SECOND EDITION

Git

Scott Chacon and Ben Straub

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Apress:

Pro Git

Scott Chacon, Ben Straub

Version 2.1.227, 2020-05-26

Table of Contents

Licence
Preface by Scott Chacon
Preface by Ben Straub
Dedications
Contributors
Introduction
Getting Started
About Version Control
A Short History of Git
What is Git?
The Command Line
Installing Git
First-Time Git Setup
Getting Help
Summary
Git Basics
Getting a Git Repository
Recording Changes to the Repository
Viewing the Commit History
Undoing Things
Working with Remotes
Tagging
Git Aliases
Summary
Git Branching
Branches in a Nutshell
Basic Branching and Merging
Branch Management
Branching Workflows
Remote Branches
Rebasing
Summary
Git on the Server
The Protocols
Getting Git on a Server
Generating Your SSH Public Key
Setting Up the Server
Git Daemon

© © J9 U bW N =

© 00 3 J O O O O U U b bW N DNDDNDNDDNDNDN =R R e
N D 0 9 © NN N B O b OO0 © g U U1 bW o 9 39 w o w

101
102
102
107
109
110
113

Smart HTTP 114

GitWeb 116
GitLab 118
Third Party Hosted Options 122
Summary 123
Distributed Git 124
Distributed Workflows 124
Contributing to a Project 127
Maintaining a Project 149
Summary 164
GitHub 165
Account Setup and Configuration 165
Contributing to a Project 170
Maintaining a Project 190
Managing an organization 205
Scripting GitHub 208
Summary 217
Git Tools 218
Revision Selection 218
Interactive Staging 226
Stashing and Cleaning 230
Signing Your Work 236
Searching 240
Rewriting History 244
Reset Demystified 252
Advanced Merging 272
Rerere 291
Debugging with Git 297
Submodules 300
Bundling 322
Replace 326
Credential Storage 334
Summary 339
Customizing Git 340
Git Configuration 340
Git Attributes 350
Git Hooks 358
An Example Git-Enforced Policy 361
Summary 370
Git and Other Systems 371

Git as a Client 371

Migrating to Git 417

Summary 436
Git Internals 437
Plumbing and Porcelain 437
Git Objects 438
Git References 448
Packfiles 452
The Refspec 455
Transfer Protocols 458
Maintenance and Data Recovery 463
Environment Variables 470
Summary 476
Appendix A: Git in Other Environments 477
Graphical Interfaces 477
Git in Visual Studio 482
Git in Visual Studio Code 484
Git in Eclipse 484
Git in Intelli] / PyCharm / WebStorm / PhpStorm / RubyMine 485
Git in Sublime Text 486
Git in Bash 486
Git in Zsh 487
Git in PowerShell 489
Summary 491
Appendix B: Embedding Git in your Applications 492
Command-line Git 492
Libgit2 492
JGit 497
go-git 501
Dulwich 502
Appendix C: Git Commands 504
Setup and Config 504
Getting and Creating Projects 506
Basic Snapshotting 507
Branching and Merging 509
Sharing and Updating Projects 511
Inspection and Comparison 513
Debugging 514
Patching 515
Email 515
External Systems 517

Administration 517

Licence

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-
sa/3.0 or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

https://creativecommons.org/licenses/by-nc-sa/3.0
https://creativecommons.org/licenses/by-nc-sa/3.0

Preface by Scott Chacon

Welcome to the second edition of Pro Git. The first edition was published over four years ago now.
Since then a lot has changed and yet many important things have not. While most of the core
commands and concepts are still valid today as the Git core team is pretty fantastic at keeping
things backward compatible, there have been some significant additions and changes in the
community surrounding Git. The second edition of this book is meant to address those changes and
update the book so it can be more helpful to the new user.

When I wrote the first edition, Git was still a relatively difficult to use and barely adopted tool for
the harder core hacker. It was starting to gain steam in certain communities, but had not reached
anywhere near the ubiquity it has today. Since then, nearly every open source community has
adopted it. Git has made incredible progress on Windows, in the explosion of graphical user
interfaces to it for all platforms, in IDE support and in business use. The Pro Git of four years ago
knows about none of that. One of the main aims of this new edition is to touch on all of those new
frontiers in the Git community.

The Open Source community using Git has also exploded. When I originally sat down to write the
book nearly five years ago (it took me a while to get the first version out), I had just started working
at a very little known company developing a Git hosting website called GitHub. At the time of
publishing there were maybe a few thousand people using the site and just four of us working on it.
As I write this introduction, GitHub is announcing our 10 millionth hosted project, with nearly 5
million registered developer accounts and over 230 employees. Love it or hate it, GitHub has
heavily changed large swaths of the Open Source community in a way that was barely conceivable
when I sat down to write the first edition.

I wrote a small section in the original version of Pro Git about GitHub as an example of hosted Git
which I was never very comfortable with. I didn’t much like that I was writing what I felt was
essentially a community resource and also talking about my company in it. While I still don’t love
that conflict of interests, the importance of GitHub in the Git community is unavoidable. Instead of
an example of Git hosting, I have decided to turn that part of the book into more deeply describing
what GitHub is and how to effectively use it. If you are going to learn how to use Git then knowing
how to use GitHub will help you take part in a huge community, which is valuable no matter which
Git host you decide to use for your own code.

The other large change in the time since the last publishing has been the development and rise of
the HTTP protocol for Git network transactions. Most of the examples in the book have been
changed to HTTP from SSH because it’s so much simpler.

It’s been amazing to watch Git grow over the past few years from a relatively obscure version
control system to basically dominating commercial and open source version control. 'm happy that
Pro Git has done so well and has also been able to be one of the few technical books on the market
that is both quite successful and fully open source.

I hope you enjoy this updated edition of Pro Git.

Preface by Ben Straub

The first edition of this book is what got me hooked on Git. This was my introduction to a style of
making software that felt more natural than anything I had seen before. I had been a developer for
several years by then, but this was the right turn that sent me down a much more interesting path
than the one I was on.

Now, years later, I'm a contributor to a major Git implementation, I've worked for the largest Git
hosting company, and I’'ve traveled the world teaching people about Git. When Scott asked if I'd be
interested in working on the second edition, I didn’t even have to think.

It’s been a great pleasure and privilege to work on this book. I hope it helps you as much as it did
me.

Dedications

To my wife, Becky, without whom this adventure never would have begun. — Ben

This edition is dedicated to my girls. To my wife Jessica who has supported me for all of these years
and to my daughter Josephine, who will support me when I'm too old to know what’s going on. —

Scott

Contributors

Since this is an Open Source book, we have gotten several errata and content changes donated over
the years. Here are all the people who have contributed to the English version of Pro Git as an open
source project. Thank you everyone for helping make this a better book for everyone.

