
15

Effect-Driven �ickChecking of Compilers

JAN MIDTGAARD, Technical University of Denmark

MATHIAS NYGAARD JUSTESEN, Technical University of Denmark

PATRICK KASTING, Technical University of Denmark

FLEMMING NIELSON, Technical University of Denmark

HANNE RIIS NIELSON, Technical University of Denmark

How does one test a language implementation with QuickCheck (aka. property-based testing)? One approach

is to generate programs following the grammar of the language. But in a statically-typed language such as

OCaml toomany of these candidate programswill be rejected as ill-typed by the type checker. As a refinement

Pałka et al. propose to generate programs in a goal-directed, bottom-up reading up of the typing relation. We

have written such a generator. However many of the generated programs has output that depend on the

evaluation order, which is commonly under-specified in languages such as OCaml, Scheme, C, C++, etc. In

this paper we develop a type and effect system for conservatively detecting evaluation-order dependence and

propose its goal-directed reading as a generator of programs that are independent of evaluation order. We

illustrate the approach by generating programs to test OCaml’s two compiler backends against each other

and report on a number of bugs we have found doing so.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Theory of com-

putation→ Program analysis; Operational semantics;

Additional Key Words and Phrases: QuickCheck, compiler testing, type and effect system

ACM Reference format:

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson, and Hanne Riis Nielson. 2017.

Effect-Driven QuickChecking of Compilers. Proc. ACM Program. Lang. 1, 1, Article 15 (September 2017),

32 pages.

https://doi.org/10.1145/3110259

1 INTRODUCTION

Consider the following effectful OCaml program:

let k =

(let i = print_newline ()

in fun q -> fun i -> "") ()

in 0

The program contains a subtle combination of a partially applied function and a side effect. When
run the program should output a newline character and return 0. Interestingly OCaml’s native code
backend does not compile it correctly: it produces code which erroneously delays the side effect
(in this case indefinitely). We found this bug (and others) by generating arbitrary effectful OCaml
programs, compiling each of them with OCaml’s two backends, and testing that the behaviour of
the produced code agree.

2017. This is the author’s version of the work. The text has been corrected as described here:

http://janmidtgaard.dk/papers/Midtgaard-al%3aICFP17-corrigendum.pdf. It is posted here for your per-

sonal use. Not for redistribution. The definitive Version of Record was published in Proc. ACM Program. Lang.,

https://doi.org/10.1145/3110259.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

https://doi.org/10.1145/3110259
http://janmidtgaard.dk/papers/Midtgaard-al%3aICFP17-corrigendum.pdf
https://doi.org/10.1145/3110259

15:2 J. Midtgaard et al.

How does one generate such arbitrary programs to test the backend of a language implementa-
tion? Simply generating arbitrary text strings will not lead to much backend testing as almost all
of the strings will be rejected by the parser. Nor will an approach based on generating arbitrary ab-
stract syntax trees as toomany of thosewill be rejected by the type checker. Instead one should take
the approach of Pałka et al. [2011] and generate type correct programs following a goal-directed,
bottom-up reading of the type system. However, suppose the language implementation is loosely
defined, meaning that the implementation is not fully prescribed. A classical example is evaluation
order where several languages allow an implementation to evaluate arguments in arbitrary order.
As an example consider the following OCaml program:

((fun x -> fun y -> ()) (print_int 0)) (print_int 5)

With the left-to-right evaluation of the current native code backend, the inner print_int 0 is
evaluated first and we observe 05 being printed. With the right-to-left evaluation of the current
bytecode backend, the outer-most print_int 5 is evaluated first and we observe 50 being
printed. With such non-determinism it is no longer immediate to check that the language im-
plementation behaves as desired. Even though the behaviour of each individual implementation
may be deterministic it is hard to judge two outputs equivalent up to the loose definition. This
motivates extending the approach of Pałka et al. [2011] to generate type correct programs free of
evaluation-order dependence. To this end we

• develop a novel type and effect system with an effect that indicates when the evaluation
order is inconsequential for the observable behaviour of the program,

• develop a goal-directed, bottom-up generation algorithm that prevents us from generating
programs with evaluation-order dependence,

• discuss our implementation of the approach including a shrinker of effectful programs, and
• discuss a number of errors we have discovered in the testing process.

For the rest of this paper we develop a type and effect system for evaluation-order dependence
(Sec. 2), prove that the type and effect system is sound and that it anticipates effects as desired
(Sec. 3), recall relevant backgroundmaterial on QuickCheck and goal-directed program generation
(Sec. 4), present our type-and-effect-directed algorithm for program generation (Sec. 5), discuss
our implementation of the approach (Sec. 6) and a number of errors we have found while testing
OCaml’s bytecode and native code backends against each other (Sec. 7), and finally compare and
contrast to previous contributions within the area (Sec. 8).

2 TYPES AND EFFECTS FOR EVALUATION-ORDER DEPENDENCE

2.1 Syntax

Before developing the type and effect system we need to settle on a programming language. For
presentational purposes we consider the following language, a minimal extension of the simply-
typed lambda calculus.

bt ::= unit | int | . . . (base types)

τ ::= bt | τ1 → τ2 (types)

c ::= () | i | . . . (constants)

e ::= c | x | fun x -> e | e0 e1 (expressions)

Γ ::= · | Γ, (x : τ) (type environments)

As types we include an unspecified number of base types (incl. unit and int) as well as function
types. Similarly we include an unspecified number of constants (incl. () and integer constants i).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:3

∆(c) = τ

∆; Γ ⊢ c : τ
(Const)

(x : τ) ∈ Γ

∆; Γ ⊢ x : τ
(Var)

∆; Γ, (x : τ1) ⊢ e : τ2

∆; Γ ⊢ fun x -> e : τ1 → τ2
(Lam)

∆; Γ ⊢ e0 : τ1 → τ2 ∆; Γ ⊢ e1 : τ1

∆; Γ ⊢ e0 e1 : τ2
(App)

Fig. 1. Typing rules for simply-typed lambda calculus

e0
η

−→ e′0

e0 e1
η

−→ e′0 e1

(AppL)
e1

η
−→ e′1

e0 e1
η

−→ e0 e
′
1

(AppR)

(fun x -> e) val
ϵ

−→ e[x 7→ val]
(AppLam)

δ (c val1 . . . valn) = (val,η)

c val1 . . . valn
η

−→ val
(AppDelta)

Fig. 2. Operational semantics with effect annotations

We parameterize the typing relation over the typing of constants by a constant environment ∆
that maps each constant c to its type. With this parameterization in mind the judgements are of
the form ∆; Γ ⊢ e : τ . We recall the typing rules for this language in Fig. 1.

2.2 Semantics

Next we define the semantics of our language with a small-step operational semantics in Fig. 2. Our
operational semantics is non-deterministic to capture that the sub-expressions of an application
may be evaluated in any order (left-to-right, right-to-left, interleaved, . . .). Formally we capture
the individual run-time effect of a computation step with an annotation on the corresponding
transition step. We assume that run-time effects are given by some effect alphabet Σ. For example,
for ‘print i’, the effect of printing an integer i , we have print i ∈ Σ. We let ϵ denote ‘no run-time
effect’. Following standard practice within formal languages [Martin 1997], ϵ doubles as the empty
string of run-time effects (ϵ ∈ Σ

∗). We furthermore let η range over Σ ∪ {ϵ}, and we let val range
over the syntactic values of our language. These include function values as well as partially applied
builtin primitives:

val ::= fun x -> e where fv(e) ⊆ {x} (fun. values)

| c val1 . . . valn−1 where n ≤ arity(c) (partially app. prim.)

where fv is defined as traditional:

fv(c) = ∅

fv(x) = {x}

fv(fun x -> e) = fv(e) \ {x}

fv(e0 e1) = fv(e0) ∪ fv(e1)

and where we assume some function arity(c) : N∪{0} that associates to each constant its expected
number of arguments. We assume that arity’s output is compatible with the constant’s type signa-
ture arity(c) = numargs(∆(c)) where numargs(bt) = 0 and numargs(τ0 −→ τ1) = 1 + numargs(τ1).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:4 J. Midtgaard et al.

It is immediate from the above definitions that fv(val) = ∅ and that syntactic values cannot be
reduced further. Substitution is (partially) defined as traditional:

c[y 7→ e] = c

x[y 7→ e] =

{

e x = y

x x , y

(fun x -> e′)[y 7→ e] =

{

fun x -> e′ x = y

fun x -> (e′[y 7→ e]) x , y ∧ x < fv(e)

(e0 e1)[y 7→ e] = (e0[y 7→ e]) (e1[y 7→ e])

By the bound variable convention [Pierce 2002] for the lambda case we can always α-rename the
bound variable so as to avoid variable capture. For this reason we will also identify expressions up
to α-renaming.
As constants we include () such that ∆(()) = unit and print_int such that ∆(print_int)

= int −→ unit. For example, for ()we have arity(()) = numargs(unit) = 0 and for print_int we
have arity(print_int) = numargs(int −→ unit) = 1. Note howwe distinguish between print_int
(a variable in verbatim font, bound in an initial environment Γ) and print_int (a primitive or con-
stant in italic font, bound in ∆), with the latter typically bound to the former.

2.3 The type and effect system

Expressions are evaluated by value (in applicative order), but our observations may depend on
whether this order is left-to-right or right-to-left. The basic idea is therefore to track the evaluation-
order dependence with two bits:

• with one bit we track whether evaluation of an expression (or function) may have an effect
and

• with another bit we track whether the observable outcome of the evaluation of an expression
(or function) may depend on the evaluation order.

To this end we extend the grammar of types to the following grammar for the type and effect
system:

τ ::= bt | τ1
φ

−→ τ2 (effect types)

φ ::= ef /ev where ef , ev ∈ {tt, ff} (effects)

Γ ::= · | Γ, (x : τ) (type and effect environments)

Overall our type and effect system judgements are now of the form: ∆, Γ ⊢ e : τ &φ where τ
ranges over effect types and φ ranges over a pair of effect bits ef /ev where ef and ev are either
tt or ff. The constant environment ∆ and the typing environment Γ are similarly adjusted to

map constants and variables to effect types. For example, ∆(print_int) = int
tt/ff
−→ unit. Finally

the numargs function is similarly adjusted to count top-level arrows in effect types. We assume
that effects of primitives are limited to full applications, such that they will all be on the form

∆(c) = τ1
ff/ff
−→ . . .

ff/ff
−→ τn

ef /ff
−→ τ where n = arity(c). The resulting type and effect system is

presented in Fig. 3. As traditional [Pierce 2002] a system with a sub-typing relation can either
be formulated in a declarative manner or in an algorithmic manner, depending on whether the
sub-typing relation can be applied unrestrictedly or whether it is spliced into the syntax-directed
rules. For presentational purposes our formulation in Fig. 3 is algorithmic since we will later use
the system to drive a generator of type-and-effect correct terms. In particular the system allows
sub-typing in the leaves (EConst) and (EVar) and sub-effecting in all four rules (note how φ is a
free variable in the conclusion of (EConst), (EVar), and (ELam)).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:5

∆(c) = τ τ ⊑ τ ′

∆; Γ ⊢ c : τ ′&φ
(EConst)

(x : τ) ∈ Γ τ ⊑ τ ′

∆; Γ ⊢ x : τ ′&φ
(EVar)

∆; Γ, (x : τ1) ⊢ e : τ2 &φ1

∆; Γ ⊢ fun x -> e : τ1
φ1
−→ τ2 &φ

(ELam)

∆; Γ ⊢ e0 : τ1
φ

−→ τ2 &φ0 ∆; Γ ⊢ e1 : τ1 &φ1 φ ⊔ φ0 ⊔ φ1 ⊑ φ ′ φ0 ⊓ φ1 ⇛ φ ′

∆; Γ ⊢ e0 e1 : τ2 &φ ′
(EApp)

Fig. 3. Effect type system

ef =⇒ ef ′ ev =⇒ ev ′

ef /ev ⊑ ef ′/ev′
(EOrder)

bt ⊑ bt
(BTReflSub)

τ ′0 ⊑ τ0 φ ⊑ φ ′ τ1 ⊑ τ ′1

τ0
φ

−→ τ1 ⊑ τ ′0
φ′

−→ τ ′1

(FunSub)

Fig. 4. Effect ordering, sub-typing, and type-and-effect ordering

Our effects are naturally ordered by a componentwise partial ordering defined by rule (EOrder)
in Fig. 4. The effect ordering expresses that a less effectful computation with effect ff/ff is con-
sidered less than a more effectful computation with effect tt/ff. This ordering inherits reflexivity
and transitivity by the underlying implication ordering. In addition to the effect ordering we in-
clude a sub-typing ordering in Fig. 4. In this sub-type ordering base types are ordered and function
types are ordered contra-variantly in the argument and co-variantly in the effect and result types.
Overall the sub-typing ordering allows us to use a less effectful computation in place of a more
effectful one.
Finally the rule (EApp) in Fig. 3 utilizes an implication operator ⇛ over effect pairs. It is de-

fined as: tt/ev ⇛ tt/tt and ff/ev ⇛ ef ′/ev ′. This constraint expresses that if both operator
and operand of an application may have effects then the observable outcome may depend on the
evaluation order. We observe that⇛ is monotone in the conclusion.
As an example, consider ((fun x -> fun y -> ()) (print_int 0)) (print_int 5) from the intro-

duction in an initial type environment containing print_int : int
tt/ff
−→ unit. By an application

of the (EApp) rule we can easily build a sub-derivation tree for each print_int call (where we
leave out the effect constraints for readability):

(EVar)
(print_int : int

tt/ff
−→ unit) ∈ Γ

∆; Γ ⊢ print_int : int
tt/ff
−→ unit& ff/ff

∆(0) = int

∆; Γ ⊢ 0 : int& ff/ff
(EConst)

∆; Γ ⊢ print_int 0 : unit& tt/ff
(EApp)

With this sub-tree in mind we can construct a derivation tree for the entire example program as
illustrated in Fig. 5. The derivation tree illustrates how the type and effect system correctly detects

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:6 J. Midtgaard et al.

