
Team BiblioSwap

Devin

Kit Bazner

Lauren Inman

Table of Contents

Overview………………………………………………………………………………2

Languages…………………………………………………………………………….2

Libraries, SDKs, and APIs…………………………………………………………..2

Initial Setup and Tests…………………………………………………………….…2

Code Repository Organization……………………………………………………...2

Workflow Guidelines……………………………………………………………….2,3

Consultation…………………………………………………………………………..3

System Organization………………………………………………………………3,4

Development……………………………………………………………………….4-6

Non-trivial Requirement……………………………………………………………..6

Mockups………………………………………………………………………….…6,7

Work Policies………………………………………………………………………….7

Deliverance and Milestones………………………………………………………7,8

1

Overview
BiblioSwap is a web application that will allow users to upload their existing library of

books they are interested in trading for new books. Users will be able to browse other’s

libraries and initiate a swap, in which they will pay shipping in order to select a book

from someone else’s library. This allows the avid reader to rotate their library at a lower

cost than buying new books.

Languages
BiblioSwap will be written in React and we will be using Tailwind to boost the CSS

styling of the web application. We will also be using Firebase in order to manage the

backend operations.C

Libraries, SDKs, APIs
● React for UI components

● Tailwind for styling

● Firebase for backend as a service (BaaS)

● Axios for HTTP requests

Initial Setup and Tests
Each library has been installed and tested on development systems to ensure

compatibility.

Code Repository Organization
We will be using Git with a Trunk-Based Development strategy.

Workflow Guidelines

2

Frequent merging (weekly)

Pull requests and code reviews mandatory before merging

Branch naming conventions: issue numbers or features (e.g., feature/add-book)

Consultation
A meeting will be arranged with Roland Heusser to review our repo organization and

workflow.

System Organization
Client/Server architecture

Frontend: React Application

Backend: Firebase BaaS

Software Architecture

(Insert figures here showing the system's software architecture)

Credit System
Earning Credits

Users can earn credits by another user purchasing their books.

Optionally, users can buy credits through in-app purchases if they don’t want to

list books to swap.

(1 credit for $4.99)

(3 credits for $12.99)

(5 credits for $19.99)

This way, we draw two audiences. One audience who is solely interested in

finding a cheaper alternative and buys 1 credit + shipping, and the other

audience who populates the platform with tons of books and self-sustains their

own book swap credits by listing books.

3

Spending Credits

To request a book from someone else, a user must spend 1 credit.

The credit gets transferred to the account of the book owner once the swap is

initiated.

Credit Rules

Credits are non-refundable and non-transferable.

One book listing equates to 1 credit in value.

Incentive Structure / Value Proposition

For Listers (Sellers): The incentive to list tons of book(s) to have a higher earning

potential of credits, which can be used to acquire other books.

For Buyers: The benefit is acquiring a book at a much cheaper price (only for the

cost of shipping). They also help the lister earn a credit for future transactions.

Recirculation: Because users need to list books to earn credits, and because

they spend those credits to acquire other books, you create a self-sustaining

ecosystem. Books are continuously added and removed from "listings libraries,"

keeping the platform dynamic and engaging.

Development
IDE: Visual Studio Code

OS: macOS and Windows

Deployment: AWS for production and staging

Protocols

HTTP/HTTPS for client-server communication

Custom protocol for chat (if applicable)

4

Possible DB Schema:
Users

● userID: Unique Identifier

● username: String

● email: String

● passwordHash: String

● location: String (Optional)

● profilePicture: URL (Optional)

Books

● bookID: Unique Identifier

● title: String

● author: String

● ISBN: String

● genre: Array of Strings

● coverImage: URL

● ownerID: Reference to User

Swaps

● swapID: Unique Identifier

● requesterID: Reference to User

● providerID: Reference to User

● bookRequestedID: Reference to Book

● bookProvidedID: Reference to Book

● status: Enum (Pending, Approved, Rejected, Completed)

● shippingCost: Number

● date: Timestamp

Chat

5

● chatID: Unique Identifier

● user1ID: Reference to User

● user2ID: Reference to User

● messages: Array of Maps

● senderID: Reference to User

● message: String

● timestamp: Timestamp

Non-Trivial Requirements
User Authentication: Possible solutions include Firebase Auth, JWT.

Book Recommendation Engine: Collaborative filtering, AI Incorporation

Mock-Ups

6

Work Policies
Daily stand-up meetings

Time-tracking using Clockify

Code reviews are mandatory

Testing

Deliverables and Milestones

Deliverables and Milestones
Sprint 1

● Create login

● Basic outline of all pages/routing

7

● Allow user to add a book to their library

Sprint 2
● Implement Search Functionality

● Add Book Details Page

● Implement “Library” page of favorite books

Sprint 3
● Implement Swapping Functionality / communication

● Set up Payment Estimator for Shipping

Sprint 4
● Credit system

●

Sprint 5
● Enhance UI/UX

● Optimize Performance

Sprint 6
● Final Testing

● Deployment

8

