1 Type

This document describes how type checking is performed on a Clafer model. Type checking pertains only to
constraints within the model. A constraint is a tree of expressions and each expression must be one of the
following types:

e integer

e real

e string

e boolean

clafer

An expression’s type may depend on its call site.

abstract Y
y : integer
X
[y >0]

The expression y in the constraint resolves to the type integer.

abstract Y
y : integer
[#(y ++ x)]

The expression y in the constraint resolves to the type clafer.

If a Clafer model has duplicate Clafer names, then there is a corresponding model with unique names. The
remainder of the document assumes that each Clafer is uniquely named.

2 Notation

This section explains the notation used to describe the type rules.

2.1 Symbols

:: is shorthand for “type of”.
F is shorthand for “entails”.
z is a Clafer reference.

E, F,G are expressions.

abstract Car : string
speed : integer
[speed > 0]

In the constraint, speed is a Clafer reference.
There are two leaf expressions: “speed” and “0”; and one super expression “super > 0”.

isNumeric is a predicate that maps Type — boolean.

true type € {integer, real}

isNumeric(type) = { false otherwise

INTEGER is any integer constant such as 1234 or -5678.
REAL is any real constant such as 3.14 or 2.718.

STRING is any string constant such as “this is a string”.

T,v are type variables. A type variable is a placeholder for a type.

2.2 Type environment I’

The type environment is a data structure for holding the types of Clafers. It contains a mapping from
Clafer — Type.

For example:

abstract Y : string
y : integer
X
[#(y ++ x) |

X :Y

will have the type environment:

' ={Y :: string, y :: integer, x :: clafer, X :: string}

2.3 Type rule

The type system is specified in a series of formal rules.

statementA
NAME OF RULE ———
statementB

The above rule says that if A holds, then B follows. Multiple statements are allowed above the bar, separated
visually by a gap.

statement A statementB
NAME OF RULE

statementC

The rule states that if A and B holds, then C follows.

Here are few examples how these rules can describe the type system.

(xu=T1)el
'txzoT

VALUE

The value rule says: if x :: 7 is in the type environment, then x resolves to type 7 given I'.

I'HE:T I'FF:T
I't E = F :: boolean

EQ

The eq rule says: if we can prove that E and F type check to the same type given I' then the expression
E = F type checks to boolean given T'.

An expression is type correct iff we can find a tree of rule applications that prove it correct. See the last
section for examples.

3 Clafer Type Rules

A clafer reference can always be treated as a clafer.

CLAFER ———————
I'kx:clafer

A clafer reference can be of type stored in the type environment.

(xu=T1)el
'Fxor

VALUE

Constants.

INTCONST
I' F INTEGER :: integer

REALCONST
' REAL :: real

STROONST T STRING - string

Unary functions.
' E :: boolean

NOT ——————————
T'HIE :: boolean

' E::clafer
T'- #FE ::integer

'FE:7 isNumeric(T)
'-—-FE:71

MIN

Binary functions
' E :clafer I'EF:or

I'FEF:T1

JOIN

' E :: boolean I'H F :: boolean

BINBOOL
'k E® F ::boolean O € {<=>,=>,||, &&, xor}
r-fF:r 'EF:or
EQ
P-E®F ::boolean @€ {=!=}
'k E::real T'F F ::integer
EQCAST1
I'= E & F :: boolean ®e{=!=}
I'F E ::integer 'k F::real
EQCAST2

I'EE®F : boolean ®e{=!=}

Fr-E:r F-F:o isNumeric(r) isNumeric(v)
' E®F :: boolean ®e{<,<=,>,>=}

INEQ

' E:cafer ' F::clafer

IN
'k E & F :: boolean O € {in,not in}

'k E:clafer ' F:clafer

SETOPS
ror TFEoF = dafer o e {++, ——, &

I'FFE :clafer 'FF:or
''FE<:Fur

DOMAIN

r-fF:r I'tF:clafer
'E:>Fur

RANGE

| R THF:ur isNumeric(r)
THFEoF T o€{+,—*/}

NUMOPS

'+ FE ::real '+ F ::integer

NUMOPSCAST1
LHEoF :real o€ {+,—%/}

'+ E ::integer '+ F::real

NUMOPSCAST2
T'FEoF ::real oe{+,—, %/}

I'F FE :: string ' F :: string
' E+ F :: string

STRCONCAT

Ternary functions.
' E :: boolean 'kFur rG:r

I'FE=>FelseG:T

IFTHENELSE

' E :: boolean ' F ::real 'k G :: integer
I'FE => F else G ::real

IFTHENELSECAST1

' E :: boolean I'F F ::integer I'FG::real
' E=>F else G :: real

IFTHENELSECAST2

Quantified expressions create a new local type environment with the local names binded to the type. See
the examples in the next section if this rule is unclear.

'-FE:r Tac:rnbur,.,zoTHF o

Pk%ab..z:E|F:boolean * € {no, lone, one, some, all}

QUANT

4 Examples

4.1 Example one

Prove that the constraint in the following model is type correct.

car
speed:integer
[speed > 0]

I’ = {car :: clafer, speed :: integer}

(speed :: integer) € T
VALUE - INTCONST ——————— , o
T'F speed :: integer '+ 0 :: integer isNumeric(integer)

I' F speed > 0 :: boolean

INEQ

4.2 Example two

Prove that the constraint in the following model is type correct.

car
speed:integer
[#speed = 0]

I' = {car :: clafer, speed :: integer}

CLAFER

'+ speed :: clafer
T INTCONST ————————
I' - #speed :: integer I'F0:: integer
EQ I' - #speed = 0 :: boolean

CSE

4.3 Example three

Prove that the constraint in the following model is type correct.

car
speed:integer
[some a : speed | a = 3]

I' = {car :: clafer, speed :: integer}

(a ::integer) € T'U {a :: integer}
‘ VALUE - - : : INTCONST
(speed :: integer) € T’ I'U{a ::integer} - a :: integer I'U{a ::integer} - 3 :: integer
EQ

VALUE

I' - speed :: integer I'U{a :: integer} F a = 3 :: boolean
QUANT

I' F some a : speed | a = 3 :: boolean