∆(()) = unit

∆; Γ, (x : unit), (y : unit) ⊢ () : unit& ff/ff
(EConst)

∆; Γ, (x : unit) ⊢ fun y -> () : unit
ff/ff
−→ unit& ff/ff

(ELam)

∆; Γ ⊢ fun x -> fun y -> () : unit
ff/ff
−→ unit

ff/ff
−→ unit& ff/ff

(ELam)

∆; Γ ⊢ print_int 0 : unit& tt/ff

∆; Γ ⊢ (fun x -> fun y -> ()) (print_int 0) : unit
ff/ff
−→ unit& tt/ff

∆; Γ ⊢ print_int 5 : unit& tt/ff

(EApp)

∆; Γ ⊢ ((fun x -> fun y -> ()) (print_int 0)) (print_int 5) : unit& tt/tt
(EApp)

Fig. 5. Example derivation tree for the program ((fun x -> fun y -> ()) (print_int 0)) (print_int 5). For

brevity the effect constraints have been omi�ed and so has the sub-trees for both print_int-calls

that evaluation of the example may have an effect (the first tt in the conclusion) and that the
outcome may depend on the evaluation order (the second tt in the conclusion).

A change of representation. If the observable outcome of evaluation of an expression depends
on the evaluation order the evaluation must also have an effect. As such we only need the reduced
product domain [Cousot and Cousot 1977] with three effect values: ⊥ ⊑ eff ⊑ evalorder where ⊥
denotes ‘the program has no effect’ (ff/ff), eff denotes ‘the program may have an effect’ (tt/ff),
and evalorder denotes ‘the observable output may depend on evaluation order’ (tt/tt). For pre-
sentational reasons we choose to stick with the more intuitive two-bit representation in the rest
of this paper.

3 SOUNDNESS OF TYPE AND EFFECT SYSTEM

Before we proceed with building a type-and-effect-guided generator, we prove soundness of the
type and effect system. To keep our formalization manageable we limit ourselves to effects express-
ible as transition annotations in our semantics. This includes printing, writing to files, etc. We first
characterize the effects of syntactic values.

Lemma 3.1 (Typing of syntactic values). If ∆; Γ ⊢ val : τ &φ then ∆; Γ ⊢ val : τ &φ ′

In particular we may choose φ ′
= ff/ff meaning that syntactic values have no effects. The

proof follows by a straight-forward structural induction on val. Secondly we prove a standard
result [Pierce 2002] characterizing the syntactic shape of particular types.

Lemma 3.2 (Canonical forms). If ∆; Γ ⊢ val : τ &φ then

• val = c val1 . . . valn−1 for somen ≤ arity(c) and∆; Γ ⊢ c : τ1
ff/ff
−→ · · ·

ff/ff
−→ τn−1

ff/ff
−→ τ & ff/ff

with ∆; Γ ⊢ val1 : τ1 & ff/ff, . . . , ∆; Γ ⊢ valn−1 : τn−1 & ff/ff

• or τ = τ0
φ′

−→ τ1 and val = fun x -> e

The proof follows by induction on the typing derivation. Similarly we can relax the type in the
typing environment. Again this follows by induction over the typing derivation and with appeal
to the bound variable convention [Pierce 2002].

Lemma 3.3 (Type environment relaxation).

If ∆; Γ, (x : τ ′), Γ′ ⊢ e : τ &φ and τ ′′ ⊑ τ ′ then ∆; Γ, (x : τ ′′), Γ′ ⊢ e : τ &φ

The following lemma lets us replace the type and effect in a derivation with a greater type and
effect, akin to a separate sub-typing rule in a declaratively formulated system [Pierce 2002]. The

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:7

proof follows by induction on the typing derivation, by transitivity of the sub-typing relation, by
appeal to Lemma 3.3, and by monotonicity of the implication operation⇛ over effects.

Lemma 3.4 (Sub-typing and sub-effecting).

If ∆; Γ ⊢ e : τ &φ and τ ⊑ τ ′ and φ ⊑ φ ′ then ∆; Γ ⊢ e : τ ′&φ ′

Finally we will need a traditional substitution lemma to help with proving preservation.

Lemma 3.5 (Substitution lemma).

If ∆; Γ, (x : τ ′) ⊢ e : τ &φ and ∆; Γ ⊢ e′ : τ ′& ff/ff and x < fv(e′) then ∆; Γ ⊢ e[x 7→ e′] : τ &φ

The substitution lemma lets us replace a variable x with a type-and-effect correct expression e′

of the same type (albeit without effects). The lemma follows by structural induction on e and by
appeal to Lemma 3.4 and the bound variable convention.

3.1 Preservation and progress

We are now in position to prove a traditional preservation and progress result for the type and
effect system [Wright and Felleisen 1994]. We assume that δ (c val1 . . . valn) is defined only when

the builtin primitive is fully applied to n = arity(c) ≥ 1 arguments of the right type: ∆(c) = τ1
ff/ff
−→

. . .
ff/ff
−→ τn

ef /ff
−→ τ with ∆; Γ ⊢ val1 : τ1 & ff/ff, . . .∆; Γ ⊢ valn : τn & ff/ff and such that the

resulting value and the effect of the primitive is soundly accounted for: if δ (c val1 . . . valn) =
(val,η) then ∆; Γ ⊢ val : τ & ff/ff and if η , ϵ then ef = tt.

Theorem 3.6 (Preservation and progress).

• if ∆; Γ ⊢ e : τ &φ and there exists e′ such that e
η

−→ e′ then ∆; Γ ⊢ e′ : τ &φ

• if ∆; · ⊢ e : τ &φ then either e = val or there exists e′ such that e
η

−→ e′

The preservation part follows by induction on the derivation for ∆; Γ ⊢ e : τ &φ and with appeal
to Lemmas 3.1, 3.4, and 3.5, and our assumption about the soundness of fully applied primitives.
The progress part follows by structural induction on e and by appeal to Lemmas 3.1 and 3.2.

3.2 Soundness of the effect bit

The preservation and progress result captures soundness of the underlying type system but it says
nothing about the soundness of the effect bits. Secondly we therefore characterize formally the
meaning of the two bits. We do so one bit at a time. In formalizing the first effect bit we initially
express one step soundness and then lift this to soundness over traces.

Lemma 3.7 (One-step soundness of effect bit).

If ∆; Γ ⊢ e : τ & ef /ev and e
η

−→ e′ and η , ϵ then ef = tt

The proof follows by structural induction on e and by appeal to the soundness of the effects
of fully applied primitives. We can now lift the one-step result to traces. The proof proceeds by
induction on n and by appeal to Lemma 3.7 and preservation (Theorem 3.6). In words this first
theorem expresses that if a type-and-effect correct program e has an effect observable during its
evaluation then the effect is correctly anticipated by the type and effect system.

Theorem 3.8 (Soundness of effect bit).

If ∆; Γ ⊢ e : τ & ef /ev and e
η1
−→ e1

η2
−→ . . .

ηn
−→ en and there exists i such that ηi , ϵ then ef = tt

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:8 J. Midtgaard et al.

3.3 Soundness of the evaluation-order bit

We finally prove soundness of the second evaluation-order bit. In words this second theorem ex-
presses that if the observable behaviour of a type-and-effect correct program e depends on the
evaluation order then it is correctly anticipated by the type and effect system. This is most eas-
ily seen from the contrapositive statement: if from some type-and-effect correct expression there
exists two different traces of observable effects η1η2 . . .ηn , η

′
1η

′
2 . . .η

′
n′ then ev = tt.

Theorem 3.9 (Soundness of evaluation-order bit).

If ∆; Γ ⊢ e : τ & ef /ev and e
η1
−→ e1

η2
−→ . . .

ηn
−→ en = val and e

η′1
−→ e′1

η′2
−→ . . .

η′
n′

−→ e′n′ = val′ and

ev = ff then η1η2 . . .ηn = η
′
1η

′
2 . . .η

′
n′

In order to prove this property we need a couple of helper lemmas. First of all we need a diamond
property to connect two multi-step traces modulo the effects on the transition relations. We first
prove a one-step version:

Lemma 3.10 (One-step diamond property up to effects).

If e
ηl
−→ el and e

ηr
−→ er then either el = er or there exists e

′ such that el
η′
l

−→ e′ and er
η′r
−→ e′

The proof follows by structural induction on e. We can subsequently lift this lemma to a multi-
step diamond property. There are several approaches in the literature to such a proof. We choose
a syntactic proof by induction in the pair of lengths (n,n′) ordered lexicographically (a known
well-ordering).

Lemma 3.11 (Multi-step diamond property up to effects).

If e
η1
−→ e1

η2
−→ . . .

ηn
−→ en and e

η′1
−→ e′1

η′2
−→ . . .

η′
n′

−→ e′n′ then there exists traces en
ηn+1
−→ . . .

ηm
−→ em

and e′n′

η′
n′+1
−→ . . .

η′m
−→ e′m such that em = e′m for somem ≤ n + n′

Secondly we need to realize that run-time effects are deterministic: we cannot take two steps
with different run-time effects to the same target expression. Again this follows by structural in-
duction on e.

Lemma 3.12 (Determinism of run-time effects). If e
η

−→ e′ and e
η′

−→ e′ then η = η′

Thirdly we need a one-step diamond property for expressions deemed evaluation-order inde-
pendent. This lemma allows us to complete a diamond shape such that the effects along each side
agrees. It follows by structural induction on e and by appeal to Lemma 3.7.

Lemma 3.13 (One-step diamond property of run-time effects). If ∆; Γ ⊢ e : τ & ef /ff and

e
ηl
−→ el and e

ηr
−→ er and el , er then there exists e′ such that and el

η′
l

−→ e′ and er
η′r
−→ e′ and

ηlη
′
l
= ηrη

′
r

Finally we are in position to prove the work-horse lemma of our desired theorem. The proof
proceeds by induction on the length of the shortest of the two traces and by appeal to Lemma 3.11,
3.12, and 3.13, and preservation (Theorem 3.6).

Lemma 3.14 (Multi-step diamond property with run-time effects). If ∆; Γ ⊢ e : τ & ef /ev

and e
η1
−→ e1

η2
−→ . . .

ηn
−→ en and e

η′1
−→ e′1

η′2
−→ . . .

η′
n′

−→ e′n′ and en = e′n′ = val and ev = ff then

η1η2 . . .ηn = η
′
1η

′
2 . . .η

′
n′ and n = n

′.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:9

From this lemma it is now straightforward to prove Theorem 3.9: By Lemma 3.11 it follows that
val = val′ and from Lemma 3.14 the theorem now follows.
We remark that a constant effect annotation Γ ⊢ e : τ & tt/tt will satisfy this soundness crite-

rion, corresponding to the pessimistic prediction that any programmay have an effect andmay be

evaluation-order dependent. In general we seek the least type and effect for a given program.

4 TYPE-DRIVEN PROGRAM GENERATION: STATE OF THE ART

With a sound effect system in place we now return to the primary topic, namely testing. We first
recall the basics of QuickCheck [Claessen and Hughes 2000] as well as the goal-directed program
generation approach of Pałka et al. [2011]. For the rest of this article we will use OCaml and the
QCheck library1 for QuickChecking but the approach could just as easily have been carried out,
e.g., in Haskell or F#.

4.1 �ickCheck

QuickCheck builds on the idea of substituting hand-written tests with randomized property-based

tests. A family of tests are instead expressed by a property, e.g., the list property∀l , l ′. rev (l @ l ′) =

(rev l ′)@(rev l) and a generator supplying values to fill in for the quantified list variables l and
l ′. Each instance of the property thereby gives rise to a test case:

rev ([1; 2; 4]@[3]) = (rev [3])@(rev [1; 2; 4]),

rev ([]@[9]) = (rev [9])@(rev []),

rev ([7]@[5; 8]) = (rev [5; 8])@(rev [7]), . . .

Functional programming is well suited both for describing properties and for building genera-
tors. For example, the property above can easily be expressed by the Boolean-valued function:

(fun (l,l') -> List.rev (l @ l') = (List.rev l') @ (List.rev l))

Similarly, generators expressed as combinators compose easily. For example, we can pass a builtin
generator of integers small_int as an argument to the parametric list generator to build a gener-
ator of integer lists: list small_int. Similarly the parametric pair generator accepts generators
for each of their components: pair (list small_int) (list small_int). All in all, we can
thereby describe the above QuickCheck test as follows (where we supply a test title string as an
optional argument):

let rev_concat_test =

Test.make ~name:"reverse-concat"

(pair (list small_int) (list small_int))

(fun (l,l') -> List.rev (l @ l') = (List.rev l') @ (List.rev l))

and run it with QCheck_runner.run_tests_main [rev_concat_test] which will (by de-
fault) check 100 instances:

random seed: 171662158

law reverse-concat: 100 relevant cases (100 total)

success (ran 1 tests)

When a property fails to hold it is essential to present a counterexample to the developer. Such
a failure may be caused by an error in the specification or in the code under test. For example,
suppose we test the following erroneous specification (note how l and l' are switched):

1https://github.com/c-cube/qcheck/

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

https://github.com/c-cube/qcheck/

15:10 J. Midtgaard et al.

