
AWS ELB and AutoScaling using Terraform

In this post, I’m going to provide a quick introduction to Terraform, a tool that is used to provision
and configure infrastructure. Terraform allows you to define infrastructure configurations and then
have those configurations implemented/created by Terraform automatically. In this respect, you
could compare Terraform to similar solutions like OpenStack Heat, AWS CloudFormation, and
others.

Terraform is a tool for building, changing, and versioning infrastructure safely and efficiently.
Terraform can manage existing and popular service providers as well as custom in-house solutions.
Multi-cloud deployments can be very challenging as many existing tools for infrastructure
management are cloud-specific. Terraform is cloud-agnostic and allows a single configuration to be
used to manage multiple providers, and to even handle cross-cloud dependencies. This simplifies
management and orchestration, helping operators build large-scale multi-cloud infrastructures.

The official Terraform Getting Started documentation does a good job of introducing the individual
elements of Terraform (i.e. resources, input variables, output variables, etc), so in this guide, we’re
going to focus on how to put those elements together to create a fairly real-world example. In
particular, we will provision several servers on AWS in a cluster and deploy a load balancer to
distribute load across that cluster. The infrastructure you’ll create in this example is a basic starting
point for running scalable, highly-available web services and microservices. Key features are:

http://terraform.io/
http://www.openstack.org/
https://www.terraform.io/intro/getting-started/install.html

Infrastructure as Code

Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your
datacenter to be versioned and treated as you would any other code. Additionally, infrastructure
can be shared and re-used.

Execution Plans

Terraform has a “planning” step where it generates an execution plan. The execution plan shows
what Terraform will do when you call apply. This lets you avoid any surprises when Terraform
manipulates infrastructure.

Resource Graph

Terraform builds a graph of all your resources, and parallelizes the creation and modification of any
non-dependent resources. Because of this, Terraform builds infrastructure as efficiently as possible,
and operators get insight into dependencies in their infrastructure.

Change Automation

Complex changesets can be applied to your infrastructure with minimal human interaction. With
the previously mentioned execution plan and resource graph, you know exactly what Terraform will
change and in what order, avoiding many possible human errors.

1. Install Terraform
Download terraform depending on your system. Installation is very simple. Download the

https://www.terraform.io/downloads.html

terraform zip archive and unzip it in a suitable location. Once we have unzipped the terraform,
update PATH environment variable pointing to terraform. Since the folder /usr/local/bin is already
set to PATH environment variable, we don’t need to set it again. If you are using any other location,
then specify it in the PATH environment variable either in .bash_profile or in /etc/profile.

$ wget https://releases.hashicorp.com/terraform/0.10.7/terraform_0.10.7_linux_386.zip
$ unzip terraform_0.10.7_linux_386.zip $ mv terraform /usr/local/bin/ $ export
PATH=$PATH:/usr/local/bin/ Check the installation: $ terraform -v

2. Set up AWS account
Terraform can provision infrastructure across many different types of cloud providers, including
AWS, Azure, Google Cloud, DigitalOcean, and many others.

You need to create an IAM user. To create a more limited user account, head over to the Identity
and Access Management (IAM) console, click “Users”, and click the blue “Create New Users” button.

Click next and in add user to group permission select ec2fullaccess. Then you should copy the
Access Key ID and Secret Access Key ID.

3. Create an Instance
Create a directory for isolating terraform files. $ mkdir ~/terraform && cd ~/terraform

https://releases.hashicorp.com/terraform/0.8.5/terraform_0.8.5_linux_386.zi
https://releases.hashicorp.com/terraform/0.8.5/terraform_0.8.5_linux_386.zi
http://Terraform itself is cloud-agnostic and supports many cloud providers, including AWS, Azure, Google Cloud, DigitalOcean, and many others.
https://console.aws.amazon.com/iam/home?region=us-east-1#home
https://console.aws.amazon.com/iam/home?region=us-east-1#home

Terraform code is written in a language called HCL in files with the extension “.tf”. It is a declarative
language. The first step to using Terraform is typically to configure the provider you want to use.
Create a file called “example.tf” and put the following code in it:

provider “aws” {
 access_key = “aws_access_key_id”
 secret_key = “aws_secret_access_key_id”
 region = “ap-south-1”
}

