
grpc-dotnet load balancing proposal
(and related proposals)
IMPORTANT: THIS DOCUMENT IS SHARED WITH EXTERNAL
CONTRIBUTORS, DON'T SHARE ANYTHING CONFIDENTIAL

Status: draft

General
This document is a workspace where gRFC proposals are created.

Goal
The long run goal is to introduce the required structure for basic load balancing policies already
available in other languages and aim to support xDS in the future.

Links
● gRPC roposals repo: ​https://github.com/grpc/proposal
● gRFC process described here: ​https://github.com/grpc/proposal#process
● gRFC template: ​https://github.com/grpc/proposal/blob/master/GRFC-TEMPLATE.md
● gRPC dotnet load balancing issue: ​https://github.com/grpc/grpc-dotnet/issues/521

https://github.com/grpc/proposal
https://github.com/grpc/proposal#process
https://github.com/grpc/proposal/blob/master/GRFC-TEMPLATE.md
https://github.com/grpc/grpc-dotnet/issues/521

Roadmap

All implementations mentioned above are developed on gRPC dotnet fork. Link to the fork will
be pasted here soon.

1. Develop basic support for load balancing: ​[DONE]
a. dns name resolver ​[DONE]
b. pick_first policy ​[DONE]
c. round_robin policy ​[DONE]
d. prepare usage examples ​[DONE]

2. Develop grpclb policy and service config support ​[DONE]
3. Develop working prototype of xDS policy + tests + example​ [DONE]
4. Refactoring xDS policy according to A27 proposal​ [DONE]
5. Open subchannels using separate HttpClient, wrap new instance in connection class

emulate http client connectivity API ​[DONE]
6. Refactor essential implementation towards Java API + prepare a map of types eg.

DnsClientResolverPlugin (.net implementation) maps to DnsNameResolver (java
implementation)​ [DONE]

a. Refactor API ​[DONE]
b. Refactor dns resolver ​[DONE]
c. Refactor pick_first, round_robin policy ​[DONE]
d. Implement supporting infrastructure​ [DONE]

7. Start working on proposals. ​Recommended scenario: split work into smaller parts and
create separate proposals, in areas such as: ​[IN PROGRESS]

a. name resolution and resolver plugin ​[IN REVIEW]
b. service configs for resolution extension ​[IN REVIEW]
c. basic policies which include pick_first and round_robin ​[IN REVIEW]
d. grpclb policy ​[REJECTED]​ (grpclb was officially deprecated)
e. xds policy support ​[NOT STARTED]

8. Refactor grpclb policy based on Java implementation ​[REJECTED]
9. Refactor xds policy based on Java implementation ​[NOT STARTED]

LXX-dotnet-load-balancing
Author(s): Paweł Wichary
Approver: a11r
Status: Draft
Implemented in: gRPC for dotnet
Last updated: 27.05.2020
Discussion at: (filled after thread exists)

Abstract
gRPC in the .NET world is available via two separate implementations. One of those named
gRPC for dotnet is missing some key elements in the area of load balancing and the ability to
react to changing infrastructure.

This document describes the process of porting load balancing behavior from other gRPC
implementations to gRPC for dotnet.

Background - Current state of gRPC in the .NET world
There are currently two official implementations of gRPC in the .NET world
(​https://grpc.io/blog/grpc-on-dotnetcore/​):

● gRPC for C#​ - the wrapper for the native gRPC C-core implementation,
● gRPC for dotnet​ - the new implementation written entirely in C# with no native

dependencies and based on the newly released .NET Core 3.0.

The implementations are meant to coexist side-by-side and each has its advantages in terms of
available features, integrations, supported platforms, maturity and performance.

Former implementation in the C language is not a part of this proposal as it leverages load
balancing capabilities from the core library. Latter implementation, developed in .NET Core is
missing some key elements in the area of load balancing, which is a topic of this proposal.

Why even bother with gRPC for dotnet? gRPC was presented by Microsoft as an alternative for
WCF technology used in the .NET world and an alternative for existing communication tools.
Some developers will try to adopt gRPC technology and it will be the easiest for them to start
with the gRPC for dotnet as it has first-class integration with the .NET Core framework.

https://grpc.io/blog/grpc-on-dotnetcore/

Background - Load balancing in gRPC Java
Load balancing in gRPC Java has a rich history and is based on the latest gRFC guidelines.
Java and C# languages are constructed around the same paradigms and share a similar goal of
being general-purpose programming languages. We will consider Java load balancing as a
reference for this work.