(fun (l,l') -> List.rev (l @ l') = (List.rev l) @ (List.rev l'))

the QuickCheck framework will present a counterexample:

law buggy reverse-concat: 1 relevant cases (1 total)

test `buggy reverse-concat`

failed on ≥ 1 cases:

([0], [1]) (after 362 shrink steps)

From this minimal counterexample it should be clear that the above property does not hold: The
left-hand-side List.rev ([0]@[1]) yields [1;0]whereas (List.rev [0])@(List.rev [1])

on the right-hand-side yields [0;1]. The counterexample has however been cut down (shrunk)
in a post-processing phase in order to make it easier for humans to comprehend. If we disable the
shrinker the tester may for example be presented with the following counterexample instead:

law buggy reverse-concat: 1 relevant cases (1 total)

test `buggy reverse-concat`

failed on ≥ 1 cases:

([84; 9; 9; 467; 82; 58; 3; 78; 1; 2; 1390; 52; 16; 3; 153; 4; 3; 0;

6; 18; 2; 637; 48; 1; 878; 0; 2; 19; 9836; 12; 1; 89; 8; 8; 3; 0; 8; 0;

6; 1], [6862; 41; 9; 8; 44; 5; 80; 4; 276])

It is less clear from this bigger counterexample what is causing the failure.

4.2 Generating type-correct programs

To test the backend of a language implementation we need input that makes it through the fron-
tend, and in particular through the strict guarding of a static type checker. One can generate such
programs following an approach of Pałka et al. [2011].
The basic idea is to generate programs following the rules of the type system, albeit by read-

ing the typing relation in a goal-directed, bottom-up manner. Suppose we wish to generate an
expression of type int as illustrated in Fig. 6. We can do so by matching the int type against
the conclusion of the rules in Fig. 1 and realize that we are able to do so by either the (Const),
(Var), or (App) rules. Suppose we arbitrarily choose the (App) rule. To successfully apply this rule
we must come up with an argument type τ1. A type generator can produce such arbitrary types,
so suppose it returns int. We now recursively invoke the expression generator twice to generate
sub-expressions of type τ1 → int = int → int and τ1 = int. To produce an expression of
function type we may for example choose the (Lam) rule. This will in turn generate an arbitrary
variable name x, add the binding (x : int) to the type environment, and recursively invoke the
expression generator to generate a sub-expression of type int in this extended type environment.
In this recursive call we may choose the (Var) rule to generate an integer expression in the ex-
tended type environment. In particular the variable x has type int and thereby satisfies our goal.
The second recursive call from the (App) rule with the goal of generating an expression with int

may be fulfilled by the (Const) rule by returning any constant, e.g., 42.
From a generation point of view, to generate a call to, e.g., the function (+): int → int → int

for curried addition of integers we need to choose the (App) rule twice, in both cases choose int
as the arbitrary argument type, and only in the innermost case choose the (Var) rule and the (+)
operation bound in Γ. Furthermore, repeated applications of the (App) rulesmay send the generator
off on searches for functions of greater and greater types. As a remedy Pałka et al. [2011] therefore

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:11

∆; Γ ⊢ ? : int

∆; Γ ⊢ e0 e1 : int

∆; Γ ⊢ fun x -> e : int → int ∆; Γ ⊢ e1 : int

∆; Γ, (x : int) ⊢ e : int

(x : int) ∈ Γ

∆(42) = int

(App)

(Lam) (Const)

(Var)

Fig. 6. Goal-directed generation of the program (fun x -> x) 42 : int

suggest to add the following (Indir) rule:

(f : τ1 → . . .→ τn → τ) ∈ Γ ∆; Γ ⊢ e1 : τ1 . . . ∆; Γ ⊢ en : τn

∆; Γ ⊢ f e1 . . . en : τ
(Indir)

Logically (Indir) is derivable from the remaining rules. However from a generation point of view
the (Indir) rule instead expresses environment-driven applications: it expresses choosing a known
receiver in scope with the desired result type τ and only invoke the expression generator recur-
sively to produce arguments of the appropriate types τ1, . . . ,τn , thereby providing a more guided
search for well-typed programs.
One can extend this approach to also support polymorphic functions [Pałka et al. 2011]. As an

example, consider List.hd : α list → α . If our goal is to generate an expression of type int,
List.hd is a valid receiver in (Indir) because α can be instantiated to the concrete type int. If
we choose to do so, we need to recursively generate an argument with the same instantiation
α list[α 7→ int] = int list. In general, a polymorphic function can be applied if one of the
receiver’s result types can be unified with the goal type. We therefore extend types to include type
variables:

τ ::= . . . | α (types)

In our view this approach does not suffice for testing the OCaml compiler backends against
one another. The reason is that the evaluation order of OCaml, like, e.g., C and Scheme, is loosely
defined. The bytecode interpreter, following the original ZINC bytecode interpreter, evaluates ap-
plications right-to-left to save needless closure allocations [Leroy 1990] whereas OCaml’s later
native code backend may evaluate left-to-right. In fact a direct implementation of the approach
of Pałka et al. [2011], as we did in an unpublished report [Kasting and Justesen 2016], produces too
many counterexamples that merely illustrate observable differences caused by different evaluation
orders. This motivates the development of a refined approach that only generates evaluation-order
independent programs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:12 J. Midtgaard et al.

5 EFFECT-DRIVEN PROGRAM GENERATION

In order to avoid generating programs with evaluation-order dependence, we refine the approach
of Pałka et al. [2011] to instead generate programs driven by our type and effect system. Specifi-
cally we utilize the type and effect rules described in Sec. 2 in order to generate well-typed pro-
grams with effect tt/ff, thereby generating effectful but evaluation-order independent programs.
This may in turn involve invoking the generator recursively to generate sub-expressions with and
without effects.

As in the guided, type-driven approach we include the following derived rules, to guide our
generator towards calls to known receivers in scope, similarly to the (Indir) rule:

(f : τ1
ff/ff
−→ . . .

ff/ff
−→ τn

ff/ff
−→ τ) ∈ Γ

∆; Γ ⊢ e1 : τ1 & ff/ff . . . ∆; Γ ⊢ en : τn & ff/ff

∆; Γ ⊢ f e1 . . . en : τ & ff/ff
(EIndir1)

(f : τ1
ef 1/ff
−→ . . .

ef
n−1/ff
−→ τn

ef
n
/ff

−→ τ) ∈ Γ

∆; Γ ⊢ e1 : τ1 & ef ′1/ff . . . ∆; Γ ⊢ en : τn & ef ′n/ff

i ∈ [1;n] ∀j < i . ef j = ff ∀j , i . ef ′j = ff ef ′i = tt

∆; Γ ⊢ f e1 . . . en : τ & tt/ff
(EIndir2)

A word of explanation is required for these rules’ preconditions:

• For the rule EIndir1 it should be intuitive that in an effect-free application none of the
arguments can have effects, nor can the receiver when supplied with the corresponding
values.

• For the rule EIndir2 the reasoning is more complex. As a motivating example consider a

receiver (f : unit
tt/ff
−→ unit

ff/ff
−→ unit) ∈ Γ and the application f () (print_int 0). When

evaluated from right-to-left we first observe print 0 and subsequently observe the effect
of f(). On the other hand when evaluated from left-to-right we first observe the effect of
f() and subsequently observe print 0. To prevent such evaluation-order dependence in the
derived rule we must therefore ensure that
– at most one actual parameter ei can have an effect and
– any effects from partial applications can occur only from index i and upwards.

One can prove that these rules follow from rules (EVar) and (EApp) by induction in the number
of arguments n: Any type-and-effect proof using (EIndir1) and (EIndir2) can be transformed into
a proof using only (EVar) and (EApp). Our splitting of the indirection rule into two separate rules
(Indir1) and (Indir2) is however only for presentational purposes: henceforth we consider these
two cases as a collective (Indir) case.

At any point during the algorithm, we have a goal, which is the type and effect of the expression
we want to generate. Based on this goal we assemble a list of applicable rules:

EConst is applicable if the goal type matches a constant’s type. Since a constant does not
have an effect in itself this rule is applicable regardless of the goal effect.

EVar is applicable if there is variable in the type environment with a type compatible with
the goal. Since a variable does not have an effect in itself this rule is applicable regardless of
the goal effect.

ELam is only applicable if the goal is a function type. Since a function literal does not have an
effect in itself this rule is applicable regardless of the goal effect.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:13

EApp is always applicable. However since the type τ1 of the parameter is not determined by
the goal we first generate a random type τ1 before adding this rule to the list. We flip a coin
to pass the goal effect to either the operator or the operand and pass ff/ff to the other.

Furthermore we also pass the goal effect φ as the annotated effect in the type goal τ1
φ

−→ τ2
to the operator call.

EIndir is applicable if there is a variable in the type environment such that the variable
matches the goal. A variable matches the goal type if it’s type can be instantiated to the
goal type when either fully applied, partially applied, or not applied at all. The effect signa-
ture of a chosen receiver can at most contain effects matching the desired goal effect. Finally
we compute the index i of the left-most tt/ff effect annotation in the receivers signature
(or the number of needed arguments if there are no effects), pass the goal effect along as the
goal effect to exactly one of the arguments (chosen uniformly in [1, . . . , i]), and pass ff/ff
to the others.

After we have assembled the list of applicable rules, we randomly select one and recursively
invoke the generator algorithm in order to generate the premises of the selected rule. If all recursive
calls return successfully then we construct the term in accordance with the selected rule. If any of
the recursive calls fails the probability of success on a retry is small, so we remove the rule from
the list and randomly select one of the remaining rules for generation. If the list of applicable rules
becomes empty, the generation has failed and we return an error value.

Without a base case the algorithm is not guaranteed to terminate as EApp is always applicable.
This may trigger an infinite search for inhabitants of bigger and bigger types. We remedy the issue
by imposing a size limit on the generated terms, as is standard within QuickChecking. This value
is added as a parameter to the algorithm and decreased on the recursive calls. In the base case if the
size parameter reaches zero we only attempt to apply the axioms (the (EVar) or (EConst) rules).
By using a size parameter and keeping track of the rules that have already been used and failed,
we ensure that the algorithm always terminates. To generate programs of type τ that are free of
evaluation-order dependence, we initially invoke the generator algorithm with the goal τ & tt/ff.

As an alternative implementation strategy, one could express a generator of evaluation-order
independent programs as a combination of two phases: a first phase would produce type correct
programs following the approach of Pałka et al. [2011] and a subsequent phase would then filter
away the programs that do not pass a type and effect check. One can view our current approach as
an optimization of such a two-phase approach, in that we simply eliminate the option of generating
candidate programs that would not make it through the filter.

6 IMPLEMENTATION

We have implemented the generation algorithm as described in Sec. 5. Type-wise our implemen-
tation supports unit, bool, int, string, list, and function types. In addition to the four expression
constructs presented so far the implementation also supports the generation of let-bindings and
conditionals according to the rules in Fig. 7. Following Fig. 3 these rules are also phrased with
algorithmic sub-effecting. From a generation point of view the effect φ in the (ELet) and (EIf)

rules is given as a parameter, which motivated the current formulation. Their formulation is not
entirely arbitrary though. For example, based on standard desugaring of a let-binding into an im-
mediate application, one can transform a type and effect proof using (ELet) into one using (EApp)
and (ELam). Intuitively, a type and effect proof using (ELet) corresponds to an (ELet)-free proof
in which we have applied sub-effecting (Lemma 3.4) to promote the effect of both e1 and e2 to an
upper bound of them both.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:14 J. Midtgaard et al.

∆; Γ ⊢ e1 : τ1 &φ ∆; Γ, (x : τ1) ⊢ e2 : τ2 &φ

∆; Γ ⊢ let x= e1 in e2 : τ2 &φ
(ELet)

∆; Γ ⊢ e0 : bool&φ ∆; Γ ⊢ e1 : τ &φ ∆; Γ ⊢ e2 : τ &φ

∆; Γ ⊢ if e0 then e1 else e2 : τ &φ
(EIf)

Fig. 7. Type and effect rules for let and if

As the initial size parameter the sized generators of QCheck chooses an arbitrary integer.
This allows us to generate relatively large example programs. We seed the initial environment
Γ with a number of bindings from OCaml’s standard library, primarily from the (initially opened)
Pervasives module. These include operations with effects that go beyond our formalized frag-
ment. For example, we include List.hd that may throw a Failure exception when applied to
an empty list, curried integer division (/) that may throw a Division_by_zero exception, and
print_int from the introduction.
The backtracking search is implemented as option-returning generators. They may potentially

return None if they fail to find a program. These can be a bit tricky to program. For example,
when we introduced conditionals our first implementation attempt would simply perform three
recursive generator calls, one for each of the branches and one for the test. As a consequence
generation starting taking substantially more time. Only later did we regain some performance
when we made the second and third recursive generator calls conditional on the success of the
earlier ones.

