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Chapter 1

Literature Review

This chapter provides a literature review of relevant past research efforts that give context to

this proposed work. We begin with an overview of the Fluoride-Salt-Cooled High-Temperature

Reactor (FHR) concept, then go into detail about the specific Advanced High Temperature Reactor

(AHTR) design, previous efforts towards modeling the design and technical challenges, and a

description of how these efforts led to the Organisation for Economic Co-operation and Development

(OECD) Nuclear Energy Agency (NEA) initiation of the AHTR benchmark. Next, we outline

Additive Manufacturing (AM) history and describe the current research towards applying AM

to the fabrication of nuclear reactor core components. Next, we review previous efforts towards

nuclear reactor design optimization and describe the impact of AM advancements on reactor design

optimization. Finally, we give a background of evolutionary algorithms and their applications for

optimizing reactor designs constructed with additive manufacturing technology.

1.1 Fluoride-Salt-Cooled High-Temperature Reactor

The FHR is a reactor concept introduced in 2012 that uses high-temperature coated-particle fuel

and a low-pressure liquid fluoride-salt coolant [1, 2]. FHR technology combines the best aspects

of Molten Salt Reactor (MSR) and Very-High-Temperature Reactor System (VHTR) (or High

Temperature Gas-Cooled Reactor (HTGR)) technologies. Molten fluoride salts as working fluids

for nuclear reactors have been explored since the 1960s and are desirable because of their high-

temperature performance and overall chemical stability [3]. Using molten salts for reactor coolant

introduces inherent safety compared to water due to the salts’ high boiling temperature and high

volumetric heat capacity, eliminating the risk of coolant boiling off, resulting in fuel elements

overheating [4]. The leading candidate coolant salt is the fluoride salt Li2BeF4 (FLiBe), which

1



remains liquid without pressurization up to 1400 ○C and a larger ρCp than water [4, 1]. FHRs are

favorable compared to a liquid fuel reactor, such as MSR systems, because the solid fuel cladding

adds an extra barrier to fission product release [4].

VHTR technology has been studied since the 1970s because it delivers heat at substantially

high temperatures than Light Water Reactors (LWRs), resulting in the following advantages: in-

creased power conversion efficiency, reduced waste heat generation, and co-generation and process

heat capabilities [3]. In VHTRs, the helium coolant is held at a high pressure of approximately 100

atm, whereas the FHR’s FLiBe coolant is at room pressure, resulting in lower construction costs

since a thick concrete reactor vessel is not required. The molten salt coolant has superior cooling

and moderating properties compared to helium coolant in VHTRs, resulting in FHRs operating at

power densities two to six times higher than VHTRs [3, 1]. Therefore, by combining the FLiBE

coolant from MSR technology and Tristructural Isotropic (TRISO) particles from VHTR technol-

ogy, the FHR benefits from the low operating pressure and large thermal margin provided by using

a molten salt coolant and the accident-tolerant qualities of TRISO particle fuel.

Several types of FHR conceptual designs exist worldwide: Pebble-Bed Fluoride-Salt-Cooled

High-Temperature Reactor (PB-FHR) at UCB with circulating pebble-fuel [5, 6], the Solid Fuel

Thorium Molten Salt Reactor (SF-TMSR) at the Shanghai Institute of Applied Physics (SINAP) in

China with static pebble-fuel [7], the large central-station AHTR at Oak Ridge National Laboratory

(ORNL) [8, 9] and the Small Modular AHTR (SmAHTR) at ORNL [10] with static plate-fuel.

1.1.1 AHTR design

This proposed work focuses on the FHR design with hexagonal fuel elements consisting of TRISO

fuel particles embedded in plates (”planks”), i.e., the AHTR design developed by ORNL. The

AHTR has 3400 MWt thermal power and 1400 MW electric power with inlet/outlet temperatures

of 650/700○C [9]. Figure 1.1 shows the prismatic AHTR’s fuel element and core configuration.

Each hexagonal fuel element features plate-type fuel consisting of eighteen plates arranged in three

diamond-shaped sectors, with a central Y-shaped structure and external channel (wrapper). Each

fuel plank contains an isostatically pressed carbon with fuel stripes on each plank’s outer side. The

fuel stripes are prismatic regions composed of a graphite matrix filled with a cubic lattice of TRISO
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particles. The core consists of 252 assemblies radially surrounded by reflectors [11]. Chapter ??

details the specifications of the AHTR geometry modeled in this proposed work.

