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Preface

This dissertation consists of three essays that investigates topics concerning the three main characters

in the education production function – the teacher, the parent and the student. All three essays speak

to modes of learning that have very broad reach. Mobile education in the cases of papers one and

three, higher education in developing countries in the case of paper two. All three papers leverage

novel sources of information to inform policymaking, design, and future research. Papers one and

two are empirical inquiries powered by experimental and quasi-experimental evidence respectively,

while paper three expands the methodological toolkit available to researchers and practitioners.

The first chapter of this dissertation brings experimental evidence to the problem of improving

parental follow through in mobile education. The paper is authored by me while its contents belong

to a part of a larger project that will be published in co-authorship with Susan Athey. Mobile

learning apps offer us the opportunity to improve parenting at an unprecedented scale around the

world. Effective parenting on these platforms is constrained by follow through. I investigate whether

features on a recommendation page can increase follow through. I find that Cognitive overload is

a major factor affecting parental follow through. Providing a top-of-the-page reason significantly

decreased the completion rate by 70%. We also find null effects on completion from adding 1) a

commitment question, 2) a guide to navigate back to the page, and 3) a link to the child’s learning

report. The hypothesized positive effects from these features are likely negated by the cognitive

load penalties. However, increasing the number of recommended modules increased the number of

modules each complier completed without increasing cognitive overload.

The second chapter of this dissertation presents quasi-experimental evidence for an age-old ques-

tion – how does faculty research affect student learning? The paper is co-authored with Prashant
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Loyalka. Other co-authors who contributed to data collection and discussions include Guirong Li,

Elena Kardanova, Igor Chirikov, Ningning Yu, Shangfeng Hu, Huan Wang, Liping Ma, Fei Guo, Ou

Lydia Liu, Ashutosh Bhuradia, Saurabh Khanna, and Yanyan Li. Whether faculty research affects

college student achievement has long been the subject of debate. Previous studies use subjective

measures of student achievement, focus on correlation rather than causation, and typically focus

on one college or department, thus lacking generalizability. Using unique, large-scale survey and

assessment data that we collected from nationally representative samples of four-year STEM under-

graduates and faculty in China, India, and Russia as well as a student fixed effects identification

strategy that accounts for differential sorting of students to faculty, we present generalizable esti-

mates of the effect of faculty research on objective, standardized measures of student achievement.

Results show that faculty research has a negative effect on student achievement, suggesting direct

tradeoffs between the university’s dual mission of producing research and learning.

The third chapter of this dissertation concerns the estimation of student models using large

sparse data from online learning. The paper is authored by me while its contents belong to a part

of a larger project that will be published in co-authorship with Susan Athey. The rise of popular

mobile education applications produced data where a large number of students each answers a

small subset of questions from a large question bank. Traditional approaches from the education

measurement literature face important limitations in this context where data is large but sparse.

We propose models based on latent factorization and Bayesian variational inference to address

these challenges. Our models retrieve true parameters with greater fidelity than traditional models

in simulations. They also scale well computationally to industrial-size datasets. Compared to

traditional specifications, latent factorization models can make more accurate predictions on the

hold-out test set in general. More latent factors and adding hierarchical dependence on question

attributes contribute to better predictive performance in lower-frequency content areas. Our models

also compare favorably in both computational performance and predictive accuracy against similar

models from recent literature. We conclude by describing a real-world application of our models

in personalizing homework assignments. In a future study, we plan to run experiments with this

application to quantify the impact of personalization.
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Chapter 1

Improving Parental Follow

Through in Mobile Education

1.1 Introduction

Large-scale mobile learning apps have risen in popularity in recent years. Byju’s in India, 17Zuoye

in China, and Khan Academy in the US are just some examples of companies that offer significant

mobile options. Together, these three companies account for more than 180 million users worldwide

(Singh, 2020; Khan Academy, 2020a; Sunny Education Inc., 2018). These apps often offer features for

parents to enhance their engagement with their children’s learning. Features for parents include those

used to monitoring learning, increase practice and exposure, as well as personalized recommendations

for shoring up weak links.

Mobile learning apps offer us the opportunity to improve parenting at an unprecedented scale

around the world. This holds great promise for education in general, since parents are integral in

their children’s life successes. However, several key obstacles stand in the way of realizing this vision.

Unlike traditional venues of parental engagement (e.g. teacher-parent meetings), effective parental

engagement require three key components (Figure 1.1).

Firstly, parents need to use the App. With the explosion of number in the number of apps we

install on our phones, this is not an easy task. Secondly, education apps are typically overflowing

1



CHAPTER 1. IMPROVING PARENTAL FOLLOW THROUGH IN MOBILE EDUCATION 2

Figure 1.1: Effective parental engagement in mobile Apps

with complex features, it is hard for the parent to navigate to useful features most useful for their

child’s learning. Thirdly, even when a useful course of action is identified, the parent still needs to

follow through and take action with their child to generate any meaningful impact on her.

In reality, mobile platforms face challenges in engaging parents in each of the three stages named

in Figure 1.1. Even with a large user base, the average parental usage rate can be very low. Apps

have many complex features and parents have a hard time navigating to useful content. Finally,

parents often do not follow through in taking action with their children.

This study is a part of a series of studies examining each of these issues through experimentation.

In this paper, we seek to address the issue of parental follow through with a large-scale experiment

leveraging insights from behavioral economics. Behavioral interventions in parenting have been

increasingly studied in recent years (see Bergman (2019) for a review).

In this study, we randomized the features shown to parents on a page recommending customized

Learn-Practice-Explain (LPE) exercise modules for their children. We find that cognitive overload

is a major factor in our experiment with features shown on a recommendation page. Contrary

to our hypotheses, we find that providing a reason for recommendation at the top of the page

significantly decreased the completion rate of LPE modules by 70%. Consistent with a cognitive

overload interpretation, users who were shown a reason were 60% less likely to answer the survey

question, but those who responded provided statistically indistinguishable answers from the control
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group. We also find null effects on completion from adding 1) a commitment question, 2) a guide

to navigate back to the page, and 3) a link to the child’s learning report. The hypothesized positive

effects from these features were likely muted or negated by the penalties they induce as cognitive

overload.

While we find strong evidence of cognitive overload from the above-mentioned features, we find

no evidence that increasing the number of modules increases cognitive overload as users shown more

modules were equally likely to answer the survey question. Increasing the number of recommended

modules did not increase the number of users completing any modules, but it increased the number

of modules each complier completed.

Our experiments advance the existing behavioral literature in parenting through observing fine-

grained behavioral data generated in mobile apps. We also reveal a set of issues in parental follow

through that can inform future researchers and practitioners. Finally, my results contribute to the

understanding and improvement of an important mode of education that serves a large number of

the world’s learners. The paper is organized as follows. Section 2 samples the related literature,

section 3 describes our partnering company’s platform, section 4 details the experimental design,

section 5 lays out our results, and section 6 concludes.

1.2 Related work

Our study builds on an expanding literature of behavioral experiments in parenting (see Bergman

(2019) for a review). Many randomized studies have revealed the salience of behavioral barriers may

prevent parents from investing optimally in their children’s education. Among the barriers identified

are biased beliefs about their children’s performance, limited cognitive bandwidth, and the cost of

monitoring. Interventions ranging from text messaging about student’s behavior (Bergman, 2015) to

tax assistants (Bettinger et al., 2012) have been shown to be effective at addressing one or multiple

barriers.

