of mispredicted branches. The increase in performance, however, comes

at the cost of portability due to the use of code generation.

Other techniques for optimising interpreters include modifications to the in-

struction set, or to the running program (for example to specialise on observed

behaviour). A good overview is given in Casey et al. [2007].

7.8 Dalvik Virtual Machine

Google’s Dalvik Virtual Machine (DVM) is the main platform for running Java-

based applications on the Android operating system (Bornstein [2008]). It is

thus an alternative to the Java Virtual Machine (JVM) (Lindholm and Yellin

163

7. RELATED WORK

[1999]). Dalvik uses a different bytecode format than the JVM, but application

authors generate Java bytecode files which are then converted into Dalvik’s own

dex format via a tool (named dx).

Dalvik’s bytecode is register-based in order to improve interpreter performance

relative to the JVM’s more compact stack-based format which, however, does less

work per instruction. Dalvik additionally uses a trace-based JIT compiler. The

stated reason for using a trace-based compiler over a method-based compiler as,

for example, used by the HotSpot JVM (Kotzmann et al. [2008]) is to reduce

the amount of generated machine code. Unfortunately, according to a recent

performance study by Oh et al. [2012] this did not work out too well.

Oh et al. compared Dalvik against a HotSpot-derived VM called phoneMe

advanced, an open source implementation of the JavaME (Micro Edition) plat-

form. Both implementations were run on a tablet using an ARM Cortex-A8 CPU

and 1 GB of RAM. Their study compared both implementations using EEMBC

GrinderBench, a benchmark aimed at evaluating workloads for mobile devices.

Their findings include:

• The Dalvik C interpreter is about 6% faster than the JVM’s C inter-

preter. Dalvik also includes an interpreter written in assembly which is

60% faster than the JVM’s C-based interpreter. It is not clear how an

assembly based implementation of the JVM bytecode would fare in this

comparison. Dalvik’s bytecode contains instructions of many different sizes

which suggests that decoding overhead is still rather high on average, which

potentially negates the gains of using a register-based bytecode.

• The JVM’s JIT compiler achieves an average speedup of about 11.7× over

the the interpreter while the Dalvik’s JIT compiler only achieves an average

speedup of 4.0×. Since the interpreter speedup is very small this means

that the code produced by the Dalvik JIT compiler is about three times

slower than that produced by the JVM JIT compiler. The Dalvik VM

generates ARM Thumb2 instruction whereas the reference JVM generates

only regular ARM instructions. Regular ARM instructions are 4 bytes each;

Thumb2 allows a mix of 2- and 4-byte instructions with the aim of reducing

code size. This may degrade performance somewhat (approx. 6% according

164

7. RELATED WORK

to ARM), but it does not explain the factor-of-three difference.

• Despite code size being an explicit design goal, the Dalvik VM generates

about 10-20% more code than the JVM. This is despite using Thumb2

whose goal is to reduce code size. The JVM compiler also seems to be 4

times faster than the Dalvik compiler.

• They identify a number of reasons for the poor performance of the Dalvik

JIT compiler. The main reason appears to be that traces are very short.

Trace recording stops at any method call or branch. Dalvik’s traces are

therefore simply dynamic basic blocks. The reason for this choice may be

to avoid excessive code duplication. It does, however, have several negative

knock-on effects.

– There is very little potential for optimisations. Each trace also needs

to read and write most of its operands from memory instead of keep-

ing them in a register. This causes extra memory traffic and extra

generated code.

– Since traces are so short every branch target is a potential trace head.

This would require too many counters, so instead Dalvik uses a fixed-

size table of counters where multiple branch targets may share the

same counter (due to a hash collision). This may degrade the quality

of selected traces.

– Extra code necessary for linking traces together (called chaining cells)

cause non-trivial overhead both in terms of code size as well as execu-

tion time.

Oh et al. [2012] try to address these shortcomings by allowing traces to span

across branches (but not method calls). If combined with additional optimisations

this gives a small performance improvement of about 5%. Most likely, however,

the lack of interprocedural optimisations is the limiting factor. They also point

out that in practice the poor performance of the Dalvik JIT compiler does not

matter that much as most performance-sensitive applications (e.g., games, video)

spend most of their time executing native code rather than Java code.

165

7. RELATED WORK

7.9 LuaJIT

LuaJIT is an implementation of the Lua programming language. Lua is a dynami-

cally typed programming language designed specifically be easily embeddable into

C or C++ programs. Version 1 of LuaJIT was a method-based compiler (writ-

ten mostly in Lua itself), but version 2 uses a trace-based compiler and a faster

interpreter written in assembly.

A lot of the implementation techniques of Lambdachine are derived from the

LuaJIT codebase (Pall [2013]). There is no comprehensive documentation of the

LuaJIT internals, but a short summary of techniques used is given in Pall [2009].

Important characteristics of the LuaJIT implementation are.

• The bytecode format is designed for easy decoding. For instance, opcodes

and operands are aligned at byte boundaries and there are only two instruc-

tion formats. This avoids extra bit-shifting or masking operations for most

instructions. The interpreter is written in assembly and uses direct thread-

ing. Parts of the following instruction are pre-decoded which helps offset

the cost of the indirect branch on processors with out-of-order execution.

• The interpreter uses NaN-tagging. All primitive values use 8 bytes. Floating

point numbers use all of the available 64-bits. There are about 252 bit

patterns that represent an invalid floating point number, a NaN (not a

number). Modern hardware, however, only ever generates one possible bit

pattern, so LuaJIT encodes other values in these 52 bits.

• Trace detection takes advantage of special bytecodes for loops. Default

hotness threshold is 56 loop iterations.

• The compiler intermediate representation (IR) uses 16-bit references instead

of pointers, which helps reduce the memory overhead of IR instruction. All

IR instructions are 64 bits wide and are stored in a linear buffer. References

to the output of one instructions are simply indexes into this buffer. IR

references are statically partitioned into two ranges, one for constants and

one for actual instructions. Instructions in the IR buffer are automatically

in SSA form.

166

7. RELATED WORK

• The optimiser is based on a rule-matching engine. Before an IR instruction

is emitted to the IR buffer it is sent through the rule-matching engine which

might replace it with another instruction or eliminate it altogether.

• The machine code generator works backwards. Because the IR is always

in SSA form this means that liveness analysis, register allocation and even

dead code elimination can be integrated into the code generation pass.

• Snapshots capture the state of the abstract stack at guards. LuaJIT does

not generate machine code to restore the concrete stack but instead uses a

generic handler that uses the snapshot to restore the concrete stack. This

reduces the amount of code generated at increased cost for trace exits. To

offset this cost LuaJIT has a very low hotness threshold for compiling side

traces (by default 10).

• Because Lua is a dynamically typed language there are many guards gen-

erated due to type check. To avoid generating snapshots for each of these

guards, LuaJIT uses sparse snapshots. If a later guard fails it is safe to exit

at an earlier snapshot provided that no side-effecting operation has occured

in the meantime. Execution will re-enter the interpreter at an earlier point

and redo some work that has already been done on the trace, but that is

safe to do.

Lambdachine uses the same bytecode and IR design, but both have very

different semantics. The register allocator and the parts of the code generator

that emit machine code are basically the same as LuaJIT’s. In 2012 allocation

sinking was added to LuaJIT, but Lambdachine’s allocation sinking pass was

developed independently.

7.10 Compiler-only Virtual Machines

Some systems forego an interpreter and generate native code to execute the parts

of the program for which no traces have been generated yet. DynamoRIO (Bru-

ening [2004]; Bruening et al. [2003]) virtualizes x86 instructions on x86 hardware,

so the baseline compiler just needs to decode the instructions and copy the code.

167

7. RELATED WORK

Both SPUR (Bebenita et al. [2010a]), a trace-based JIT compiler for Mi-

crosoft’s Common Intermediate Language (CIL), and Maxpath (Bebenita et al.

[2010b]), a trace-based JIT compiler for Java, use compilation for every execu-

tion mode. The stated reason for choosing a non-optimising compiler instead of

an interpreter for baseline execution is performance. Neither reports any results

comparing start-up times or memory overhead introduced by this decision.

The advantage of having a fast baseline execution mechanism is the possibility

to delay optimisation decisions and collect more profiling data first. Maxpath uses

this to collect multiple related traces into trace regions and only compiles the

whole trace region once it has “matured”. This reduces the chance of compiling

code that is not actually hot. Maxpath also allows trace regions to contain inner

control flow join points which allows it to optimise traces without biased branches

as a whole.