Figure 1.1: FHR core configuration and fuel element [11].

1.1.2 Previous AHTR modeling efforts and challenges

Modeling and simulation of the AHTR design have been an ongoing effort since its conception in

2003 [12]. The AHTR core design differs significantly from the present LWR-based nuclear power

plants. These differences lead to modeling challenges and the need to verify and validate modeling

and simulation methods [11]. Verification and validation of neutronics and thermal-hydraulics

tools’ capability to successfully model the AHTR design is a crucial step in support of licensure

of the AHTR design towards the eventual goal of deployment [13, 14]. Several neutronic studies

conducted along the way to the current AHTR design have shed light on the technical challenges

facing the design [11, 15, 10].

Georgia Institute of Technology led an Integrated Research Project to understand challenges

in FHR materials’, and modeling the neutronics and thermal-hydraulics in both plate and pebble

fuelled FHRs [16]. During the research project, a panel of subject matter experts came together

to generate a Phenomena Identification and Ranking Table (PIRT) by identifying phenomena

and ranking their importance. The PIRT identifies areas that need additional research to better

understand important phenomena for adequate future modeling [13]. Table 1.1 lists the phenomena

identified as requiring further research.

The AHTR has a complex core design due to the multiple heterogeneity present in the fuel
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Table 1.1: PIRT identified FHR physical phenomena requiring further research [13].

Category Phenomena

Fundamental cross section data - Moderation in FliBe

- Thermalization in FliBe

- Absorption in FliBe

- Thermalization in carbon

- Absorption in carbon

Material Composition - Fuel particle distribution

Computational Methodology - Solution Convergence

- Granularity of depletion regions

- Multiple heterogeneity treatment for generating multigroup

cross sections

- Selection of multigroup structure

- Boundary conditions for multigroup cross section generation

General Depletion Spectral history

introduced by TRISO particles’ presence embedded in plates [11, 13]. Accurately modeling the

FHR’s complex geometry with individual TRISO particle fidelity is necessary to obtain detailed

reference power distributions to assess lower-fidelity models’ accuracy. However, it is challenging,

particularly for deterministic codes that use multigroup cross sections and traditional homoge-

nization methods [11]. These traditional homogenization methods are insufficient to capture the

correct physics in FHRs, due to the multiple heterogeneity [11]. In the AHTR, single and multiple

slab homogenization decreased computation time by 10; however they introduce a nontrivial error

of ∼3% [11, 17]. To determine the feasibility and safety of the AHTR design, we must calculate

core physics parameters to an acceptable uncertainty. For Monte Carlo codes, increasing neutron

histories reduces statistical uncertainty but comes at an increased computational cost.

Another technical challenge the AHTR design faces is the uncertainty of the graphite and

carbonaceous moderator material properties: densities, temperatures, and thermal scattering data.

Also, the thermal scattering data (S(α,β) matrices) for the bound nuclei in the Fluoride-Lithium-

Beryllium (FLiBe) salt are lacking [11]. Mei et al. [18] and Zhu et al. [19] examined the thermal

scattering behavior of solid and liquid FLiBe. They concluded that the bound and free atom cross

section of FLiBe are identical above 0.1eV and diverges below 0.01eV, which means that the use

or absence of thermal scattering data will impact the accuracy of the results [11].
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1.1.3 AHTR Benchmark

To address and further understand the technical challenges described in the previous section, in

2019, the OECD-NEA initiated a benchmark to assess the state of the art modeling and simula-

tion capabilities for FHRs with TRISO fuel embedded in fuel plates (”planks”) of hexagonal fuel

elements [20]. The benchmark plans to have three phases, starting from a single fuel element sim-

ulation without burnup, gradually extending to full core depletion and feedback. The benchmark’s

overarching objective is to identify the applicability, accuracy, and practicality of the current meth-

ods and codes to assess the current state of the art of FHR simulation and modeling [21]. The

benchmark also enables the cross-verification of codes and methodologies for the challenging AHTR

geometry, which is especially useful since applicable reactor physics experiments for code validation

are scarce [22, 21]. Chapter ?? will provide a detailed description of the benchmark phases and

results obtained so far.