Apart from their primary findings, these studies often also uncover non-obvious pitfalls. Cunha

et al. (2017) found that interactivity in a message program decreased learning outcomes. In addition,

Gallego et al. (2017) found that the lack of certain cues was responsible for a loss of half of the effect

of the program. Bergman et al. (2019) found that opt-in programs fail to deliver an impact due to
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very low uptake rates (less than 11%) compared to an opt-out program (95% uptake).

Our study is related to the growing literature on personalized learning. Education technology

companies have long made claims about the imperative of personalization. Efficacious programs,

such as those examined by Muralidharan et al. (2019) and Banerjee et al. (2007), have personal-

ized components. However, other technology-based learning programs without personalization have

shown to be similarly efficacious (e.g. Mo et al. (2014); Lai et al. (2012)). We contribute to the liter-

ature on personalization by providing experimental evidence on a recommendation page for parents

filled with personalized content for their children.

Since our experiment takes place on a recommendation page, we are also inspired by the liter-

ature around the design of recommendation systems. For example, in the literature on features of

recommendation systems, user experience studies found that a larger number of recommendations

can introduce choice fatigue (Bollen et al., 2010; Konstan and Riedl, 2012). Pu and Chen (2006)

documents how explanatory text increase trust in recommendation system and intention to return

to the page. We run multiple interventions in our experiment and one of our interventions adds an

explanation to the page explaining to the parent why the exercise modules were recommended to

her.

Our study is also related to the behavioral literature on commitment devices. Commitment

devices have been studied extensively in behavioral economics. Bryan et al. (2010) discusses the

various theories on commitment devices. They highlight the difference between hard and soft com-

mitment. The latter incurs psychological costs instead of real economic penalties. Soft commitment

devices have been applied to financial discipline (e.g. Thaler and Benartzi (2004)) and charitable

giving (e.g. Breman (2011)). Recently, Mayer et al. (2015) reports on using commitment devices

on parents to increase their usage of a reading App. One of our interventions involves varying the

presence of a soft commitment question that parents can choose to check.

Finally, our study is closely linked to the literature on technology-induced cognitive overload.

Originally proposed to explain the missing link between IT investment and productivity gain (Karr-

Wisniewski and Lu, 2010), technology-induced cognitive overload has been observed in many settings

beyond the workplace. In educational settings, teachers who taught classes that had more compli-

cated reports generated by an AI tutor used the reports less and, in turn, had much smaller impacts
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on their student achievements (Kim et al., 2019). Information overload patterns have also been

observed with parents. For example, (Fricke et al., 2018) finds complicated messages increased drop

out from the text messaging program. Cortes et al. (2018) found that compared to 3 messages per

week, 5 messages per week decreased the effect of a parental messaging experiment.

1.3 Context

Our study takes place on the platform of our partner company, 17Zuoye. 17Zuoye runs 3 separate

apps for elementary school teachers, students, and parents in China. They enjoy a high level of

adoption in the country with 60 million users in 2018 (Sunny Education Inc., 2018). The app is

designed around the functionality that allows teachers to post homework to students. The draw

for teachers is that the app provides them with ready-to-use homework questions and grades their

students’ responses automatically, reducing their workload in day-to-day teaching. The app is free

to use for teachers, students, and parents. For their revenue stream, 17Zuoye runs a ”freemium”

model for parents who want to purchase education products in the App.

Figure 1.2: Assigning homework in the
teacher app

Figure 1.3: Completing homework in the stu-
dent app

Figure 1.2 shows the teacher app’s interface for assigning homework. Teachers get to choose from

a bank of curriculum-relevant homework questions to assign to their class. Students complete the

assigned homework on the student app (see Figure 1.3). Their responses are automatically graded
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and recorded in the system. Teachers have access to student records through a data console in the

teacher app.

Figure 1.4: HW monitoring page in the par-
ent app

Figure 1.5: Purchase page in the parent app

In the parent app, parents have access to their child’s homework records. Parents get to monitor

their child’s homework performance on particular pages where this information is displayed. Parents

can also purchase education products for their children. Examples of products include educational

games for math designed as a jungle adventure, e-books designed as a recap of course material, and

online oral English courses taught in real-time. The app also carries a wide selection of free study

resources such as English videos, ebooks, and practice questions. Parents may spend time in the

app browsing these free items and assigning them to their children if they choose to.
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1.4 Experimental designs

In the recommendation page features experiment, we want to investigate how features impact

parental satisfaction and follow-through. To do this, we randomized the features shown on a page

recommending customized Learn-Practice-Explain (LPE) exercise modules for their children. While

the platform has content for math, English, and Chinese, LPE modules were only available for math.

The recommendation page was only available to parents whose child has completed a math exam on

the platform. The recommendation page is designed to prompt parents to get their child to complete

the LPE exercise using the parent’s cell phone.

Recommended modules LPE modules are generated based on the questions students missed on

the math exam. Questions on the math exam are associated with knowledge points. Each LPE

module is specially designed to teach one knowledge point (e.g. ”interpret a figure to write down a

multiplication expression”). For each student, her exam scores would be aggregated into the correct

rate by each knowledge point. The LPE modules would then be ranked in order from the knowledge

point with the lowest correct rate to the knowledge point with the highest correct rate. If the

student received a perfect score on the math exam, then no LPE module will be recommended to

the student. In this case, the parent does not have access to the recommendation page.

Our experiment population is composed of 51860 parents who entered the recommendation page

between Jan 14th, 2021, and Jan 29th, 2021. Parents entered the page through either the entry point

on the exam report page in the App or by clicking a system-generated push message reminding them

to open the recommendation page. Our treatment conditions are variations of the features shown

on the recommendation page. Assignment to treatment arms is randomly assigned and orthogonal

to how the parent entered the page.

1.4.1 Sample recruitment and data collection

Sample recruitment took place on 17Zuoye’s platform in their parent app. The recommendation

page was available to any parent whose child had taken a commissioned exam. The parents who

chose to open the recommendation page when the experiment was ongoing were all assigned to one

of the treatment conditions. While our interventions were directed at parents, they call on parents to

take action with their children by getting them to complete exercises on the parents’ phones. Thus,
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the assignment to treatment conditions may affect children’s outcomes as well. Data collection is

done automatically through 17Zuoye’s data infrastructure.

1.4.2 Learn-Practice-Explain Module

The LPE modules integrate animation with practice questions and explanatory voice-over and text.

The student is guided through a series of questions and animations that explains one knowledge

point (see Figure 3.17). The typical time to complete an LPE module is between 2 and 4 minutes.

As the student answers the questions, only a correct answer would allow the student to move

forward. A wrong answer would trigger a hint and the student is directed to answer the question

again. Importantly, the modules are designed to target granular knowledge points. For example,

“rewriting numbers in units of Wan (ten thousand)” is a knowledge point and correspondingly, an

LPE module, in 4th-grade math.

1.4.3 Sampling and treatment assignment

Our experimental population comes from elementary school parents whose children partook in math

subject exams on the 17Zuoye platform. These exams are created by teachers, schools, or the

local education authority and delivered to students via 17Zuoye’s app. Exam questions are labeled

according to a knowledge framework. As such, our recommendation page generates recommended

LPE modules that tackle the same node in the knowledge framework as the students’ most error-

prone exam questions.

In total, the recommendation page was available to 1.08 million parents. Parents were prompted

to open the page through in-App alerts and push messages. Our population consists of the 52K

parents who entered the recommendation page in the period of data collection lasting from Jan 11th

to Jan 29th, 2021.