4wk -

Adam Laflamme
Adrien Ollier
Akrom K

Alan D. Salewski
Alba Mendez

Aleh Suprunovich
Alexander Bezzubov
Alexandre Garnier
Alfred Myers
Amanda Dillon
Andreas Bjernestad
Andrei Dascalu
Andrew Layman
Andrew MacFie
Andrew Metcalf
Andrew Murphy
AndyGee
AnneTheAgile
Anthony Loiseau
Anton Trunov
Antonello Piemonte
Antonino Ingargiola
Atul Varma

Ben Sima

Benjamin Dopplinger
Borek Bernard
Brett Cannon

Buzut

C Nquyen

Cadel Watson
Carlos Martin Nieto
Carlos Tafur
Chaitanya Gurrapu
Changwoo Park
Christoph Prokop
Christopher Wilson
CodingSpiderFox
Cory Donnelly
Cullen Rhodes
Cyril

Damien Tournoud
Dan Schmidt

John Lin

Jon Forrest

Jon Freed

Jordan Hayashi
Joris Valette
Josh Byster
Joshua Webb
Junjie Yuan
Justin Clift
Kaartic Sivaraam
KatDwo

Katrin Leinweber
Kausar Mehmood
Keith Hill
Kenneth Kin Lum
Kenneth Lum
Klaus Frank

Kristijan "Fremen" Velkovski

Krzysztof Szumny
Kyrylo Yatsenko
Lars Vogel

Laxman

Lazar95

Leonard Laszlo
Linus Heckemann
Logan Hasson

Louise Corrigan

Luc Morin

Lukas Ro1lin

Marcin Sedtak-Jakubowski
Marie-Helene Burle
Marius Zilénas
Markus KARG

Marti Bolivar
Mashrur Mia (Sa'ad)
Masood Fallahpoor
Mathieu Dubreuilh
Matthew Miner
Matthieu Moy
Michael MacAskill
Michael Sheaver
Michael Welch
Michiel van der Wulp

Sebastian Krause
Severino Lorilla Jr
Shengbin Meng
Shi Yan

Siarhei Bobryk
Siarhei Krukau
Skyper

Smaug123

Snehal Shekatkar
Song Li

Stephan van Maris
Steven Roddis
SudarsanGP
Suhaib Mujahid
Sven Selberg
Thanix

Thomas Ackermann
Thomas Hartmann
Tom Schady
Tomoki Aonuma
Tvirus

Tyler Cipriani
Ud Yzr
UgmaDevelopment
Vadim Markovtsev
Vangelis Katsikaros
Victor Ma

Vitaly Kuznetsov
Wesley Gongalves
William Gathoye
William Turrell
Wlodek Bzyl
Xavier Bonaventura
Yann Soubeyrand
Yue Lin Ho
Yunhai Luo
Yusuke SATO
ajax333221
alex-koziell
allen joslin
andreas

atalakam

axmbo

Daniel Shahaf
Daniel Sturm
Daniele Tricoli
Daniil Larionov
Danny Lin

David Rogers
Davide Angelocola
Denis Savitskiy
Dexter

Dexter Morganov
DiamondeX

Dieter Ziller
Dino Karic

Dmitri Tikhonov
Dmitriy Smirnov
Duncan Dean

Eden Hochbaum
Eric Henziger
Explorare

Ezra Buehler
Felix Nehrke
Filip Kucharczyk
Fornost461

Frank

Frederico Mazzone
Frej Drejhammar
Guthrie McAfee Armstrong
HairyFotr
Hamidreza Mahdavipanah
Haruo Nakayama
Helmut K. C. Tessarek
Hidde de Vries
HonkingGoose
Howard

Ignacy

Ilker Cat

Jan Groenewald
Jaswinder Singh
Jean-Noél Avila
Jeroen Oortwijn
Jim Hill

Joel Davies
Johannes Dewender
Johannes Schindelin

Mike Charles
Mike Pennisi
Mike Thibodeau
Maximo Cuadros
Niels Widger
Niko Stotz

Nils ReuBe

Olleg Samoylov
Owen

Pablo Schlapfer
Pascal Berger
Pascal Borreli
Patrick Steinhardt
Pavel Janik
Pawet Krupinski
Peter Kokot

Petr Bodnar

Petr Janecek
Phil Mitchell
Philippe Blain
Philippe Miossec
Rafi

Raphael R

Ray Chen

Rex Kerr

Reza Ahmadi
Richard Hoyle
Ricky Senft
Rintze M. Zelle
Rob Blanco
Robert P. Goldman
Robert P. J. Day
Rohan D'Souza
Roman Kosenko
Ronald Wampler
Ridiger Herrmann
SATO Yusuke

Sam Ford

Sam Joseph
Sanders Kleinfeld
Sarah Schneider
Saurav Sachidanand
Scott Bronson
Sean Head

bripmccann
brotherben
deltadd
devwebcl
dualsky
evanderiel
eyherabh
flip111
flyingzumwalt
franjozen
goekboet
grgbnc
haripetrov
i-give-up
iprok
jingsam
johnhar

maks

mmikeww
mosdalsvsocld
nicktime
patrick96
paveljanik
pedrorijo91
peterwwillis
petsuter
rahrah
rmzelle

root

sanders@oreilly.com

sharpiro
spacewander
td2014
twekberg
uerdogan
unlversal
xJom
xtreak
yakirwin
zwPapEr
0anoooo

1l

Introduction

You’re about to spend several hours of your life reading about Git. Let’s take a minute to explain
what we have in store for you. Here is a quick summary of the ten chapters and three appendices of
this book.

In Chapter 1, we’re going to cover Version Control Systems (VCSs) and Git basics—no technical
stuff, just what Git is, why it came about in a land full of VCSs, what sets it apart, and why so many
people are using it. Then, we’ll explain how to download Git and set it up for the first time if you
don’t already have it on your system.

In Chapter 2, we will go over basic Git usage — how to use Git in the 80% of cases you’ll encounter
most often. After reading this chapter, you should be able to clone a repository, see what has
happened in the history of the project, modify files, and contribute changes. If the book
spontaneously combusts at this point, you should already be pretty useful wielding Git in the time it
takes you to go pick up another copy.

Chapter 3 is about the branching model in Git, often described as Git’s killer feature. Here you’ll
learn what truly sets Git apart from the pack. When you’re done, you may feel the need to spend a
quiet moment pondering how you lived before Git branching was part of your life.

Chapter 4 will cover Git on the server. This chapter is for those of you who want to set up Git inside
your organization or on your own personal server for collaboration. We will also explore various
hosted options if you prefer to let someone else handle that for you.

Chapter 5 will go over in full detail various distributed workflows and how to accomplish them
with Git. When you are done with this chapter, you should be able to work expertly with multiple
remote repositories, use Git over email and deftly juggle numerous remote branches and
contributed patches.

Chapter 6 covers the GitHub hosting service and tooling in depth. We cover signing up for and
managing an account, creating and using Git repositories, common workflows to contribute to
projects and to accept contributions to yours, GitHub’s programmatic interface and lots of little tips
to make your life easier in general.