Security concerns may further affect the performance overhead of compile-only

systems. Many modern systems mark memory systems as either executable or

writeable, but never both. This reduces the attack surface by making it difficult to

directly write executable code into the target’s address space. No single security

mechanism can protect against all attacks, but having several counter measures in

place is generally a good idea. A JIT compiler should mark memory as writable,

then generate or update existing code, and finally mark the memory as execute-

only. Each change of permissions is a system call and may take several hundreds

of CPU cycles, not to mention that it may flush important caches (e.g., TLB)

which will cause additional overhead later on.

Other projects using compilation only are V8 and Mozilla’s Jägermonkey/Ion-

monkey, all are JavaScript implementations.

7.11 Supercompilation

Supercompilation is a generalisation of partial evaluation. A supercompiler ap-

plies optimisation rules and inlines very aggressively. To bound the optimisation

effort, a supercompiler must decide when to stop inlining and replace any recur-

sive calls by calls to an appropriately specialised version of the recursive call.

168

7. RELATED WORK

Mitchell and Runciman [2008] introduced supercompilation for Haskell with

Supero, which was later refined in Mitchell [2010]. Jonsson and Nordlander [2009]

described a supercompiler for a strict functional language. Bolingbroke and Pey-

ton Jones [2010] introduced a framework for expressing supercompilation in terms

of four components: an evaluator, a splitter, a memoizer, and a termination

checker. This helped sort out issues with earlier formulations which did not cor-

rectly handle all aspects of lazy evaluation. Optimisations that do not preserve

sharing can lead to drastically reduced performance.

All of these systems still have issues with compilation times. The details of

the termination heuristic are difficult to get right. If the termination checker

stops compilation too soon, there may be too little room for optimisation, but if

compilation is stopped too late, compilation time increases as well as code size.

The benchmarks chosen to evaluate supercompilers are often very small, so

it remains to be seen how supercompilation can be made to work well with large

input program.

169

Chapter 8

Conclusions and Future Work

This thesis investigated the suitability of trace-based just-in-time compilation for

the lazy functional programming language Haskell. We described a prototype of

such a compiler which supports a pure subset of Haskell and evaluated it using a

collection of small benchmarks.

While the JIT compiler did well for micro benchmarks, the larger benchmarks

exposed some issues in our prototype’s trace selection strategy. Our trace selec-

tion heuristics are derived from standard heuristics described in the literature

which have been designed for dynamic binary translators or object-oriented lan-

guages. These appear to work well enough if the hot code sections are comprised

of simple for or while loops. In Haskell, however, loops are represented as

tail-recursive functions. Some iteration constructs also are not tail-recursive and

instead consume stack space proportional to the size of its inputs. Such functions

cannot become part of a single trace, but need to be represented using at least

two traces, one for the stack building phase and one for the stack deconstruction

phase. This limits the potential for optimisations.

Call-by-need evaluation and the corresponding need to update a thunk with

its value causes powerful loop optimisations to no longer become applicable. If the

update can be omitted, the JIT compiler could perform loop optimisations that

can produce similarly good results as stream fusion. The JIT compiler, however,

has a more restricted view of the program and cannot normally omit the update.

We proposed a dynamic sharing analysis that could provide this information and

may also be helpful for the memory manager, but without an implementation it

170

8. CONCLUSIONS AND FUTURE WORK

is difficult to judge whether this would be a net win. An improved static analysis

could also be worthwhile.

While Haskell is a statically typed language, there is a fair amount of runtime

“dynamism” due to laziness, higher-order functions and type classes. The JIT

compiler removes this by specializing on concrete occurrences of the runtime

instances. Unfortunately, without larger benchmarks it is difficult to evaluate how

well Lambdachine’s specialization strategy performs. In fact, it is quite difficult

to map traces back to the Haskell source because the GHC front-end compiler

already transforms the program through inlining and other static optimisations.

These observations suggest a number of areas of future work which promise

to improve the insights and results of this thesis.

8.1 Feature Completeness

Our implementation does not yet support all features of Haskell 2010 never mind

all of GHC’s features. This limits the available set of benchmark programs. We

suspect that the benchmarks used in this thesis do not represent the programming

style that many modern high-performance Haskell programs use as many of them

were written over 20 years ago (Partain [1993]). Modern benchmark suites such

as Fibon1 (Peixotto [2012]), however, rely on many Haskell standard libraries.

To run these benchmarks, an implementatin must at least include support for

arrays, the C foreign function interface, and floating point numbers.

Being able to run at least a larger selection of such benchmarks could help

guide which aspects of trace selection and which optimisations are worth focusing

on.

Supporting lightweight threads or parallel execution is an even bigger chal-

lenge. One possible way to support these is to integrate with the GHC runtime

system which already supports a wide range of concurrency features. The down-

side is that the GHC runtime system is quite tightly integrated with the rest of

GHC and would likely require substantial changes to become compatible with

Lambdachine’s low-level design. An alternative approach of building a new run-

1https://github.com/dmpots/fibon

171

https://github.com/dmpots/fibon

8. CONCLUSIONS AND FUTURE WORK

time system would likely require even more effort, but might provide the oppor-

tunity to re-evaluate some design decisions made in GHC and could perhaps take

advantage of the presence of a just-in-time compiler.

8.2 Trace Selection

There are a number of approaches that may improve trace selection. Static

analysis may help to detect the equivalent of a for or while loop of imperative

languages. The trace selector then may prefer those loops over other kinds of

loops. A simple first step would be to use a lower hotness threshold for tail-

recursive calls so that such loop-like control flow gets turned into traces first.

In order to better diagnose issues with trace selection it is very useful to have

tools that simplify mapping traces back to the source program (or at least to

the GHC Core program). Logging the execution trace of a full program can also

be useful to perform offline analyses and produce a “perfect” set of traces (e.g.,

by optimising coverage and trace completion rate) for particular programs and

compare them to the actual traces select by the trace selection heuristics. Such

tools could later also be useful to users when debugging performance issues in

user programs.

Currently, Lambdachine only allows at most one trace per bytecode address.

If the trace is called from many different places (e.g., a commonly used function

like map) then the trace will first examine what should be done by inspecting the

shape of its arguments (via guards). Using a näıve scheme this degenerates to

a linear sequence of comparisons, jumping from trace to side trace to side trace,

etc. It may be necessary to move these checks outside of the trace. Instead of

emitting these guards as code, each trace would be annotated with meta data

describing the expected shape of its arguments (e.g., which info table). The

interpreter would then perform these checks before entering a trace. Similarly, if

trace recording reaches the beginning of another trace, the corresponding guards

would become part of the calling trace.

This would make entering traces more expensive and multiple traces may start

at the same trace anchor. This increases complexity, so careful consideration is

required. Perhaps, with the right trace selection strategy such polymorphism is

172

8. CONCLUSIONS AND FUTURE WORK

mostly eliminated by starting root traces from mostly-monomorphic consumers.

8.3 Avoiding Unnecessary Updates

Even with improved trace selection, Lambdachine’s performance may still lag

behind GHC’s static optimisations because the need to preserve updates reduces

the effectiveness of loop optimisations. There are two main questions worth

persuing.

Firstly, is there an analysis that provides a net benefit? In Section 6.8.1 we

suggested one such analysis which is mostly dynamic and annotates each object

with a tag indicating whether it might be shared. Mainting this information

could prove to introduce noticeable runtime overhead. The hope is that this

overhead is outweighed by the additional optimisations that it enables. Sharing

information could potentially also be exploited by the garbage collector. It may

also be possible to reduce the amount of runtime data needed by employing a

more sophisticated static analysis.

Secondly, relying on compiler optimisations can be a risky business. The

co-recursive Stream data type (Coutts et al. [2007]) changes the program repre-

sentation to make it easier for the compiler to optimise. Streams also decouple

demand-driven evaluation from memoisation of the result which removes exactly

the issue with updates. An alternative approach therefore would evaluate which

program patterns are causing the issue and adapt libraries to be explicit about

the kind of behaviour they want to rely on.

8.4 Portable and Checked Bytecode

Our current implementation only works on 64-bit x86 hardware. The compiler

produces byte code which assumes a 64-bit architecture and would have to be

adapted slightly to support 32-bit architectures. An even better approach would

involve the design of a portable byte code that is translated into platform-specific

byte code at load time (or at installation time). Such portable bytecode could

also be annotated with type information which is verified before the program is

executed.

173

8. CONCLUSIONS AND FUTURE WORK

Figure 8.1: In-memory representation of a list of integers.

8.5 Execution Profiling

One of the promises of a virtual machine with a JIT compiler is the potential for

better runtime introspection by selectively recompiling parts of the program to

include more instrumentation. Our front-end compiler cannot yet generate the

necessary meta data (such as source location information) to make this possible.

We imagine that such meta data could take eventually be used to rewrite the

bytecode at runtime to turn extra profiling on or off.