The experimental arms are summarized in Table 1.1. The treatment assignment of each feature

is independent of that of another feature. As such, the experiment is a fully-crossed design. Due

to the experimental data yielding clear results for two features (recommendation reason, and the

number of modules) in the first week, starting from Jan 23rd, these two features were set to values

that optimized completion rates while other features’ treatment assignment probabilities remained
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Figure 1.6: Question in an LPE module

Figure 1.7: Explanatory text/audio in an LPE module

unchanged. Due to the need to experiment with various wordings of the commit question, the

commit question feature was only finalized starting Jan 23rd. Hence, unlike the other features, the

analysis of the commitment question feature uses only data from the 23rd onward.

Assignment value Probability of as-
signment Intervention

{Excluded, Customized version,
Generic version} {0.52, 0.24, 0.24} Text to explain reason for recommendation
{1, 3, 5, 9} {0.25, 0.25, 0.25, 0.25} Maximum number of recommended modules
{Excluded, Base version, Re-
minder version} {0.3, 0.35, 0.35} Commitment question with checkbox

{Excluded, Included} {0.5, 0.5} Link to a guide to help the parent navigate back to
the page

{Excluded, Included} {0.5, 0.5} Link to a report on the child’s learning

Table 1.1: Recommendation page features experiment: Treatment assignment
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Figure 1.8 shows how the different features in the way they appear in the parent App. On the

left of the figure, we have mapped treatment conditions to sections of the screen they affect. On

the right, we document the fixed features of the page that are shown to all users regardless of their

treatment assignment.

Figure 1.8: Recommendation page layout

Table 1.2 describes the outcomes and covariates used in this analysis. We use the extrapolated

completion count as our primary outcome in this paper, which likely captures completion rates more

accurately than the other measures. Nevertheless, when we use actual completion count and start

counts, our results mirror the current results.

We do not have access to an indicator for whether the parent or the student actually completed

the LPE modules. However, an LPE module takes more than two minutes to complete on average.

Hence, although it is possible that parents were completing these modules, the vast majority of the

completes were likely by students, not their parents. Nevertheless, the LPE module started metric

is likely to have captured parents ”shopping around” by clicking on the modules to reveal their

contents.
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Variable type Name Description

Outcome useful Whether a user answered ”Yes” to the survey question (vs
answering ”No”) conditional on responding.

Outcome respond_survey Whether a user responded to the survey question.

Outcome n_complete_extrp

Extrapolated number of completed LPE modules. Since
not all users who complete a course click on the ”complete”
button. As such, this measure not only counts the ”com-
plete” button events but also includes any start within 10
minutes of clicking a complete button.

Outcome any_complete Whether the user has completed any LPE modules.

Secondary outcome n_complete
Number of completed LPE modules by counting of click on
the ”complete” button at the end of each module. This
serves as a robustness check for n_complete_extrp.

Secondary outcome n_started
Number of started LPE modules, this measure will capture
parents’ ”shopping” behavior. This serves as a robustness
check for n_complete_extrp.

Covariate is_non_metro Family lives in a non-metro county in China, typically an
indicator for lower afluence.

Covariate low_achievement Child belongs to the bottom 30% of homework score distri-
bution (on past exams in the current semester).

Covariate high_achievement Child belongs to the top 30% of homework score distribu-
tion (on past exams in the current semester).

Covariate high_activity
Parents belonging to top 30% in number of days with any
parent App activity or the parent has opened the learning
report within the past two months.

Table 1.2: Recommendation page features experiment: Outcomes and covariates

Every feature in this experiment was designed to help improve parental satisfaction and follow

through. Variations in the maximum number of modules displayed allow us to investigate the optimal

number of recommended modules. Figure 1.9 explains the hypothesized causal pathways for each

feature in the experiment.
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Figure 1.9: Hypotheses for the function of recommendation page features
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1.5 Results

In this section, we document the results of our experiments. Throughout this paper, error bars

in figures correspond to 95% confidence intervals unless otherwise noted. Regression tables show

standard errors in parentheses.

My research question is how do features on a page recommending custom exercise modules (LPE)

affect parents’ assessment of the usefulness of the recommended items and completion rates? The

features we evaluate include:

1. Existence of text to explain the reason for recommending the modules.

2. Existence of a checkbox with a piece of commitment text.

3. The maximum number of recommended modules the page displays.

4. Existence of a link to a report on the child’s learning.

5. Existence of a link to a guide to help the parent navigate back to the page.

Table 1.3 summarizes the main metrics for this experiment. We see that the response rate to

the survey question is generally low, at 7% of all those who entered the page. But out of those

responding, the vast majority 93% answer “YES” to the usefulness question. A little more than

4% of students actually complete any LPE module after their parents entered the page. We also

note that there are more starts of LPE modules than completion, indicating potential “shopping”

behavior on the part of the parents.

Event N Proportion Notes
Page entry (unique parent) 51860 1.00
Unique parent answer useful question 3600 0.07

Unique parent answer “YES” to useful question 3342 0.93
Within parents who
responded to survey
question.

Unique parent check commit question 1087 0.02
Unique student that completed any LPE module 2320 0.04
N clicks on learning report 3043 0.06
N clicks on how-to-find-back link 535 0.01
N starts for LPE module 13739 0.26
N completes for LPE module 7799 0.15

Table 1.3: Recommendation page features experiment: Summary table
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We document the sample sizes for all the treatment conditions of this experiment in Table 1.4.

As all the treatment conditions were assigned orthogonal to each other, also known as a factorial

design, a parent may constitute a unit in multiple treatment arms.

Feature Treatment arm Sample size
Recommendation reason Exclude, Generic reason, Cus-

tomized reason 13,280, 5,775, 5,955
Maximum number of modules 1, 3, 5, 9 6,238, 6,315, 6,306, 6,151
Guide to navigate back Exclude, Include 25,945, 25,915
Link to learning report Exclude, Include 26,058, 25,802
Commitment question Exclude, Question without re-

minder, Question with reminder 5,426, 6,498, 6,510

Table 1.4: Recommendation page features experiment: Sample sizes

1.5.1 Main effects

We find a strong negative effect (70% drop) of providing a reason for recommendation at the top of

the page on the number of LPE modules completed. We document this in Figure 1.101. Why might

this be the case? Consistent with the interpretation that adding these features induces cognitive

overload, users who were shown a reason were also 60% less likely to answer the survey question (see

Figure 1.11). Nevertheless, those who did answer provided statistically indistinguishable answers

from the group not shown the reason (see Figure 1.12).

In Figure 1.10, we can also see that we find null effects on completion from adding 1) a commit-

ment question, 2) a guide to navigate back to the page, and 3) a link to the child’s learning report.

Using our estimated standard errors, we were able to rule out effect sizes larger than 0.016 (±13%),

0.016 (±13%), and 0.032 (±18%) for these treatment conditions respectively.

Also consistent with the cognitive overload interpretation, we see significantly lower rates in

answering the survey question from adding these features (see Figure 1.11). Similar to the previous

result, we find statistically indistinguishable answers from the control group for all of these treat-

ments (see Figure 1.12). As such, our hypothesized positive effects from these features are likely

muted or even negated by the penalties they induced through cognitive load.