Chapter 7 is about advanced Git commands. Here you will learn about topics like mastering the
scary reset command, using binary search to identify bugs, editing history, revision selection in
detail, and a lot more. This chapter will round out your knowledge of Git so that you are truly a
master.

Chapter 8 is about configuring your custom Git environment. This includes setting up hook scripts
to enforce or encourage customized policies and using environment configuration settings so you
can work the way you want to. We will also cover building your own set of scripts to enforce a
custom committing policy.

Chapter 9 deals with Git and other VCSs. This includes using Git in a Subversion (SVN) world and
converting projects from other VCSs to Git. A lot of organizations still use SVN and are not about to
change, but by this point you’ll have learned the incredible power of Git—and this chapter shows
you how to cope if you still have to use a SVN server. We also cover how to import projects from

several different systems in case you do convince everyone to make the plunge.

Chapter 10 delves into the murky yet beautiful depths of Git internals. Now that you know all
about Git and can wield it with power and grace, you can move on to discuss how Git stores its
objects, what the object model is, details of packfiles, server protocols, and more. Throughout the
book, we will refer to sections of this chapter in case you feel like diving deep at that point; but if
you are like us and want to dive into the technical details, you may want to read Chapter 10 first.
We leave that up to you.

In Appendix A, we look at a number of examples of using Git in various specific environments. We
cover a number of different GUIs and IDE programming environments that you may want to use
Git in and what is available for you. If you’re interested in an overview of using Git in your shell,
your IDE, or your text editor, take a look here.

In Appendix B, we explore scripting and extending Git through tools like libgit2 and JGit. If you’re
interested in writing complex and fast custom tools and need low-level Git access, this is where you
can see what that landscape looks like.

Finally, in Appendix C, we go through all the major Git commands one at a time and review where
in the book we covered them and what we did with them. If you want to know where in the book
we used any specific Git command you can look that up here.

Let’s get started.

Getting Started

This chapter will be about getting started with Git. We will begin by explaining some background
on version control tools, then move on to how to get Git running on your system and finally how to
get it set up to start working with. At the end of this chapter you should understand why Git is
around, why you should use it and you should be all set up to do so.

About Version Control

What is “version control”, and why should you care? Version control is a system that records
changes to a file or set of files over time so that you can recall specific versions later. For the
examples in this book, you will use software source code as the files being version controlled,
though in reality you can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an image or layout (which
you would most certainly want to), a Version Control System (VCS) is a very wise thing to use. It
allows you to revert selected files back to a previous state, revert the entire project back to a
previous state, compare changes over time, see who last modified something that might be causing
a problem, who introduced an issue and when, and more. Using a VCS also generally means that if
you screw things up or lose files, you can easily recover. In addition, you get all this for very little
overhead.

Local Version Control Systems

Many people’s version-control method of choice is to copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple, but
it is also incredibly error prone. It is easy to forget which directory you’re in and accidentally write
to the wrong file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple database that
kept all the changes to files under revision control.

Checkout

File

Local

Computer

Version Database

Version 3
Version 2
Version 1

Figure 1. Local version control.

One of the most popular VCS tools was a system called RCS, which is still distributed with many
computers today. RCS works by keeping patch sets (that is, the differences between files) in a special
format on disk; it can then re-create what any file looked like at any point in time by adding up all

the patches.

Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with developers on
other systems. To deal with this problem, Centralized Version Control Systems (CVCSs) were
developed. These systems (such as CVS, Subversion, and Perforce) have a single server that contains
all the versioned files, and a number of clients that check out files from that central place. For

many years, this has been the standard for version control.

10

https://www.gnu.org/software/rcs/

shared
repository

developer developer developer

Figure 2. Centralized version control.

This setup offers many advantages, especially over local VCSs. For example, everyone knows to a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what, and it’s far easier to administer a CVCS than it is to deal with local databases
on every client.

However, this setup also has some serious downsides. The most obvious is the single point of failure
that the centralized server represents. If that server goes down for an hour, then during that hour
nobody can collaborate at all or save versioned changes to anything they’re working on. If the hard
disk the central database is on becomes corrupted, and proper backups haven’t been kept, you lose
absolutely everything —the entire history of the project except whatever single snapshots people
happen to have on their local machines. Local VCS systems suffer from this same
problem —whenever you have the entire history of the project in a single place, you risk losing
everything.

Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a DVCS (such as Git, Mercurial,
Bazaar or Darcs), clients don’t just check out the latest snapshot of the files; rather, they fully
mirror the repository, including its full history. Thus, if any server dies, and these systems were
collaborating via that server, any of the client repositories can be copied back up to the server to
restore it. Every clone is really a full backup of all the data.

11

Server Computer

Version Database

Version 3
I
Version 2
I

Version 1

Computer A Computer B

Version Database < » | Version Database
Version 3 Version 3
I I
Version 2 Version 2
I I
Version 1 Version 1

Figure 3. Distributed version control.

Furthermore, many of these systems deal pretty well with having several remote repositories they
can work with, so you can collaborate with different groups of people in different ways
simultaneously within the same project. This allows you to set up several types of workflows that
aren’t possible in centralized systems, such as hierarchical models.

12

A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery controversy.

The Linux kernel is an open source software project of fairly large scope. For most of the lifetime of
the Linux kernel maintenance (1991-2002), changes to the software were passed around as patches
and archived files. In 2002, the Linux kernel project began using a proprietary DVCS called
BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the
commercial company that developed BitKeeper broke down, and the tool’s free-of-charge status
was revoked. This prompted the Linux development community (and in particular Linus Torvalds,
the creator of Linux) to develop their own tool based on some of the lessons they learned while
using BitKeeper. Some of the goals of the new system were as follows:

» Speed
» Simple design

» Strong support for non-linear development (thousands of parallel branches)

Fully distributed

Able to handle large projects like the Linux kernel efficiently (speed and data size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. It’s amazingly fast, it’s very efficient with large projects, and it has an incredible
branching system for non-linear development (See Git Branching).

What is Git?

So, what is Git in a nutshell? This is an important section to absorb, because if you understand what
Git is and the fundamentals of how it works, then using Git effectively will probably be much easier
for you. As you learn Git, try to clear your mind of the things you may know about other VCSs, such
as CVS, Subversion or Perforce — doing so will help you avoid subtle confusion when using the tool.
Even though Git’s user interface is fairly similar to these other VCSs, Git stores and thinks about
information in a very different way, and understanding these differences will help you avoid
becoming confused while using it.

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as a list of file-based
changes. These other systems (CVS, Subversion, Perforce, Bazaar, and so on) think of the
information they store as a set of files and the changes made to each file over time (this is
commonly described as delta-based version control).

13

Checkins Over Time

File A —» A1 > A2
File B > A1 —» A2
File C —» A1 —> A2 > A3

Figure 4. Storing data as changes to a base version of each file.

Git doesn’t think of or store its data this way. Instead, Git thinks of its data more like a series of
snapshots of a miniature filesystem. With Git, every time you commit, or save the state of your
project, Git basically takes a picture of what all your files look like at that moment and stores a
reference to that snapshot. To be efficient, if files have not changed, Git doesn’t store the file again,
just a link to the previous identical file it has already stored. Git thinks about its data more like a
stream of snapshots.