1.2 Additive Manufacturing

AM is the formalized termed for what used to be called rapid prototyping and what is popularly

called 3D printing [23]. The basic principle of AM is that a model is initially generated using a three-

dimensional Computer-Aided Design (3D CAD) system and is fabricated directly without the need

for process planning. In AM, the parts are made by adding materials in layers; each layer is a thin

cross section of the 3D CAD designed part, as opposed to subtractive manufacturing methods such

as traditional machining [24]. All commercialized AM machines to date use a layer-based approach,

and the major ways that they differ are in materials, layer creation method, and how the layers are

bonded to each other [23]. These major differences will determine the following factors: accuracy

of the final part, material and mechanical properties, the time required to manufacture the part,

the need for post-processing, size of AM machine, and overall cost of the machine and the process

[23]. Initially, AM was used to manufacture prototypes. However, with improvements in material

properties, accuracy, and overall quality of AM output, the applications for AM expanded to the

current point in which some industries build parts for direct assembly purposes [25]. Furthermore,

using AM in conjunction with other technologies, such as high-power laser technology, has enabled
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AM technology to manufacture parts made from various metals [23].

1.2.1 Application of Additive Manufacturing to Nuclear Reactor Core

Components

AM has progressed rapidly in the last 30 years, from rapid design prototyping with polymers in

the automotive industry to scale production of metal components. Examples include Boeing using

AM to reduce the 979 Dreamliner’s weight [26] and General Electric using AM to produce fuel

injection nozzles [27]. The most common metal AM technologies, selective laser melting (SLM),

electron beam melting (EBM), laser directed energy deposition (L-DED), and binder jetting, are

not currently used to manufacture nuclear power plant parts. Wide-spread adoption of these

methods in the nuclear industry could drastically reduce fabrication costs and timelines, combine

multiple systems and assembled components into single parts, increase safety and performance by

tailoring local material properties, and enable geometry redesign for optimal load paths [28]. Many

generation IV advanced reactor concepts have complex geometries, such as hex-ducts for sodium-

cooled fast reactors, that are costly and difficult to fabricate using standard processing techniques.

Traditional manufacturing routes also restrict the viable geometries for reactor designers [29]. In

summary, the main benefits of using AM for reactor core components is that we are no longer

geometrically constrained by conventional fuel manufacturing and can further optimize and improve

fuel geometries to enhance fuel performance and safety with the added benefit of lower cost [30].

Experimental work in the nuclear materials field demonstrates the application of AM to nu-

clear fuel and structural core material fabrication. Bergeron et al. [30] successfully demonstrated

additively manufacturing thorium dioxide using a stereolithography-based 3D printer and pho-

topolymer resin. The high-density thorium dioxide objects were printed and sintered to densities

of ∼ 90% [30]. Rosales et al. [31] conducted a feasibility study of direct routes to fabricate dense

uranium silicide (U3Si2) fuel pellets using the Idaho National Laboratory (INL) invented Additive

Manufacturing as an Alternative Fabrication Technique (AMAFT). U3Si2 is an accident-tolerant

nuclear fuel candidate due to its high uranium density and improved thermal properties. Its current

metallurgical fabrication process is expensive and long; the goal of AMAFT is to fabricate U3Si2 at

a lower cost in a timely and commercially-reliable manner [31]. Sridharan et al. [29] demonstrated
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the application of the laser-blown-powder AM process to fabricate ferritic/martensitic (FM) steel,

a type of steel commonly used for cladding and structural components in nuclear reactors. Koy-

anagi et al. [32] presented AM technology’s current status for manufacturing nuclear-grade silicon

carbide (SiC) materials; they demonstrated that combinations of AM techniques and traditional

SiC densification methods enabled new designs of SiC components with complex shapes. SiC has

excellent strength at elevated temperatures, chemical inertness, relatively low neutron absorption,

and stability under neutron irradiation up to high doses [33, 34, 32]. These qualities make SiC suit-

able for many applications in nuclear systems such as fuel cladding, constituents of fuel particles

[34] and pellets [35], core structural components in fission reactors [33].

1.3 Nuclear Reactor Design Optimization

The practice of nuclear reactor optimization has been around since the conception of nuclear

reactors. Optimization has been applied to nuclear reactor design, reactor reloading patterns, and

the nuclear fuel cycle. In the proposed work, we will focus on the optimization of nuclear reactor core

design. Previous efforts towards nuclear reactor core design optimization include deterministic and

stochastic optimization techniques and these optimization methods coupled with surrogate models.