Unlike the above-mentioned features, we find no evidence that increasing the number of modules
1Effect sizes and standard errors estimates as OLS coefficient on the treatment variable (with feature = 1, no

feature = 0) while including variables in the OLS regression for the other treatments in the factorial design.
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Figure 1.10: Effect of features on LPE module completion

Figure 1.11: Effect of features on respond to survey

causes cognitive overload as they have statistically indistinguishable survey response rates (Figure

1.13) and affirmative answer rates (Figure 1.14)2. This suggests that increasing the number of

homogeneous items such as LPE modules does not induce cognitive overload in the same way that

the addition of other features does. It may take more cognitive capacity to read and understand

features in different places on a page than to digest a greater number of similar items.
2Means are computed as the OLS coefficient on the binary indicators for the number of modules (1, 3, 5, 9) without

intercept while controlling for orthogonal assignments of other pieces of the factorial design.
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Figure 1.12: Effect of features on respond ”YES” to survey (vs respond ”No”)

Figure 1.13: Respond to survey by number of
modules

Figure 1.14: Respond ”YES” to survey by number
of modules

While increasing the number of recommended modules did not increase the number of users

completing any modules (Figure 1.15), but increased the number of completions by compliers (Figure

1.16). This effect is likely the mechanical consequence of giving users a larger set of choices.

1.5.2 Completion patterns by number of modules

Since we have shown that increasing the number of available modules does not increase the number

of users completing any modules, it must have increased completion by increasing the number

completed per user. Figure 1.17 shows how the distribution of completions per user in the different
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Figure 1.15: Completion of any LPE module by
number of modules

Figure 1.16: LPE module completion rate by num-
ber of modules

treatment groups.

These histograms reveal two prominent patterns. Firstly, the number of users declines almost

monotonically as the number of completions increases. Secondly. there is a group of users who

complete the maximum number of allotted modules as evident by the spike in the left-most bin of

the histogram for users assigned to the 3, 5, and 9 groups. Taken together, these patterns suggest

that the distribution of user preferences seems to be continuous and decreasing with the number of

completions. Increasing the number of available modules increases completions by allowing those

who want to complete more to do so.

Figure 1.17: Number of modules completed by maximum number of modules available
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1.5.3 Variations of features

In our experiment, the recommendation reason had two versions. The generic recommendation

reason versions simply stated that the recommended LPE modules were based on the child’s exam

performance. The customized recommendation reason named the knowledge point that the student

performed worse in and showed the percentage of questions within the knowledge point that the

child had answered wrong. We see from Figure 1.18 that the effect on completion was statistically

indistinguishable between the two versions of the recommendation reason.

The commitment question also had two variations. A base version asked the parent to commit

to getting her child to complete the LPE modules. A reminder version also told the parent that

she would be reminded. A reminder push message would be automatically sent to any parent who

received the reminder version and checked the check-box. The reminder push message would be sent

out at 8:30 PM on the same day the parent checked the check-box. We see from Figure 1.19 that

the effect on completion was also indistinguishable between the two versions of the commitment

question.

Figure 1.18: LPE module completion rate by rec-
ommendation reason type

Figure 1.19: LPE module completion rate by com-
mitment question type

1.5.4 Modules vs features

We dig deeper into the differential effect on cognitive overload caused by two types of information

present on the page. Having laid out the evidence in favor of a cognitive overload interpretation to

our results, we seek to further examine how different types of information lead to cognitive overload.
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Figure 1.20, using red boxes, highlights the two sections of the page in question. The first is the

number of modules present in the middle of the page, the second is the section at the bottom of the

page containing various features.

In this exercise, we want to examine how the survey response rate differs by the number of

modules displayed and by the number of features available. The number of features is a count of

the features available in the bottom section of the page for each user. We count the commitment

question, the find back guide, and the link to the learning report. If all three features are present,

then the count is 3; if only two out of the three are present, then the count is 2, and so on. Users

who were assigned none of these features had a count of 0.

Figure 1.21 and Figure 1.22 shows the effects of the two types of information side by side. While

increasing the number of modules shown did not decrease the survey response rate, increasing the

number of features did. Low survey response rate can be a proxy for cognitive overload. As such,

these results show that modules and features have different effects on cognitive overload. Perhaps

because modules are homogeneous, increases in modules seem to require less cognitive energy to

process than the increases in features.

Figure 1.20: Features and modules
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Figure 1.21: Respond to survey by number of
modules

Figure 1.22: Respond to survey by number of fea-
tures



CHAPTER 1. IMPROVING PARENTAL FOLLOW THROUGH IN MOBILE EDUCATION 21

1.6 Conclusion

To improve parenting through mobile apps, the parent needs to follow through and take action

with their child to generate any meaningful impact on her. Our findings advance the literature on

engaging parents through mobile devices. Our major contribution is demonstrating empirically that

cognitive overload plays an important role in determining how much parents follow through. We also

reveal that homogeneous modules do not incur cognitive overload in the same way that additional

features do. As such, providing more homogeneous choices allow those who prefer to complete more

to do so without introducing additional penalties on the rest of the users.

We showed that while many features may have hypothesized positive effects on parent follow

through, the cognitive overload is an ever-present headwind. The hypothesized positive effects from

any feature shown to the parent can be muted, or even negated, by the penalties they induce as

cognitive load. Our findings should alert researchers and practitioners to think hard about the

hypothesized benefits of a feature and weigh them against their potential cognitive load penalties.

Above all, our results point to the importance of experimentation as it is almost impossible to

establish the cognitive penalties of any feature a priori.

We also found that increasing the number of choices for homogeneous modules did not increase

cognitive overload. But it increased follow through due to more choices being available. As we would

expect with actions involving a cost in effort, the distribution of user preferences seems to be contin-

uous and decreasing with the number of completions. Increasing the number of available modules

increased completions by allowing those who want to complete more to do so. The implication for

researchers and practitioners is that increasing the size of the choice set could induce more of the

desired behavior. In our case, we did not find indications that doing so with homogeneous modules

induced cognitive overload. However, our experiment capped the maximum number of modules

shown at 9. These results may not hold in a setting where the choices are much more numerous

than this.

Our results also revealed the modules and features seem to have a different effect on parents.

Increasing the number of modules shown did not decrease the survey response rate but increasing the

number of features did. Features seem to be more distracting than modules even though they occupy

a smaller portion of the screen. This suggests that not everything on the screen is distracting. In
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our case, features may be more distracting than modules because parents are not familiar with their

functionalities and need to devote more effort to understand them. Researchers and practitioners

should be aware of these differences and critically evaluate features based on the mental effort needed

to understand them.
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Chapter 3

Modeling Student Learning in

Large-Scale Online Settings

3.1 Introduction

Online education has been transformed in recent years by the rise of mobile learning. Around the

world, popular mobile learning apps offer students personalized paths of engagement. In India, the

tutoring app Byju’s personalizes students’ learning journeys using a large knowledge graph (Bhatia,

2017). The US-based Khan Academy offers teachers the option of personalizing student assignments

(Khan Academy, 2020b) and also allows students to choose their own pathway through practice

exercises (Khan Academy, 2020c). Similar to Khan Academy, 17Zuoye offers choices to teachers and

students in China (Sunny Education Inc., 2018). Together, these three apps account for more than

180 million users (Singh, 2020; Khan Academy, 2020a; Sunny Education Inc., 2018), and many other

apps offer similar features to their users.

Choice over one’s learning path is heralded as an essential part of a broader effort to improve

learning through personalization. While this movement towards personalized learning is received

with great fanfare in the online education industry, they also created important challenges for doc-

umenting student progress. Compared to the traditional setting of standardized tests, students are

24
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not exposed to the same items in personalized learning paths. Typically, students are only ex-

posed to a small fraction of items from a large question bank. Furthermore, new interaction data is

generated in real-time and new students and new items are frequently added to the system.