8.6 Representation Optimisation

GHC requires a uniform representation of polymorphic data types. This has

knock-on effects for the efficiency of data representation. In particular, polymor-

phic values must always be allocated on the heap. Because the elements of the

type are polymorphic, the in-memory representation of a list of integers a list of

integers will be stored in a rather inefficient manner, as shown in Figure 8.1.

If a Haskell program uses many objects of type List Int where the integer

is known to be in normal form we may want to store this in a more efficient data

format:

data List_SInt = Nil_SInt | Cons_SInt Int# List_SInt

If some of the integers may be unevaluated, we can still improve efficiency

by using different constructors depending on whether the argument is in normal

form or not.

data List_Int = Nil_Int

| Cons_NFInt Int# List_Int

| Cons_Int Int List_Int

The problem of introducing a new data represenation is that we can no longer

use functions that worked on the old representation. This can lead to a huge

174

8. CONCLUSIONS AND FUTURE WORK

amount of code duplication and hence is only worthwhile in a rare number of

cases.

In many cases the more efficient representation can be generated automatically

by the compiler. It would therefore be nice if the compiler could perform this

transformation automatically if instructed to do so via, say, a compiler pragma.

Unfortunately, it is very difficult for a static compiler to avoid huge code size

increases. Every function that operates on lists and is called directly or indirectly

by the program would have to be duplicated. Using whole-program analysis the

compiler may be able to exclude some functions, but such an analysis is usually

expensive.

An alternative approach would be to abstract the storage type into an inter-

face. Figure 8.2 shows how a type class could abstract over constructing a list

(nil, cons) and pattern matching on a list (unpack1). Note that this makes

using lists less efficient. We have to rely on the compiler to generate specialised

versions of the functions working on Listlike data. In particular, list construc-

tion requires an additional function call and, even worse, list destruction might

actually allocate data(!) as demonstrated by the two instances in Figure 8.2.

Figure 8.3 shows an alternative definition of unpack1 which would often be

more efficient by utilising continuation-passing style. It avoids the allocation of a

Just node and the nested pair by passing the extracted argument directly to the

supplied continuation. The downside of this approach is that consumers of the

data structure can no longer use case expressions, but must pass continuations.

GHC 7.6 manages to optimise both implementations to the same code where

all class methods have been inlined and the code specialised. However, good

performance is harder to guarantee for larger programs.

This technique is used for some high performance Haskell libraries like the

vector package, but it comes with a fair amount of both conceptional and im-

plementation overhead. Library functions must be (re-)written to work with the

generalised types.

The Haskell package adaptive-containers1 implements the same idea but

uses a less safe API. Instead of unpack1, this package exposes three functions: the

total function null to check if the list is empty and the two partial functions head

1http://hackage.haskell.org/package/adaptive-containers

175

http://hackage.haskell.org/package/adaptive-containers

8. CONCLUSIONS AND FUTURE WORK

1 {-# LANGUAGE TypeFamilies, MagicHash, FlexibleContexts, BangPatterns #-}
2 import GHC.Prim

3 import GHC.Types

4 class Listlike l where

5 type Elem l

6 nil :: l

7 cons :: Elem l -> l -> l

8 unpack1 :: l -> Maybe (Elem l, l)

9 instance Listlike [a] where

10 type Elem [a] = a

11 nil = []; cons = (:)

12 unpack1 [] = Nothing

13 unpack1 (x:xs) = Just (x, xs)

14 data List_SInt = Nil_SInt | Cons_SInt Int# List_SInt

15 instance Listlike List_SInt where

16 type Elem List_SInt = Int

17 nil = Nil_SInt; cons (I# n) l = Cons_SInt n l

18 unpack1 Nil_SInt = Nothing

19 unpack1 (Cons_SInt n l) = Just (I# n, l)

20 uptoLL :: (Listlike l, Num (Elem l), Ord (Elem l)) =>

21 Elem l -> Elem l -> l

22 uptoLL x y | x < y = cons x (uptoLL (x + 1) y)

23 | otherwise = nil

24 sumLL :: (Listlike l, Num (Elem l)) => l -> Elem l

25 sumLL list = go 0 list

26 where go !acc l = case unpack1 l of

27 Nothing -> acc

28 Just (x, xs) -> go (acc + x) xs

29 test = sumLL (uptoLL 1 10000 :: List_SInt)

Figure 8.2: Abstracting over the way lists are represented in memory.

176

8. CONCLUSIONS AND FUTURE WORK

1 class Listlike l where

2 unpack1 :: l -> r -> (Elem l -> l -> r) -> r

3 ...

4 instance Listlike [a] where

5 unpack1 [] n c = n

6 unpack1 (x:xs) n c = c x xs

7 ...

8 instance Listlike List_SInt where

9 unpack1 Nil_SInt n c = n

10 unpack1 (Cons_SInt x l) n c = c (I# x) l

11 ...

12 sumLL :: (Listlike l, Num (Elem l)) => l -> Elem l

13 sumLL list = go 0 list

14 where go !acc l = unpack1 l

15 acc -- nil case

16 (λ x xs -> go (acc + x) xs) -- cons

17 toList :: Listlike l => l -> [Elem l]

18 toList l = unpack1 l [] (λ x xs -> x : toList xs)

Figure 8.3: Alternative implementation of unpack1.

177

8. CONCLUSIONS AND FUTURE WORK

and tail to extract the components of a non-empty list. This causes repeated

pattern matching (as part of the implementation of each of these functions) if

several of these functions need to be called, but this overhead is likely to be

removed through inlining. The package also re-implements all the list functions

based on this new interface.

For the (common) case where the optimised representation can be derived

from the polymorphic representation we can do better by working at a lower

level. Rather than requiring the user to turn a concrete data type into a generic

interface, we can change the implementation of data construction and destruction.

We change the byte code primitives for allocation to look up the correct construc-

tor through an indirection, just like the cons and nil class methods would do.

Similarly, we change the byte code primitives for matching on constructors and

extracting fields to go through an indirection as well. Such indirection would

naturally introduce performance overheads, but the JIT compiler will quickly

generate specialised code for all commonly-encountered cases.

There are a number of advantages to moving the necessary indirections to the

level of the bytecode semantics:

• No changes to the source code are necessary. This is especially useful if we

would like to reuse existing libraries.

• Represenation changes can be done at runtime and will be transparent to

the program. For example, we may choose to change the representation

only for data with a certain amount of heap usage.

The downside is that we would pay the performance overhead even if we

choose not to optimise the data representation.

8.7 Conclusions

This thesis has investigated the applicability of trace-based just-in-time compila-

tion to Haskell programs. To this end we implemented Lambdamachine, a virtual

machine for Haskell and a trace-based just-in-time compiler.

178

8. CONCLUSIONS AND FUTURE WORK

In our performance evaluation shows that this approach is indeed promising,

but our current trace selection scheme works rather poorly. Our compiler is

fast enough so that compilation overhead is not problematic, but even relatively

small benchmarks cause large number of traces to be generated many of which

with poor completion rate. Laziness further prevents some crucial allocation

optimisations from becoming applicable. We suggested a dynamic analysis that

could determine places where such heap allocations are valid, but it is unclear

whether the overheads of such an analysis will outweigh its advantages.

179

Source Code Statistics

Table 1 lists the files and their (non-comment) number of source lines. The last

column shows an estimate of the how much of the code has a one-to-one mapping

to code from LuaJIT.

180

. SOURCE CODE STATISTICS

Source File Description SLOC similarity
loader.cc/.hh Bytecode loader 590 + 145 0%
ir.hh/ir-inl.hh Trace IR definition 703 + 16 90%
ir.cc Trace IR buffer operations 789 50%
ir fold.cc Trace IR folding engine 356 90%
bytecode.hh Bytecode definition 167 70%
bytecode.cc Bytecode printing 229 0%
assembler.hh Code generator types and

opcode definitions
474 90%

assembler-debug.hh Tools for debugging the as-
sembler

90 100%

assembler.cc Code generator and register
allocator implementation

1385 90%

capability.hh Interpreter type definitions 90 0%
capability.cc Interpreter implementation 839 0%
objects.cc/.hh Heap object definitions and

printing
196 + 165 0%

jit.hh JIT compiler types and util-
ities

291 60%

jit.cc Trace recorder implementa-
tion

1182 10%

machinecode.cc Machine code allocation 135 95%
memorymanager.cc/.hh Memory allocator and

garbage collector
710 + 251 0%

miscclosures.cc/.cc Closures used by the run-
time system

338 + 53 0%

thread.cc/.hh Lightweight thread defini-
tion

74 + 43 0%

options.cc/.hh Program option parsing 163 + 49 0%
main.cc The VM executable main

function
184 0%

other utils 68 0%
other headers 459 5%
VM Total 10432 35%

unittest.cc Various unit tests 2038 -
lcc Bytecode compiler (written

in Haskell)
5932 -

Total 18402 20%

Table 1: Source Code Statistics

181

Full Benchmark Data

Table 2 shows the detailed performance results for all of our benchmarks. Each

benchmark was run in six configurations. The first three configurations of each

benchmark is the execution time when compiled with GHC using three different

optimisation levels: O0 means no optimisations, O2 is high optimisation level.1

The other three configurations list the execution time when the benchmark is ex-

ecuted with Lambdachine. Since our front-end compiler (which translate Haskell

programs into bytecode) uses GHC, we can control the static optimisation level

via the same optimisation levels that GHC uses: O0 thus means no static opti-

misations and only dynamic optimisations, O2 means both static and dynamic

optimisations.