In here, we’re going to be using the AWS provider and that you wish to deploy your infrastructure in
the “ap-south-1” region. For each provider, there are many different kinds of “resources” you can
create, such as servers, databases, and load balancers.

resource “aws_instance” “web” {
 ami = “${lookup(var.amis,var.region)}”
 count = “${var.count}”
 key_name = “${var.key_name}”
 vpc_security_group_ids = [“${aws_security_group.instance.id}”]
 source_dest_check = false
 instance_type = “t2.micro”

tags {
 Name = “${format(“web-%03d”, count.index + 1)}”
 }
}

Create another file named “variables.tf”

variable “count” {
 default = 1
 }
variable “region” {
 description = “AWS region for hosting our your network”
 default = “ap-south-1”
}
variable “public_key_path” {
 description = “Enter the path to the SSH Public Key to add to AWS.”
 default = “/path_to_keyfile/keypair_name.pem”
}
variable “key_name” {
 description = “Key name for SSHing into EC2”
 default = “kaypair_name”
}
variable “amis” {
 description = “Base AMI to launch the instances”
 default = {
 ap-south-1 = “ami-8da8d2e2”
 }
}

https://www.terraform.io/docs/configuration/syntax.html
https://www.terraform.io/docs/providers/aws/

NOTE: you need to create and download keypair using management console

In a terminal, go into the folder where you created example.tf, and run the “terraform plan”
command:

$ terraform plan
Refreshing Terraform state in-memory prior to plan…

(...)

+ aws_instance.example
 ami: "ami-2d39803a"
 availability_zone: "<computed>"
 ebs_block_device.#: "<computed>"
 ephemeral_block_device.#: "<computed>"
 instance_state: "<computed>"
 instance_type: "t2.micro"
 key_name: "<computed>"
 network_interface_id: "<computed>"
 placement_group: "<computed>"
 private_dns: "<computed>"
 private_ip: "<computed>"
 public_dns: "<computed>"
 public_ip: "<computed>"
 root_block_device.#: "<computed>"
 security_groups.#: "<computed>"
 source_dest_check: "true"
 subnet_id: "<computed>"
 tenancy: "<computed>"
 vpc_security_group_ids.#: "<computed>"

Plan: 1 to add, 0 to change, 0 to destroy.

To actually create the instance, run the “terraform apply” command:

$ terraform apply
aws_instance.example: Creating…
…………
………. . . .
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

You can see your created instance in aws management console is up and running.

4. Create an AutoScaling and ELB
Running a single server is a good start, but in the real world, a single server is a single point of
failure. If that server crashes, or if it becomes overwhelmed by too much traffic, users can no longer
access your site. The solution is to run a cluster of servers, routing around servers that go down,
and adjusting the size of the cluster up or down based on traffic. The first step is creating an ASG is
to create a launch configuration, which specifies how to configure each EC2 Instance in the ASG.
From deploying the single EC2 Instance earlier, you already know exactly how to configure it. The
second step is creating a load balancer that is highly available and scalable is a lot of work.

Now, reopen your example.tf file and copy the following

provider "aws" {
 access_key = “aws_access_key_id”
 secret_key = “aws_secret_access_key_id”
 region = "ap-south-1"
}

data "aws_availability_zones" "all" {}

Creating EC2 instance
resource "aws_instance" "web" {
 ami = "${lookup(var.amis,var.region)}"
 count = "${var.count}"
 key_name = "${var.key_name}"
 vpc_security_group_ids = ["${aws_security_group.instance.id}"]
 source_dest_check = false
 instance_type = "t2.micro"

tags {
 Name = "${format("web-%03d", count.index + 1)}"
 }
}

Creating Security Group for EC2
resource "aws_security_group" "instance" {
 name = "terraform-example-instance"
 ingress {
 from_port = 8080
 to_port = 8080
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"

http://docs.aws.amazon.com/autoscaling/latest/userguide/LaunchConfiguration.html

 cidr_blocks = ["0.0.0.0/0"]
 }
}

Creating Launch Configuration
resource "aws_launch_configuration" "example" {
 image_id = "${lookup(var.amis,var.region)}"
 instance_type = "t2.micro"
 security_groups = ["${aws_security_group.instance.id}"]
 key_name = "${var.key_name}"
 user_data = <<-EOF
 #!/bin/bash
 echo "Hello, World" > index.html
 nohup busybox httpd -f -p 8080 &
 EOF
 lifecycle {
 create_before_destroy = true
 }
}