As an example, in 17Zuoye’s database, there are 1.5 million unique questions exposed to students

in December of 2017. However, among active users, the median student is only exposed to 398

questions over the same month. The high-frequency user at 95 percentile only logs 1115 questions

in the same period.

Traditionally, education measurement tools based on Item response theory (IRT) are designed

for standardized tests with dense data. They are unable to scale to this setting where the student-

item matrix is large and sparse. The literature on linking has procedures for accommodating data

sparsity. But existing methods are ad hoc, heavily dependent on model specification, and do not

computationally scale to large data.

In this paper, we propose new models based on latent factorization and Bayesian variational

inference to address these challenges. We find that our models retrieve true parameters with greater

fidelity than traditional models in small data settings (section 3.5). In addition, our models also

scale well computationally to industrial-size datasets (section 3.6). Compared to the two-parameter

model, our factorization models are able to make more accurate predictions on the hold-out test

set in general. More latent factors and hierarchical dependence on question attributes contribute to

better predictive performance in lower-frequency content areas (section 3.7). Benchmarking against

similar models from the recent literature, our models are much faster to run and produce better

predictions (section 3.8).

In section 3.9 of our paper, we describe a real-world application of our models. Smart Homework

uses predictions from our models to make personalized question recommendations to students that

are not too hard nor too easy. We plan to experimentally test the effect of personalization on

student outcomes in a future study. Section 3.10 concludes the paper by discussing other potential

applications of our models.
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3.2 Related Work

Our methods are inspired by recent advances in inference techniques and machine learning models

that employ user/item factorization. One central idea behind our proposed models is that students

and items have latent vector representations whose dot product influences the probability of answer-

ing a question correctly. This approach draws from recent work on latent factorization that have

been applied to providing online recommendations (Gopalan et al., 2015; Donnelly et al., 2020), an-

alyzing complementarity and substitutability in consumer choice (Ruiz et al., 2017; Donnelly et al.,

2019), and geographical preferences of restaurant-goers (Athey et al., 2018).

These works draw from the large literature on recommender systems where the standard approach

is to find a try to find an approximation of the full matrix of user-item interactions using the product

of two lower-rank matrices. Nonetheless, these recent works extend the latent vector representation

approach to allow latents to depend on observed characteristics and to account for time-varying

effects. We will also incorporate these innovations into our approach.

Advances in Bayesian variational inference make Bayesian inference computationally feasible

on massive datasets. Variational inference recasts Bayesian inference as an optimization problem,

lending it to stochastic optimization techniques (e.g. stochastic gradient descent) which allows the

algorithm to scale to large datasets. See Blei et al. (2017) for a review. Recent engineering work

allows models using stochastic variational inference to be implemented through off-the-shelf machine

learning packages (Tran et al., 2016; Bingham et al., 2019).

Our work is also related to the large literature on linking in educational measurement. Linking

refers to the practice that compares student performance across different tests (see Kolen and Bren-

nan (2004) for a review). Similar to our goal, linking can be interpreted as a way to overcome sparsity

in the combined student-item matrix of different tests that share common persons or common items

(Reardon et al., 2019). A major difference, however, is that the linking literature is generally focused

on the design of tests for particular settings where researchers control the recruiting of examinees

and the administration of exams. As such, procedures for accommodating data sparsity are mostly

ad hoc (e.g. estimating parameters from test A first, then keeping these parameters fixed when

estimating test B) Kolen and Brennan (2004). There is no prevailing consensus on which methods
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should be used and typical works in this literature are also only applicable to certain model speci-

fications. Our work differs from this literature in the scale of data and the highly sparse nature of

our context and the generality of our approach.

Our work is also related to the literature that casts the model of student learning as solutions

to a predictive problem (see Pardos (2017) for a review). A prominent line of research in this realm

centers around Bayesian Knowledge Tracing and builds temporal models of student learning (Corbett

and Anderson, 1994). Recent advances along this line of research have employed deep and recurrent

representation to this task (Piech et al., 2015), incorporating prior knowledge of the learners into

the model (Yudelson et al., 2013), and modeling question difficulty (Pardos and Heffernan, 2011).

Many researchers used the temporality of student responses and leveraged recent developments

in training deep neural networks to predict student-question responses (see Hernández-Blanco et al.

(2019) for an extensive review). However, recent papers find that simpler models with psychological

interpretations can behave just as well as deep learning approaches when structured to fit a few

regularities (Khajah et al., 2016; Wilson et al., 2016a,b).

Our approach takes the middle ground where we produce interpretable parameters while using a

factorization approach to flexibly model latent regularities. Our work essentially reduces the dimen-

sionality of the temporal student-question sequence into a student-question matrix and attempt to

solve a matrix completion problem (Candes and Plan, 2010; Mazumder et al., 2010). One of the ma-

jor hurdles in recent work in this line of literature is that computational costs may be prohibitively

high for large datasets using existing approaches (e.g. (Poole et al., 2008; Bailey, 2007; Shor and

McCarty, 2011)). To remedy this, Imai et al. (2016) proposed a series of EM algorithms that signif-

icantly improved the computational performance in the estimation of ideal points (estimating latent

traits for legislators and bills) by as much as 1000 times over existing MCMC approaches. Most

recently, computer scientists Wu et al. (2020) proposed optimizing a specialized loss function that

lower bounds the marginal likelihood over a student’s responses. This loss is named Variational

approach for Item response theory based on a novel lower BOund (VIBO). The authors showed that

VIBO scales well to predictive exercises in large real-world data such as the PISA science dataset.
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3.3 Model specification

We use Bayesian variational inference for all parameters in our proposed models. See section 3.11.1

for an summary of Bayesian variational inference. We place Gaussian posteriors on every parameter

with flexible mean and scale. We also initialize most parameters with Gaussian priors with mean 0

and a standard deviation of 1. In practice, our optimization methods also use stochastic gradient

descent and various computational optimizations implemented by Bingham et al. (2019).

3.3.1 Model 1: Two-Parameter model

Our first model takes the form of the classic Two-Parameter model from the item response literature.

The only difference to traditional models is that we estimate the parameters through Bayesian

variational inference.

In this model θi is the student parameter and αj , βj are question parameters. For the probability

of student i answering question j correctly (Yij = 1), the two-parameter model is defined as:

P (Yij = 1|θi, αj , βj) =
1

1 + exp(−αj(θi − βj))

3.3.2 Model 2: Latent factorization model

In this model, we map students and questions into latent vectors (θi,αj) and allow their inner

product to influence the probability of correctness. The model is given by:

P (Yij = 1|θi,αj , βj) =
1

1 + exp(−(θ⊤
i αj − βj))

The main benefit of latent factorization in this model is analogous to that of methods commonly

found in recommendation systems. These types of models allow the parameters to learn from the

structure of the student-question matrix. The richness of the latent factors allows us to quantify

student ability in multi-dimensional ways as the predictions for correctness will be different for items

with different latent factors.
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3.3.3 Model 3: Hierarchical factorization model

In this model, we retain the structure of the latent factorization model. However, we replace a

simple latent vector αj with a concatenation of the latent αj and a latent transformation of observed

question covariates Xj through the transformation matrix Hα. We denote this concatenated vector

as αj ⊕HαXj . Accordingly, we make θi to be the same length as the result of the concatenation.