Main elements of load balancing
gRPC team while working on Java implementation has designed an API for load balancing. This
API is still considered experimental. However, it has been successfully used since gRPC Java
1.2.0, up to the current release (1.29.0). The API has been evolving several times to satisfy
generally agreed requirements.

Java API documentation is available here:
https://grpc.github.io/grpc-java/javadoc/io/grpc/LoadBalancer.html

Main elements of this API are:

● Name resolver,
● Name resolution listener,
● Load balancer (aka load balancing policy),
● Subchannels,
● Subchannel picker,
● Supporting classes (eg. factories, data transfer objects, reflection based registries).

In order to understand the way those elements are correlated, it is important to understand how
gRPC Java works. A high overview will be described as an introduction to porting
implementation to gRPC for dotnet.

Managed channels are created per specified URI target eg. ​service.googleapis.com​. They are
responsible for aggregating core components, managing subchannels and calling supporting
classes.

https://grpc.github.io/grpc-java/javadoc/io/grpc/LoadBalancer.html

When a new channel is created, the URI and the scheme is defined. The scheme is used to
specify how channels should search for physical addresses. The default scheme used in gRPC
java is dns://, that implies using the DNS system during name resolution. Managed channel
delegates the work of creating name resolver to supporting classes.

The way the name resolver does its job is abstracted by the API. The default behavior can be
easily replaced by writing a new resolver and associated provider (aka factory) with higher
priority. Selecting between providers is handled by the supporting infrastructure.

After the resolver is started, a managed channel attaches a listener that reacts to any observed
change. Notification can be triggered anytime, but in most cases it occurs on request or
periodically. Anytime a listener observes, a change it’s role is to call a load balancer (aka load
balancing policy) and delegate further processing.

NOTE: Name resolvers and observers are also responsible for forming an object with the
configuration used in policies. This object is commonly named as ServiceConfig, this proposal
aims for establishing API and trivial policies like pick_first and round_robin that do not require
full blast service config implementation. We suggest little increments with the possibility of
extension to reduce the scope of this proposal.

Load balancing policies contain the main balancing logic that focuses on maintaining
subchannels accordingly to the resolution results and creating subchannel pickers. Subchannels
maintain physical connections (aka transports) for sending new RPCs. Picker on the other hand
does actual load balancing when a new call is requested. A high-level overview of the
end-to-end process was presented below.

Channel and subchannels are exposing meaningful information about their state using a state
machine with five states: IDLE, CONNECTING, READY, TRANSIENT_FAILURE and
SHUTDOWN. This information can be used while writing custom policies. It is up to the policy
implementation how to handle states transitions eg. policy may keep the channel in READY
state as long as there is at least one READY subchannel.

Last but not least, Java API also covers topics related to concurrency management. The
architecture of pluggable resolvers and policies does work on the shared state of the channel. In
order to avoid races between threads and keep this state stable gRPC Java uses
SynchronizationContext object. All tasks that mutate state must be queued. Context is
responsible for executing tasks in recorded order from a single thread which guarantees no
races. The described approach allows transport threads to work without any delays and keep
implementation locking-free at a high level.

Policies available in Java
There are four main policies implemented in gRPC Java.

● pick_first - a load balancer that provides no load-balancing over the addresses from the
name resolver. The policy is walking down the address list and sticking to the first that
works. This is the channel's default behavior that can be configured by the channel's
options or a ServiceConfig.

● round_robin - a load balancer that provides round-robin load-balancing over the
addresses from the name resolver.

● grpclb - a load balancer that implements grpclb protocol, which was defined by the gRPC
team as an implementation of look-aside load-balancing. The protocol has never been
promoted from the experimental phase. Moreover, it has been marked as deprecated in
favor of xDS (​https://groups.google.com/d/msg/grpc-io/0yGihF-EFQo/A4QKdXffBwAJ​).

● xDS - a load balancer that implements ​a suite of APIs​ that are evolving into an
industry-standard that will be used to configure a variety of data plane software. xDS is a
complete solution that affects both name resolving and load balancing. xDS policy
communicates with cluster manager in order to obtain server addresses and delegates

https://groups.google.com/d/msg/grpc-io/0yGihF-EFQo/A4QKdXffBwAJ

load balancing to child policies eg. a weighted round-robin. (detailed description of xDS
https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md​)

Related Proposals
N/A

Related Documentation
● https://github.com/grpc/grpc/blob/master/doc/connection-backoff.md
● https://github.com/grpc/grpc/blob/master/doc/connectivity-semantics-and-api.md
● https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
● https://github.com/grpc/grpc/blob/master/doc/naming.md
● https://github.com/grpc/grpc/blob/master/doc/statuscodes.md
● https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md

Proposal - changes in gRPC for dotnet
We suggest that implementing load balancing capabilities in gRPC dotnet should derive from
work that has already been done in Java space. This approach will use proven solutions and
create a stable environment for further development. Moreover, the resulting implementation will
be interoperable with Java and other languages.