The four columns are defined as follows:

• “MUT” is the time spent in the mutator (in seconds), i.e., excluding garbage

collection. In the JIT execution mode this number includes the overhead of

the trace recorder and those trace optimisations that are performed during

trace recording.

• “GC” is the time spent in the garbage collector (in seconds).

• “JIT” is time spent in the JIT compiler (in seconds), but excluding the

trace recorder. This number includes optimisations performed after trace

recording completed and code generation.

• “Mem” is the total amount of memory allocated (in Gigabytes) by the

program (most of which will have been garbage collected).

1GHC also supports optimisation level O3, its use is generally discouraged as it mainly
increases compilation time and rarely better performance than O2.

182

. FULL BENCHMARK DATA

The last column lists the number of traces that were compiled by the JIT

compiler.

Table 2: Mutator performance for all benchmarks.

Benchmark GHC/ Opt. MUT GC JIT Mem Trace

JIT Lvl. (s) (s) (s) (GB) (No.)

SumFromTo1 GHC -O2 2.31 0.12 - 14.63 -

-O1 2.31 0.12 - 14.63 -

-O0 4.21 0.15 - 17.81 -

JIT -O2 1.80 0.00 0.00 12.80 1

-O1 1.80 0.00 0.00 12.80 1

-O0 2.06 0.01 0.00 16.00 1

SumFromTo2 GHC -O2 4.02 0.15 - 17.81 -

-O1 4.02 0.15 - 17.81 -

-O0 4.81 0.15 - 17.81 -

JIT -O2 2.32 0.01 0.00 16.00 2

-O1 2.32 0.01 0.00 16.00 2

-O0 2.30 0.01 0.00 16.00 2

SumSquare GHC -O2 2.45 3.57 - 16.46 -

-O1 2.48 3.57 - 16.46 -

-O0 3.44 0.16 - 18.07 -

JIT -O2 2.35 0.01 0.00 14.41 5

-O1 2.13 0.01 0.00 14.41 4

-O0 2.06 0.01 0.00 16.21 3

SumStream GHC -O2 0.24 0.00 - < 0.01 -

-O1 0.24 0.00 - < 0.01 -

-O0 3.88 0.10 - 11.20 -

JIT -O2 0.46 0.00 0.00 < 0.01 1

-O1 0.46 0.00 0.00 < 0.01 1

-O0 1.61 0.00 0.00 11.20 2

Tak GHC -O2 1.01 0.00 - < 0.01 -

-O1 1.01 0.00 - < 0.01 -

Continued on next page

183

. FULL BENCHMARK DATA

Table 2: Mutator performance for all benchmarks.

Benchmark GHC/ Opt. MUT GC JIT Mem Trace

JIT Lvl. (s) (s) (s) (GB) (No.)

-O0 11.48 0.37 - 22.12 -

JIT -O2 0.84 0.00 0.00 < 0.01 6

-O1 0.84 0.00 0.00 < 0.01 6

-O0 6.82 0.14 0.00 22.06 83

WheelSieve2 GHC -O2 0.34 2.06 - 0.67 -

-O1 0.36 2.13 - 0.67 -

-O0 0.65 1.64 - 1.24 -

JIT -O2 0.59 5.55 0.00 2.12 69

-O1 0.59 5.58 0.00 2.12 53

-O0 1.11 8.89 0.051 3.60 95

Boyer GHC -O2 0.75 0.66 - 2.20 -

-O1 0.75 0.66 - 2.20 -

-O0 1.33 1.25 - 3.23 -

JIT -O2 0.72 0.34 0.02 1.98 700

-O1 0.70 0.35 0.04 1.99 710

-O0 1.882 1.12 0.02 3.39 679

Constraints GHC -O2 0.88 2.31 - 2.16 -

-O1 0.89 2.31 - 2.16 -

-O0 1.89 1.49 - 4.25 -

JIT -O2 0.85 0.18 0.06 2.45 1616

-O1 0.85 0.18 0.06 2.45 1617

-O0 1.30 0.31 0.08 4.20 1830

Circsim GHC -O2 1.71 3.74 - 5.31 -

-O1 1.72 3.73 - 5.31 -

-O0 2.85 6.10 - 8.14 -

JIT -O2 3.43 9.96 0.06 11.33 849

Continued on next page
1Compilation time varies between 50 ms and 200 ms, presumably due to memory protection

calls.
2Trace recorder aborts frequently due to an unimplemented feature.

184

. FULL BENCHMARK DATA

Table 2: Mutator performance for all benchmarks.

Benchmark GHC/ Opt. MUT GC JIT Mem Trace

JIT Lvl. (s) (s) (s) (GB) (No.)

-O1 3.43 9.92 0.06 11.33 850

-O0 -1 - - - -

Lambda GHC -O2 0.74 0.90 - 0.90 -

-O1 0.74 0.91 - 0.90 -

-O0 3.69 3.40 - 7.15 -

JIT -O2 0.97 1.25 0.09 1.65 892

-O1 0.98 1.25 0.09 1.65 889

-O0 -2 - - - -

End of table

Table 3 lists the non-GC time (mutator time + JIT compiler time) for our

benchmarks for different combinations of hotness thresholds. All programs were

compiled with full static optimisations (-O2). The first number is the threshold

for root traces, the second is the threshold for side traces.

1Failed due to an unimplemented feature in the trace recorder
2Failed due to a bug in the bytecode compiler.

185

. FULL BENCHMARK DATA

R
o
ot

/S
id

e
h
ot

n
es

s
th

re
sh

ol
d

S
u
m

F
ro

m
T

o1

S
u
m

F
ro

m
T

o2

S
u
m

S
q
u
ar

e

S
u
m

S
tr

ea
m

T
ak

W
h
ee

lS
ie

ve
2

B
oy

er

C
on

st
ra

in
ts

C
ir

cs
im

L
am

b
d
a

103/103 1.76 2.30 2.94 1.12 1.79 0.58 0.74 0.90 3.49 1.51
1 2 8 2 6 35 511 812 725 44

103/53 1.76 2.30 2.22 1.12 1.75 0.59 0.74 0.85 3.44 1.51
1 2 7 2 5 37 533 821 752 37

103/23 1.76 2.30 2.22 1.12 1.72 0.60 0.69 0.92 3.44 1.44
1 2 5 2 4 44 635 1304 795 148

103/11 1.76 2.30 2.22 1.12 1.74 0.64 0.74 0.91 3.44 1.23
1 2 5 2 4 52 628 1382 858 579

103/7 1.76 2.30 2.22 1.12 1.63 0.69 0.71 0.98 3.44 1.22
1 2 5 2 4 56 699 2249 908 891

53/53 1.76 2.30 2.94 1.12 0.83 0.63 0.72 0.87 3.46 1.61
1 2 8 2 7 43 519 801 770 45

53/23 1.76 2.30 2.22 1.12 0.84 0.58 0.72 0.86 3.46 1.65
1 2 7 2 6 55 544 1009 776 51

53/11 1.76 2.30 2.22 1.12 0.83 0.58 0.72 0.87 3.50 1.12
1 2 5 2 6 58 618 1352 849 583

53/7 1.76 2.30 2.22 1.12 0.83 0.58 0.74 0.91 3.50 1.06
1 2 5 2 6 69 700 1616 776 892

23/23 1.76 2.30 2.94 1.12 1.67 0.67 0.81 0.89 3.47 1.40
1 2 8 2 5 63 575 1043 801 215

23/11 1.76 2.30 2.22 1.12 1.60 0.67 0.76 0.91 3.45 1.18
1 2 7 2 4 65 577 1355 862 582

23/7 1.76 2.30 2.22 1.12 1.76 0.64 0.79 0.90 3.48 1.07
1 2 7 2 4 75 603 1592 889 892

11/11 1.76 2.30 2.94 1.12 1.73 0.63 0.73 0.92 3.50 1.16
1 2 8 2 5 77 587 1308 860 590

11/7 1.76 2.30 2.22 1.12 1.72 0.64 0.72 0.94 3.49 1.07
1 2 5 2 4 96 582 1622 929 897

Table 3: Hotness thresholds and their effect on performance. This table shows
for each benchmark the mutator runtime (in seconds) and number of traces for
different hotness thresholds. We distinguish hotness thresholds for root traces
(R) and for side traces (S).