Creating AutoScaling Group
resource "aws_autoscaling_group" "example" {
 launch_configuration = "${aws_launch_configuration.example.id}"
 availability_zones = ["${data.aws_availability_zones.all.names}"]
 min_size = 2
 max_size = 10
 load_balancers = ["${aws_elb.example.name}"]
 health_check_type = "ELB"
 tag {
 key = "Name"
 value = "terraform-asg-example"
 propagate_at_launch = true
 }
}

Security Group for ELB
resource "aws_security_group" "elb" {
 name = "terraform-example-elb"
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
 ingress {
 from_port = 80
 to_port = 80
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

Creating ELB
resource "aws_elb" "example" {
 name = "terraform-asg-example"
 security_groups = ["${aws_security_group.elb.id}"]
 availability_zones = ["${data.aws_availability_zones.all.names}"]
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 interval = 30
 target = "HTTP:8080/"
 }
 listener {
 lb_port = 80
 lb_protocol = "http"
 instance_port = "8080"
 instance_protocol = "http"
 }
}

In variable.tf file

variable "count" {
 default = 1
 }

variable "region" {
 description = "AWS region for hosting our your network"
 default = "ap-south-1"
}

variable "public_key_path" {
 description = "Enter the path to the SSH Public Key to add to AWS."
 default = "/home/ratul/developments/devops/keyfile/ec2-core-app.pem"
}

variable "key_name" {
 description = "Key name for SSHing into EC2"
 default = "ec2-core-app"
}

variable "amis" {
 description = "Base AMI to launch the instances"
 default = {
 ap-south-1 = "ami-8da8d2e2"
 }
}

Also create a file named output.tf and copy the following

output "instance_ids" {
 value = ["${aws_instance.web.*.public_ip}"]
}

output "elb_dns_name" {
 value = "${aws_elb.example.dns_name}"
}

Now run terraform plan

$ **terraform plan**
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_security_group.instance: Refreshing state... (ID: sg-54ed813c)
aws_security_group.elb: Refreshing state... (ID: sg-09ef8361)
data.aws_availability_zones.all: Refreshing state...
aws_launch_configuration.example: Refreshing state... (ID:
terraform-20171010122248311700000001)
aws_instance.web: Refreshing state... (ID: i-0c4d35b212b045d78)
aws_elb.example: Refreshing state... (ID: terraform-asg-example)
aws_autoscaling_group.example: Refreshing state... (ID:
tf-asg-20171010122315457300000002)
The Terraform execution plan has been generated and is shown below.
Resources are shown in alphabetical order for quick scanning. Green resources
will be created (or destroyed and then created if an existing resource
exists), yellow resources are being changed in-place, and red resources
will be destroyed. Cyan entries are data sources to be read.

Note: You didn't specify an "-out" parameter to save this plan, so when
"apply" is called, Terraform can't guarantee this is what will execute.

\-/+ aws_instance.web (new resource required)
 ami: "ami-8da8d2e2" => "ami-8da8d2e2"
 associate_public_ip_address: "true" => "<computed>"
 availability_zone: "ap-south-1a" => "<computed>"
 ebs_block_device.#: "0" => "<computed>"
 ephemeral_block_device.#: "0" => "<computed>"
 instance_state: "running" => "<computed>"
 instance_type: "t2.micro" => "t2.micro"
 ipv6_address_count: "" => "<computed>"
 ipv6_addresses.#: "0" => "<computed>"
 key_name: "ec2-core-app" => "ec2-core-app"
 network_interface.#: "0" => "<computed>"
 network_interface_id: "eni-b523daea" => "<computed>"
 placement_group: "" => "<computed>"