6.1 Environment representation

Each application of (ELam) (and (ELet)) introduces a new, locally bound variable. Hence we need
to maintain an environment in order to determine the variables in scope along with their type. On
the other hand, when we consider the possible applications of (EIndir) we seek variables based
on their return types. Finally, after having chosen to generate an instance of (EIndir), we want to
quickly locate a variable with the type associated with that instance.

In order to satisfy these demands we maintain three mappings: env from variables to types
(implementing Γ), revEnv from types to (sets of) variables, and returnEnv from return types
to (sets of) variables. Note that a function such as f : unit → int may occur several times in
returnEnv: once with the key int and once with the key unit → int. In the presence of effects
and sub-effecting a variable lookup in revEnv or returnEnv based on a type may not match
exactly. We therefore normalize effects away in type signatures before inserting and looking up
entries in revEnv and returnEnv, and only subsequently filter out variables with incompatible
effect signatures (obtained from env). We collectively refer to this 3-way representation as the
environment.
Our initial environment contains a number of bindings from OCaml’s standard library. When-

ever we apply (ELam) or (ELet) we need to extend the environment with the newly introduced
variable x : τ before passing it to a recursive generator call. We do so in three steps:

(1) First we update env, potentially shadowing an earlier binding of x as desired.
(2) Next we update revEnv. If another variable x : τ ′ already exists in the environment we need

to remove it from the set of variables associated to τ ′. We subsequently add the new binding.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:15

If no other variables are associated with type τ we add a binding to a singleton variable set
{x}.

(3) Finally we update returnEnv. We do so by collecting the return types of τ and adding all
of them following the above procedure.

6.2 Distribution

Rather than attempt to generate programs uniformly we skew the distribution in an attempt to
generate programs that will stress the compiler backends. As traditional we do so by assigning
integer weights to the generator’s choice of rules. In our current implementation rule (EConst) is
chosen with weight 6, instances of (EVar) are chosen with weight 1, rule (ELam) is chosen with
weight 8, rule (EApp) is chosen with collective weight 8 (with weight 4 we pass the goal effect to
the operator and with weight 4 we pass the goal effect to the operand), instances of (EIndir) are
chosen with weight 4, rule (ELet) is chosen with weight 6, and rule (EIf) is chosen with weight
3. These frequencies do not represent the chance that a particular rule is chosen as a whole: for
(EVar) the weight represents the chance of choosing a particular variable (with compatible type
and effect). For rule (EIndir) the weight represent the chance that an instance is chosen, with one
instance for each compatible type-and-effect signature in the environment.

This design of (EIndir) can be seen as an optimization of our backtracking generator in the style

of Pałka et al. [2011]: If the generation of arguments fails for a function such as (/) : int
ff/ff
−→

int
tt/ff
−→ int for curried integer division it is likely that generation of arguments also fails for, e.g.,

function (mod) with the same type and effect signature. Therefore after collecting all variables
with a compatible type and effect signature we group variables with identical signatures and add
(EIndir) to the list of applicable rules once for each of these.

Our frequencies started out according to Pałka et al. [2011] and were later adjusted based on
experiments. They will most likely be tweaked further in the future and clearly do not result in a
uniform distribution. To observe the actual, resulting distribution arising from the above weights
we defined a straight-forward measure of program size:

|x| = 1

|fun x -> e | = 1 + |e |

|e0 e1 | = 1 + |e0 | + |e1 |

|let x= e1 in e2 | = 1 + |e0 | + |e1 |

|if e0 then e1 else e2 | = 1 + |e0 | + |e1 | + |e2 |

where in addition the size of literals |c | is defined to be 1 for literals of base type and list length
for list literals. Measured over a sample of 1000 arbitrary terms this yields an average program
size of 64.4 with a standard deviation of 181.0, a median of 12, a minimum of 1, and a maximum of
2672. These statistics characterize a distribution centered around smaller programs (small average
and median) albeit with occasional large ones (large maximum and large deviation). This charac-
terization is further confirmed by visualizing the sample distribution, where we have cut off the
histogram’s x-axis and the top bar at 200 (there were 920 programs of size 1–199 in the sample):

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:16 J. Midtgaard et al.

0

400

800

1,200

1,600

2,000

2,400

2,800

0 20 40 60 80 100 120 140 160 180 200

Si
ze

Occurrences (cut off)

6.3 �ickchecking the testing code

When testing requires additional programming there is a natural risk that the testing code itself
contains bugs. Currently our testing module takes roughly 1000 lines of code. To reduce the risk
of bugs in this code we have (naturally) tested it with QuickCheck. Separately from the “main test”
of equivalence we therefore test:

• the underlying unification algorithm
• that our custom generator produces programs typeable by OCaml’s type checker
• that our custom generator produces programs that are type-and-effect correct according to
a type checker implementation of the type and effect system.

Thanks to these checks we have found and fixed a number of programming errors in our generator.
In addition to the above, by classifying the output of a top-level call to our backtracking generator
we have ensured that it succeeds in finding an evaluation-order independent program of type int
in 1000 out of 1000 cases.

6.4 Limitations

Our approach comes with a number of limitations. Some of these are easier to address than others.
In the easier end it would be natural to extend our approach with additional types (option types,
chars, pairs, exceptions, user-defined datatypes, . . .) and additional forms of expressions (pattern-
matching, exception handlers, . . .). Adding support for mutation based on reference cells comes
with its own set of challenges, e.g., how many/deep combinations of the ref and list type con-
structors should one allow in a type generator? Presently we are also limited to programs that do
not expect any input. In principle one could also generate a stream of input and supply this input
to the generated program, e.g., by piping it on standard in. Finally we limit the current implemen-
tation to generating terminating programs: We do not attempt to generate recursive functions. We
may however invoke recursive functions, e.g., over lists. Nothing fundamental about the approach
prevents us from generating recursive functions by naming functions and recursively generating
bodies with the function’s own name and type-and-effect signature in scope. Since such programs
are not guaranteed to terminate in general, one will instead have to run them with time outs akin
to CSmith [Yang et al. 2011]. Compared to how compiler backends are traditionally tested (ensure
that the backend produces correct code for an increasing collection of terminating, unit test pro-
grams) we do not see this last limitation as severe.

6.5 Shrinking strategies

The generated counterexamples are often very large making it impossible to pinpoint what causes
the observable output to differ. Therefore, we utilize shrinking in order to generate more compre-
hensible counterexamples. In QCheck, shrinking is implemented using iterators, that will lazily

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:17

produce a sequence of possibly smaller counterexamples based on an initial counterexample.When
a counterexample is found, QCheck traverses the sequence of candidates, and tests the property
on every alternative. It stops at the first alternative that still proves to be a counterexample and
then it starts the process over.
We formulate a range of possible shrinking strategies. Common to all of them is that they are

type preserving. They are also effect-preserving in the sense of our preservation theorem: the
explicitly type-and-effect annotated term resulting from each simplification step is validly effect
annotated, however it may be overly conservative. In the end we converged on the following
strategies, suitably phrased as a recursive traversal of the abstract syntax tree. We attempt to

(1) shrink literals with the builtin shrinkers for integers, strings, and list literals,
(2) replace any subterm (but literals) by a literal,
(3) replace unary and binary applications by their argument(s) (provided that the result type

and the argument type agree),
(4) replace an immediate application by either the body of the lambda (provided the lambda-

bound variable is free) or rewrite the application to a let-expression,
(5) pull let-binding in the operator position of an application out to surround the entire call,
(6) rewrite a let-binding to its body (provided that the let-bound variable is free),
(7) rewrite a let-bound let-binding to drop its outer binding (again provided that the let-bound

variable is free),
(8) rewrite a conditional into either of its branches,
(9) wrap a conditional with a let-binding that serializes the potential effect of the condition, and
(10) always shrink subterms recursively

These strategies have developed from practical experiments and by observing opportunities for
further cutting down a produced counterexample. The constant replacement strategy (2), half of
(4) (a β-reduction strategy), and the sub-term replacement strategy incorporated in (3),(4), and (6)
have been inherited from Pałka et al. [2011]. Rewriting an immediate application to a let-binding
in (4) is specifically included to preserve a potential side effect, a situation which differs from the
pure Haskell setting of Pałka et al. [2011]. All of the strategies may not produce a strictly smaller
term, e.g., replacing a variable by a literal (2), the immediate application to let-binding in (4), or the
pulling out of a let-binding in (5). They have nevertheless turned out to be effective in cooperation,
e.g., the let-binding resulting from (4) may be located inside an application and subsequently be
pulled out by (5), perhaps allowing a surrounding let-binding to be dropped by (7), if all uses of
the variable has been replaced by literals (2).
During the development we have found that putting the most aggressive shrinking strategies

early produces the most effective overall shrinker. This behaviour has a natural explanation, since
attempts to, e.g., cut off entire sub-trees lets the resulting shrinker converge faster towards a locally
minimal counterexample than if one insists that the shrinker attempts a number of smaller local
rewrites first. Overall this experience confirms what seems to be established QuickCheck folklore.

7 EXPERIMENTS

We have set up a QuickCheck test with

• our type-and-effect-guided generator to generate programs of type and effect int& tt/ff

and
• the property ’print the program to a file (wrapped in let i = ... in print_int i to
ensure some output), compile the file with both backends, run both executables and compare
output’

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:18 J. Midtgaard et al.

With this setup we have tested agreement between the two backends of OCaml version 4.02.3 and
4.04.0. By default our setup generates 500 arbitrary programs and tests them for agreement. Out
of a sample of 20 subsequent runs testing OCaml version 4.04.0 we locate disagreements in 18 of
them. The two completed runs take 2 minutes and 35 seconds and 3 minutes and 56 seconds on
a normally loaded 2.8 GHz MacBook Pro laptop with 8GB of RAM. This makes for ∼0.39 seconds
on average for generating an arbitrary program, writing it to file, compiling it with both backends,
running both output programs, and diff ’ing the outputs. The 18 runs that locate disagreements
complete on average in 3 minutes and 55 seconds with a minimum of 22 seconds and a maximum
of 6 minutes and 44 seconds. They invoke the generator between 18 and 490 times to do so. Note
that the timings for these 18 runs include both the time for generating and testing 18–490 programs
as well as the time spent shrinking the found counterexample.
We have found four new bugs and recreated two known ones using this approach. In all six cases,

the error occurs in the optimizing native-code backend. In the first case from the introduction the
native-code backend erroneously delays a side-effect in the operator of a partially applied function:

let k =

(let i = print_newline ()

in fun q -> fun i -> "") ()

in 0

This happens when the native-code backend constructs a closure representing the partially ap-
plied function. The backend does so according to the recipe described in the following comment
(asmcomp/closure.ml, line 827):

We convert [f a] to [let a' = a in fun b c -> f a' b c]

when fun_arity > nargs

This strategy carefully accounts for side effects in the evaluation of arguments such as a. The
problem arises when the evaluation of f may have a side effect, in which case it will be delayed
until the remaining arguments are supplied (if ever). In this case the correct strategy should be:

We convert [f a] to [let f' = f in

let a' = a in fun b c -> f' a' b c]

when fun_arity > nargs

We have reported the bug and a patch has been approved for OCaml version 4.05.0.2

The next four bugs come in pairs of two for the division-related operators / and mod and are all
connected to the native-code backend’s handling of division by zero. In the first pair of bugs the
native-code backend’s optimizer erroneously removes a division by zero exception. This happens
in connection with integer division when the divisor is sufficiently complex: 3

(/) 0 (let e = not in pred 1)

In the second case this happens in connection with the integer modulo operator mod:

(mod) 0 (compare () ())

Both of these were fixed in connection with the report for the first (linked to in the above footnote).
The second pair of bugs is also related to the / and mod operators. In these two the native-code

backend’s optimizer erroneously removes the effect of the dividend preceding a division by zero
exception. This issue may happen in connection with the division operator:

2https://caml.inria.fr/mantis/view.php?id=7531
3The first of these two was initially shared with Jean-Christophe Filliâtre who then identified the root

cause and reported the bug here: https://caml.inria.fr/mantis/view.php?id=7201. It was later recalled here:

https://github.com/ocaml/ocaml/pull/954

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

https://caml.inria.fr/mantis/view.php?id=7531
https://caml.inria.fr/mantis/view.php?id=7201
https://github.com/ocaml/ocaml/pull/954

Effect-Driven �ickChecking of Compilers 15:19

(/) (int_of_string "") (let e = let w = false in () in 0)

In this case the back end produces code that evaluates the divisor, tests the result for zero, and
throws the exception, thereby removing the dividend’s effect (a Failure exception). Similarly
this may happen with the modulo operator:

(mod) (int_of_string "") (let m = print_int in 0)

We have also reported this pair of bugs and a patch is scheduled for OCaml version 4.05.0.4

In addition to these errors we have also found an already known bug similarly related to arith-
metic optimization:

int_of_string (string_of_int ((*) (int_of_string "") 0))

In this case the side-effect of the inner-most int_of_string call is erroneously optimized away.
This counterexample also illustrates a limitation of our shrinker: it currently cannot shrink the
above to the nested sub-expression ((*) (int_of_string "") 0). One way to do so would
be to extend our shrinker with a general sub-term replacement strategy: attempt to replace an
expressionwith one of its arbitrarily nested sub-expressions of compatible type if the free variables
of the sub-expression are in scope in the outermost position. Some of our strategies in Sec. 6 already
do so albeit only for immediate sub-expressions.
In order to better observe our compiler tester we instrumented it to print a period (.) whenever it

tests the backends for agreement succesfully and print an xwhenever they disagree. For runs that
do not locate any disagreement this provides a low-level progress bar and for runs that do locate a
disagreement this makes for a fascinating trail of shrinker attempts. Consider the following output
revealing the above division issue:

$./effmain.native -v

random seed: 379229741

...