186

References

The v8 javascript engine. URL https://developers.google.com/v8/. 33

H̊akan Ardö, Carl Friedrich Bolz, and Maciej FijaBkowski. Loop-aware optimiza-

tions in pypy’s tracing jit. In Proceedings of the 8th symposium on Dynamic

languages, DLS ’12, pages 63–72, New York, NY, USA, 2012. ACM. ISBN 978-

1-4503-1564-7. doi: 10.1145/2384577.2384586. URL http://doi.acm.org/

10.1145/2384577.2384586. 38, 142

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the jalapeño jvm. In Proceedings of

the 15th ACM SIGPLAN conference on Object-oriented programming, sys-

tems, languages, and applications, OOPSLA ’00, pages 47–65, New York, NY,

USA, 2000. ACM. ISBN 1-58113-200-X. doi: 10.1145/353171.353175. URL

http://doi.acm.org/10.1145/353171.353175. 36

Lennart Augustsson. Compiling lazy functional languages, part II. PhD thesis,

Chalmers Tekniska Högskola, Göteborg, Sweden, 1987. 14, 155

John Aycock. A brief history of just-in-time. ACM Computing Surveys, 35:97–

113, June 2003. ISSN 03600300. doi: 10.1145/857076.857077. URL http:

//portal.acm.org/citation.cfm?doid=857076.857077. 155

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dynamic

optimization: The design and implementation of dynamo. Technical Report

HPL-1999-78, HP Laboratories Cambridge, 1999. 46, 52, 54, 57, 158

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A Trans-

parent Dynamic Optimization System. In PLDI’00: Proceedings of the ACM

187

https://developers.google.com/v8/
http://doi.acm.org/10.1145/2384577.2384586
http://doi.acm.org/10.1145/2384577.2384586
http://doi.acm.org/10.1145/353171.353175
http://portal.acm.org/citation.cfm?doid=857076.857077
http://portal.acm.org/citation.cfm?doid=857076.857077

REFERENCES REFERENCES

SIGPLAN 2000 conference on Programming Language Design and Implemen-

tation, pages 1–12. ACM, 2000. doi: 10.1145/349299.349303. URL http:

//portal.acm.org/citation.cfm?id=349303. 46, 47, 52, 54, 59, 158

Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky,

Yun Wang, and Yigel Zemach. Ia-32 execution layer: a two-phase dynamic

translator designed to support ia-32 applications on itanium®-based sys-

tems. In Proceedings of the 36th annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 36, pages 191–, Washington, DC, USA, 2003.

IEEE Computer Society. ISBN 0-7695-2043-X. URL http://dl.acm.org/

citation.cfm?id=956417.956550. 33

Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo,

Wolfram Schulte, Nikolai Tillmann, and Herman Venter. SPUR: A Trace-

based JIT Compiler for CIL. In Proceedings of the ACM international con-

ference on Object oriented programming systems languages and applications,

OOPSLA ’10, pages 708–725, New York, NY, USA, 2010a. ACM. doi:

10.1145/1869459.1869517. 57, 168

Michael Bebenita, Mason Chang, Gregor Wagner, Andreas Gal, Christian Wim-

mer, and Michael Franz. Trace-based compilation in execution environments

without interpreters. In Proceedings of the 8th International Conference on

the Principles and Practice of Programming in Java, PPPJ ’10, pages 59–

68, New York, NY, USA, 2010b. ACM. ISBN 978-1-4503-0269-2. doi:

10.1145/1852761.1852771. 47, 51, 56, 168

James R. Bell. Threaded Code. Communications of the ACM, 16(6):370–372,

June 1973. ISSN 0001-0782. doi: 10.1145/362248.362270. URL http://doi.

acm.org/10.1145/362248.362270. 163

Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke Brown. Con-

text Threading: A Flexible and Efficient Dispatch Technique for Virtual Ma-

chine Interpreters. In Proceedings of the international symposium on Code gen-

eration and optimization, CGO ’05, pages 15–26, Washington, DC, USA, 2005.

IEEE Computer Society. ISBN 0-7695-2298-X. doi: 10.1109/CGO.2005.14.

URL http://dx.doi.org/10.1109/CGO.2005.14. 163

188

http://portal.acm.org/citation.cfm?id=349303
http://portal.acm.org/citation.cfm?id=349303
http://dl.acm.org/citation.cfm?id=956417.956550
http://dl.acm.org/citation.cfm?id=956417.956550
http://doi.acm.org/10.1145/362248.362270
http://doi.acm.org/10.1145/362248.362270
http://dx.doi.org/10.1109/CGO.2005.14

REFERENCES REFERENCES

Hans Boehm and Mark Weiser. Garbage collection in an uncooperative environ-

ment. Software Practice and Experience, 18, 1988. 126

Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by Evalu-

ation. In Haskell ’10: Proceedings of the third ACM Haskell symposium on

Haskell. ACM, 2010. 3, 169

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing

the Meta-Level: PyPy’s Tracing JIT compiler. In ICOOOLPS ’09: Proceed-

ings of the 4th workshop on the Implementation, Compilation, Optimization of

Object-Oriented Languages and Programming Systems, pages 18–25, 2009. doi:

10.1145/1565824.1565827. 159

Carl Friedrich Bolz, Antonio Cuni, Maciej Fija lkowski, Michael Leuschel, Samuele

Pedroni, and Armin Rigo. Allocation Removal by Partial Evaluation in a

Tracing JIT. In Proceedings of the 20th ACM SIGPLAN workshop on Par-

tial evaluation and program manipulation, PEPM ’11, pages 43–52. ACM,

2011. doi: 10.1145/1929501.1929508. URL http://codespeak.net/svn/

pypy/extradoc/talk/pepm2011/bolz-allocation-removal.pdf. 38

Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages.

PhD thesis, Chalmers University of Technology, 1999. 14, 79, 156

Urban Boquist and Thomas Johnsson. The GRIN Project: A Highly Optimising

Back End for Lazy Functional Languages. In Implementation of Functional

Languages, pages 58–84, 1996. 14, 79, 156

Dan Bornstein. Dalvik vm internals, 2008. URL http://sites.google.com/

site/io/dalvik-vm-internals. 163

Derek L. Bruening. Effient, Transparent, and Comprehensive Runtime Code Ma-

nipulation. PhD thesis, Massachusetts Institute of Technology, September 2004.

54, 55, 58, 59, 158, 167

Derek L. Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastruc-

ture for adaptive dynamic optimization. In Proceedings of the international

189

http://codespeak.net/svn/pypy/extradoc/talk/pepm2011/bolz-allocation-removal.pdf
http://codespeak.net/svn/pypy/extradoc/talk/pepm2011/bolz-allocation-removal.pdf
http://sites.google.com/site/io/dalvik-vm-internals
http://sites.google.com/site/io/dalvik-vm-internals

REFERENCES REFERENCES

symposium on Code generation and optimization: feedback-directed and run-

time optimization, CGO ’03, pages 265–275. IEEE Computer Society, 2003.

ISBN 0-7695-1913-X. 47, 158, 167

T. H. Brus, Marko C. J. D. van Eekelen, M. O. Van Leer, and Marinus J. Plasmei-

jer. Cleana language for functional graph rewriting. In Functional Programming

Languages and Computer Architecture, pages 364–384. Springer, 1987. 156

G. L. Burn, S. L. Peyton Jones, and J. D. Robson. The spineless g-machine. In

Proceedings of the 1988 ACM conference on LISP and functional programming,

LFP ’88, pages 244–258, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-

X. doi: 10.1145/62678.62717. URL http://doi.acm.org/10.1145/62678.

62717. 14, 156

Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing Indirect Branch

Prediction Accuracy in Virtual Machine Interpreters. ACM Transactions on

Programming Languages and Systems (TOPLAS), 29(6), October 2007. ISSN

0164-0925. doi: 10.1145/1286821.1286828. URL http://doi.acm.org/10.

1145/1286821.1286828. 163

C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13(11):

677–678, November 1970. ISSN 0001-0782. doi: 10.1145/362790.362798. URL

http://doi.acm.org/10.1145/362790.362798. 110

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Sam Midkiff. Escape analysis for java. In Proceedings of the 14th ACM SIG-

PLAN conference on Object-oriented programming, systems, languages, and

applications, OOPSLA ’99, pages 1–19, New York, NY, USA, 1999. ACM.