Checkins Over Time

File A AT A2
| S B |
File B ‘ B [B : B1 B2
- | . |
File C C1 c2 ‘ c2 : c3

Figure 5. Storing data as snapshots of the project over time.

This is an important distinction between Git and nearly all other VCSs. It makes Git reconsider
almost every aspect of version control that most other systems copied from the previous
generation. This makes Git more like a mini filesystem with some incredibly powerful tools built on
top of it, rather than simply a VCS. We’ll explore some of the benefits you gain by thinking of your
data this way when we cover Git branching in Git Branching.

Nearly Every Operation Is Local

Most operations in Git need only local files and resources to operate — generally no information is
needed from another computer on your network. If you’re used to a CVCS where most operations
have that network latency overhead, this aspect of Git will make you think that the gods of speed
have blessed Git with unworldly powers. Because you have the entire history of the project right
there on your local disk, most operations seem almost instantaneous.

14

For example, to browse the history of the project, Git doesn’t need to go out to the server to get the
history and display it for you — it simply reads it directly from your local database. This means you
see the project history almost instantly. If you want to see the changes introduced between the
current version of a file and the file a month ago, Git can look up the file a month ago and do a local
difference calculation, instead of having to either ask a remote server to do it or pull an older
version of the file from the remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off VPN. If you get on an
airplane or a train and want to do a little work, you can commit happily (to your local copy,
remember?) until you get to a network connection to upload. If you go home and can’t get your VPN
client working properly, you can still work. In many other systems, doing so is either impossible or
painful. In Perforce, for example, you can’t do much when you aren’t connected to the server; in
Subversion and CVS, you can edit files, but you can’t commit changes to your database (because
your database is offline). This may not seem like a huge deal, but you may be surprised what a big
difference it can make.

Git Has Integrity

Everything in Git is checksummed before it is stored and is then referred to by that checksum. This
means it’s impossible to change the contents of any file or directory without Git knowing about it.
This functionality is built into Git at the lowest levels and is integral to its philosophy. You can’t lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-character
string composed of hexadecimal characters (0-9 and a-f) and calculated based on the contents of a
file or directory structure in Git. A SHA-1 hash looks something like this:

24b9dab5522529873a493b5218696cdbd3b00373

You will see these hash values all over the place in Git because it uses them so much. In fact, Git
stores everything in its database not by file name but by the hash value of its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is hard to get the
system to do anything that is not undoable or to make it erase data in any way. As with any VCS, you
can lose or mess up changes you haven’t committed yet, but after you commit a snapshot into Git, it
is very difficult to lose, especially if you regularly push your database to another repository.

This makes using Git a joy because we know we can experiment without the danger of severely
screwing things up. For a more in-depth look at how Git stores its data and how you can recover
data that seems lost, see Undoing Things.

The Three States

Pay attention now — here is the main thing to remember about Git if you want the rest of your
learning process to go smoothly. Git has three main states that your files can reside in: modified,
staged, and committed:

15

* Modified means that you have changed the file but have not committed it to your database yet.

» Staged means that you have marked a modified file in its current version to go into your next
commit snapshot.

* Committed means that the data is safely stored in your local database.

This leads us to the three main sections of a Git project: the working tree, the staging area, and the
Git directory.

Working Staging .git directory
Directory Area (Repository)

Checkout

Figure 6. Working tree, staging area, and Git directory.

The working tree is a single checkout of one version of the project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that stores information about
what will go into your next commit. Its technical name in Git parlance is the “index”, but the phrase
“staging area” works just as well.

The Git directory is where Git stores the metadata and object database for your project. This is the
most important part of Git, and it is what is copied when you clone a repository from another
computer.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage just those changes you want to be part of your next commit, which adds
only those changes to the staging area.

3. You do a commit, which takes the files as they are in the staging area and stores that snapshot
permanently to your Git directory.

If a particular version of a file is in the Git directory, it’s considered committed. If it has been

16

modified and was added to the staging area, it is staged. And if it was changed since it was checked
out but has not been staged, it is modified. In Git Basics, yow’ll learn more about these states and
how you can either take advantage of them or skip the staged part entirely.

The Command Line

There are a lot of different ways to use Git. There are the original command-line tools, and there
are many graphical user interfaces of varying capabilities. For this book, we will be using Git on the
command line. For one, the command line is the only place you can run all Git commands — most
of the GUIs implement only a partial subset of Git functionality for simplicity. If you know how to
run the command-line version, you can probably also figure out how to run the GUI version, while
the opposite is not necessarily true. Also, while your choice of graphical client is a matter of
personal taste, all users will have the command-line tools installed and available.

So we will expect you to know how to open Terminal in macOS or Command Prompt or PowerShell
in Windows. If you don’t know what we’re talking about here, you may need to stop and research
that quickly so that you can follow the rest of the examples and descriptions in this book.

Installing Git

Before you start using Git, you have to make it available on your computer. Even if it’s already
installed, it’s probably a good idea to update to the latest version. You can either install it as a
package or via another installer, or download the source code and compile it yourself.

This book was written using Git version 2.8.0. Though most of the commands we
o use should work even in ancient versions of Git, some of them might not or might

act slightly differently if you’re using an older version. Since Git is quite excellent
at preserving backwards compatibility, any version after 2.8 should work just fine.

Installing on Linux

If you want to install the basic Git tools on Linux via a binary installer, you can generally do so
through the package management tool that comes with your distribution. If you’re on Fedora (or
any closely-related RPM-based distribution, such as RHEL or CentOS), you can use dnf:

$ sudo dnf install git-all
If you're on a Debian-based distribution, such as Ubuntu, try apt:
$ sudo apt install git-all

For more options, there are instructions for installing on several different Unix distributions on the
Git website, at https://git-scm.com/download/linux.

17

https://git-scm.com/download/linux

Installing on macOS

There are several ways to install Git on a Mac. The easiest is probably to install the Xcode Command
Line Tools. On Mavericks (10.9) or above you can do this simply by trying to run git from the
Terminal the very first time.

$ git --version

If you don’t have it installed already, it will prompt you to install it.

If you want a more up to date version, you can also install it via a binary installer. A macOS Git
installer is maintained and available for download at the Git website, at https://git-scm.com/
download/mac.

o Install Git 2.0.1

Welcome to the Git 2.0.1 Installer

@ Introduction

® Destination Sele You will be guided through the steps necessary to
install this software.

@ Installationsiy
@ Installati
'3

@ Summary

J i |1nllu|.||l||||l|
|L|||1l\\tl|lL|||L||\\ i L !
] 1

4

[4

Go Back Continue

Figure 7. Git macOS Installer.

You can also install it as part of the GitHub for macOS install. Their GUI Git tool has an option to
install command line tools as well. You can download that tool from the GitHub for macOS website,
at https://desktop.github.com.