We propose to port gRPC Java load balancing API along with DnsNameResolver,
PickFirstLoadBalancer (pick_first) and RoundRobinLoadBalancer (round_robin).

Porting new features to gRPC dotnet will aim for backward compatibility and will try to minimize
impact on performance. Proposed changes are mostly additive and will be connected with the
existing code base via channel and existing mechanism of creating new calls.

General approach
The initial work will be focused on implementing the API, which will be used later. The API will
be based on interfaces created in Java, but building an idiomatic C# implementation will be
prioritized over exact interface parity with the Java implementation.

Supporting classes are going to be developed along with the API and most of this work will
focus on implementing structures like factories, dynamic registries and data transfer objects.

Then a concrete implementation of name resolver and load balancing policies will be
introduced. In order to minimize the scope of this proposal, we have selected essentials such as
DnsNameResolver, PickFirstPolicy and RoundRobinPolicy. Those elements allow us to create a
load balancing flow.

Last but not least, new implementations will be wired with the existing codebase.

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md

Approach to the process of porting Java API
In order to simplify future work with ported types, we propose basic naming conventions. The
rule of thumb is using names from the Java world and modify them accordingly to match gRPC
for dotnet and C# standards.

The gRPC for dotnet repository follows the naming prefixing convention, which implies that
public and internal types are prefixed with “Grpc”. Ported types will follow this convention eg.
ConnectivityState.java will be named GrpcConnectivityState.cs.

The C# language follows the interface prefixing convention, which implies that interfaces are
prefixed with a capital “i” letter. Ported types will follow this convention as well eg.
BackoffPolicy.java which is an interface will be named IGrpcBackoffPolicy.cs.

There may be exceptions if better naming alternatives emerge eg. Listener2 class in Java will
be named GrpcNameResolutionObserver in C#.

The complete list of all ported types and their counterparts are going to be listed in the pull
request.

Skipping non-essential features
Changes introduced by this proposal will have a significant size. To reduce complexity, we
propose to descope some non-essential features proposed in
https://github.com/grpc/proposal/blob/master/A2-service-configs-in-dns.md​ and
https://github.com/grpc/proposal/blob/master/A24-lb-policy-config.md​. We will skip resolving
TXT records and further parsing it into ServiceConfig. We believe that this implementation can
be added as a next step and will not introduce long-term showstoppers.

Backwards compatibility
Current gRPC for dotnet implementation does not have a concept of subchannels, incoming
RPC calls are executed immediately using the underlying HttpClient instance. Such an

https://github.com/grpc/proposal/blob/master/A2-service-configs-in-dns.md
https://github.com/grpc/proposal/blob/master/A24-lb-policy-config.md

approach assumes that transport is always available. Any error during transmission is
immediately propagated to the client application code. Proposed changes introduce some level
of call buffering but will not influence this behavior from a client perspective as long as calls will
honor deadlines.

IMPORTANT: gRPC Java has a more complicated approach for handling call buffering on the
occasion of a channel being not able to process it properly. Since the proposed implementation
skips IDLE mode feature available in Java, call buffering is going to be simplified.

gRPC Java specifies an additional call option that allows buffering call, for this work we assume
that the value of isWaitForReady is always false. Such assumptions match the default value
used in java implementation (https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md)
and play well with current gRPC for dotnet behavior.

An important design decision that allows for backward compatibility is based on schemes
specified on the channel. gRPC for dotnet mostly uses http and https. We can take it as an
advantage, by adding a new dns scheme (which is actually a default scheme in gRPC Java).

Dns scheme will be a new additive change in gRPC for dotnet that will allow an easy separation
between existing and new clients. In other words, if we keep existing schemes http and https
behave as they used to, we will maintain backward compatibility. All applications that define a
new dns scheme will be able to use incoming features.

Current gRPC for dotnet does not support load balancing, nor updating its behavior based on
changing infrastructure. All new features should not be verified against backward compatibility.

Any introduced change must keep already existing tests pass.

Performance impact
An impact on performance will be considered as a high level overview, additional in-depth
performance tests can be introduced later before checking in changes into the repository.