Deterministic optimization methods usually start from a guess solution; then, the algorithm

suggests a search direction based on applying local information to a pre-specified transition rule.

The best solution becomes the new solution, and the above procedure continues several timess

[36]. Drawbacks of deterministic methods include: algorithms tend to get stuck to a suboptimal

solution, and an algorithm efficient in solving one type of problem may not solve a different problem

efficiently [36]. Stochastic optimization methods minimize or maximize an objective function when

randomness is present; they tend to find globally optimal solutions more reliably than deterministic

methods. Evolutionary algorithms and simulated annealing are examples of stochastic optimization

algorithms.

A nuclear reactor’s complexity results in reactor design optimization being a multi-objective

design problem requiring a tradeoff between desirable attributes [37, 38]. When multiple conflict-

ing objectives are important, there is no single optimum solution that simultaneously optimizes all

objectives. Instead, the multi-objective optimization problem’s outcome is a set of optimal solu-
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tions with varying degree objective values [36]. For a multi-objective problem like reactor design

optimization, an ideal multi-objective optimization method should find widely spread solutions in

the obtained non-dominated front [36].

Recent efforts towards nuclear reactor optimization have relied heavily on stochastic meth-

ods such as simulated annealing and evolutionary algorithms, with the occasional addition of

stochastic-deterministic hybrid methods. Sacco et al. [39, 40] used stochastic simulated annealing

and deterministic-stochastic hybrid optimization techniques to optimize reactor dimensions, en-

richment, materials, etc., in order to minimize the average peak factor in a three-enrichment-zone

reactor. Odeh et al. [41] used the simulated annealing stochastic algorithm coupled with neutronics

and thermal-hydraulics codes, Purdue Advanced Reactor Core Simulator (PARCS) and RELAP5,

to develop an optimum Purdue Novel Modular Reactor (NMR-50) core design to achieve a 10-

year cycle length with minimal fissile loading. Kropaczek et al. [42] demonstrated the constraint

annealing method, a highly scalable method based on the method of parallel simulated anneal-

ing with mixing of states [43], for the solution of large-scale, multiconstrained problems in LWR

fuel cycle optimization. Peireira et al. [44, 45] used a coarse-grained parallel Genetic Algorithm

(GA) and a niching GA to optimize the same problem as [39]. Kamalpour et al. [46] utilized the

imperialist competitive algorithm, a type of evolutionary algorithm, to optimize an fully ceramic

microencapsulated (FCM) fuelled Pressurized Water Reactor (PWR) to extend the reactor core

cycle length.

Nuclear reactor optimization problems require computationally extensive neutronics and thermal-

hydraulics software to compute the objective function and constraints. Multiple papers utilized

optimization methods with surrogate models to replace computationally-expensive high fidelity

neutronics or thermal hydraulics simulations to reduce the computational cost of utilizing stochas-

tic methods. Kumar et al. [47] combined genetic algorithm optimization with regression splines

surrogate model to optimize a reactor model for high breeding of U-233 and Pu-239 in desired

power peaking limits, desired keff using the following parameters: radius of a fuel pin cell, isotopic

enrichment of the fissile material in the fuel, the mass flow rate of the coolant, and temperature

of the coolant at the core inlet. Betzler et al. [48] developed a systematic approach to build a

surrogate model to serve in place of high-fidelity computational analyses. They leveraged the sur-
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rogate model with a simulated annealing optimization algorithm to generate optimized designs at a

lower computational cost to understand design decisions’ impact on desired metrics for High Flux

Isotope Reactor (HFIR) low-enriched uranium (LEU) core designs.

The simulation annealing method uses a point-by-point approach. One solution gets updated

to a new solution in one iteration, which does not exploit parallel systems’ advantages. Finding

an optimal solution with simulation annealing methods will take very long if high-fidelity compu-

tationally expensive codes are used to compute the objective function and constraints. Therefore,

using the simulation annealing method is only practical if a surrogate evaluation model is used as

described in [48] and [47]. Evolutionary algorithm methods mimic nature’s evolutionary principles

to drive its search towards an optimal solution.

Contrary to a single solution per iteration in deterministic and stochastic simulation anneal-

ing methods, evolutionary algorithms (EAs) use a population of solutions in each iteration [36].