..................x.....x.....x.....x.....x......x......x.......x......

.x.x......x......x.......x......

law bytecode/native backends agree: 90 relevant cases (90 total)

test `bytecode/native backends agree`

failed on ≥ 1 cases:

Some ((mod) (int_of_string "") (let m = print_int in 0))

(after 12 shrink steps)

failure (1 tests failed, ran 1 tests)

The first x above marks the point where QCheck first identifies a counterexample. The subsequent
mixed trail of periods and xs illustrates how shrinking systematically attempts to cut down the
counterexample to something that remains a counterexample.

8 RELATEDWORK

We separate the discussion of related work in two: one part concerns related work on type and
effect systems and one part concerns related work on randomized testing.

4https://caml.inria.fr/mantis/view.php?id=7533

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

https://caml.inria.fr/mantis/view.php?id=7533

15:20 J. Midtgaard et al.

8.1 Effect analyses

One particular kind of effect is assignment. Classical def-use data analyses [Banning 1979; Nielson et al.
1999] can answerwhether a piece of code affectsmutable variableswith assignment. In comparison
our type and effect system can express assignments as effects and thereby answer evaluation-order
dependence involving references and assignment. In doing so we cannot express assignment as
precisely: once we inject an assignment as an effect we lose track of the particular variable being
assigned. Type and effect systems as an independent discipline started with the seminal works of
Gifford and Lucassen [1986; 1988]. Thesewere concernedwith determining the effects (assignment,
allocation, . . .) of sub-expressions with the goal of driving a parallelising compiler.

The Java programming language [Gosling et al. 2000] comes with a built-in effect analysis for
exceptions: a Java method that may throw a checked exception has to be annotated to do so, oth-
erwise it will be rejected by the compiler. Java has no such requirement for unchecked exceptions

such as NullPointerException. Leroy and Pessaux [2000] develop a type-based analysis of un-
caught exceptions for OCaml with obvious parallels to our type and effect system: since exceptions
are an effect they are also expressible in our framework, albeit again not as precisely: once we in-
ject an exception as an effect we lose track of the particular exception that may be thrown. On the
other hand our type and effect system can capture other kinds of effects, e.g., output. For a brief
survey of type and effect systems we refer to Nielson and Nielson [1999] and for a more in depth
introduction to the area we refer to the textbook of Amtoft et al. [1999].
Astreé [Blanchet et al. 2003] is a general static analysis for a large subset of C that can detect

a number of cases leading to C’s notorious undefined behaviours. Astreé is well known for its
precision: in some cases it has no false alarms, yet it computes a conservative over-approximation
of the input program’s behaviour. Again our aim with our type and effect analysis is different:
we seek to develop a simple approach that lets us generate programs free of evaluation-order
dependence, not develop a precise analysis for detecting undefined behaviour.

8.2 Randomized testing

CSmith [Yang et al. 2011] is a generator of programs free of C’s notorious undefined behaviour. By
doing so it can be used to test C compilers against each other (or different optimization levels of
same C compiler against each other), and it has been used to find hundreds of bugs in GCC, LLVM,
etc. CSmith supports an impressive range of language features compared to our implementation.
In our approach we have taken a different route to developing our generator than the more ad
hoc approach of Yang et al. [2011], by first formalizing and proving sound an effect system to
drive our generator. Admittedly this formal route may be easier for a language with roots in typed
lambda calculus such as OCaml, than for a language such as C with a complex textual specification
containing many tricky cases of undefined behaviour.
Le et al. [2014] develop an equivalence modulo inputs (EMI) methodology as a form of differential

testing for testing C compilers. Rather than attempt to generate arbitrary programs from scratch
Le et al. [2014] instead take an existing collection of programs, pick one and manipulate it in a
manner that is meaning preserving for a particular input, e.g., permuting code in a branch which
is not executed for the particular input. If none of the input programs contain undefined behaviour

their manipulations will not give rise to undefined behaviour for a run with the particular input.
The Orion tool realizing the approach has successfully found an impressive range of bugs in GCC
and LLVM. The EMI approach allows one to test equivalence of two related programs compiled
with the same compiler, which is fundamentally different than our comparison of two different

compiler backends (with one acting as oracle for the other).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:21

Pałka et al. [2011] originally developed the goal-directed program generation approach to test
the Haskell compiler’s strictness analyzer [Pałka et al. 2011]. Since side-effects in Haskell are cap-
tured in the type system, e.g., by monads, they did not have the issue of impure programs with
evaluation-order dependence: in Haskell the order of side effects would be dictated, e.g., by the
monadic operations.
Claessen et al. [2015] have developed an approach to automatically construct generators for

constrained random data types that have a provably uniform distribution. The focus of the present
work is different in that we have developed formal constraints (in the form of a type and effect
system) for testing language implementations for agreement up to evaluation order. We make no
formal claims of uniformity but in future work we would like to investigate and integrate the
approaches of Claessen et al. [2015] in order to do so.
The goal-directed generation approach from inference rules has since been applied in the con-

text of PLT Redex to generically test type systems defined by such rules [Fetscher et al. 2015].
Again the focus of this work is different: Fetscher et al. [2015] seek to develop a general approach
for type systems formalized in PLT Redex whereas we formalize and develop a generator with a
specific purpose. It would be interesting to investigate whether the PLT Redex inference-driven
generator can handle our type and effect system.
St-Amour and Toronto [2013] use property-based testing to check the soundness of Typed Schemes

initial typing environment. In an advanced type system such as Typed Scheme it is a laborious and
error-prone task to provide sound type signatures for all the builtin primitives in the initial envi-
ronment. St-Amour and Toronto [2013] show how QuickCheck techniques can provide a fruitful
quality control for this task. We could use the techniques of St-Amour and Toronto [2013] to en-
sure the soundness of the initial type (and effect) environment that drives our generator.

SmartCheck [Pike 2014] is an extension of QuickCheck that tries to generalize failed counterex-
amples based on their shape in order to narrow the problem further down to the developer. Over
the course of testing the OCaml backends we have repeatedly found variations of the same bug,
e.g., compare the following two shrunk counterexamples produced by our testing tool:

let k =

(let i = print_newline ()

in fun q -> fun i -> "") ()

in 0

let s =

(let c = string_of_int (int_of_string "")

in fun d -> fun l -> fun f -> 0) false

in 0

A SmartCheck implementation for OCamlwould be helpful in identifying the common structure
of these two counterexamples: an operator with a side-effect that is partially applied, erroneously
has its side-effect delayed indefinitely by the native code backend. Doing so could involve gener-
alizing not only syntax, but also types and effects. Alternatively we could apply the approach of
Hughes [2016] to specify or document the buggy behaviour in the QuickCheck tests, and thereby
let the bug search continue unaffected. Hughes [2016] reports about how doing so became a neces-
sity as part of testing the AUTOSAR components underlying Volvo cars, as the QuickCheck testers
would otherwise have to wait for developers (from one of Volvo’s suppliers) to fix the identified er-
rors. This experience most recently motivated the development of MoreBugs [Hughes et al. 2016]:
a QuickCheck framework engineered to avoid the repeated rediscovery of the same bugs. The idea
of MoreBugs is the same as SmartCheck: it attempts to generalize bug patterns. However the goal
is different, namely to use the bug patterns as a feedback mechanism to adjust the generators so
as to spend the generation time wisely on finding new, undiscovered bugs. Again our approach
could benefit from a MoreBugs implementation and again this could involve generalizing not only
syntax, but also types and effects.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:22 J. Midtgaard et al.

9 CONCLUSION AND FUTURE WORK

We have presented a novel type and effect system for driving a goal-directed program generator.
We have implemented the approach and applied it to test the two official OCaml compiler backends
for agreement. In doing sowe have found a number of disagreements on subtle cornercase of a core
language. Overall we believe the approach illustrates the strength of QuickCheck and is promising
for quality assurance of functional language processors.
We envision a range of directions for future work. One direction would be to generalize the type

and effect system (a) to a polymorphic system, (b) to include effect variables to express relations
between side-effects in signatures, or (c) to refine it to more precisely express the kind of run-time
effect a sub-expression may have. A second direction would be to extend the supported language
with additional expression constructs and types. A third direction would be to utilize the approach
to test additional language implementations. For OCaml alone, several such implementations exist
(js_of_ocaml, Bloomberg’s BuckleScript OCaml-to-JavaScript compiler, OCaml-Java, ocamlcc, . . .).
By retargeting the approach to, e.g., Standard ML, it could be used to test some of its implemen-
tations (SML/NJ, MLton, Moscow ML, PolyML, MLkit, SML#, . . .) against each other. In particular,
MoscowML is based on OCaml’s right-to-left evaluating bytecode interpreter and would therefore
deviate from the formally defined left-to-right evaluation order of Standard ML. One could in prin-
ciple also use the approach to test implementations of a dynamically typed functional language
such as Scheme. In Scheme the evaluation order is also undefined and several implementations ex-
ist (Bigloo, Chez, Chicken, Gambit, Racket/MzScheme, . . .). Although driven by types and effects,
after a type-and-effect erasure (and modulo an initial environment) all generated programs should
however be valid. Such a setup would strictly speaking not target all possible Scheme programs,
but only the subset of programs that type (and effect) check statically. Nevertheless it would be an
easy way to cheaply test agreement of a range of implementations on an unbounded number of
programs.

REFERENCES

Torben Amtoft, Hanne Riis Nielson, and Flemming Nielson. 1999. Type and effect systems - behaviours for concurrency.

Imperial College Press.

John Banning. 1979. An Efficient Way to Find Side Effects of Procedure Calls and Aliases of Variables. In Proceedings of

the Sixth Annual ACM Symposium on Principles of Programming Languages, Barry K. Rosen (Ed.). San Antonio, Texas,

29–41.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2003. A static analyzer for large safety-critical software. In Proceedings of the ACMSIGPLAN 2003 Conference

on Programming Languages Design and Implementation, Ron Cytron and Rajiv Gupta (Eds.). San Diego, California, 196–

207.

Koen Claessen, Jonas Duregård, and Michal H. Pałka. 2015. Generating constrained random data with uniform distribution.

Journal of Functional Programming 25 (2015).

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP’00), Philip Wadler

(Ed.). Montréal, Canada, 53–64.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Proceedings of the Fourth Annual ACM Symposium on Principles of

Programming Languages, Ravi Sethi (Ed.). Los Angeles, California, 238–252.

Burke Fetscher, Koen Claessen, Michal H. Pałka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments:

Automatically Generating Well-Typed Terms from the Definition of a Type-System. In Programming Languages and

Systems, 24th European Symposium on Programming, ESOP 2015 (Lecture Notes in Computer Science), Jan Vitek (Ed.),

Vol. 9032. Springer-Verlag, 383–405.

David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Programming. In Proceedings of the

1986 ACM Conference on Lisp and Functional Programming, William L. Scherlis and John H. Williams (Eds.). Cambridge,

Massachusetts, 28–38.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:23

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2000. Java Language Specification, Second Edition: The Java Series

(2nd ed.). Addison-Wesley, Boston, MA, USA.

John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane. In A List of Successes That Can

Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday (Lecture Notes in Computer

Science), Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.), Vol. 9600. Springer-Verlag, 169–

186.

John Hughes, Ulf Norell, Nicholas Smallbone, and Thomas Arts. 2016. Find more bugs with QuickCheck!. In Proceedings

of the 11th International Workshop on Automation of Software Test, AST@ICSE 2016, Austin, Texas, USA, May 14-15, 2016,

Christof J. Budnik, Gordon Fraser, and Francesca Lonetti (Eds.). ACM, 71–77.

Patrick Kasting and Mathias Nygaard Justesen. 2016. Quickchecking OCaml compilers by generating lambda terms. Unpub-

lished course project report. Technical University of Denmark, Lyngby, Denmark.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In Proceedings of the

ACM SIGPLAN 2014 Conference on Programming Languages Design and Implementation, PLDI’14, Michael F. P. O’Boyle

and Keshav Pingali (Eds.). 216–226.

Xavier Leroy. 1990. The Zinc experiment: an economical implementation of the ML language. Rapport Technique 117. INRIA

Rocquencourt, Le Chesnay, France.

Xavier Leroy and François Pessaux. 2000. Type-based analysis of uncaught exceptions. ACM Transactions on Programming

Languages and Systems 22, 2 (2000), 340–377.

John M. Lucassen and David K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the Fifteenth Annual ACM

Symposium on Principles of Programming Languages, Jeanne Ferrante and Peter Mager (Eds.). ACM Press, San Diego,

California, 47–57.

John C. Martin. 1997. Introduction to Languages and the Theory of Computation. McGraw-Hill.

Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. In Correct System Design, Recent Insight and

Advances, (to Hans Langmaack on the occasion of his retirement from his professorship at the University of Kiel) (Lecture

Notes in Computer Science), Ernst-Rüdiger Olderog and Bernhard Steffen (Eds.), Vol. 1710. Springer-Verlag, 114–136.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer.