ISBN 1-58113-238-7. doi: 10.1145/320384.320386. URL http://doi.acm.

org/10.1145/320384.320386. 38

Cliff Click. Combining Analyses, Combining Optimizations. PhD thesis, Rice

University, 1995. 158

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream Fusion: From

Lists to Streams to Nothing at All. In Proceedings of the 12th ACM SIGPLAN

190

http://doi.acm.org/10.1145/62678.62717
http://doi.acm.org/10.1145/62678.62717
http://doi.acm.org/10.1145/1286821.1286828
http://doi.acm.org/10.1145/1286821.1286828
http://doi.acm.org/10.1145/362790.362798
http://doi.acm.org/10.1145/320384.320386
http://doi.acm.org/10.1145/320384.320386

REFERENCES REFERENCES

international conference on Functional programming, ICFP’07, pages 315–326.

ACM, 2007. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.1291199. 4, 145,

173

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490, October

1991. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/115372.115320. URL

http://doi.acm.org/10.1145/115372.115320. 100

Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John Waldron.

The Case for Virtual Register Machines. In IVME ’03: Proceedings of the

2003 workshop on Interpreters, Virtual Machines and Emulators, pages 41–

49, New York, New York, USA, 2003. ACM Press. ISBN 1581136552. doi:

10.1145/858570.858575. URL http://portal.acm.org/citation.cfm?doid=

858570.858575. 81, 162

David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-first

garbage collection. Proceedings of the 4th international symposium on Memory

management - ISMM ’04, page 37, 2004. doi: 10.1145/1029873.1029879. URL

http://portal.acm.org/citation.cfm?doid=1029873.1029879. 110

Robert T. Dimpsey, Rajiv Arora, and Kean Kuiper. Java server performance:

A case study of building efficient, scalable jvms. IBM Systems Journal, 39(1):

151–174, 2000. doi: 10.1147/sj.391.0151. 52

Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction:

less is more. SIGPLAN Not., 35(11):202–211, November 2000. ISSN 0362-1340.

doi: 10.1145/356989.357008. URL http://doi.acm.org/10.1145/356989.

357008. 46

ECMA International. Standard ECMA-262 - ECMAScript Language Specifi-

cation. Geneva, Switzerland, 5.1 edition, June 2011. URL http://www.

ecma-international.org/publications/standards/Ecma-262.htm. 33

191

http://doi.acm.org/10.1145/115372.115320
http://portal.acm.org/citation.cfm?doid=858570.858575
http://portal.acm.org/citation.cfm?doid=858570.858575
http://portal.acm.org/citation.cfm?doid=1029873.1029879
http://doi.acm.org/10.1145/356989.357008
http://doi.acm.org/10.1145/356989.357008
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

REFERENCES REFERENCES

ECMA International. Standard ECMA-335 - Common Language Infrastructure

(CLI). Geneva, Switzerland, 6th edition, June 2012. URL http://www.

ecma-international.org/publications/standards/Ecma-335.htm. 161

Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards haskell in

the cloud. In Proceedings of the 4th ACM symposium on Haskell, Haskell

’11, pages 118–129, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0860-1. doi: 10.1145/2034675.2034690. URL http://doi.acm.org/10.1145/

2034675.2034690. 12

M. Anton Ertl and David Gregg. The structure and performance of efficient

interpreters. Journal of Instruction-Level Parallelism, 5, 2003. URL http:

//www.jilp.org/vol5/v5paper12.pdf. 45

Joseph A. Fisher. The optimization of horizontal microcode within and beyond

basic blocks: an application of processor scheduling with resources. PhD thesis,

New York University, 1979. 160

Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction.

Computers, IEEE Transactions on, C-30(7):478 –490, july 1981. ISSN 0018-

9340. doi: 10.1109/TC.1981.1675827. 160

Etienne Gagnon. A Portable Research Framework for the Execution of Java

Bytecode. PhD thesis, McGill University, December 2002. 163

Etienne Gagnon and Laurie Hendren. Effective Inline-Threaded Interpretation of

Java Bytecode Using Preparation Sequences. In Grel Hedin, editor, Compiler

Construction, volume 2622 of Lecture Notes in Computer Science, pages 170–

184. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-00904-7. doi: 10.1007/

3-540-36579-6 13. URL http://dx.doi.org/10.1007/3-540-36579-6_13.

163

Andreas Gal and Michael Franz. Incremental Dynamic Code Generation with

Trace Trees. Technical Report ICS-TR-06-16, University of California, Irvine,

2006. URL www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-16.pdf.

39, 56, 159

192

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://doi.acm.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/2034675.2034690
http://www.jilp.org/vol5/v5paper12.pdf
http://www.jilp.org/vol5/v5paper12.pdf
http://dx.doi.org/10.1007/3-540-36579-6_13
www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-06-16.pdf

REFERENCES REFERENCES

Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: An Effective

JIT Compiler for Resource-constrained Devices. In VEE’06, 2006. 159

Andreas Gal, Jason Orendorff, Jesse Ruderman, Edwin Smith, Rick Reit-

maier, Michael Bebenita, Mason Chang, Michael Franz, Brendan Eich, Mike

Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake

Kaplan, Graydon Hoare, and Boris Zbarsky. Trace-based Just-in-time type

Specialization for Dynamic Languages. In PLDI’09, May 2009. doi: 10.

1145/1543135.1542528. URL http://portal.acm.org/citation.cfm?doid=

1543135.1542528. 33, 52, 53, 56, 159

The GHC Team. The glorious glasgow haskell compilation system user’s guide,

version 7.0.4, 2011. URL http://www.haskell.org/ghc/docs/7.0.4/users_

guide.pdf. 95, 156

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to

deforestation. Proceedings of the conference on Functional programming lan-

guages and computer architecture - FPCA ’93, pages 223–232, 1993. doi:

10.1145/165180.165214. URL http://portal.acm.org/citation.cfm?doid=

165180.165214. 4

Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. A generic usage anal-

ysis with subeffect qualifiers. In ICFP’07: Proceedings of the 12th ACM SIG-

PLAN International Conference on Functional Programming, pages 235–246.

ACM, 2007. 148

Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio J. Serrano, and Toshio

Nakatani. Improving the Performance of Trace-based Systems by False Loop

Filtering. In Proceedings of the sixteenth international conference on Architec-

tural support for programming languages and operating systems, ASPLOS ’11,

pages 405–418. ACM, 2011. ISBN 978-1-4503-0266-1. doi: http://doi.acm.org/

10.1145/1950365.1950412. URL https://researcher.ibm.com/researcher/

files/us-pengwu/asplos160-hayashizaki.pdf. 49, 159

David Hiniker, Kim Hazelwood, and Michael D. Smith. Improving Re-

gion Selection in Dynamic Optimization Systems. In 38th Annual

193

http://portal.acm.org/citation.cfm?doid=1543135.1542528
http://portal.acm.org/citation.cfm?doid=1543135.1542528
http://www.haskell.org/ghc/docs/7.0.4/users_guide.pdf
http://www.haskell.org/ghc/docs/7.0.4/users_guide.pdf
http://portal.acm.org/citation.cfm?doid=165180.165214
http://portal.acm.org/citation.cfm?doid=165180.165214
https://researcher.ibm.com/researcher/files/us-pengwu/asplos160-hayashizaki.pdf
https://researcher.ibm.com/researcher/files/us-pengwu/asplos160-hayashizaki.pdf

REFERENCES REFERENCES

IEEE/ACM International Symposium on Microarchitecture (MICRO’05),

pages 141–154. IEEE, 2005. ISBN 0-7695-2440-0. doi: 10.1109/MICRO.

2005.22. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1540955. 46, 47, 51

Urs Hölzle. Adaptive Optimization for Self: Reconciling High Performance with

Exploratory Programming. PhD thesis, Stanford University, 1994. 158

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches. In Proceedings of the

European Conference on Object-Oriented Programming, ECOOP ’91, pages 21–

38, London, UK, 1991. Springer. doi: 10.1007/BFb0057013. 158

Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with

dynamic deoptimization. In Proceedings of the ACM SIGPLAN 1992 conference

on Programming language design and implementation, PLDI ’92, pages 32–43,

New York, NY, USA, 1992. ACM. ISBN 0-89791-475-9. doi: 10.1145/143095.

143114. URL http://doi.acm.org/10.1145/143095.143114. 158

Andrei Homescu and Alex Şuhan. Happyjit: a tracing jit compiler for php. In

Proceedings of the 7th symposium on Dynamic languages, DLS ’11, pages 25–36.