With the affordability and availability of parallel computing systems, the evolutionary algorithm

optimization method stands out as a method that easily and conveniently exploits parallel sys-

tems. Further, EAs have proved amenable to high-performance computing (HPC) solutions and

scalable to tens of thousands of processors [43]. Therefore, in this proposed work, we will utilize

the evolutionary algorithm optimization method.

1.3.1 Impact of additive manufacturing on nuclear reactor design optimization

In section 1.2.1, we discussed how, with the advancements of AM for reactor core components,

reactor designers are no longer geometrically constrained by conventional fuel manufacturing and

can further optimize and improve fuel geometries to enhance fuel performance and safety. Reactor

design objectives remain consistent with past objectives, such as minimizing fuel amount and min-

imizing the maximum fuel temperature for a given power level. However, we can now approach the

nuclear design problems with truly arbitrary geometries, no longer limited by traditional geometric

shapes that are easy to manufacture with traditional processes: slabs as fuel plates, cylinders as

fuel rods, spheres as fuel pebbles, axis-aligned coolant channels, etc [49]. Therefore, this has opened

the door for a re-examination of optimization in a completely new way, determining the optimal

arbitrary geometry for a given objective function [49] with a much smaller set of constraints.
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With a substantial increase and change in an arbitrary geometry’s design space, it becomes

time-consuming for a human reactor designer to thoroughly explore and find optimal geometries

in the expanded design space. Instead, we can leverage Artificial Intelligence (AI) optimization

methods such as EA to promptly explore the large design space to find global optimal designs. AI

would not replace the human reactor designer but shifts the human designer’s focus away from

conjecturing suitable geometries to defining design criteria to find optimal designs [49]. Therefore,

when the human designer changes the reactor criteria, the AI model will quickly adapt and produce

new global optimal designs to fit the new criteria.

1.4 Evolutionary Algorithms

EAs mimic natural evolutionary principles to constitute search and optimization procedures [36].

Evolutionary algorithms often perform well at approximating solutions to many problem types

because they do not make any assumptions about the underlying fitness landscape. The most

popular EAs used to solve multi-objective problems are genetic algorithms (GA) [37, 50].

1.4.1 Genetic Algorithms

GAs imitate natural genetics and selection to evolve solutions by maintaining a population of so-

lutions, allowing fitter solutions to reproduce, and letting lesser fit solutions die off, resulting in

final solutions that are better than the previous generations [51]. From here, we will refer to a

solution as an individual within the population. GAs efficiently exploit historical information to

speculate new search points, improving each subsequent population’s performance [52]. GAs are

theoretically and empirically proven to provide robust search in complex spaces and are computa-

tionally simple yet powerful in their search for improvement [52]. GAs are advantageous compared

to deterministic and stochastic simulated annealing optimization methods because (1) it searches

from a population of points, (2) uses objective function information, not derivatives or other aux-

iliary knowledge of the problem, and (3) uses probabilistic transition rules, not deterministic rules.

Figure 1.2 depicts the iterative process of using a GA to solve a problem. The GA generates new

populations iteratively until it meets the termination criteria.

GAs uses mechanisms inspired by biological evolution such as selection, crossover, and mu-
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Create initial population

Evaluate initial population

Create new population:

1. select individuals for mating

2. create offspring by crossover

3. mutate selected individuals

4. keep selected individuals from
previous generation

Evaluate new population

Is termination criteria satisfied?

Best solution is returned!

Yes

no

Figure 1.2: Process of solving a problem with genetic algorithm [51].
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tation. The three operators are simple and straightforward. The selection operator selects good

individuals. The crossover operator recombines together good individuals to form a better individ-

ual. The mutation operator alters individuals to create a better individual [36]. In the subsequent

section, we will provide more description and common methods for each operator.

Selection Operator

The selection operator’s primary objective is to duplicate good individuals and eliminate bad

individuals while keeping the population constant [36]. It achieves this by identifying above-average

individuals in a population, eliminating bad individuals from the population, and replacing them

with copies of good individuals. Selection operator methods utilized in the proposed work include

tournament selection, best selection, and NSGA-II selection. In tournament selection, tournaments

are played between a user-defined number of individuals, and the best individual is kept in the

population. This repeatedly occurs until all the population’s spots are filled. In best selection,

a user-defined number of best individuals are selected, and copies are made to keep population

size constant. In NSGA-II selection, parent and offspring populations are combined, and the best

individuals (with respect to fitness and spread) are selected [53]. Copies of the best individuals are

made to keep population size constant.