Michal H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an optimising compiler by generating

random lambda terms. In Proceedings of the 6th International Workshop on Automation of Software Test, AST 2011. 91–97.

Benjamin C. Pierce. 2002. Types and Programming Languages. The MIT Press.

Lee Pike. 2014. SmartCheck: automatic and efficient counterexample reduction and generalization. In Proceedings of the

2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, Wouter Swierstra (Ed.). 53–64.

Vincent St-Amour and Neil Toronto. 2013. Experience Report: Applying Random Testing to a Base Type Environment.

In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP’13), Greg Morrisett

and Tarmo Uustalu (Eds.). Boston, MA, 351–356.

Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and Computation

115 (1994), 38–94.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the ACM SIGPLAN 2011 Conference on Programming Languages Design and Implementation, PLDI’11, David Padua (Ed.).

San Jose, California, 283–294.

ACKNOWLEDGMENTS

We thank the anonymous ICFP reviewers for their constructive feedback. This workwas supported
by IDEA4CPS, granted by the Danish National Research Foundation (DNRF86-10).

A APPENDIX

The source code of the prototype tester is available for download: https://github.com/jmid/efftester/.

A precompiled prototype artifact is also available as a Docker image:

https://hub.docker.com/r/jmid/ocaml-efftester/

A.1 Proof for Lemma 3.1: Typing of syntactic values

Proof. Let ∆, Γ, val,τ , and φ be given. We proceed by structural induction on val.

case val = c: By assumption we must have ∆(c) = τ ′ for some type τ ′ ⊑ τ . Since the effect φ
is free in the conclusion of EConst it can be chosen to be any effect pair φ ′.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

https://github.com/jmid/efftester/
https://hub.docker.com/r/jmid/ocaml-efftester/

15:24 J. Midtgaard et al.

case val = x: Variables are not syntactic values hence this case is vacuously true.

case val = fun x -> e: By assumption we must have τ = τ1
φ1
−→ τ2 for some types τ1, τ2 and

effect φ1 such that ∆; Γ, (x : τ1) ⊢ e : τ2 &φ1. Since the effect φ is free in the conclusion of
ELam it can be chosen to be any effect pair φ ′.

case val = e0 e1: It must be that case that val = c val1 . . . valn−1 for n ≤ arity(c) since it other-
wise would not be a syntactic value. Furthermore we must have that 2 ≤ n since the param-
eter list otherwise would be empty and hence the value would not syntactically be an appli-

cation. From the typing assumption we must have ∆; Γ, ⊢ c val1 . . . valn−2 : τ1
φ0
−→ τ &φ1

and ∆; Γ, ⊢ valn−1 : τ1 &φ2. Since c val1 . . . valn−2 is a syntactic value by the IH we can

conclude ∆; Γ, ⊢ c val1 . . . valn−2 : τ1
φ0
−→ τ2 &φ ′

1 and ∆; Γ, ⊢ valn−1 : τ1 &φ ′
2 for any effects

φ ′
1 and φ ′

2 hence we can choose φ ′
1 = ff/ff and φ ′

2 = ff/ff. Since c val1 . . . valn−1 is a
partial application it must be the case that φ0 = ff/ff by our assumption about the effects
of primitives. Since ff/ff ⊔ ff/ff ⊔ ff/ff ⊑ φ ′ for any effect φ ′ and ff/ff ⊓ ff/ff ⇛ φ ′

for any effect φ ′ we can conclude ∆; Γ, ⊢ c val1 . . . valn−1 : τ &φ ′ as desired.

�

A.2 Proof for Lemma 3.2: Canonical forms

Proof. By induction on the typing derivation. Let ∆, Γ, val,τ , and φ be given.

case EConst: Clearly c is a value and satisfies the first condition for n = 0.
case EVar: As variables are not considered syntactic values this case is vacuously true.

case ELam: We immediately satisfy the second condition since τ = τ1
φ′

−→ τ2 and val =

fun x -> e.
case EApp: This can only happen if val is on the syntactic form c val1 . . . valn−1 (as lambdas

are not applications). Similarly we must have n ≥ 2 again as it otherwise would not be an
application.
case n = 2: We have val = c val1 and arity(c) ≥ 2 and by the typing assumption ∆; Γ ⊢

c val1 : τ &φ we must have ∆; Γ ⊢ c : τ1
φ1
−→ τ &φ ′ and ∆; Γ ⊢ val1 : τ1 &φ ′

1 for some
type τ1 and some effects φ1, φ

′
1, φ

′. By our assumption on the effects of primitives we
have φ1 = ff/ff and by Lemma 3.1 we may conclude the above with φ ′

= ff/ff and
φ ′
1 = ff/ff. By rule EApp we thereby satisfy the above.

case n ≥ 3: We have val = c val1 . . . valn−1 and arity(c) ≥ 3 and by the typing assumption

∆; Γ ⊢ c val1 . . . valn−1 : τ &φ we must have ∆; Γ ⊢ c val1 . . . valn−2 : τn−1
φn−1
−→ τ &φ ′

and∆; Γ ⊢ valn−1 : τn−1 &φ ′
n−1 for some type τn−1 and some effectsφn−1,φ

′
n−1,φ

′ satisfying
φn−1 ⊑ φ and φ ′

n−1 ⊑ φ and φ ′ ⊑ φ. By our assumption on the effects of partially applied
primitives we have φn−1 = ff/ff and φ ′

= ff/ff and by Lemma 3.1 we can choose
φ ′
n−1 = ff/ff.

But then by the IH we conclude ∆; Γ ⊢ c : τ1
ff/ff
−→ · · ·

ff/ff
−→ τn−2

ff/ff
−→ τn−1

ff/ff
−→ τ & ff/ff

for some ∆; Γ ⊢ val1 : τ1 & ff/ff, . . . , ∆; Γ ⊢ valn−2 : τn−2 & ff/ff. We thereby fulfill the
first condition as desired.

�

A.3 Proof for Lemma 3.3: Type environment relaxation

Proof. By induction on the derivation tree for∆; Γ, (x : τ ′), Γ′ ⊢ e : τ &φ Let∆, Γ, Γ′, x, e,τ ,τ ′,τ ′′,
and φ be given and assume ∆; Γ, (x : τ ′), Γ′ ⊢ e : τ &φ and τ ′′ ⊑ τ ′.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:25

case EConst: Since the typing environment is free in the conclusion we immediately have
∆; Γ, (x : τ ′′), Γ′ ⊢ c : τ &φ.

case EVar: We have e = y and (y : τ ′′′) ∈ Γ, (x : τ ′), Γ′ for some τ ′′′ ⊑ τ ′. By the bound
variable convention we can assume that there are no duplicate variables in the typing en-
vironment Γ, (x : τ ′), Γ′. If x = y we have τ ′ = τ ′′′. Since (y : τ ′′) ∈ Γ, (x : τ ′′), Γ′ and
τ ′′ ⊑ τ ′ and τ ′ ⊑ τ by transitivity τ ′′ ⊑ τ and therefore ∆; Γ, (x : τ ′′), Γ′ ⊢ y : τ &φ. If
x , y we have (y : τ ′′′) ∈ Γ, (x : τ ′), Γ′ and therefore (y : τ ′′′) ∈ Γ, (x : τ ′′), Γ′ and hence
∆; Γ, (x : τ ′′), Γ′ ⊢ y : τ &φ.

case ELam: We have e = fun y -> e′ and by the bound variable convention we can assume

that x , y. It must be the case that ∆; Γ, (x : τ ′), Γ′ ⊢ fun y -> e′ : τ &φ where τ = τ1
φ′

−→ τ2
for some types τ1 and τ2 and effect φ ′ by rule ELam. Furthermore it must be the case that
∆; Γ, (x : τ ′), Γ′, (y : τ1) ⊢ e′ : τ2 &φ ′ and therefore by the IH ∆; Γ, (x : τ ′′), Γ′, (y : τ1) ⊢ e′ :
τ2 &φ ′. By rule ELam it therefore follows again that ∆; Γ, (x : τ ′′), Γ′ ⊢ fun y -> e′ : τ &φ.

case EApp: We have e = e0 e1. It must be the case that ∆; Γ, (x : τ ′), Γ′ ⊢ e0 : τ1
φ′

−→ τ &φ0 and
∆; Γ, (x : τ ′), Γ′ ⊢ e1 : τ1 &φ1 for some effects φ0, φ1, and φ

′ such that φ ′ ⊔ φ0 ⊔ φ1 ⊑ φ and

φ0 ⊓φ1 ⇛ φ. By two applications of the IH we have ∆; Γ, (x : τ ′′), Γ′ ⊢ e0 : τ1
φ′

−→ τ &φ0 and
∆; Γ, (x : τ ′′), Γ′ ⊢ e1 : τ1 &φ1 and therefore ∆; Γ, (x : τ ′′), Γ′ ⊢ e0 e1 : τ &φ by rule EApp.

�

A.4 Proof for Lemma 3.4: Sub-typing and sub-effecting

Proof. By induction on the derivation tree for Γ ⊢ e : τ &φ. Let ∆; Γ, e,τ ,τ ′,φ, and φ ′ be given.

case EConst: By assumption ∆; Γ ⊢ c : τ &φ hence ∆(c) = τ ′′ and τ ′′ ⊑ τ and therefore by
transitivity τ ′′ ⊑ τ ′. As φ is free in the conclusion we can conclude with φ ′ in its place.

case EVar: By assumption ∆; Γ ⊢ x : τ &φ hence (x : τ ′′) ∈ Γ and τ ′′ ⊑ τ and therefore by
transitivity τ ′′ ⊑ τ ′. Again φ is free in the conclusion so we can conclude with φ ′ in its place.

case ELam: By assumption ∆; Γ ⊢ fun x -> e : τ &φ hence τ = τ1
φ1
−→ τ2 and ∆; Γ, (x : τ1) ⊢

e : τ2 &φ1. In the condition τ1
φ1
−→ τ2 ⊑ τ ′ it must be the case that τ ′ = τ ′1

φ′
1

−→ τ ′2 for some
τ ′1 ⊑ τ1, and φ1 ⊑ φ ′

1, and τ2 ⊑ τ ′2 . By the IH it now follows that Γ, (x : τ1) ⊢ e : τ ′2 &φ ′
1 and

therefore by the type environment relaxation lemma (Lemma 3.3) Γ, (x : τ ′1) ⊢ e : τ ′2 &φ ′
1.

But then by rule ELam we have Γ ⊢ fun x -> e : τ ′1
φ′
1

−→ τ ′2 &φ ′ since again φ ′ is free in the
conclusion.

case EApp: By assumption ∆; Γ ⊢ e0 e1 : τ &φ hence ∆; Γ ⊢ e0 : τ1
φ′′

−→ τ &φ0 and ∆; Γ ⊢ e1 :
τ1 &φ1 for some φ ′′ ⊔ φ0 ⊔ φ1 ⊑ φ and φ0 ⊓ φ1 ⇛ φ. Since τ ⊑ τ ′ by rule FunSub we can

conclude τ1
φ′′

−→ τ ⊑ τ1
φ′′

−→ τ ′ and hence by the IH ∆; Γ ⊢ e0 : τ1
φ′′

−→ τ ′&φ0 and therefore
∆; Γ ⊢ e0 e1 : τ &φ ′ as the implication requirement is monotone in the conclusion.

�

A.5 Proof for Lemma 3.5: Substitution

Proof. Let ∆, Γ, x,τ ,τ ′, e, e′, and φ be given. We proceed by structural induction on e and as-
sume ∆; Γ, (x : τ ′) ⊢ e : τ &φ and ∆; Γ ⊢ e′ : τ ′& ff/ff and x < fv(e′).

case e = c: First c[y 7→ e′] = c. Only the rule (EConst) is applicable to constants hence ∆(c) =
τ ′′ for some τ ′′ ⊑ τ . Since (EConst) holds regardless of the type environment and the effect
φ we can conclude ∆; Γ ⊢ c : τ &φ.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:26 J. Midtgaard et al.

case e = y:

subcase x = y: First y[x 7→ e′] = e′. By assumption ∆; Γ, (x : τ ′) ⊢ x : τ &φ hence τ ′ ⊑ τ .
Furthermore since ∆; Γ ⊢ e′ : τ ′& ff/ff and ff/ff ⊑ φ by Lemma 3.4 on sub-typing and
sub-effecting we can conclude ∆; Γ ⊢ e′ : τ &φ.

subcase x , y: First y[x 7→ e′] = y and we must have (y : τ ′′) ∈ Γ, (x : τ ′) for some τ ′′ ⊑ τ .
But then it must also be the case that (y : τ ′′) ∈ Γ and hence ∆; Γ ⊢ y : τ &φ.

case e = fun y -> e′′:

By the bound variable convention [Pierce 2002] we can assume x , y. We can assume

∆; Γ, (x : τ ′) ⊢ fun y -> e′′ : τ1
φ′

−→ τ2 &φ where τ = τ1
φ′

−→ τ2 by rule ELam. It must
further be the case that ∆; Γ, (x : τ ′), (y : τ1) ⊢ e′′ : τ2 &φ ′ and therefore ∆; Γ, (y : τ1), (x :
τ ′) ⊢ e′′ : τ2 &φ ′. Hence by the IH we can conclude ∆; Γ, (y : τ1) ⊢ e′′[x 7→ e′] : τ2 &φ ′

and therefore by rule ELam ∆; Γ ⊢ fun y -> e′′[x 7→ e′] : τ1
φ′

−→ τ2 &φ. By the definition
of substitution (fun y -> e′′)[x 7→ e′] = fun y -> e′′[x 7→ e′] since y < fv(e′). Therefore

∆; Γ ⊢ (fun y -> e′′)[x 7→ e′] : τ1
φ′

−→ τ2 &φ as desired.
case e = e0 e1: Only the rule (EApp) is applicable to syntactic applications, hence we can as-

sume ∆; Γ, (x : τ ′) ⊢ e0 : τ1
ef ′/ev′

−→ τ & ef 0/ev0 and ∆; Γ, (x : τ ′) ⊢ e1 : τ1 & ef 1/ev1 for some
type τ1 and effects ef 0/ev0, ef

′/ev ′, ef 1/ev1.

