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The problem The integral we would like to evaluate is

K± =

∫
ddl1
πd/2

∫
ddl2
πd/2

1

P1 · · ·P5

=

∫
ddl1
πd/2

∫
ddl2
πd/2

1

(l1 · u− iδ1)(±l2 · u− iδ2)((l1 + l2 − q)2 − iδ3)((l1 − q)2 − iδ4)((l2 − q)2 − iδ5)

=

∫
ddl1
πd/2

∫
ddl2
πd/2

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3

∫ ∞
0

dx4

∫ ∞
0

dx5 δ

(
1−

5∑
i=1

xi

)
4![∑5

i=1 xiPi

]5 , (0.1)

with d = 3 − 2ε and δi positive infinitesimal. The momenta are Euclidean. The external momenta satisfy
u2 = q2 = 1 and u · q = 0. It is known that K± are different by a factor of 2

K+ = −4π

3

Γ1+2εΓ
3
−ε

Γ−3ε
= −4π

ε2
+

8πγE
ε

+

(
2π3

3
− 8πγ2E

)
+O(ε) ' −12.6

ε2
+

14.5

ε
+ 12.3 +O(ε), (0.2)

K− = −2π

3

Γ1+2εΓ
3
−ε

Γ−3ε
= −2π

ε2
+

4πγE
ε

+

(
π3

3
− 4πγ2E

)
+O(ε) ' −6.28

ε2
+

7.25

ε
+ 6.15 +O(ε). (0.3)

Here Γa ≡ Γ(a). Pysecdec does not seem to reproduce this factor, but instead returns a wrong value for
K+. Note that the ± sign cannot be factored out from Eq. (0.1) because of the −iδ inside the propagators.

Calculation For each propagator we introduce the Feynman parameters x1, · · · , x5. We rewrite the de-
nominator as

5∑
i=1

xiPi =

2∑
l,m=1

llMlmlm + 2

2∑
l=1

llQl + J − i
5∑
i=1

xiδi, (0.4)

with

M =

(
x3 + x4 x3
x3 x3 + x5

)
, Q =

(
x1u/2− (x3 + x4)q
±x2u/2− (x3 + x5)q

)
, J = x3 + x4 + x5. (0.5)

The Symanzik polynomials become

U = detM = x3x4 + x4x5 + x5x3, (0.6)

F = detM · (J −QTM−1Q) = x3x4x5 −
1

4
(x1 ± x2)

(
x3 + x5 −x3
−x3 x3 + x4

)(
x1
±x2

)
. (0.7)

We can complete the square as

5∑
i=1

xiPi = U1/2

 2∑
l,m=1

l̃lM̃lml̃m +
F − iU

∑5
i=1 xiδi

U3/2

 = U1/2

 2∑
l,m=1

l̃lM̃lml̃m +
F − iδ
U3/2

 . (0.8)

with l̃ ≡ l + M−1Q being the shifted momentum and M̃ ≡ M/U1/2 satisfying det M̃ = 1. Since U(=
x3x4 + x4x5 + x5x3) and xi are positive, we rewrote the small imaginary part as −iδ. The momentum
integrations can be performed to give

K± = Γ2+2ε

∫ ∞
0

dx1 · · · dx5 δ (1− (x3 + x4 + x5))
U1/2+3ε

(F − iδ)2+2ε
. (0.9)
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Here we used the Cheng-Wu theorem so that x1 and x2 do not appear inside the δ function. In order to
discuss K+ and K− in parallel, we define y2 ≡ −x2 for K− with the integration range (−∞, 0]. Note that this
is just for convenience, in order to calculate K± in parallel analytically. Also note that the small imaginary
part remains unaffected because each term in δ = U

∑5
i=1 xiδi = U [x1δ1 + (−y2)δ2 + x3δ3 + x4δ4 + x5δ5] is

still positive. Naming y2 back to x2, we can write the original integral as

K± = Γ2+2ε

∫ ∞
0

dx1

[∫ ∞
0

dx2 (for K+) or

∫ 0

−∞
dx2 (for K−)

]
×
∫ ∞
0

dx3dx4dx5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)1/2+3ε[

x3x4x5 − 1
4 (x1 x2)

(
x3 + x5 −x3
−x3 x3 + x4

)(
x1
x2

)
− iδ

]2+2ε .