The selection operator cannot create any new individuals in the population and only makes

more copies of good individuals at the expense of not-so-good individuals. The crossover and

mutation operators perform the creation of new solutions.

Crossover Operator

The crossover operator is also known as the mating operator. In most crossover operators, two in-

dividuals are picked from the population at random, and some portion of the individuals’ attributes

are exchanged with one another to create two new individuals [36]. Crossover operator methods

utilized in the proposed work include single-point crossover, uniform crossover, and blend crossover.

In the single-point crossover, two individuals are selected from the population, and a site along the

individual’s definition is randomly chosen. Attributes on this cross site’s right side are exchanged

between the two individuals, creating two new offspring individuals. In a uniform crossover, the
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user defines an independent probability for each individual’s attribute to be exchanged; usually,

p = 0.5 is used. In blend crossover, two offspring (O) individuals are created based on a linear

combination of two-parent (P) individuals using the following equations:

O1 = P1 − α(P1 − P2) (1.1)

O2 = P2 + α(P1 − P2) (1.2)

where

α = Extent of the interval in which the new values can be drawn

for each attribute on both side of the parents attributes (user-defined)

To preserve some good individuals selected during the selection operator stage, not all individ-

uals are used in a crossover; this is implemented by having the user define a crossover probability

(pc). Therefore, the crossover operator is only applied to 100pc% of the population; the rest are

copied to the new population [36].

The crossover operator is mainly responsible for the search aspect of the GAs, whereas the

mutation operator is needed to keep diversity in the population [36].

Mutation Operator

The mutation operator alters one or more attributes of an individual within a population. Mutation

occurs in the GA based on a user-defined mutation probability (pm) that is set low to prevent

a primitive random search. Mutation operator methods utilized in the proposed work include

polynomial bounded mutation. In polynomial bounded mutation, each attribute in each individual

is mutated based on a polynomial distribution. The user also defines each attribute’s upper and

lower bounds and the crowding-degree of the mutation, η (large η will produce a mutant resembling

its parent, while a small η will produce the opposite).
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1.4.2 Balancing Genetic Algorithm Hyperparameters

In the proposed work, hyperparameters refer to parameters whose value controls the GA’s process,

such as each genetic operator’s associated parameters and population size. A good optimization

method needs to balance the extent of exploration of information obtained until the current gen-

eration through the crossover and mutation operators with the extent of exploitation through the

selection operator. If previously obtained individuals are exploited too much, the population loses

its diversity, and premature convergence to a sub-optimal solution is expected. Whereas if too

much stress is given on exploration, the information obtained thus far has not been appropriately

utilized, and the GA’s search procedure behaves like a random search process [36]. A quantitative

balance between these two issues, exploitation and exploration, is challenging to achieve. Deb et

al. [36] and Goldberg et al. [54] quantified the relationship between exploitation and exploration.

They found that for the one-max test problem, in which the objective is to maximize the number

of 1s in a string, a GA with any arbitrary hyperparameter setting does not work well even on a

simple problem. Only GAs with a selection pressure, s, and crossover probability, pc, falling inside

the control map (figure 1.3), find the desired optimum.

Figure 1.3: Simulation results of the region in which the GA will find the desired optimum for
the one-max problem [54, 36].

Another consideration is the population size, a function with considerable variability in ob-

jective function values demands a large population size to find a global optimum [36]. Therefore,
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finding an optimized solution with GAs requires the user to conduct a hyperparameter search. Ng

et al. [55] suggest that a coarse to fine sampling scheme is the best way to perform a system-

atic hyperparameter search. For a two-dimensional example of a coarse to fine sampling scheme,

the user first does a coarse sample of the entire square. A fine search is then conducted on the

best-performing region of the coarse search.

1.5 Summary

This chapter provided a literature review of relevant past research efforts that give context to this

proposed work. In summary, additive manufacturing of nuclear reactor components is a quickly

developing field thanks to the aerospace and auto industries, which led to breakthroughs in AM

fabrication of metal components. The promise of cheaper and faster manufacturing of reactor

components with AM frees complex reactor geometries from previous manufacturing constraints

and allows reactor designers to reexamine reactor design optimization. Stochastic optimization

methods such as evolutionary algorithms have proven to work well for finding global optimums

in multi-objective design problems such as nuclear reactor optimization and can be leveraged to

explore the vast exploration design space enabled by AM.
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