 primary_network_interface_id: "eni-b523daea" => "<computed>"
 private_dns:
"ip-172-31-24-44.ap-south-1.compute.internal" => "<computed>"
 private_ip: "172.31.24.44" => "<computed>"
 public_dns:
"ec2-13-126-108-226.ap-south-1.compute.amazonaws.com" => "<computed>"
 public_ip: "13.126.108.226" => "<computed>"
 root_block_device.#: "1" => "<computed>"
 security_groups.#: "1" => "<computed>"
 source_dest_check: "false" => "false"
 subnet_id: "subnet-16814c7f" => "<computed>"
 tags.%: "1" => "1"
 tags.Name: "web-001" => "web-001"
 tenancy: "default" => "<computed>"
 user_data: "c765373c563b260626d113c4a56a46e8a8c5ca33"
=> "" (forces new resource)
 volume_tags.%: "0" => "<computed>"
 vpc_security_group_ids.#: "0" => "1"
 vpc_security_group_ids.3652085476: "" => "sg-54ed813c"

Plan: 1 to add, 0 to change, 1 to destroy.

Run terraform plan

$ **terraform plan
**aws_security_group.instance: Refreshing state... (ID: sg-54ed813c)
aws_security_group.elb: Refreshing state... (ID: sg-09ef8361)
data.aws_availability_zones.all: Refreshing state...
aws_launch_configuration.example: Refreshing state... (ID:
terraform-20171010122248311700000001)
aws_instance.web: Refreshing state... (ID: i-0c4d35b212b045d78)
aws_elb.example: Refreshing state... (ID: terraform-asg-example)
aws_autoscaling_group.example: Refreshing state... (ID:
tf-asg-20171010122315457300000002)
aws_instance.web: Destroying... (ID: i-0c4d35b212b045d78)
aws_instance.web: Still destroying... (ID: i-0c4d35b212b045d78, 10s elapsed)
aws_instance.web: Still destroying... (ID: i-0c4d35b212b045d78, 20s elapsed)
aws_instance.web: Still destroying... (ID: i-0c4d35b212b045d78, 30s elapsed)
aws_instance.web: Still destroying... (ID: i-0c4d35b212b045d78, 40s elapsed)
aws_instance.web: Destruction complete after 47s
aws_instance.web: Creating...
 ami: "" => "ami-8da8d2e2"
 associate_public_ip_address: "" => "<computed>"
 availability_zone: "" => "<computed>"
 ebs_block_device.#: "" => "<computed>"
 ephemeral_block_device.#: "" => "<computed>"
 instance_state: "" => "<computed>"
 instance_type: "" => "t2.micro"
 ipv6_address_count: "" => "<computed>"
 ipv6_addresses.#: "" => "<computed>"
 key_name: "" => "ec2-core-app"
 network_interface.#: "" => "<computed>"
 network_interface_id: "" => "<computed>"
 placement_group: "" => "<computed>"

 primary_network_interface_id: "" => "<computed>"
 private_dns: "" => "<computed>"
 private_ip: "" => "<computed>"
 public_dns: "" => "<computed>"
 public_ip: "" => "<computed>"
 root_block_device.#: "" => "<computed>"
 security_groups.#: "" => "<computed>"
 source_dest_check: "" => "false"
 subnet_id: "" => "<computed>"
 tags.%: "" => "1"
 tags.Name: "" => "web-001"
 tenancy: "" => "<computed>"
 volume_tags.%: "" => "<computed>"
 vpc_security_group_ids.#: "" => "1"
 vpc_security_group_ids.3652085476: "" => "sg-54ed813c"
aws_instance.web: Still creating... (10s elapsed)
aws_instance.web: Still creating... (20s elapsed)
aws_instance.web: Still creating... (30s elapsed)
aws_instance.web: Creation complete after 32s (ID: i-019e9bf03a9d3de32)

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Outputs:

elb_dns_name = terraform-asg-example-2472445669.ap-south-1.elb.amazonaws.com
instance_ids = [
 52.66.14.13
]

The ELB is routing traffic to your EC2 Instances. Each time you hit the URL, it’ll pick a different
Instance to handle the request. You now have a fully working cluster of web servers!

Copy **elb_dns_name **and paste in your browser

5. Delete the stack
Run terraform destroy

$ **terraform destroy
**Do you really want to destroy?
 Terraform will delete all your managed infrastructure.
 There is no undo. Only 'yes' will be accepted to confirm.

Enter a value:

Once you type in “yes” and hit enter, Terraform will build the dependency graph and delete all the
resources in the right order, using as much parallelism as possible. In about a minute, your AWS
account should be clean again.

