
1 Type

This document describes how type checking is performed on a Clafer model. Type checking pertains only to
constraints within the model. A constraint is a tree of expressions and each expression must be one of the
following types:

• integer

• real

• string

• boolean

• clafer

An expression’s type may depend on its call site.

ab s t r a c t Y
y : i n t e g e r
x
[ y > 0 ]

The expression y in the constraint resolves to the type integer.

ab s t r a c t Y
y : i n t e g e r
[ #(y ++ x ) ]

The expression y in the constraint resolves to the type clafer.

If a Clafer model has duplicate Clafer names, then there is a corresponding model with unique names. The
remainder of the document assumes that each Clafer is uniquely named.

2 Notation

This section explains the notation used to describe the type rules.

2.1 Symbols

:: is shorthand for “type of”.

` is shorthand for “entails”.

x is a Clafer reference.

E,F,G are expressions.
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abs t r a c t Car : s t r i n g
speed : i n t e g e r
[ speed > 0 ]

In the constraint, speed is a Clafer reference.

There are two leaf expressions: “speed” and “0”; and one super expression “super > 0”.

isNumeric is a predicate that maps Type→ boolean.

isNumeric(type) =

{
true type ∈ {integer, real}
false otherwise

INTEGER is any integer constant such as 1234 or -5678.

REAL is any real constant such as 3.14 or 2.718.

STRING is any string constant such as “this is a string”.

τ, υ are type variables. A type variable is a placeholder for a type.

2.2 Type environment Γ

The type environment is a data structure for holding the types of Clafers. It contains a mapping from
Clafer → Type.

For example:

ab s t r a c t Y : s t r i n g
y : i n t e g e r
x
[ #(y ++ x ) ]

X : Y

will have the type environment:

Γ = {Y :: string, y :: integer, x :: clafer, X :: string}

2.3 Type rule

The type system is specified in a series of formal rules.

name of rule
statementA

statementB

The above rule says that if A holds, then B follows. Multiple statements are allowed above the bar, separated
visually by a gap.

name of rule
statementA statementB

statementC
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The rule states that if A and B holds, then C follows.

Here are few examples how these rules can describe the type system.

value
(x :: τ) ∈ Γ

Γ ` x :: τ

The value rule says: if x :: τ is in the type environment, then x resolves to type τ given Γ.

eq
Γ ` E :: τ Γ ` F :: τ

Γ ` E = F :: boolean

The eq rule says: if we can prove that E and F type check to the same type given Γ then the expression
E = F type checks to boolean given Γ.

An expression is type correct iff we can find a tree of rule applications that prove it correct. See the last
section for examples.

3 Clafer Type Rules

A clafer reference can always be treated as a clafer.

clafer
Γ ` x :: clafer

A clafer reference can be of type stored in the type environment.

value
(x :: τ) ∈ Γ

Γ ` x :: τ

Constants.

intconst
Γ ` INTEGER :: integer

realconst
Γ ` REAL :: real

strconst
Γ ` STRING :: string

Unary functions.

not
Γ ` E :: boolean

Γ `!E :: boolean

cset
Γ ` E :: clafer

Γ ` #E :: integer
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min
Γ ` E :: τ isNumeric(τ)

Γ ` −E :: τ

Binary functions

join
Γ ` E :: clafer Γ ` F :: τ

Γ ` E.F :: τ

binbool
Γ ` E :: boolean Γ ` F :: boolean

Γ ` E � F :: boolean � ∈ {<=>,=>, ||,&&, xor}

eq
Γ ` E :: τ Γ ` F :: τ

Γ ` E ⊕ F :: boolean ⊕ ∈ {=, ! =}

eqcast1
Γ ` E :: real Γ ` F :: integer

Γ ` E ⊕ F :: boolean ⊕ ∈ {=, ! =}

eqcast2
Γ ` E :: integer Γ ` F :: real

Γ ` E ⊕ F :: boolean ⊕ ∈ {=, ! =}

ineq
Γ ` E :: τ Γ ` F :: υ isNumeric(τ) isNumeric(υ)

Γ ` E ⊗ F :: boolean ⊗ ∈ {<,<=, >,>=}

in
Γ ` E :: clafer Γ ` F :: clafer

Γ ` E 	 F :: boolean 	 ∈ {in, not in}

setops
Γ ` E :: clafer Γ ` F :: clafer

Γ ` E � F :: clafer � ∈ {++,−−,&}

domain
Γ ` E :: clafer Γ ` F :: τ

Γ ` E <: F :: τ

range
Γ ` E :: τ Γ ` F :: clafer

Γ ` E :> F :: τ

numops
Γ ` E :: τ Γ ` F :: τ isNumeric(τ)

Γ ` E � F :: τ � ∈ {+,−, ∗, /}

numopscast1
Γ ` E :: real Γ ` F :: integer

Γ ` E � F :: real � ∈ {+,−, ∗, /}
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numopscast2
Γ ` E :: integer Γ ` F :: real

Γ ` E � F :: real � ∈ {+,−, ∗, /}

strconcat
Γ ` E :: string Γ ` F :: string

Γ ` E + F :: string

Ternary functions.

ifthenelse
Γ ` E :: boolean Γ ` F :: τ Γ ` G :: τ

Γ ` E => F else G :: τ

ifthenelsecast1
Γ ` E :: boolean Γ ` F :: real Γ ` G :: integer

Γ ` E => F else G :: real

ifthenelsecast2
Γ ` E :: boolean Γ ` F :: integer Γ ` G :: real

Γ ` E => F else G :: real

Quantified expressions create a new local type environment with the local names binded to the type. See
the examples in the next section if this rule is unclear.

quant
Γ ` E :: τ Γ, a :: τ, b :: τ, ..., z :: τ ` F :: υ

Γ ` ? a b ... z : E | F :: boolean ? ∈ {no, lone, one, some, all}

4 Examples

4.1 Example one

Prove that the constraint in the following model is type correct.

car
speed : i n t e g e r
[ speed > 0 ]

Γ = {car :: clafer, speed :: integer}

ineq

value
(speed :: integer) ∈ Γ

Γ ` speed :: integer
intconst

Γ ` 0 :: integer isNumeric(integer)

Γ ` speed > 0 :: boolean

4.2 Example two

Prove that the constraint in the following model is type correct.
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car
speed : i n t e g e r
[#speed = 0 ]

Γ = {car :: clafer, speed :: integer}

eq

cset

clafer
Γ ` speed :: clafer

Γ ` #speed :: integer
intconst

Γ ` 0 :: integer

Γ ` #speed = 0 :: boolean

4.3 Example three

Prove that the constraint in the following model is type correct.

car
speed : i n t e g e r
[ some a : speed | a = 3 ]

Γ = {car :: clafer, speed :: integer}

quant

value
(speed :: integer) ∈ Γ

Γ ` speed :: integer
eq

value
(a :: integer) ∈ Γ ∪ {a :: integer}
Γ ∪ {a :: integer} ` a :: integer Γ ∪ {a :: integer} ` 3 :: integer

intconst

Γ ∪ {a :: integer} ` a = 3 :: boolean

Γ ` some a : speed | a = 3 :: boolean

6