The trainable parameters of this model are θi,αj ,Hα, βj . The model is given by:

P (Yij = 1|θi,αj ,Hα, βj , Xj) =
1

1 + exp(−(θ⊤
i (αj ⊕HαXj)− βj))

By adding a flexible dependency on the observed characteristics of questions, we are allowing

question attributes to influence the probability of correctness directly. Similar to Athey et al.

(2018), this hierarchical structure may allow the model to perform better, especially for questions

that appear in the data with low frequency.

3.3.4 Software implementation

Our code base1 uses the probabilistic programming package Pyro (Bingham et al., 2019) for Bayesian

stochastic variational inference. Pyro is built on top of Pytorch (Paszke et al., 2017) and uses data

structure, automatic differentiation, and optimizers from the latter.

3.4 Data collection

We apply our models to data generated on the 17Zuoye platform. The data comes from homework

assignments and exams in three subject areas–English, math, and Chinese. Records are logged at

the students-question level.

Exam data on the 17Zuoye platform are also tagged with question attributes. Attributes include

the appropriate grade level of the question. They also include two types of domain knowledge tags.

One system maps questions to competencies. The other maps questions to skills. These tags are

manually labeled by content specialists.
1Code access is available at https://github.com/henrishi/bm_model.

https://github.com/henrishi/bm_model
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3.5 Parameter retrieval

In this section, our goal is to compare how well our proposed models and estimation strategies

retrieve true data generating parameters. In addition, we also compare the parameters retrieved

by our approach to those retrieved by a widely-used traditional item response model package ltm

(Rizopoulos, 2006). ltm results are labeled as traditional_2param in the following figures.

We focus on the two-parameter models for this exercise because the factorization models are

under determined systems and there are multiple parameter arrangements that can yield the same

prediction. ltm produces frequentist point estimates and standard errors. For the sake of comparison,

with our Bayesian models, we take the mean of the posterior distribution as our estimator and the

standard deviation of the posterior distribution as our standard error.

3.5.1 Simulated dense data

We fit ltm and Bayesian two-parameter model on a small simulated data set. Our data generating pro-

cess samples θ and β from a normal distribution with mean 0 and standard deviation of 1. α is sam-

pled from a normal distribution with mean 1.2 and standard deviation of 0.5 while constrained to be

positive. The student-question response data is then drawn from a Bernoulli distribution where the

probability of for a correct answer from student i and question j is P (Yij = 1) = 1
1+exp(−αj(θi−βj))

.

We have 30 questions and 50 students in the simulated data and every student has a response for

every question.

We focus on the estimate for the β parameter since it is the easiest among the three parameters to

estimate. Figure 3.1 compare the estimates from ltm and Bayesian two-parameter model alongside

the true data-generating parameter. Table 3.1 presents the correlation (both linear and ranking

correlations) between the estimates and the true parameter values.

We see that the Bayesian two-parameter model is recovering parameters better than ltm . ltm

has large devious estimates for the parameter with the lowest value and large error ranges for certain

parameters with mid-range values. Not only are the point estimates more devious than Bayesian

two-parameter model , but the standard errors are also bigger for ltm in general. This is especially

pronounced for the devious estimates. These deviations hurt the correlations of the estimates from

ltm with the true parameter across all the correlation metrics we report (Pearson, Kendall, and
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Spearman).

Figure 3.1: Small dense data: true and estimated beta

Stats Pearson correlation
(linear)

Kendall correlation
(ranking)

Spearman correla-
tion (ranking)

Bayesian two-parameter model -
True parameters 0.95 0.83 0.93
ltm - True parameters 0.91 0.69 0.83

Table 3.1: Small dense data: correlation stats for beta
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3.5.2 Simulated overlap data with missings

In the current exercise, we generate a simulated dataset where two groups of students share some

overlapping questions but not others. The way missing data is structured is shown in Figure 3.2. Our

data generating process samples θ from a normal distribution with mean 0 and standard deviation

of 1. α is sampled from a normal distribution with mean 1.2 and a standard deviation of 0.5 while

constrained to be positive.

Different from the section 3.5.1, we sample the β for overlap questions and those only available

for students 1 - 50 from a normal distribution with mean 0 and standard deviation of 1. However,

we sample the β for questions only available for students 51 - 100 from a normal distribution with

mean 0.5 and standard deviation of 0.7. We sampled the β parameters this way to mimic real-world

settings where question difficulty is usually different for different groups of students. As in 3.5.1 the

student-question response data is then drawn from a Bernoulli distribution where the probability of

a correct answer is a logistic function of the parameters.

Figure 3.2: Overlap data missing pattern

In this setting, we again compare the performance of the ltm model to the Bayesian two-parameter

model model in estimates of β. We find that the problem of devious estimates is greatly exacerbated

for ltm . Figure 3.3 shows that the error ranges are excessively large for some estimates from ltm .
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For a more informative figure, we take out the standard error bars of the outliers from the ltm

model and re-plot in Figure 3.4. We see that while the majority of parameters have similar under

both models, ltm is yielding very devious estimates for items 11, 31, and 37. These items are not

overlapping items (see point map above) and are only taken by a single group of students.

Bayesian two-parameter model produces point estimates that are much closer to the true pa-

rameters for the parameters that ltm failed to estimate accurately. This corroborates the Bayesian

inference property that the prior distribution serves as a regularizer and allows the model to be

more numerically stable. Finally, we see that Bayesian two-parameter model again dominates ltm

in correlation stats with the true parameters by a large margin in this data setting.

Figure 3.3: Overlap data: true and estimated beta

Stats Pearson correlation
(linear)

Kendall correlation
(ranking)

Spearman correla-
tion (ranking)

Bayesian two-parameter model -
True parameters 0.96 0.84 0.96
ltm - True parameters 0.41 0.76 0.91

Table 3.2: Overlap data: correlation stats for beta
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Figure 3.4: Overlap data: true and estimated beta (zoomed in)
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3.6 Computation performance

In this section, we report the computation performance of our proposed models using an industrial-

scale dataset with 88 million responses. The purpose of this section is to show that our proposed

Bayesian models Bayesian two-parameter model and Bayesian factorization model are computation-

ally tractable for real-world applications. Traditional methods such as ltm cannot be compared here

because they could not handle data of this size. Specifically, ltm is unable to produce any useful

estimates for even very small datasets when sparsity is at this level. 2

This dataset comes from homework records of 1000 schools over a period of 2 months. In this

dataset, we have 334K questions and 162K students. The overall density of the student-question

matrix is 0.16%. The training of our models terminates when convergence has been achieved. We

define convergence as the change in loss averaged over the last 5 iterations falls below 0.1% of the

change in loss from the first to the second iterations.

In Figure 3.5 we show the training loss for different model specifications over time. Even though

we adopt stochastic gradient descent for optimization, the overall loss curve is smooth due to the

large amount of data used for training. The more complex models, factorization models with longer

latent vectors, tend to take marginally longer to train. Most models converge within 30 minutes,

the longest model to train took less than 40 minutes (see Figure 3.6).