(0.10)

If we just would like to calculate the sum of K+ and K−, it is actually easy. In fact, we can replace the
integration range with (1/2)

∫∞
−∞ dx1

∫∞
−∞ dx2

K+ +K− = Γ2+2ε ×
1

2

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 × (second line of Eq. (0.10)). (0.11)

The logic for this replacement is as follows. Starting from Eq. (0.10), the integration range for K+ + K−

is x1 ∈ [0,∞) and x2 ∈ (−∞,∞). Since the denominator is unchanged (including the −iδ term) under
(x1, x2) ↔ (−x1,−x2), we can extend the integration range to x1 ∈ (−∞,∞) and x2 ∈ (−∞,∞) with a
factor of 1/2. Then x1 and x2 can be integrated out, leaving a factor coming essentially from the eigenvalues
of the 2× 2 matrix in the denominator of Eq. (0.10)

K+ +K−

=
Γ2+2ε

2

∫ ∞
0

dx3dx4dx5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)1/2+3ε

(x3x4x5)2+2ε

×
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2
1[

1− 1
4

1
x3x4x5

(x1 x2)

(
x3 + x5 −x3
−x3 x3 + x4

)(
x1
x2

)
− iδ

]2+2ε

=
Γ2+2ε

2

∫ ∞
0

dx3dx4dx5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)1/2+3ε

(x3x4x5)2+2ε
× −4π

1 + 2ε

x3x4x5√
x3x4 + x4x5 + x5x3

= −2π
Γ1+2εΓ

3
−ε

Γ−3ε
. (0.12)

Here −4π1+2ε
x3x4x5√

x3x4+x4x5+x5x3
is the factor coming from x1 and x2 integration. Note that the minus sign comes

from the −iδ prescription:
∫∞
−∞ dz1

∫∞
−∞ dz2

1
[1−(z21+z22)−iδ]2+2ε = − π

1+2ε for 2 + 2ε > 1. Now, the simplest

way to see that K+ and K− do not share the same value is to observe that there is no symmetry between
the two. To see this more explicitly, consider the eigenvectors and the eigenvalues of the matrix in the
denominator of (0.10) (

x3 + x5 −x3
−x3 x3 + x4

)
. (0.13)

For positive x3, x4, and x5, this matrix has a smaller eigenvalue in the direction of the first (or third)
quadrant, and it has a larger eigenvalue in the direction of the second (or fourth) quadrant (see Fig. 1).
Thus K+ and K− are not equivalent. A more detailed calculation gives (2/3) : (1/3) splitting between the
two (see Appendix A).

Numerical results with pysecdec We try 16 choices for each of K±, from which we summarize only
relevant ones in Table 1. The details are summarized in Appendix B. The Symanzik variables are indeed
the same as Eqs. (0.6) and (0.7). Since the default prescription of pysecdec is +iδ, we invert the signs of the
propagators to accommodate −iδ. Writing explicitly, the propagators for each prescription are
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Figure 1: Illustration for how the difference between K± arises.

• K+ (+iδ): propagators = [’u*l1’, ’u*l2’, ’(l1+l2-q)**2’, ’(l1-q)**2’, ’(l2-q)**2’]

• K+ (−iδ): propagators = [’-u*l1’, ’-u*l2’, ’-(l1+l2-q)**2’, ’-(l1-q)**2’, ’-(l2-q)**2’]

• K− (+iδ): propagators = [’u*l1’, ’-u*l2’, ’(l1+l2-q)**2’, ’(l1-q)**2’, ’(l2-q)**2’]

• K− (−iδ): propagators = [’-u*l1’, ’u*l2’, ’-(l1+l2-q)**2’, ’-(l1-q)**2’, ’-(l2-q)**2’]

The numerical results are also shown in Table 1. For K− they coincide with the analytic calculation (up to
unimportant overall signs), while for K+ they do not. Note that the 2:1 ratio between K± is already violated
at the leading order ε−2. As we discuss in Appendix B, pysecdec reproduces this 2:1 ratio for d = 4 − 2ε.
We also find that other seemingly incorrect replacement rules also give the correct value for K−, though the
signs in the Symanzik variables are different: see (3) K− and (6) K− in Table 5.

dim. ±iδ rpl. rules U , F from pysecdec

(1) K+ 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(8) K+ 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(1) K− 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(8) K− 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

ε−2 ε−1 ε0

(1) K+ 6.29 −97.7 + 8.39i −7010− 1330i

(8) K+ 6.29 −99.3 + 6.52i −9470 + 1150i

(1) K− 6.29 −7.16 −5.51 (±1.93)