But then by the IH we can conclude ∆; Γ ⊢ e0[x 7→ e′] : τ1
ef ′/ev′

−→ τ & ef 0/ev0 and ∆; Γ ⊢

e1[x 7→ e′] : τ1 & ef 1/ev1. Therefore by (EApp) ∆; Γ ⊢ (e0 e1)[x 7→ e′] : τ & ef /ev.

�

A.6 Proof for Theorem 3.6: Preservation

Proof. Let ∆, Γ, e,τ ,φ, e′,η be given. We proceed by induction on the derivation for ∆; Γ ⊢ e :
τ &φ. The cases (EConst), (EVar), and (ELam) are vacuously true since no reduction rules exist

for these cases. As a consequence we must have e = e0 e1 and ∆; Γ ⊢ e0 : τ1
φ′

−→ τ &φ0 and
∆; Γ ⊢ e1 : τ1 &φ1 and φ ′ ⊔ φ0 ⊔ φ1 ⊑ φ and φ0 ⊓ φ1 ⇛ φ. We proceed by case analysis on the
applied reduction rule:

case (AppL): Hence e0
η

−→ e′0 and by the IH ∆; Γ ⊢ e′0 : τ1
φ′

−→ τ &φ0 and therefore ∆; Γ ⊢

e′0 e1 : τ &φ by rule EApp.

case (AppR): Hence e1
η

−→ e′1 and by the IH ∆; Γ ⊢ e′1 : τ1 &φ1 and therefore ∆; Γ ⊢ e0 e
′
1 : τ &φ

by rule EApp.

case (AppLam): By assumption ∆; Γ ⊢ fun x -> e : τ1
φ′

−→ τ &φ0 and ∆; Γ ⊢ val : τ1 &φ1.
Furthermore by the typing of syntactic values (Lemma 3.1) we have ∆; Γ ⊢ val : τ1 & ff/ff

and fv(e) ⊆ {x}. By (ELam)we have∆; Γ, (x : τ1) ⊢ e : τ &φ ′ and therefore by the substitution
lemma (Lemma 3.5) we have ∆; Γ ⊢ e[x 7→ val] : τ &φ ′. Furthermore Lemma 3.4 lets us relax
the conclusion to ∆; Γ ⊢ e[x 7→ val] : τ &φ.

case (AppDelta): By assumption ∆; Γ ⊢ c val1 . . . valn : τ &φ and therefore ∆; Γ ⊢ c :

τ1
ff/ff
−→ . . .

ff/ff
−→ τn

φ′

−→ τ &φ by our assumption on the type and effect of primitives and
∆; Γ ⊢ val1 : ff/ff&τ1, . . .∆; Γ ⊢ valn : ff/ff&τn . Furthermore by our assumption about
the soundness of the result type of primitives we have ∆; Γ ⊢ val : τ & ff/ff and therefore
we can conclude ∆; Γ ⊢ val : τ &φ by Lemma 3.1.

�

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:27

A.7 Proof for Theorem 3.6: Progress

Proof. Let ∆, e,τ , ef , ev be given. We proceed by structural induction on e.

case e = c: c is a syntactic value and immediately satisfies the preservation.
case e = x: It must the case that (x : τ ′) ∈ · which is impossible hence the case is vacuously

true.
case e = fun x -> e: fun x -> e is a syntactic value and immediately satisfies preservation.

case e = e0 e1: By assumption we have ∆; · ⊢ e0 : τ ′′
φ′

−→ τ &φ0 and ∆; · ⊢ e1 : τ ′′&φ ′′ and
φ ′⊔φ0⊔φ

′′ ⊑ φ and φ0⊓φ
′′
⇛ φ. By the IH either e0 and e1 are syntactic values or they can

take a step. If e0
η

−→ e′0 we can conclude e0 e1
η

−→ e′0 e1 by rule (AppL). Similarly if e1
η

−→ e′1

we can conclude e0 e1
η

−→ e0 e
′
1 by rule (AppR). Otherwise it must be the case that e0 and e1

are syntactic values. By Lemma 3.1 we can choose φ ′′
= ff/ff. By Lemma 3.2 on canonical

forms the syntactic value e0 may take one of two forms: either as a lambda expression or as
a partially applied constant (primitive).

If e0 = fun x -> e then by rule (AppLam) we have (fun x -> e) e1
ϵ

−→ e[x 7→ e1]. On
the other hand we may have that e0 = c val1 . . . valn−1 with n ≤ arity(c) and ⊢ c :

τ1
ff/ff
−→ · · ·

ff/ff
−→ τn−1

ff/ff
−→ τ ′′

φ′

−→ τ & ff/ff with ∆; · ⊢ val1 : τ1 & ff/ff, . . . , ∆; · ⊢ valn−1 :
τn−1 & ff/ff.
Ifn+1 = arity(c) the outermost application completes the partial application and hence by as-
sumptionδ (c val1 . . . valn+1) = (val,η) and therefore by rule (AppDelta) c val1 . . . valn−1 e1
η

−→ val as desired. Alternatively,n+1 ≤ arity(c) and hence c val1 . . . valn−1 e1 is a syntactic
value.

�

A.8 Proof for Lemma 3.7: One-step soundness of effect bit

Proof. By structural induction on e. Let ∆, Γ, e,τ , ef , ev,η, and e′ be given. emust be of the form
e0 e1 as there otherwise would be no reduction rule to apply it to. We proceed by case analysis on
the applied reduction rule.

case AppL: We have ∆; Γ ⊢ e0 : τ1
φ′

−→ τ2 &φ0 and ∆; Γ ⊢ e1 : τ1 &φ1 e0
η

−→ e′0 and η , ϵ . But
then by the IH φ0 = tt/ev0. From the requirement φ ′ ⊔ tt/ev0 ⊔ φ1 ⊑ ef /ev it now follows
that ef = tt by componentwise implication ordering.

case AppR: We have ∆; Γ ⊢ e0 : τ1
φ′

−→ τ2 &φ0 and ∆; Γ ⊢ e1 : τ1 &φ1 e1
η

−→ e′1 and η , ϵ . But
then by the IH φ1 = tt/ev1. From the requirement φ ′ ⊔ φ0 ⊔ tt/ev1 ⊑ ef /ev it now follows
that ef = tt by componentwise implication ordering.

case AppLam: In this case η = ϵ and hence the property is vacuously true.
case AppDelta: By assumption we have that ∆; · ⊢ c val1 . . . valn : φ &τ and therefore

∆; · ⊢ c : φ &τ1
ff/ff
−→ . . .

ff/ff
−→ τn

ef /ev
−→ τ by our assumption on the type and effect of primitives

and ∆; · ⊢ val1 : ff/ff&τ1, . . .∆; · ⊢ valn : ff/ff&τn . Since δ (c val1 . . . valn) = (val,η)

and η , ϵ our assumption on the type and effect of primitives furthermore ensures that
ef = tt as desired.

�

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:28 J. Midtgaard et al.

A.9 Proof for Theorem 3.8: Soundness of effect bit

Proof. Let ∆; Γ, e,τ , ef /ev and e
η1
−→ e1

η2
−→ . . .

ηn
−→ en be given. Furthermore assume that

∆; Γ ⊢ e : τ & ef /ev and that there exists i such that ηi , ϵ . We proceed by induction on n (the
length of the trace).

case n = 0: There exists no i such that ηi , ϵ . hence the implication is vacuously true.
case n = n′ + 1: By preservation we know that ∆; Γ ⊢ ei : τ & ef /ev for any 1 ≤ i ≤ n. If ηn = ϵ

the effect must happen in steps i ≤ i < n and if ηn , ϵ an effect happens in the last step.

In the first case it follows by the IH that ef = tt. In the last case we have en−1
ηn
−→ en and

∆; Γ ⊢ en−1 : τ & ef /ev and ηn , ϵ hence ef = tt follows from the one-step soundness.

�

A.10 Proof for Lemma 3.10: One-step diamond property up to effects

Proof. By structural induction on e. Let e, el , er ,ηl ,ηr be given. If el = er we are done. We there-
fore assume el , er . The constant, variable, and lambda cases are vacuously true as no reduction
rule applies to them. It must therefore be the case that e = e0 e1. We proceed by case analysis on

the rule applied in e0 e1
ηl
−→ el .

case AppL: We have e0
ηl
−→ e′0. There are now two cases for the rule applied in e0 e1

ηr
−→ er . If

it is also by application of (AppL)we have e0
ηr
−→ e′′0 and it must be the case that e′0 , e′′0 . But

then by the IH there exists e′′′0 and e′0
η′
l

−→ e′′′0 and e′′0
η′r
−→ e′′′0 and therefore e′0 e1

η′
l

−→ e′′′0 e1

and e′′0 e1
η′r
−→ e′′′0 e1.

If the second rule is by application of (AppR) then we have e0 e1
ηl
−→ e′0 e1 and e0 e1

ηr
−→ e0 e

′
1

for some e′1 such that e1
ηr
−→ e′1. But then e′0 e1

ηr
−→ e′0 e

′
1 and e0 e

′
1

ηl
−→ e′0 e

′
1.

There can be no other cases as (AppLam) and (AppDelta) only apply to fully reduced appli-
cations thus contradicting our application of (AppL).

case AppR: Symmetric to the (AppL) case.
case AppLam: Wemust have e = (fun x -> e) val. There can be no other cases than (AppLam)

for the rule applied in (fun x -> e) val
ηr
−→ er since an application of (AppL) or (AppR)

would mean that the sub-expressions of e are not values, and since (AppDelta) applies to
syntactically different terms. We therefore have el = e[x 7→ val] = er thus contradicting our
assumption el , er .

case AppDelta: We must have e = c val1 . . . valm form = arity(c). There can be no other

cases than (AppDelta) for the rule applied in c val1 . . . valm
ηr
−→ er since an application

of (AppL) or (AppR) would mean that the sub-expressions of e are not values, and since
(AppLam) applies to syntactically different terms. We therefore have el = val = er and
ηl = ηr for δ (c val1 . . . valm) = (val,ηl) thus contradicting our assumption el , er .

�

A.11 Proof for Lemma 3.11: Multi-step diamond property up to effects

Proof. Let two traces e
η1
−→ e1

η2
−→ . . .

ηn
−→ en and e

η′1
−→ e′1

η′2
−→ . . .

η′
n′

−→ e′n′ be given. We
proceed by induction on the pair or trace lengths (n,n′) ordered lexicographically:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:29

case n = 0: In this case we have an empty trace e and some other (possibly non-empty) trace

e
η′1
−→ e′1

η′2
−→ . . .

η′
n′

−→ e′n′ . But then we choose this second trace and the empty trace e′n′ to
complete the two paths into a common expression em = e′n′ withm ≤ 0 + n′.

case n = k + 1: case n′ = 0: In this case we have an empty trace e and some other non-empty

trace e
η1
−→ e1

η2
−→ . . .

ηn
−→ en . But then we choose the empty trace en and this first trace

to complete the two paths into a common expression em = en withm ≤ n + 0.

case n′ = k ′
+ 1: In this case we have two non-empty traces e

η1
−→ e1

η2
−→ . . .

ηk
−→ ek

ηk+1
−→

ek+1 and e
η′1
−→ e′1

η′2
−→ . . .

η′
k′

−→ e′
k ′

η′
k′+1
−→ e′

k ′+1
. By the IH there exists traces ek

ηl
k+1
−→ . . .

ηlm
−→

elm and e′
k ′

ηr
k′+1
−→ . . .

ηrm
−→ erm such that elm = erm andm ≤ k + k ′.

Since e′
k ′

η′
k′+1
−→ e′

k ′+1
and e′

k ′

ηr
k′+1
−→ . . .

ηrm
−→ erm then by a second application of the IH there

exists traces e′
k ′+1

η′
k′+2
−→ . . .

η′
k′+m′

−→ e′
k ′+m′ and erm

ηr
m+1
−→ . . .

ηr
k′+m′

−→ er
k ′+m′ such that e′

k ′+m′ =

er
k ′+m′ andm

′ ≤ 1 + (m − (k ′
+ 1) + 1) =m − k ′

+ 1. But then the length of the latter trace
is k ′
+m′ − (m + 1) + 1 = k ′

+m′ −m ≤ k ′
+m − k ′

+ 1 −m = 1.

Symmetrically since ek
ηk+1
−→ ek+1 and ek

ηl
k+1
−→ . . .