Installing on Windows

There are also a few ways to install Git on Windows. The most official build is available for
download on the Git website. Just go to https://git-scm.com/download/win and the download will
start automatically. Note that this is a project called Git for Windows, which is separate from Git

18

https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://desktop.github.com
https://git-scm.com/download/win

itself; for more information on it, go to https://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note that the Chocolatey
package is community maintained.

Another easy way to get Git installed is by installing GitHub Desktop. The installer includes a
command line version of Git as well as the GUI It also works well with PowerShell, and sets up
solid credential caching and sane CRLF settings. We’ll learn more about those things a little later,
but suffice it to say they’re things you want. You can download this from the GitHub Desktop
website.

Installing from Source

Some people may instead find it useful to install Git from source, because you’ll get the most recent
version. The binary installers tend to be a bit behind, though as Git has matured in recent years,
this has made less of a difference.

If you do want to install Git from source, you need to have the following libraries that Git depends
on: autotools, curl, zlib, openssl, expat, and libiconv. For example, if you’re on a system that has dnf
(such as Fedora) or apt-get (such as a Debian-based system), you can use one of these commands to
install the minimal dependencies for compiling and installing the Git binaries:

$ sudo dnf install dh-autoreconf curl-devel expat-devel gettext-devel \
openssl-devel perl-devel zlib-devel

$ sudo apt-get install dh-autoreconf libcurl4-gnutls-dev libexpat1-dev \
gettext libz-dev libssl-dev

In order to be able to add the documentation in various formats (doc, html, info), these additional
dependencies are required:

$ sudo dnf install asciidoc xmlto docbook2X
$ sudo apt-get install asciidoc xmlto docbook2x

o Users of RHEL and RHEL-derivatives like CentOS and Scientific Linux will have to
enable the EPEL repository to download the docbook2X package.

If you're using a Debian-based distribution (Debian/Ubuntu/Ubuntu-derivatives), you also need the
install-info package:

$ sudo apt-get install install-info

If you’re using a RPM-based distribution (Fedora/RHEL/RHEL-derivatives), you also need the getopt
package (which is already installed on a Debian-based distro):

$ sudo dnf install getopt

19

https://gitforwindows.org
https://chocolatey.org/packages/git
https://desktop.github.com
https://desktop.github.com
https://fedoraproject.org/wiki/EPEL#How_can_I_use_these_extra_packages.3F

Additionally, if you're using Fedora/RHEL/RHEL-derivatives, you need to do this
$ sudo 1n -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

due to binary name differences.

When you have all the necessary dependencies, you can go ahead and grab the latest tagged release
tarball from several places. You can get it via the kernel.org site, at https://www.kernel.org/pub/
software/scm/git, or the mirror on the GitHub website, at https://github.com/git/git/releases. It’s
generally a little clearer what the latest version is on the GitHub page, but the kernel.org page also
has release signatures if you want to verify your download.

Then, compile and install:

$ tar -zxf git-2.8.0.tar.gz

§ cd git-2.8.0

$ make configure

$./configure --prefix=/usr

$ make all doc info

$ sudo make install install-doc install-html install-info

After this is done, you can also get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scm/git/git.git

First-Time Git Setup

Now that you have Git on your system, you’ll want to do a few things to customize your Git
environment. You should have to do these things only once on any given computer; they’ll stick
around between upgrades. You can also change them at any time by running through the
commands again.

Git comes with a tool called git config that lets you get and set configuration variables that control
all aspects of how Git looks and operates. These variables can be stored in three different places:

1. /etc/gitconfig file: Contains values applied to every user on the system and all their
repositories. If you pass the option --system to git config, it reads and writes from this file
specifically. (Because this is a system configuration file, you would need administrative or
superuser privilege to make changes to it.)

2. ~/.gitconfig or ~/.config/git/config file: Values specific personally to you, the user. You can
make Git read and write to this file specifically by passing the --global option, and this affects
all of the repositories you work with on your system.

3. config file in the Git directory (that is, .git/config) of whatever repository you’re currently
using: Specific to that single repository. You can force Git to read from and write to this file with
the --local option, but that is in fact the default. (Unsurprisingly, you need to be located

20

https://www.kernel.org/pub/software/scm/git
https://www.kernel.org/pub/software/scm/git
https://github.com/git/git/releases

somewhere in a Git repository for this option to work properly.)

Each level overrides values in the previous level, so values in .git/config trump those in
/etc/gitconfig.

On Windows systems, Git looks for the .gitconfig file in the $HOME directory (C:\Users\$USER for
most people). It also still looks for /etc/gitconfig, although it’s relative to the MSys root, which is
wherever you decide to install Git on your Windows system when you run the installer. If you are
using version 2.x or later of Git for Windows, there is also a system-level config file at C:\Documents
and Settings\All Users\Application Data\Git\config on Windows XP, and in
C:\ProgramData\Git\config on Windows Vista and newer. This config file can only be changed by git
config -f <file>as an admin.

You can view all of your settings and where they are coming from using:

$ git config --1list --show-origin

Your Identity

The first thing you should do when you install Git is to set your user name and email address. This
is important because every Git commit uses this information, and it’s immutably baked into the
commits you start creating:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Again, you need to do this only once if you pass the --global option, because then Git will always
use that information for anything you do on that system. If you want to override this with a
different name or email address for specific projects, you can run the command without the
--global option when you’re in that project.

Many of the GUI tools will help you do this when you first run them.

Your Editor

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in a message. If not configured, Git uses your system’s default editor.

If you want to use a different text editor, such as Emacs, you can do the following:
$ git config --global core.editor emacs

On a Windows system, if you want to use a different text editor, you must specify the full path to its
executable file. This can be different depending on how your editor is packaged.

In the case of Notepad++, a popular programming editor, you are likely to want to use the 32-bit
version, since at the time of writing the 64-bit version doesn’t support all plug-ins. If you are on a

21

32-bit Windows system, or you have a 64-bit editor on a 64-bit system, youw’ll type something like
this:

$ git config --global core.editor "'C:/Program Files/Notepad++/notepad++.exe’
-multilnst -notabbar -nosession -noPlugin"

Vim, Emacs and Notepad++ are popular text editors often used by developers on

o Unix-based systems like Linux and macOS or a Windows system. If you are using
another editor, or a 32-bit version, please find specific instructions for how to set
up your favorite editor with Git in git config core.editor commands.

You may find, if you don’t setup your editor like this, you get into a really
A confusing state when Git attempts to launch it. An example on a Windows system
may include a prematurely terminated Git operation during a Git initiated edit.

Checking Your Settings

If you want to check your configuration settings, you can use the git config --1ist command to list
all the settings Git can find at that point:

$ git config --Tlist
user.name=John Doe
user.email=johndoe@example.com
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto

You may see keys more than once, because Git reads the same key from different files
(/etc/gitconfig and ~/.gitconfig, for example). In this case, Git uses the last value for each unique
key it sees.