3.7 Predictive performance

We compare the prediction performance of our proposed models using a large exam dataset where

we have access to question attributes. We want to compare the performance of all three models,

Bayesian two-parameter model , Bayesian factorization model , and Bayesian hierarchical factor-

ization model . Since Bayesian hierarchical factorization model needs question attributes as inputs,

we needed to test our predictive performance on a dataset that has question attributes. The exams
2ltm produces numerical errors for even very small samples from this dataset (e.g. a sample of 1000 records). For

example, a random sample of 1000 records translated into a matrix of 639 students by 717 questions. ltm returns
numerical errors for the resulting matrix. One can get ltm to run if the missing entries are replaced values (e.g. change
all missing values to 0), but running ltm on the resulting data takes 16 minutes to converge. My testing shows that
ltm convergence time is roughly O(n2) meaning that doubling the amount of data takes 4 times as long to converge.
This is an exorbitant amount of time considering that 1000 records are a mere 0.00011% of the full dataset with 88
million records.
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Figure 3.5: Training loss Figure 3.6: Convergence time

are also higher stakes than typical homework assignments, as such the data may be more reflective

of actual competencies and less noisy as a result.

In this dataset, we have 8.6 million student-question records. There are 3.6k questions and 261k

students in total. The overall density of the student-question matrix is 0.92%.

The data were randomly divided into 80% training, 10% validation, and 10% test sets at the

level of student-question interactions. This means data for a single student may appear in any of the

three sets. The same goes for data from a single question. Model training would stop automatically

once convergence is achieved. To get a better metric of the models’ capabilities, we define a stricter

convergence criterion – as average per-iteration changes in loss becoming 0.05% the initial change.

We compare Bayesian factorization model against Bayesian two-parameter model in sections 3.7.1

and 3.7.2. Having established the superiority of factorization models, we move on to quantify the

gains from adding hierarchical dependency in Bayesian hierarchical factorization model in section

3.7.3.

3.7.1 Overall predictive performance

We first document the overall predictive accuracy for Bayesian two-parameter model and Bayesian

factorization model in Figures 3.7 and 3.8. For Bayesian factorization model , we show results from

three models where the length of the latent vectors θ,α are taken to be 3, 5, 10, and 20 respectively.

We see that Bayesian factorization model models enjoy higher AUC in the test set than Bayesian

two-parameter model . The F1 statistic tells the same story where Bayesian factorization model
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models are superior predictive performance.3 We note that in all models, training set accuracy is

higher than the test set. This is partially attributable to the sparse nature of the student-question

matrix. Some students or questions may only show up in the training set or the test set, making

test set predictions less accurate than the training set.

Figure 3.7: Area under the curve (AUC) by model Figure 3.8: F1 statistic by model

3.7.2 Predictive performance by content area

Do factorization models with more latent factors perform better than simpler models on predictive

accuracy in less frequent content areas. In this section, we answer this question by examining the

predictive performance of candidate models by question knowledge labels. We have 22 knowledge

labels in our data. For example, a knowledge label for a math question may be “arithmetic” or

“geometry”, one for an English question may be “English spelling” or “English pronunciation”.

Figure 3.9 shows the distribution of student-question records by knowledge labels. From left to

right, we see knowledge labels in descending popularity. We note that some knowledge labels have

significantly lesser data than the most popular knowledge labels.

We document the predictive performance of different models across knowledge labels in 3.10 and

3.11. We see that confirm that Bayesian factorization model dominates Bayesian two-parameter

model in both AUC and F1 across the knowledge labels. Interestingly, the more complicated fac-

torization models (the 10-factor and 20-factor models) have better performance than simpler fac-

torization models (the 3-factor and 5-factor models) in predictive performance for the less frequent
3In calculating the F1 statistic, we set the predictive threshold at P > 0.5 for a positive prediction.
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Figure 3.9: Count of student-question records by knowledge label

knowledge labels. This suggests that additional latent factors may have picked up additional het-

erogeneity useful in predicting less frequent knowledge labels.

Figure 3.10: Area under the curve (AUC) by
knowledge label

Figure 3.11: F1 statistic by knowledge label

3.7.3 Performance gains from adding hierarchical dependency

Having established the superiority of factorization models over Bayesian two-parameter model ,

we move on to quantify the gains from adding a hierarchical dependency in Bayesian hierarchical
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factorization model . To make models more comparable, we hold the size of latent vector constant

and compare the Bayesian factorization model model with the same model that adds different

hierarchical dependency.

We use two types of question attributes, one of which is the one-hot vector of knowledge label

described in section 3.7.2. The other attribute is a multi-hot vector of skills involved in the question.

The attribute is encoded as a multi-hot vector because a single question can be associated with

multiple skills. For our candidate models with hierarchical dependency, we have freedom in choosing

the size of the latent matrix Hα. Following Athey et al. (2018) we pick Hα such that some entries

are 0 so that certain types of question attributes can only contribute to certain parts of the resulting

latent vector HαXj . As specified in 3.3.3, the latent vector HαXj is a linear combination of these

representations. We choose two model specifications, the first structures Hα such that the knowledge

labels and skills each map to one latent scalar so the resulting HαXj is a length 2 vector. The second

is slightly more complex in that the knowledge labels and skills each map to two latent scalars so

the resulting HαXj is a length 4 vector.

In Figure 3.12 we compare the factorization model with a length 3 latent vector to a hierarchical

model with the same setup. We see that the hierarchical models outperform the factorization models

slightly overall, but the improvement is more significant for certain low-frequency knowledge labels.

The same is true when we look at factorization model with a length 5 latent vector and hierarchical

models with the same set up (see Figure 3.13).4

4For the sake of brevity, we focus on AUC for our comparison, but the F1 statistics results are substantively the
same as the AUC results.
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Figure 3.12: Area under the curve (AUC) by
knowledge label (models where latent vector
size = 3)

Figure 3.13: Area under the curve (AUC) by
knowledge label (models where latent vector
size = 5)
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3.8 Benchmark comparisons

In this section, we compare our model against prominent contenders in recent literature on fast,

accurate, and scalable IRT model estimations. Imai et al. (2016) proposed a series of EM algo-

rithms that significantly improved the computational performance in the estimation of ideal points

(estimating latent traits for legislators and bills) by as much as 1000 times over existing MCMC

approaches. The work is highly cited in the political science literature (hereafter emIRT ). Most re-

cently, Wu et al. (2020) proposed coupling a specialized loss function named VIBO with variational

inference to estimate IRT models (hereafter varIRT ). They have shown that their model works well

in parameter retrieval exercises with simulation data and scales well to predictive exercises with

real-world data.

Figure 3.14: Computational and predictive per-
formance: proposed models vs literature bench-
marks

Figure 3.15: Test set AUC by knowledge label:
proposed models vs literature benchmarks

In this exercise, we want to run both emIRT and varIRT on the same dataset with the same

computer as we used for our previous predictive exercises (8.6M student-question records) and

compare the models’ computational and predictive performance. While we attempted to run all

models on the whole dataset, emIRT and varIRT could not digest the entire dataset as it was too

massive and demanded resources beyond the physical resources of the computer.5

As a result, we trained all our models using a smaller subset of the data. The subset was
5Both emIRT and varIRT resulted in out-of-memory errors on our computer, which had 16G of memory and was

able to perform estimations with our proposed models with ease. One possible contributor to the disparity is that
emIRT and varIRT both require data to be fed to it in wide form where each row represents a student and each
column a question. This greatly increases the size of the data in memory compared to the long format feed data that
our implementation adopts.
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created by sampling 10K students from the original dataset at random and keeping all the questions

associated with each student. The resulting data has 327, 082 student-question records, covering

10, 000 student and 3201 questions. The student-question matrix has a density of 1.02%. We

randomly split the data into 90% training set and 10% test set.

Similar to our model, varIRT allows for more than one latent dimension. As such, we ran

Bayesian factorization model and varIRT each with 3 and 5 latent dimensions. The official imple-

mentation of emIRT only allows for one latent dimension so we did not produce variations of the

model. Note that we use Bayesian factorization model and not Bayesian hierarchical factorization

model in this exercise because varIRT does not support hierarchical dependency on observables and

using such would result in an unfair comparison.