ACM, 2011. doi: 10.1145/2047849.2047854. 159

John Hughes. Why functional programming matters. The Computer Journal, 32

(2):98–107, 1989. doi: 10.1093/comjnl/32.2.98. 2

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Lua

5.1 Reference Manual. Lua.Org, 2006. ISBN 8590379833. 77

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. A

Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler,

2011. URL https://researcher.ibm.com/researcher/files/us-pengwu/

CGO2011_TraceJIT.pdf. 159

Thomas Johnsson. Compiling lazy functional languages. PhD thesis, Chalmers

Tekniska Högskola, Göteborg, Sweden, 1987. 14, 155

194

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1540955
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1540955
http://doi.acm.org/10.1145/143095.143114
https://researcher.ibm.com/researcher/files/us-pengwu/CGO2011_TraceJIT.pdf
https://researcher.ibm.com/researcher/files/us-pengwu/CGO2011_TraceJIT.pdf

REFERENCES REFERENCES

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-

book: The Art of Automatic Memory Management. Chapman & Hall/CRC,

1st edition, 2011. ISBN 978-1420082791. 111

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-

book: The Art of Automatic Memory Management. CRC Press, 2012. ISBN

978-1-4200-8279-1. 110

Peter A. Jonsson and Johan Nordlander. Positive supercompilation for a

higher order call-by-value language. In Proceedings of the 36th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’09, pages 277–288, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-379-2. doi: 10.1145/1480881.1480916. URL http://doi.acm.org/10.

1145/1480881.1480916. 169

Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-

driguez, Kenneth Russell, and David Cox. Design of the Java HotSpotTMClient

Compiler for Java 6. ACM Transactions on Architecture and Code Optimiza-

tion (TACO), 5(1):7:1–7:32, May 2008. ISSN 1544-3566. doi: 10.1145/1369396.

1370017. URL http://doi.acm.org/10.1145/1369396.1370017. 52, 60, 158,

164

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO’04), pages 75–86,

Palo Alto, California, Mar 2004. doi: 10.1109/CGO.2004.1281665. 40

Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

ISBN 0201432943. 33, 161, 163

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Licht-

enstein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The

multiflow trace scheduling compiler. The Journal of Supercomputing, 7:51–

142, 1993. ISSN 0920-8542. URL http://dx.doi.org/10.1007/BF01205182.

10.1007/BF01205182. 160

195

http://doi.acm.org/10.1145/1480881.1480916
http://doi.acm.org/10.1145/1480881.1480916
http://doi.acm.org/10.1145/1369396.1370017
http://dx.doi.org/10.1007/BF01205182

REFERENCES REFERENCES

Kein-Hong Man. A No-Frills Introduction to Lua 5.1 VM In-

structions. 2006. URL http://luaforge.net/docman/83/98/

ANoFrillsIntroToLua51VMInstructions.pdf. 162

Simon Marlow and Simon Peyton Jones. Making a Fast Curry: Push/Enter

vs. Eval/Apply for Higher-order Languages. In ICFP ’04: The 2004 In-

ternational Conference on Functional Programming, pages 4–15, 2004. doi:

10.1145/1016848.1016856. 26, 28, 90, 156

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. Faster

Laziness Using Dynamic Pointer Tagging. In ICFP ’07: Proceedings of the

12th ACM SIGPLAN International Conference on Functional Programming,

pages 277–288, 2007. 23, 24, 25, 156

Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime Support for

Multicore Haskell. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN

International Conference on Functional Programming, pages 65–78, 2009. ISBN

978-1-60558-332-7. doi: http://doi.acm.org/10.1145/1596550.1596563. URL

http://portal.acm.org/citation.cfm?doid=1596550.1596563. 156

Neil Mitchell. Rethinking Supercompilation. In ICFP’10: Proceedings of the 15th

ACM SIGPLAN international conference on Functional programming, pages

309–320. ACM, 2010. 3, 169

Neil Mitchell and Colin Runciman. A supercompiler for core haskell. In Olaf

Chitil, Zoltn Horvth, and Viktria Zsk, editors, Implementation and Appli-

cation of Functional Languages, volume 5083 of Lecture Notes in Computer

Science, pages 147–164. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-

85372-5. doi: 10.1007/978-3-540-85373-2 9. URL http://dx.doi.org/10.

1007/978-3-540-85373-2_9. 168

Matthew Naylor and Colin Runciman. The reduceron: Widening the von

neumann bottleneck for graph reduction using an fpga. In Olaf Chitil,

Zoltn Horvth, and Viktria Zsk, editors, Implementation and Application of

Functional Languages, volume 5083 of Lecture Notes in Computer Science,

196

http://luaforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf
http://luaforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf
http://portal.acm.org/citation.cfm?doid=1596550.1596563
http://dx.doi.org/10.1007/978-3-540-85373-2_9
http://dx.doi.org/10.1007/978-3-540-85373-2_9

REFERENCES REFERENCES

pages 129–146. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-85372-

5. doi: 10.1007/978-3-540-85373-2 8. URL http://dx.doi.org/10.1007/

978-3-540-85373-2_8. 14, 157

Matthew Naylor and Colin Runciman. The Reduceron Reconfigured. In ICFP’10:

Proceedings of the 15th ACM SIGPLAN international conference on Functional

programming, pages 75–86. ACM, 2010. 14, 157

Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi, and Soo-Mook Moon. Eval-

uation of Android Dalvik Virtual Machine. In Proceedings of the 10th Interna-

tional Workshop on Java Technologies for Real-time and Embedded Systems,

JTRES ’12, pages 115–124, New York, NY, USA, 2012. ACM. ISBN 978-1-

4503-1688-0. doi: 10.1145/2388936.2388956. URL http://doi.acm.org/10.

1145/2388936.2388956. 164, 165

Mike Pall. LuaJIT 2.0 intellectual property disclosure and research opportunities.

Lua-l mailing list message, 2009. URL http://lua-users.org/lists/lua-l/

2009-11/msg00089.html. 47, 55, 77, 166

Mike Pall. LuaJIT 2, 2013. URL http://luajit.org/. 9, 41, 56, 77, 162, 166

Will Partain. The nofib benchmark suite of haskell programs. In Functional

Programming, Glasgow 1992, pages 195–202. Springer, 1993. 127, 171

David M. Peixotto. Low-Level Haskell Code: Measurements and Optimization

Techniques. PhD thesis, Rice University, 2012. 159, 171

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003. doi: 10.2277/0521826144. URL

http://haskell.org/onlinereport. 139

Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-

ware: the Spineless Tagless G-machine. Journal of Functional Programming,

2:127–202, 1992. 14, 80, 156

Rinus Plasmeijer and Marko van Eekelen. Functional Programming and

Parallel Graph Rewriting. Addison-Wesley, 1993. ISBN 0-201-41663-

197

http://dx.doi.org/10.1007/978-3-540-85373-2_8
http://dx.doi.org/10.1007/978-3-540-85373-2_8
http://doi.acm.org/10.1145/2388936.2388956
http://doi.acm.org/10.1145/2388936.2388956
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://luajit.org/
http://haskell.org/onlinereport

REFERENCES REFERENCES

8. URL http://wiki.clean.cs.ru.nl/Functional_Programming_and_

Parallel_Graph_Rewriting. 14, 156

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM

Trans. Program. Lang. Syst., 21(5):895–913, September 1999. ISSN 0164-0925.

doi: 10.1145/330249.330250. URL http://doi.acm.org/10.1145/330249.

330250. 120

Armin Rigo and Samuele Pedroni. PyPy’s Approach to Virtual Machine Con-

struction. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN sym-

posium on Object-oriented programming systems, languages, and applications,

2006. doi: 10.1145/1176617.1176753. 159

Colin Runciman. Lazy wheel sieves and spirals of primes. Journal of Functional

Programming, 7(2):219–225, 1997. 128

Konstantinos Sagonas and Erik Stenman. Experimental evaluation and improve-

ments to linear scan register allocation. Softw. Pract. Exper., 33, 2003. doi:

10.1002/spe.533. 120

Thomas Schilling. Challenges for a trace-based just-in-time compiler for haskell.