ηlm
−→ elm then by a third application of

the IH there exists traces ek+1
ηk+2
−→ . . .

ηk+m′′

−→ ek+m′′ and elm
ηl
m+1
−→ . . .

ηl
k+m′′

−→ el
k+m′′ such that

ek+m′′ = el
k+m′′ andm

′′ ≤ 1 + (m − (k + 1) + 1) = 1 +m − k . Again the length of the latter
trace is k +m′′ − (m + 1) + 1 = k +m′′ −m ≤ k + 1 +m − k −m = 1.
Now elm = erm and we can reach er

k ′+m′ and e
l
k+m′′ in either 0 or 1 step which leaves us with

four cases:
case k ′

+m′
=m and k +m′′

=m: In this case elm = el
k+m′′ and erm = er

k ′+m′ thereby sat-

isfying our goal of two traces: ek+1
ηk+2
−→ . . .

ηk+m′′

−→ ek+m′′ and e′
k ′+1

η′
k′+2
−→ . . .

η′
k′+m′

−→ e′
k ′+m′

and furthermore ek+m′′ = el
k+m′′ = elm = erm = er

k ′+m′ = e′
k ′+m′ by the IHs. Finally

k ′
+m′

=m = k +m′′ ≤ k + k ′
< k + k ′

+ 2.
case k ′

+m′
=m + 1 and k +m′′

=m: In this case elm = el
k+m′′ and erm+1 = er

k ′+m′ we

thereby have two traces: ek+1
ηk+2
−→ . . .

ηk+m′′

−→ ek+m′′ and e′
k ′+1

η′
k′+2
−→ . . .

η′
k′+m′

−→ e′
k ′+m′ such

that ek+m′′ = em = el
k+m′′ and e′

k ′+m′ = e′m+1 = er
k ′+m′ . Locally since elm = erm and

erm
ηr
m+1
−→ erm+1 = er

k ′+m′ we also have elm
ηr
m+1
−→ erm+1 = er

k ′+m′ . We can therefore assemble

two traces of equal length: ek+1
ηk+2
−→ . . .

ηk+m′′

−→ ek+m′′ = el
k+m′′ = elm

ηr
m+1
−→ erm+1 = er

k ′+m′

and e′
k ′+1

η′
k′+2
−→ . . .

η′
k′+m′

−→ e′
k ′+m′ = e′m+1 such that erm+1 = e′m+1 and such that m + 1 ≤

k + k ′
+ 1 < k + k ′

+ 2.
case k ′

+m′
=m and k +m′′

=m + 1: Symmetric to the above case.

case k ′
+m′

=m + 1 and k +m′′
=m + 1: In this case elm = erm and elm

ηl
m+1
−→ elm+1 = em+1

erm
ηr
m+1
−→ erm+1 = e′m+1. By Lemma 3.10 either elm+1 = erm+1 or there exists em+2 such that

elm+1
ηl
m+2
−→ em+2 and erm+1

ηr
m+2
−→ em+2.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:30 J. Midtgaard et al.

In the first case we have two traces ek+1
ηl
k+2
−→ . . .

ηl
k+m′′

−→ el
k+m′′ and e′

k ′+1

ηr
k′+2
−→ . . .

ηr
k′+m′

−→

er
k ′+m′ such that el

k+m′′ = elm+1 = er
k ′+m′ = erm+1 and k ′

+ m′
= m + 1 = k + m′′ ≤

k + k ′
+ 1 < k + k ′

+ 2 as desired.

In the second case we have two traces ek+1
ηl
k+2
−→ . . .

ηl
k+m′′

−→ el
k+m′′ = elm+1

ηl
m+2
−→ em+2 and

e′
k ′+1

ηr
k′+2
−→ . . .

ηr
k′+m′

−→ er
k ′+m′ = erm+1

ηr
m+2
−→ em+2 such that k

′
+m′
+1 =m+2 = k +m′′

+1 ≤

k + k ′
+ 2 as desired.

�

A.12 Proof for Lemma 3.12: Determinism of run-time effects

Proof. As a stepping stone we first realize that if e
η

−→ e then η = ϵ . Let e,η be given. We
proceed by structural induction on e. The constant, variable, and lambda cases are all vacuously
true as no reduction step applies to expressions of these forms. As a consequence e = e0 e1 for
some e0 and e1. We proceed by case analysis on the applied reduction rule.

case AppL: We have e0
η

−→ e0 and by the IH η = ϵ as desired.
case AppR: Symmetric to the (AppL) case.
case AppLam: We have e = (fun x -> e′) val and η = ϵ as desired.
case AppDelta: We have e = c val1 . . . valn and n = arity(c) and δ (c val1 . . . valn) =

(val,η) and e = val. That e is simultaneously a value and an expression able to take a step
contradicts Lemma 3.2 on canonical forms and the case is thereby vacuously true.

With the helper result in place we now proceed to the main lemma. Let e, e′,η, and η′ be given.
Again we proceed by structural induction on e. The constant, variable, and lambda cases are all
vacuously true as no reduction step applies to expressions of these forms. As a consequence e =
e0 e1 for some e0 and e1. We proceed by case analysis on the applied reduction rule.

case AppL: We have e0
η

−→ e′0 and e′ = e′0 e1. There are now two cases:

If the reduction for e
η′

−→ e′ is also by application of rule (AppL) we have e0
η′

−→ e′0 and by
the IH we have η = η′ as desired.

If the reduction for e
η′

−→ e′ is by application of rule (AppR) we have e1
η′

−→ e′1. Furthermore
e′0 e1 = e0 e

′
1 which means e0 = e′0 and e1 = e′1 and e = e′. But then by our helper result above

we have η = ϵ = η′.
case AppR: Symmetric to the (AppL) case.
case AppLam: We have e = (fun x -> e′) val and η = ϵ . Since no other rule applies to expres-

sions of this syntactic form the reduction step for (fun x -> e′) val
η′

−→ e′ must also be by
application of (AppLam) and therefore η′ = ϵ .

case AppDelta: We have e = c val1 . . . valn and n = arity(c) and δ (c val1 . . . valn) =

(val,η) and e′ = val. Since no other rule applies to expressions of this syntactic form the

reduction step for c val1 . . . valn
η′

−→ e′ must also be by application of (AppDelta) and
therefore δ (c val1 . . . valn) = (val,η′). It now follows by the determinism of δ that η = η′.

�

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

Effect-Driven �ickChecking of Compilers 15:31

A.13 Proof for Lemma 3.13: One-step diamond property of run-time effects

Proof. By structural induction on e. Let ∆, Γ, e, el , er ,τ , ef , ev be given. The constant, variable,
and lambda cases are vacuously true as no reduction rule applies to them. It must therefore be the

case that e = e0 e1. We proceed by case analysis on the rule applied in e0 e1
ηl
−→ el .

case AppL: We have e0
ηl
−→ e′0. There are now two cases for the rule applied in e0 e1

ηr
−→ er . If

it is also by application of (AppL)we have e0
ηr
−→ e′′0 and it must be the case that e′0 , e′′0 . But

then by the IH there exists e′′′0 and e′0
η′
l

−→ e′′′0 and e′′0
η′r
−→ e′′′0 and ηlη

′
l
= ηrη

′
r and therefore

e′0 e1
η′
l

−→ e′′′0 e1 and e′′0 e1
η′r
−→ e′′′0 e1.

If the second rule is by application of (AppR) then we have e0 e1
ηl
−→ e′0 e1 and e0 e1

ηr
−→ e0 e

′
1

for some e′1 such that e1
ηr
−→ e′1. But then e′0 e1

ηr
−→ e′0 e′1 and e0 e′1

ηl
−→ e′0 e′1. Is it true

that ηlηr = ηrηl ? Clearly this holds if either ηl = ϵ or ηr = ϵ . Thus assume that ηl , ϵ

and ηr , ϵ . By Lemma 3.7 it must therefore be the case that ef = tt and by the typing
assumption that ∆; Γ ⊢ e0 : tt& ev0 and ∆; Γ ⊢ e1 : tt& ev1 for some ev0 and ev1. But then
tt/ev0 ⊓ tt/ev1 = tt/(ev0 ∧ ev1) and tt/(ev0 ∧ ev1) ⇛ ef /ev thus requiring ef = tt and
ev = tt and thereby contradicting our assumption ev = ff.
There can be no other cases as (AppLam) and (AppDelta) only apply to fully reduced appli-
cations thus contradicting our application of (AppL).

case AppR: Symmetric to the (AppL) case.
case AppLam: Wemust have e = (fun x -> e) val. There can be no other cases than (AppLam)

for the rule applied in (fun x -> e) val
ηr
−→ er since an application of (AppL) or (AppR)

would mean that the sub-expressions of e are not values, and since (AppDelta) applies to
syntactically different terms. We therefore have el = e[x 7→ val] = er thus contradicting our
assumption el , er .

case AppDelta: We must have e = c val1 . . . valm form = arity(c). There can be no other

cases than (AppDelta) for the rule applied in c val1 . . . valm
ηr
−→ er since an application

of (AppL) or (AppR) would mean that the sub-expressions of e are not values, and since
(AppLam) applies to syntactically different terms. We therefore have el = val = er and
ηl = ηr for δ (c val1 . . . valm) = (val,ηl) thus contradicting our assumption el , er .

�

A.14 Proof for Lemma 3.14: Multi-step diamond property with run-time effects

Proof. We proceed by induction on the length of the shortest of the two traces.

case n = 0: In this case e = val = e′n′ . But then we must have n′ = 0 otherwise the sec-
ond trace would represent reductions from an irreducible value. Clearly for the empty case
η1η2 . . .ηn = ϵ = η′1η

′
2 . . .η

′
n′ .

case n = k + 1: If e1 = e′1 then by Lemma 3.12 we have η1 = η′1. Furthermore by preservation
(Theorem 3.6) we can conclude that ∆; Γ ⊢ e1 : τ & ef /ev and therefore by the IH we get that
η2 . . .ηn = η

′
2 . . .η

′
n′ and n = n′. We therefore have η1η2 . . .ηn = η

′
1η

′
2 . . .η

′
n′ as desired.

If e1 , e′1 then by Lemma 3.13 there exists e′′2 such that e1
η′′2
−→ e′′2 and e′1

η′′′2
−→ e′′2 and

η1η
′′
2 = η′1η

′′′
2 . Since e1

η2
−→ . . .

ηn
−→ en = val and e1

η′′2
−→ e′′2 by Lemma 3.11 there exists a

trace e′′2
η′′3
−→ . . .

η′′
l

−→ el = val and a necessary empty trace en = val. But then by the IH
we must have η2 . . .ηn = η′′2 η

′′
3 . . .η

′′
l
and n − 1 = l − 1. As a consequence η1η2 . . .ηn =

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

15:32 J. Midtgaard et al.

η1η
′′
2 η

′′
3 . . .η

′′
l
= η′1η

′′′
2 η′′3 . . .η

′′
l
and n = l . Since e′1

η′′′2
−→ e′′2

η′′3
−→ . . .

η′′
l

−→ el = val and

e′1
η′2
−→ . . .

η′
n′

−→ e′n = val and the former is of length n − 1 by the IH we have η′′′2 η′′3 . . .η
′′
l
=

η′2 . . .η
′
n′ and l−1 = n′−1. By transitivity of equality we can now conclude that η1η2 . . .ηn =

η1η
′′
2 η

′′
3 . . .η

′′
l
= η′1η

′′′
2 η′′3 . . .η

′′
l
= η′1η

′
2 . . .η

′
n′ and n = l = n′ as desired.

�

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 15. Publication date: September 2017.

	Abstract
	1 Introduction
	2 Types and effects for evaluation-order dependence
	2.1 Syntax
	2.2 Semantics
	2.3 The type and effect system

	3 Soundness of type and effect system
	3.1 Preservation and progress
	3.2 Soundness of the effect bit
	3.3 Soundness of the evaluation-order bit

	4 Type-driven program generation: state of the art
	4.1 QuickCheck
	4.2 Generating type-correct programs

	5 Effect-driven program generation
	6 Implementation
	6.1 Environment representation
	6.2 Distribution
	6.3 Quickchecking the testing code
	6.4 Limitations
	6.5 Shrinking strategies

	7 Experiments
	8 Related work
	8.1 Effect analyses
	8.2 Randomized testing

	9 Conclusion and future work
	References
	Acknowledgments
	A Appendix
	A.1 Proof for Lemma 3.1: Typing of syntactic values
	A.2 Proof for Lemma 3.2: Canonical forms
	A.3 Proof for Lemma 3.3: Type environment relaxation
	A.4 Proof for Lemma 3.4: Sub-typing and sub-effecting
	A.5 Proof for Lemma 3.5: Substitution
	A.6 Proof for Theorem 3.6: Preservation
	A.7 Proof for Theorem 3.6: Progress
	A.8 Proof for Lemma 3.7: One-step soundness of effect bit
	A.9 Proof for Theorem 3.8: Soundness of effect bit
	A.10 Proof for Lemma 3.10: One-step diamond property up to effects
	A.11 Proof for Lemma 3.11: Multi-step diamond property up to effects
	A.12 Proof for Lemma 3.12: Determinism of run-time effects
	A.13 Proof for Lemma 3.13: One-step diamond property of run-time effects
	A.14 Proof for Lemma 3.14: Multi-step diamond property with run-time effects