Figure 3.14 shows how our model compares to emIRT and varIRT in both computational per-

formance and test set predictive performance (AUC). We see that Bayesian factorization model

dominates both alternatives with faster computational performance and better predictive accuracy.

While the lead in predictive performance over emIRT and varIRT is considerable, both versions of

the Bayesian factorization model also represent a substantial gain in computational performance.

They ran on the data in under 10 seconds, while varIRT and emIRT took around 10 times the

amount of time to run – on the order of hundreds of seconds (the y axis of Figure 3.14 is log scaled).

Figure 3.15 shows how our model compares to emIRT and varIRT by predictive performance

across knowledge labels. Barring a few knowledge labels where Bayesian factorization model had

similar performance with emIRT , the former largely dominated both emIRT and varIRT . Notably,

despite being more complex in model specification, varIRT underperformed emIRT in high-frequency

knowledge labels and most of the low-frequency knowledge labels.

3.9 Model application: recommender system for personal-

ized questions

This section describes a practical application of our proposed models. Our models were put into

use at our partner company to power a recommender system producing personalized questions for

students. The recommender system is one piece of a broader product, Smart Homework , which
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combines personalized questions with immediate feedback when the student incorrectly answers a

question. Figure 3.16 shows the relationship between the different components of the system.

The recommender system aims to produce questions that are not too difficult nor too easy. This

aligns with a long line of research in educational psychology stemming from the Zone of Proximal

Development proposed by Vygotsky (1980). The predicted probabilities for student i getting question

j correct is computed using our proposed models from historical data.

Once the probabilities are calculated, the question pool is filtered by taking out questions that

the student has already attempted in the past. Then the pool goes through a ranking algorithm for

each student. The algorithm ranking questions based on a weighted sum of different factors. The

most prominent factor is how close the predicted correctness probability is to 0.7. Other factors

include how recent was the question created, whether the question includes a picture or a table. The

top 10 questions are selected to form the Smart Homework .

As the student works through her Smart Homework she moves from one question to the next

if she answers correctly. When she answers a question incorrectly, she is taken through a series of

explanations and exercises also known as the learn-practice-explain (LPE) module. The student

is guided through a series of questions and animations that explains one knowledge point for the

triggering question (see Figure 3.17). The typical time to complete this module is between 2 and

4 minutes. As the student answers the questions, only a correct answer would allow the student

to move forward. A wrong answer would trigger a hint and the student is directed to answer the

question again.

After completing the module, the student is asked to answer another question similar to the

original question she missed. Regardless of whether she answered this question correctly, she is

taken back to other questions in the Smart Homework . Smart Homework exits when the student

has completed every question.

3.9.1 Batch updates and parameter freeze

We added two features to the implementation of our models to address practical challenges for

building Smart Homework . Firstly, we implemented batch updating of parameters. Since our models

are based on Bayesian inference, making updates to parameter estimates is very straightforward.



CHAPTER 3. MODELING STUDENT LEARNING IN LARGE-SCALE ONLINE SETTINGS44

Figure 3.16: Smart Homework is powered by a recommeder system and immediate feedback

Figure 3.17: Question in an LPE module

Figure 3.18: Explanatory text/audio in an LPE module
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Our features load pre-existing parameters into the model in the form of prior distributions. The prior

distributions encapsulate all the information the model learned from previous data. Thus, instead of

re-fitting the model every time new data comes in, the model needs only to use incremental data to

update itself using the prior distributions as its starting point. This helps reduce the computational

costs of keeping models up-to-date. In practice, our model updates itself with incremental data once

a week.

Secondly, we added a feature to allow parameters to be fixed. The fitting of the model will

only alter trainable parameters but not fixed parameters. This allows question parameters, typically

estimated over a large amount of historical data, to remain unchanged in the model fitting process.

This lessens the burden of optimization and can further reduce computational costs when a large

number of questions are involved.

3.9.2 Future experimentation

In a future study, we plan to experimentally test whether Smart Homework improves student out-

comes. Namely, we will assign three versions of Smart Homework as the treatment condition and

compare its effects on student engagement and achievement against a control group that received

a curated (but non-personalized) homework. The three versions of Smart Homework will be 1) the

full version with both personalization and feedback, 2) a partial version with only personalization,

and 3) a partial version with only feedback.

Our partner company is currently (as of May 2021) conducting a pilot of Smart Homework with

30K student participants. The pilot stage aims to reveal bugs and inefficiencies in the product’s

engineering. The pilot stage also aims to establish an understanding of the baseline student behaviors

including open rate, completion rate, and utilization of feedback. The main study will proceed after

the issues revealed in the pilot stage are addressed.

3.10 Conclusion

We have shown that latent factorization and hierarchical modeling powered by Bayesian variational

inference can make important gains in modeling student-question interactions using large datasets
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from online education. This set of modern approaches perform well in parameter retrieval and pre-

dictive accuracy. They are also numerically stable and can be applied to industrial-scale datasets

with computational ease. Our models compare favorably in both computational performance and

predictive accuracy against similar models from recent literature. Finally, they also allow for desir-

able features such as batch updates and parameter freeze to be implemented with ease.

Smart Homework is only one of the many applications that our models can power. Our models

can be used to identify learning gaps. In particular, our factorization approach can identify content

domains where a student is weaker than average. Early warning systems and remedial content

recommendations can be generated based on such information.

Our models can also improve the informational landscape of parents and teachers. One example

can be building learning progress dashboards. For this application, the predictions from our models

will be used to derive statistics about student progress. An example of this is using trained models to

make predictions about the average rate at which the student will get a particular set of pre-selected

domain-representative questions correct. This statistic can be used as an indicator for proficiency.

Finally, applications can make use of the latent parameters the models learned from data. One

such application is the automatic labeling of questions based on the latent parameters produced by

our models. Another application is discovering the preferences of teachers in terms of which types

of question a particular teacher likes to assign.

3.11 Appendix

3.11.1 Bayesian Variational Inference

The main method of inference for parameters in our proposed models is Bayesian variational infer-

ence (see (Blei et al., 2017) for a review). Bayesian variational inference is increasingly popular in

estimation tasks involving large amounts of data. It has superior runtime performance compared to

traditional Bayesian estimation techniques such as Markov Chain Monte Carlo. Variational infer-

ence has been shown to work well in mean-fields approximation tasks, but existing methods are less

well suited to recover correlations between parameters.
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Variational inference proposes a parameterized class of posterior distributions and reduces the

Bayesian inference task to one of optimizing a divergence value between the proposed posterior

and the true posterior. For this inference task, I use the Kullback-Leibler divergence defined by

λ∗ = argmin
λ

KL(q(z;λ)||p(z|x))

= argmin
λ

Eq(z;λ)[log(q(z;λ))− log(p(z|x))]

where z is the parameter vector of interest, x is the data, and λ is the parameter vector characterizing

the proposed posterior distribution. However, directly optimizing this expression is not possible since

it involves the posterior distribution p(z|x). However, since we can reformulate the divergence as

KL(q(z;λ)||p(z|x)) = log(p(x))− ELBO(λ)

where ELBO(λ) is the evidence lower bound defined by

ELBO(λ) = Eq(z;λ)[log(p(x, z))− log(q(z;λ))]

we can derive gradients to perform optimization on the ELBO.
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