You can also check what Git thinks a specific key’s value is by typing git config <key>:

$ git config user.name
John Doe

22

Since Git might read the same configuration variable value from more than one
file, it’s possible that you have an unexpected value for one of these values and
you don’t know why. In cases like that, you can query Git as to the origin for that
value, and it will tell you which configuration file had the final say in setting that

o value:

$ git config --show-origin rerere.autoUpdate
file:/home/johndoe/.gitconfig false

Getting Help

If you ever need help while using Git, there are three equivalent ways to get the comprehensive
manual page (manpage) help for any of the Git commands:

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the git config command by running
$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages
and this book aren’t enough and you need in-person help, you can try the #git or #github channel
on the Freenode IRC server, which can be found at https:/freenode.net. These channels are
regularly filled with hundreds of people who are all very knowledgeable about Git and are often
willing to help.

In addition, if you don’t need the full-blown manpage help, but just need a quick refresher on the
available options for a Git command, you can ask for the more concise “help” output with the -h
option, as in:

23

https://freenode.net

$ git add -h

usage: git add [<options>] [--] <pathspec>...

-n, --dry-run
-v, --verbose

-i, --interactive

-p, --patch

-e, --edit

-f, --force

-u, --update
--renormalize

-N, --intent-to-add
-A, --3ll
--ignore-removal
--refresh

--ignore-errors
--ignore-missing
--chmod (+|-)x

Summary

dry run
be verbose

interactive picking

select hunks interactively

edit current diff and apply

allow adding otherwise ignored files

update tracked files

renormalize EOL of tracked files (implies -u)

record only the fact that the path will be added later
add changes from all tracked and untracked files

ignore paths removed in the working tree (same as --no-all)
don't add, only refresh the index

just skip files which cannot be added because of errors
check if - even missing - files are ignored in dry run
override the executable bit of the listed files

You should have a basic understanding of what Git is and how it’s different from any centralized
version control systems you may have been using previously. You should also now have a working
version of Git on your system that’s set up with your personal identity. It’'s now time to learn some

Git basics.

24

Git Basics

If you can read only one chapter to get going with Git, this is it. This chapter covers every basic
command you need to do the vast majority of the things you’ll eventually spend your time doing
with Git. By the end of the chapter, you should be able to configure and initialize a repository, begin
and stop tracking files, and stage and commit changes. We’ll also show you how to set up Git to
ignore certain files and file patterns, how to undo mistakes quickly and easily, how to browse the
history of your project and view changes between commits, and how to push and pull from remote
repositories.

Getting a Git Repository
You typically obtain a Git repository in one of two ways:

1. You can take a local directory that is currently not under version control, and turn it into a Git
repository, or

2. You can clone an existing Git repository from elsewhere.

In either case, you end up with a Git repository on your local machine, ready for work.

Initializing a Repository in an Existing Directory

If you have a project directory that is currently not under version control and you want to start
controlling it with Git, you first need to go to that project’s directory. If you’ve never done this, it
looks a little different depending on which system you’re running:

for Linux:

$ cd /home/user/my_project
for macOS:

$ cd /Users/user/my_project
for Windows:

$ cd C:/Users/user/my_project
and type:

$ git init

This creates a new subdirectory named .git that contains all of your necessary repository files—a
Git repository skeleton. At this point, nothing in your project is tracked yet. (See Git Internals for

25

more information about exactly what files are contained in the .git directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. You can accomplish that with a few
git add commands that specify the files you want to track, followed by a git commit:

$ git add *.c
$ git add LICENSE
$ git commit -m 'Initial project version'

We’ll go over what these commands do in just a minute. At this point, you have a Git repository
with tracked files and an initial commit.

Cloning an Existing Repository

If you want to get a copy of an existing Git repository —for example, a project you’d like to
contribute to — the command you need is git clone. If you’re familiar with other VCS systems such
as Subversion, you’ll notice that the command is "clone" and not "checkout". This is an important
distinction — instead of getting just a working copy, Git receives a full copy of nearly all data that
the server has. Every version of every file for the history of the project is pulled down by default
when you run git clone. In fact, if your server disk gets corrupted, you can often use nearly any of
the clones on any client to set the server back to the state it was in when it was cloned (you may
lose some server-side hooks and such, but all the versioned data would be there —see Getting Git
on a Server for more details).

You clone a repository with git clone <url>. For example, if you want to clone the Git linkable
library called 1ibgit2, you can do so like this:

$ git clone https://github.com/1ibgit2/1ibgit2

That creates a directory named 1ibgit2, initializes a .git directory inside it, pulls down all the data
for that repository, and checks out a working copy of the latest version. If you go into the new
1ibgit2 directory that was just created, youw’ll see the project files in there, ready to be worked on or
used.

If you want to clone the repository into a directory named something other than 1ibgit2, you can
specify the new directory name as an additional argument:

$ git clone https://github.com/1ibgit2/1ibgit2 mylibgit

That command does the same thing as the previous one, but the target directory is called mylibgit.

Git has a number of different transfer protocols you can use. The previous example uses the
https:// protocol, but you may also see git:// or user@server:path/to/repo.git, which uses the SSH
transfer protocol. Getting Git on a Server will introduce all of the available options the server can
set up to access your Git repository and the pros and cons of each.

26

Recording Changes to the Repository

At this point, you should have a bona fide Git repository on your local machine, and a checkout or
working copy of all of its files in front of you. Typically, you’ll want to start making changes and
committing snapshots of those changes into your repository each time the project reaches a state
you want to record.

Remember that each file in your working directory can be in one of two states: tracked or
untracked. Tracked files are files that were in the last snapshot; they can be unmodified, modified,
or staged. In short, tracked files are files that Git knows about.

Untracked files are everything else — any files in your working directory that were not in your last
snapshot and are not in your staging area. When you first clone a repository, all of your files will be
tracked and unmodified because Git just checked them out and you haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them since your last commit.
As you work, you selectively stage these modified files and then commit all those staged changes,
and the cycle repeats.

Untracked Unmodified Modified

Add the file

Edit the file

Stage the file
Remove the file

Figure 8. The lifecycle of the status of your files.

Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status command. If you
run this command directly after a clone, you should see something like this:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

This means you have a clean working directory; in other words, none of your tracked files are
modified. Git also doesn’t see any untracked files, or they would be listed here. Finally, the
command tells you which branch you’re on and informs you that it has not diverged from the same

27

branch on the server. For now, that branch is always master, which is the default; you won’t worry
about it here. Git Branching will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and
yourun git status, you see your untracked file like so:

$ echo 'My Project' > README
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:
(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

You can see that your new README file is untracked, because it’s under the “Untracked files” heading
in your status output. Untracked basically means that Git sees a file you didn’t have in the previous
snapshot (commit); Git won’t start including it in your commit snapshots until you explicitly tell it
to do so. It does this so you don’t accidentally begin including generated binary files or other files
that you did not mean to include. You do want to start including README, so let’s start tracking the
file.