(8) K− 6.29 −7.18 −4.92 (±2.02)

Table 1: Setup of pysecdec (top) and numerical results (bottom).
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A Splitting between K±

We derive the (2/3) : (1/3) splitting. Let x′1 and x′2 be the directions that diagonalize the matrix in the
denominator

1

4

1

x3x4x5
(x1 x2)

(
x3 + x5 −x3
−x3 x3 + x4

)(
x1
x2

)
= (x′1 x′2)

(
λ1 0
0 λ2

)(
x′1
x′2

)
, (A.14)

with a rotation (
x′1
x′2

)
=

(
cθ sθ
−sθ cθ

)(
x1
x2

)
. (A.15)

We take −π/4 < θ < π/4 so that x′1 and x′2 are mostly x1 and x2, respectively. We get

sin 2θ =
1

2

1

λ2 − λ1
x3

x3x4x5
, cos 2θ =

1

4

1

λ2 − λ1
x4 − x5
x3x4x5

, tan 2θ =
2x3

x4 − x5
. (A.16)

The eigenvalues satisfy

λ1 + λ2 =
1

4

(x3 + x5) + (x3 + x4)

x3x4x5
, λ1λ2 =

1

16

x3x4 + x4x5 + x5x3
(x3x4x5)2

. (A.17)

Taking K+ as an example, the integral in question can be written as∫ ∞
0

dx1

∫ ∞
0

dx2
1[

1− 1
4

1
x3x4x5

(x1 x2)

(
x3 + x5 −x3
−x3 x3 + x4

)(
x1
x2

)
− iδ

]2+2ε

=

∫
dx′1

∫
dx′2

1

[1− λ1x′21 − λ2x′22 − iδ]
2+2ε =

1√
λ1λ2

∫
dx′′1

∫
dx′′2

1

[1− (x′′21 + x′′22 )− iδ]2+2ε .

(A.18)

Here, the integration range for x′1, x′2 is the light-blue region in Fig. 2, and we defined x′′1 ≡
√
λ1x

′
1 and

x′′2 ≡
√
λ2x

′
2 in the last equality. The point is that the integration range for x′′1 and x′′2 is not square any

more, as we see below. Since x1 and x2 have the same integration range [0,∞) for K+, we can take x4 > x5
without losing generality, meaning λ2 > λ1 (see Eq. (A.14), and note that x′1 and x′2 are mostly x1 and x2,
respectively). Let us define the angle α± as in Fig. 2. These angles are no more π/2 but are calculated to be

α+ = π − arctan

√
x3x4 + x4x5 + x5x3

x3
, α− = arctan

√
x3x4 + x4x5 + x5x3

x3
. (A.19)

These angles are the same for x4 < x5 as well. Therefore, K± is modified from the naive (1/2) : (1/2)
splitting as

K± = −πΓ1+2ε

∫ ∞
0

dx3dx4dx5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε
× 2

π
α±. (A.20)

The integration involving arctan is calculable, referring to Appendix A of Ref. [1]. The essence is the property
of arctan for x3x4 + x4x5 + x5x3 = 1:

arctanx3 + arctanx4 + arctanx5

= Im [ln(1 + ix3) + ln(1 + ix4) + ln(1 + ix5)]

= Im [ln(1 + i(x3 + x4 + x5)− (x3x4 + x4x5 + x5x3)− ix3x4x5]

= Im [ln(i(x3 + x4 + x5 − x3x4x5))]

=
π

2
. (A.21)
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This and the Cheng-Wu theorem give∫ ∞
0

dx3···5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε
arctan

(√
x3x4 + x4x5 + x5x3

x3

)
= 2

∫ ∞
0

dx3···5 δ (1− (x3x4 + x4x5 + x5x3))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε
arctan

(√
x3x4 + x4x5 + x5x3

x3

)
= 2

∫ ∞
0

dx3···5 δ (1− (x3x4 + x4x5 + x5x3))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε
arctan

(
1

x3

)
= 2

∫ ∞
0

dx3···5 δ (1− (x3x4 + x4x5 + x5x3))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε

[π
2
− arctanx3

]
= 2

∫ ∞
0

dx3···5 δ (1− (x3x4 + x4x5 + x5x3))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε

[
π

2
− 1

3
(arctanx3 + arctanx4 + arctanx5)

]
= 2

∫ ∞
0

dx3···5 δ (1− (x3x4 + x4x5 + x5x3))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε

[
π

2
− 1

3
· π

2

]
=
π

3

∫ ∞
0

dx3···5 δ (1− (x3 + x4 + x5))
(x3x4 + x4x5 + x5x3)3ε

(x3x4x5)1+2ε

=
π

3

Γ3
−ε

Γ−3ε
. (A.22)

Finally we get

K+ = −4π

3

Γ1+2εΓ
3
−ε

Γ−3ε
, K− = −2π

3

Γ1+2εΓ
3
−ε

Γ−3ε
. (A.23)

Figure 2: Rotation from (x1, x2) to (x′1, x
′
2) and rescaling to (x′′1 , x

′′
2 ).
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B Numerical check

We summarize our setups for K± (Table 2 and 3) and the results from these setups (Table 4 and 5). Small
imaginary parts are neglected, and errors are put only when they are relevant. Note that the 2:1 ratio
between K± is reproduced for d = 4− 2ε.

dim. ±iδ rpl. rules U , F from pysecdec

(1) K+ 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(2) K+ 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(3) K+ 3− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(4) K+ 3− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(5) K+ 3− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(6) K+ 3− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(7) K+ 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(8) K+ 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(9) K+ 4− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(10) K+ 4− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(11) K+ 4− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(12) K+ 4− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(13) K+ 4− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(14) K+ 4− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 − 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(15) K+ 4− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(16) K+ 4− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 + 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

Table 2: Setup of pysecdec for K+.
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dim. ±iδ rpl. rules U , F from pysecdec

(1) K− 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(2) K− 3− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(3) K− 3− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(4) K− 3− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(5) K− 3− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(6) K− 3− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(7) K− 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(8) K− 3− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(9) K− 4− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(10) K− 4− 2ε + (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(11) K− 4− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(12) K− 4− 2ε + (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(13) K− 4− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(14) K− 4− 2ε − (u, u) = −1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 + 1
4
x21x3 + 1

4
x21x2 + 1

2
x0x1x2 + 1

4
x20x4 + 1

4
x20x2

(15) K− 4− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = −1 F = −x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

(16) K− 4− 2ε − (u, u) = +1 U = x3x4 + x2x4 + x2x3

(q, q) = +1 F = x2x3x4 − 1
4
x21x3 − 1

4
x21x2 − 1

2
x0x1x2 − 1

4
x20x4 − 1

4
x20x2

Table 3: Setup of pysecdec for K−.
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ε−2 ε−1 ε0

(1) K+ 6.29 −97.7 + 8.39i −7010− 1330i

(2) K+ −6.25 118− 42.2i −296 + 368i

(3) K+ −6.25 123 + 2.53i −398 + 56.5i

(4) K+ 6.29 −111 + 33.4i −8300 + 1160i

(5) K+ 6.29 −111 + 33.7i −8030 + 786i

(6) K+ −6.29 122 + 2.54i −421 + 65.6i

(7) K+ nan nan nan

(8) K+ 6.29 −99.3 + 6.52i −9470 + 1150i

(9) K+ 0 13.1 63.4

(10) K+ 0 13.1 63.7 + 82.2i

(11) K+ 0 −13.1 −63.7

(12) K+ 0 −13.1 −64.0− 81.5i

(13) K+ 0 −13.1 −64.0− 81.5i

(14) K+ 0 −13.1 −63.7

(15) K+ 0 13.1 63.7 + 82.2i

(16) K+ 0 13.1 63.4

Table 4: Output of pysecdec for K+.

ε−2 ε−1 ε0

(1) K− 6.29 −7.16 −5.51 (±1.93)

(2) K− −6.25 7.30− 38.8i 130 + 46.2i

(3) K− −6.25 7.32 6.29 (±0.50)

(4) K− 6.29 −7.15 + 39.8i −129− 45.3i

(5) K− 6.29 −7.15 + 39.8i −129− 45.3i

(6) K− −6.25 7.32 6.29 (±0.50)

(7) K− −6.25 7.30− 38.8i 130 + 46.2i

(8) K− 6.29 −7.18 −4.92 (±2.02)

(9) K− 0 6.58 31.9

(10) K− 0 6.58 31.9 + 41.4i

(11) K− 0 −6.58 −31.9

(12) K− 0 −6.58 −31.9− 41.3i

(13) K− 0 −6.58 −31.9− 41.3i

(14) K− 0 −6.58 −31.9

(15) K− 0 6.58 31.9 + 41.4i

(16) K− 0 6.58 31.9

Table 5: Output of pysecdec for K−.
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