First case assumes no failures during subchannel creation. In this case overhead of newly
added features emerge right after channel creation. After subchannels and an associated picker
are created the work between calls is miniscule. In the long run execution performance impact is
negligible.

gRPC for dotnet (current state) with no errors

Proposed changes with an initial load balancing overhead

The second case is about covering possible failures that may appear during calls execution.
gRPC for dotnet implementation is not aware of available service replicas, current
implementation always sticks to the first dns A record, it finds. Such implementation has limited
capabilities of scaling and self-healing. Proposed changes allow refreshing name resolution and
update subchannels accordingly.

gRPC for dotnet (current state) in face of error stops further execution

Proposed changes are aware of changing infrastructure

Known issues
HttpClient in .NET does not support connectivity state monitoring for underlying
transports.

Connectivity semantics is described here:
https://github.com/grpc/grpc/blob/master/doc/connectivity-semantics-and-api.md

Why this is important:
https://github.com/grpc/grpc-dotnet/issues/521#issuecomment-534208754

When HttpClient is expected to have this feature:
https://github.com/dotnet/runtime/issues/1793

Workaround solution: Emulate connectivity state monitoring based on less granular
information, derived by observing existing communication.

In a nutshell we will create subchannels that have a state machine matching connectivity
semantics. Existing transport implementation will get two additional pieces of code that will
trigger subchannels to change state when a relevant action (success or failure) will occur. Using
this information we will be able to perform essential transitions.

https://github.com/grpc/grpc/blob/master/doc/connectivity-semantics-and-api.md
https://github.com/grpc/grpc-dotnet/issues/521#issuecomment-534208754

In order to guarantee backward compatibility in the future, we will allow only those transitions that
are permitted in connectivity semantics documentation and for now, we will ignore getting into IDLE
state as we descope an IDLE mode feature from this work.

Long story short: subchannel starts in IDLE state, then changes state to CONNECTING. From the
CONNECTING state subchannel immediately switch to READY. From this point, the subchannel is
going to switch its state to TRANSIENT_FAILURE when a failure occurs. TRANSIENT_FAILURE will
switch to CONNECTING after the backoff policy delay. SHUTDOWN can be called anytime.

NOTE: subchannels are protected from endless looping in TRANSIENT_FAILURE ->
CONNECTING -> READY -> TRANSIEN_FAILURE sequence because when a transient failure
occurs, re-resolution is triggered. This is not a workaround, it is an actual behavior in gRPC Java as
well.

Such a solution allows porting load balancing from gRPC Java to gRPC dotnet. Moreover, in the
future when HttpClient would allow us to fully monitor underlying transports we would swap
emulation extension-points. All existing implementations will stay unbroken.

We are aware of the cons of this solution eg. like sending a call to the transport that has been closed
a second ago. Those cons are matching the current implementation of gRPC for dotnet which
assumes transport is always READY. Pros give us the ability to implement missing features today
and leave an open door for further extensions.

Possible future extensions
As this proposal opens a range of possibilities for gRPC for dotnet, like:

● Introducing better handling for ServiceConfig,
● xDS policy support,
● Support for channelz,
● Update subchannel state management after the HttpClient introduces a new monitoring

interface.

Rationale
gRPC for dotnet is promoted by Microsoft in the .NET world, to keep up with community
requirements implementation should support basic load balancing techniques that allow better
resource consumption and self-healing capabilities. As gRPC aims for cross-language
interoperability, porting implementation from Java is justified.

We chose to follow the gRPC Java load balancing API because it was designed by the gRPC
team, that has up-to-date knowledge of the requirements and planned changes. Moreover, a
customized API design for gRPC for dotnet could lead to breaking changes in the future due to
wrong assumptions in the custom design.

Implementation
This proposal was developed by Paweł Wichary as a part of a self-development plan that was
inspired by missing load balancing capabilities in gRPC for dotnet
(​https://github.com/grpc/grpc-dotnet/issues/521​). Implementation is finished, all existing tests
are passing, several new tests matching Java implementation were added. A pull request with
implementation will be created after this proposal gets an acceptance.

The implementation can also be found at:
https://github.com/wicharypawel/net-core-grpc-load-balance/tree/load-balancing-proposal-exam
ples

NOTE: this repository contains work in progress, in order to make sure you are looking at
something that is relevant to this proposal ensure:

● Branch is set to “load-balancing-proposal-examples”
● Commit hash is equal to f0628b80c469fb21502d527b8ccc85b005fe9ed2
● Submodule commit hash is equal to efd5eda4633acf97380146677ab8b985fa9abf9e

https://github.com/grpc/grpc-dotnet/issues/521
https://github.com/wicharypawel/net-core-grpc-load-balance/tree/load-balancing-proposal-examples
https://github.com/wicharypawel/net-core-grpc-load-balance/tree/load-balancing-proposal-examples