Tracking New Files

In order to begin tracking a new file, you use the command git add. To begin tracking the README
file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is now tracked and staged
to be committed:

$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

new file: README

You can tell that it’s staged because it’s under the “Changes to be committed” heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the
subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran git
add <files>—that was to begin tracking files in your directory. The git add command takes a path

28

name for either a file or a directory; if it’s a directory, the command adds all the files in that
directory recursively.

Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked file called
CONTRIBUTING.md and then run your git status command again, you get something that looks like
this:

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: CONTRIBUTING.md

The CONTRIBUTING.md file appears under a section named “Changes not staged for commit” — which
means that a file that is tracked has been modified in the working directory but not yet staged. To
stage it, you run the git add command. git add is a multipurpose command — you use it to begin
tracking new files, to stage files, and to do other things like marking merge-conflicted files as
resolved. It may be helpful to think of it more as “add precisely this content to the next commit”
rather than “add this file to the project”. Let’s run git add now to stage the CONTRIBUTING.md file, and
then run git status again:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README
modified: CONTRIBUTING.md

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and
make that change, and you’re ready to commit. However, let’s run git status one more time:

29

$ vim CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README
modified: CONTRIBUTING.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: CONTRIBUTING.md

What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It
turns out that Git stages a file exactly as it is when you run the git add command. If you commit
now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it will
go into the commit, not the version of the file as it looks in your working directory when you run
git commit. If you modify a file after you run git add, you have to run git add again to stage the
latest version of the file:

$ git add CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: README
modified: CONTRIBUTING.md

Short Status

While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short
status flag so you can see your changes in a more compact way. If you run git status -s or git
status --short you get a far more simplified output from the command:

$ git status -s

M README

MM Rakefile

A 1lib/git.rb

M 1ib/simplegit.rb
7?7 LICENSE.txt

30

New files that aren’t tracked have a ?? next to them, new files that have been added to the staging
area have an A, modified files have an M and so on. There are two columns to the output — the left-
hand column indicates the status of the staging area and the right-hand column indicates the status
of the working tree. So for example in that output, the README file is modified in the working
directory but not yet staged, while the 1ib/simplegit.rb file is modified and staged. The Rakefile
was modified, staged and then modified again, so there are changes to it that are both staged and
unstaged.

Ignoring Files

Often, youw’ll have a class of files that you don’t want Git to automatically add or even show you as
being untracked. These are generally automatically generated files such as log files or files
produced by your build system. In such cases, you can create a file listing patterns to match them
named .gitignore. Here is an example .gitignore file:

$ cat .gitignore

*.[oa]

~

The first line tells Git to ignore any files ending in “.0” or “.a” — object and archive files that may be
the product of building your code. The second line tells Git to ignore all files whose names end with
a tilde (~), which is used by many text editors such as Emacs to mark temporary files. You may also
include a log, tmp, or pid directory; automatically generated documentation; and so on. Setting up a
.gitignore file for your new repository before you get going is generally a good idea so you don’t
accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

* Blank lines or lines starting with # are ignored.

Standard glob patterns work, and will be applied recursively throughout the entire working
tree.

* You can start patterns with a forward slash (/) to avoid recursivity.

* You can end patterns with a forward slash (/) to specify a directory.

* You can negate a pattern by starting it with an exclamation point (!).
Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or
more characters; [abc] matches any character inside the brackets (in this case a, b, or ¢); a question
mark (?) matches a single character; and brackets enclosing characters separated by a hyphen ([0-

9]) matches any character between them (in this case 0 through 9). You can also use two asterisks to
match nested directories; a/**/z would match a/z, a/b/z, a/b/c/z, and so on.

Here is another example .gitignore file:

31

ignore all .a files
*.a

but do track lib.a, even though you're ignoring .a files above
ITlib.a

only ignore the TODO file in the current directory, not subdir/TODO
/T0D0

ignore all files in any directory named build
build/

ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

GitHub maintains a fairly comprehensive list of good .gitignore file examples for
O dozens of projects and languages at https://github.com/github/gitignore if you want
et a starting point for your project.

In the simple case, a repository might have a single .gitignore file in its root
directory, which applies recursively to the entire repository. However, it is also
possible to have additional .gitignore files in subdirectories. The rules in these

o nested .gitignore files apply only to the files under the directory where they are
located. (The Linux kernel source repository has 206 .gitignore files.)

It is beyond the scope of this book to get into the details of multiple .gitignore
files; see man gitignore for the details.

Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what you changed, not
just which files were changed — you can use the git diff command. We’ll cover git diff in more
detail later, but you’ll probably use it most often to answer these two questions: What have you
changed but not yet staged? And what have you staged that you are about to commit? Although git
status answers those questions very generally by listing the file names, git diff shows you the
exact lines added and removed — the patch, as it were.

Let’s say you edit and stage the README file again and then edit the CONTRIBUTING.md file without
staging it. If you run your git status command, you once again see something like this:

32

https://github.com/github/gitignore

$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: CONTRIBUTING.md

To see what you’ve changed but not yet staged, type git diff with no other arguments:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- 3/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
Please include a nice description of your changes when you submit your PR;
if we have to read the whole diff to figure out why you're contributing
in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

If you are starting to work on a particular area, feel free to submit a PR
that highlights your work in progress (and note in the PR title that it's

That command compares what is in your working directory with what is in your staging area. The

result tells you the changes you’ve made that you haven’t yet staged.

If you want to see what you’ve staged that will go into your next commit, you can use git diff

--staged. This command compares your staged changes to your last commit:

$ git diff --staged

diff --git a/README b/README
new file mode 100644

index 0000000..03902a1

--- /dev/null

+++ b/README

@@ -0,0 +1 @@

+My Project

I’s important to note that git diff by itself doesn’t show all changes made since your last
commit —only changes that are still unstaged. If you’ve staged all of your changes, git diff will
give you no output.

For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to
see the changes in the file that are staged and the changes that are unstaged. If our environment
looks like this:

$ git add CONTRIBUTING.md
$ echo '# test line' >> CONTRIBUTING.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: CONTRIBUTING.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: CONTRIBUTING.md

Now you can use git diff to see what is still unstaged:

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 643e24f..87f08c8 100644
--- 3a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
0 -119,3 +119,4 @@ at the
Starter Projects

See our [projects
list](https://github.com/1ibgit2/1ibgit2/blob/development/PROJECTS.md).
+# test line

and git diff --cached to see what you’ve staged so far (--staged and --cached are synonyms):

34

$ git diff --cached
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- 3/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
Please include a nice description of your changes when you submit your PR;
if we have to read the whole diff to figure out why you're contributing
in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

If you are starting to work on a particular area, feel free to submit a PR
that highlights your work in progress (and note in the PR title that it's

Git Diff in an External Tool

We will continue to use the git diff command in various ways throughout the rest
of the book. There is another way to look at these diffs if you prefer a graphical or

o external diff viewing program instead. If you run git difftool instead of git diff,
you can view any of these diffs in software like emerge, vimdiff and many more
(including commercial products). Run git difftool --tool-help to see what is
available on your system.

Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your changes. Remember
that anything that is still unstaged —any files you have created or modified that you haven’t run
git add on since you edited them —won’t go into this commit. They will stay as modified files on
your disk. In this case, let’s say that the last time you ran git status, you saw that everything was
staged, so you’re ready to commit your changes. The simplest way to commit is to type git commit:

$ git commit

Doing so launches your editor of choice.
This is set by your shell’s EDITOR environment variable —usually vim or emacs,
although you can configure it with whatever you want using the git config

--global core.editor command as you saw in Getting Started.

The editor displays the following text (this example is a Vim screen):

35

Please enter the commit message for your changes. Lines starting
with "#' will be ignored, and an empty message aborts the commit.
On branch master

Your branch is up-to-date with 'origin/master’.

Changes to be committed:
new file: README
modified: CONTRIBUTING.md

= O H R H = O =

R

R

'.git/COMMIT_EDITMSG" 9L, 283C

You can see that the default commit message contains the latest output of the git status command
commented out and one empty line on top. You can remove these comments and type your commit
message, or you can leave them there to help you remember what you’re committing.

For an even more explicit reminder of what you’ve modified, you can pass the -v
o option to git commit. Doing so also puts the diff of your change in the editor so you
can see exactly what changes you’re committing.

When you exit the editor, Git creates your commit with that commit message (with the comments
and diff stripped out).

Alternatively, you can type your commit message inline with the commit command by specifying it
after a -m flag, like this:

$ git commit -m "Story 182: fix benchmarks for speed"
[master 463dc4f] Story 182: fix benchmarks for speed
2 files changed, 2 insertions(+)

create mode 100644 README

Now you’'ve created your first commit! You can see that the commit has given you some output
about itself: which branch you committed to (master), what SHA-1 checksum the commit has
(463dc4f), how many files were changed, and statistics about lines added and removed in the
comimit.

Remember that the commit records the snapshot you set up in your staging area. Anything you
didn’t stage is still sitting there modified; you can do another commit to add it to your history. Every
time you perform a commit, you’re recording a snapshot of your project that you can revert to or
compare to later.

Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them, the staging
area is sometimes a bit more complex than you need in your workflow. If you want to skip the

36

staging area, Git provides a simple shortcut. Adding the -a option to the git commit command makes
Git automatically stage every file that is already tracked before doing the commit, letting you skip

the git add part:

$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: CONTRIBUTING.md

no changes added to commit (use "git add" and/or "git commit -a")
$ git commit -a -m 'Add new benchmarks'

[master 83e38c7] Add new benchmarks

1 file changed, 5 insertions(+), @ deletions(-)

Notice how you don’t have to run git add on the CONTRIBUTING.md file in this case before you commit.
That’s because the -a flag includes all changed files. This is convenient, but be careful; sometimes

this flag will cause you to include unwanted changes.

Removing Files

To remove a file from Git, you have to remove it from your tracked files (more accurately, remove it
from your staging area) and then commit. The git rm command does that, and also removes the file

from your working directory so you don’t see it as an untracked file the next time around.

If you simply remove the file from your working directory, it shows up under the “Changes not

staged for commit” (that is, unstaged) area of your git status output:

$ rm PROJECTS.md
$ git status
On branch master
Your branch is up-to-date with 'origin/master’.
Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

deleted: PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")

Then, if you run git rm, it stages the file’s removal:

37

$ git rm PROJECTS.md
rm 'PROJECTS.md'
$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

deleted: PROJECTS.md

The next time you commit, the file will be gone and no longer tracked. If you modified the file or
had already added it to the staging area, you must force the removal with the -f option. This is a
safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snapshot and
that can’t be recovered from Git.

Another useful thing you may want to do is to keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have
Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore
file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use the
--cached option:

$ git rm --cached README

You can pass files, directories, and file-glob patterns to the git rm command. That means you can do
things such as:

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its own filename
expansion in addition to your shell’s filename expansion. This command removes all files that have
the .1log extension in the log/ directory. Or, you can do something like this:

$ git rm *~

This command removes all files whose names end with a ~.

Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If you rename a file in
Git, no metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart about
figuring that out after the fact— we’ll deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in Git, you can run
something like:

38

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git
considers it a renamed file:

$ git mv README.md README
$ git status
On branch master
Your branch is up-to-date with 'origin/master’'.
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renamed: README.md -> README
However, this is equivalent to running something like this:

$ mv README.md README
$ git rm README.md
§ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that way or with
the mv command. The only real difference is that git mv is one command instead of three —it’s a
convenience function. More importantly, you can use any tool you like to rename a file, and address
the add/rm later, before you commit.

Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an existing commit
history, you’ll probably want to look back to see what has happened. The most basic and powerful
tool to do this is the git 1og command.

These examples use a very simple project called “simplegit”. To get the project, run
$ git clone https://github.com/schacon/simplegit-progit

When you run git log in this project, you should get output that looks something like this:

39

$ git log

commit ca82abdff817ecb66144342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Change version number

commit 085bb3bcb608e1e8451d4b2432f8ecbeb30be7e?
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

Initial commit

By default, with no arguments, git log lists the commits made in that repository in reverse
chronological order; that is, the most recent commits show up first. As you can see, this command
lists each commit with its SHA-1 checksum, the author’s name and email, the date written, and the
commit message.

A huge number and variety of options to the git log command are available to show you exactly
what you’re looking for. Here, we’ll show you some of the most popular.

One of the more helpful options is -p or --patch, which shows the difference (the patch output)
introduced in each commit. You can also limit the number of log entries displayed, such as using -2
to show only the last two entries.

40

$ git log -p -2

commit ca82abdff817ecb66144342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Change version number

diff --git a/Rakefile b/Rakefile

index a874b73..8f94139 100644

--- a/Rakefile

+++ b/Rakefile

@@ -5,7 +5,7 @@ require 'rake/gempackagetask’
spec = Gem::Specification.new do |s]|

s.platform = Gem::Platform::RUBY
S.name = "simplegit"
- s.version = "0.1.0"
+ s.version = "0.1.1"
s.author = "Scott Chacon"
s.email = "schacon@gee-mail.com"
s.summary = "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbeb30be7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

diff --qgit a/lib/simplegit.rb b/1lib/simplegit.rb
index a@ablae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/1ib/simplegit.rb
@0 -18,8 +18,3 @@ class SimpleGit
end

end

-if $0 == __FILE__

- git = SimpleGit.new
- puts git.show

-end

This option displays the same information but with a diff directly following each entry. This is very
helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. You can also use a series of summarizing options with git log. For
example, if you want to see some abbreviated stats for each commit, you can use the --stat option:

41

$ git log --stat

commit ca82abdff817ecb66144342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

Change version number

Rakefile | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbeb306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

Remove unnecessary test

lib/simplegit.rb | 5 -----
1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

Initial commit

README | 6 ++t++t

Rakefile | 23 ++++++++HHHHHHHHH