In Proceedings of the 23rd International Conference on Implementation and

Application of Functional Languages, IFL’11, pages 51–68. Springer-Verlag,

2012. ISBN 978-3-642-34406-0. doi: 10.1007/978-3-642-34407-7 4. URL http:

//dx.doi.org/10.1007/978-3-642-34407-7_4. 9

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder,

Nathan Ricci, and Samuel Z. Guyer. new scala() instance of java: a com-

parison of the memory behaviour of java and scala programs. In Proceed-

ings of the 2012 international symposium on Memory Management, ISMM

’12, pages 97–108, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1350-6. doi: 10.1145/2258996.2259010. URL http://doi.acm.org/10.1145/

2258996.2259010. 110

Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight dy-

namic analysis and removal of object churn. In Proceedings of the 23rd

198

http://wiki.clean.cs.ru.nl/Functional_Programming_and_Parallel_Graph_Rewriting
http://wiki.clean.cs.ru.nl/Functional_Programming_and_Parallel_Graph_Rewriting
http://doi.acm.org/10.1145/330249.330250
http://doi.acm.org/10.1145/330249.330250
http://dx.doi.org/10.1007/978-3-642-34407-7_4
http://dx.doi.org/10.1007/978-3-642-34407-7_4
http://doi.acm.org/10.1145/2258996.2259010
http://doi.acm.org/10.1145/2258996.2259010

REFERENCES REFERENCES

ACM SIGPLAN conference on Object-oriented programming systems languages

and applications, OOPSLA ’08, pages 127–142, New York, NY, USA, 2008.

ACM. ISBN 978-1-60558-215-3. doi: 10.1145/1449764.1449775. URL http:

//doi.acm.org/10.1145/1449764.1449775. 158

Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Vir-

tual Machine Showdown: Stack Versus Registers. In Proceedings of the

1st ACM/USENIX international conference on Virtual execution environ-

ments, VEE ’05, pages 153–163. ACM, 2005. ISBN 1-59593-047-7. doi:

10.1145/1064979.1065001. URL https://www.usenix.org/events/vee05/

full_papers/p153-yunhe.pdf. 81

Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual ma-

chine showdown: Stack versus registers. ACM Transactions on Architecture

and Code Optimization (TACO), 4(4):2:1–2:36, January 2008. ISSN 1544-

3566. doi: 10.1145/1328195.1328197. URL http://doi.acm.org/10.1145/

1328195.1328197. 162

James Edward Smith and Ravi Nair. Virtual Machines: Versatile Platforms For

Systems And Processes. Elsevier, 2005. ISBN 1-55860-910-5. 34

Sunil Soman and Chandra Krintz. Efficient and general on-stack replacement for

aggressive program specialization. In International Conference on Program-

ming Languages and Compilers (PLC), Las Vegas, NV, 2006. 40

David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe

haskell. In Proceedings of the 2012 symposium on Haskell symposium, Haskell

’12, pages 137–148, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1574-6. doi: 10.1145/2364506.2364524. URL http://doi.acm.org/10.1145/

2364506.2364524. 140

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In

Proceedings of the seventh international conference on Functional programming

languages and computer architecture, FPCA ’95, pages 1–11, New York, NY,

USA, 1995. ACM. ISBN 0-89791-719-7. doi: 10.1145/224164.224168. URL

http://doi.acm.org/10.1145/224164.224168. 150

199

http://doi.acm.org/10.1145/1449764.1449775
http://doi.acm.org/10.1145/1449764.1449775
https://www.usenix.org/events/vee05/full_papers/p153-yunhe.pdf
https://www.usenix.org/events/vee05/full_papers/p153-yunhe.pdf
http://doi.acm.org/10.1145/1328195.1328197
http://doi.acm.org/10.1145/1328195.1328197
http://doi.acm.org/10.1145/2364506.2364524
http://doi.acm.org/10.1145/2364506.2364524
http://doi.acm.org/10.1145/224164.224168

REFERENCES REFERENCES

Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theo-

retical Computer Science, 73:231–248, 1990. 3

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.

In 16’th Symposium on Principles of Programming Languages. ACM Press,

1989. 28

Keith Wansbrough and Simon Peyton Jones. Simple Usage Polymorphism. In

The Third ACM SIGPLAN Workshop on Types in Compilation, 2000. 146

Peng Wu, Hiroshige Hayashizaki, Hiroshi Inoue, and Toshio Nakatani. Reducing

trace selection footprint for large-scale java applications without performance

loss. In Proceedings of the 2011 ACM international conference on Object ori-

ented programming systems languages and applications, OOPSLA ’11, pages

789–804. ACM, 2011. doi: 10.1145/2048066.2048127. 54, 159

200

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Deforestation
	1.2 Fragile optimisations
	1.3 A virtual machine for Haskell
	1.4 Trace-based Just-in-time Compilation and Non-strict Evaluation
	1.5 Thesis Statement and Research Contributions
	1.6 Other Uses of a VM-based System
	1.7 Thesis Overview

	2 Background
	2.1 Graph Reduction
	2.2 The Source Language
	2.3 Non-strict Evaluation
	2.3.1 Weak Head Normal Form

	2.4 Implementing Lazy Evaluation
	2.4.1 Thunk Update
	2.4.2 Checking for Weak Head Normal Form

	2.5 Partial Application and Over-application
	2.6 Type Classes and Overloading
	2.6.1 Performance Overhead of Type Classes
	2.6.2 Specialisation

	2.7 Dynamic Optimisation

	3 Trace-based Just-in-time Compilation
	3.1 Functions vs. Traces vs. Regions
	3.2 Trace JIT Compiler Overview
	3.3 Trace Selection
	3.3.1 Selecting Trace Heads
	3.3.2 False Loop Filtering

	3.4 Trace Recording
	3.4.1 Multi-stage Trace Recording
	3.4.2 Hotness Thresholds
	3.4.3 End of trace Condition

	3.5 Trace Exits
	3.6 Trace Trees and Trace Linking
	3.7 Compiling Traces
	3.8 Code Cache
	3.9 Reacting to Workload Changes
	3.10 Tiered Compilation
	3.11 Reusing GHC Bytecode
	3.12 Summary

	4 An Example
	4.1 Core Haskell
	4.2 Bytecode
	4.3 Trace Compiler Intermediate Representation
	4.4 Machine Code

	5 Implementation
	5.1 Relationship between Lambdachine and LuaJIT
	5.2 Bytecode Instruction Set
	5.2.1 Register-based Bytecode
	5.2.2 Bytecode Format
	5.2.3 Bytecode Instruction Set
	5.2.4 Heap Object Layout
	5.2.5 Stack Frame Layout
	5.2.6 Overapplication and Partial Application
	5.2.7 Lambdachine bytecode and GRIN
	5.2.8 Pointer Information
	5.2.9 Bytecode Interpreter

	5.3 Compiling Haskell to Bytecode
	5.4 Detecting hot traces
	5.5 Trace Intermediate Representation
	5.6 The Abstract Stack
	5.7 Snapshots
	5.8 Forward Optimisations
	5.8.1 Constant Folding and Algebraic Simplifications
	5.8.2 Common Sub-expression Elimination

	5.9 Heap Allocation
	5.9.1 Merging Heap Checks
	5.9.2 Handling Heap Overflows
	5.9.3 Heap Checks and Side Exits
	5.9.4 Garbage Collection

	5.10 Allocation Sinking
	5.10.1 The Abstract Heap
	5.10.2 Allocation Sinking and Loops

	5.11 Trace Recording and Specialisation
	5.11.1 Specialisation and Indirections

	5.12 Register Allocation and Code Generation
	5.12.1 Spilling Registers

	5.13 Switching between interpreter and bytecode
	5.13.1 Restoring VM State from a Snapshot

	5.14 Linking Side Traces with the Parent Trace

	6 Evaluation
	6.1 Implemented Features
	6.2 Benchmarks
	6.3 Mutator Performance
	6.4 Trace Coverage and Trace Completion
	6.5 Hotness Thresholds
	6.6 The problem with updates
	6.6.1 Unnecessary Updates

	6.7 Loop Optimisation
	6.8 Sharing analysis
	6.8.1 A dynamic sharing analysis

	6.9 Summary

	7 Related Work
	7.1 Implementation of Lazy Functional Languages
	7.1.1 G-Machine and STG-Machine
	7.1.2 GRIN
	7.1.3 ABC Machine
	7.1.4 Other

	7.2 Lambdachine as dynamic GRIN
	7.3 Method-based JIT Compilation
	7.4 Trace-based JIT Compilation
	7.4.1 Trace-based JIT Compilation for Haskell

	7.5 Static Trace Compilation
	7.6 Register-based Bytecode
	7.7 Implementation of Fast Interpreters
	7.8 Dalvik Virtual Machine
	7.9 LuaJIT
	7.10 Compiler-only Virtual Machines
	7.11 Supercompilation

	8 Conclusions and Future Work
	8.1 Feature Completeness
	8.2 Trace Selection
	8.3 Avoiding Unnecessary Updates
	8.4 Portable and Checked Bytecode
	8.5 Execution Profiling
	8.6 Representation Optimisation
	8.7 Conclusions

	Source Code Statistics
	Full Benchmark Data
	References

