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Chapter 1

Literature Review

This chapter provides a literature review of relevant past_research efforts that give context to
this proposed work. We begin with an overview of the Fluoride-Salt-Cooled High-Temperature
Reactor (FHR) concept, then go into detail about the specific Advanced High Temperature Reactor
(AHTR) design, previous efforts towards modeling the design and technical challenges, and a
description of how these efforts led to the Organisation for Economic Co-operation and Development
(OECD)AN%CIE}&T Energy Agency (NEA) initiation of the AHTR benchmark. Next, we outline
Additivea ﬂl\e[énufacturing (AM) history and describe the current research towards applying AM
to the fabrication of nuclear reactor core components. Ne*ts{xge,\review previous efforts towards
nuclear reactor design optimization and describe the impact of A‘-Mm‘zigvancements on reactor design

optimization. Finally, we give a background of evolutionary algorithms and their applications for

optimizing reactor designs constructed with additive manufacturing technology.

1.1 Fluoride-Salt-Cooled High-Temperature Reactor

The FHR is a reactor concept introduced in 2012 that uses high-temperature coated-particle fuel
and a low-pressure liquid fluoride-salt coolant [1, 2]. FHR technology combines the best aspects
of Molten Salt Reactor (MSR) and Very-High-Temperature Reactor System (VHTR) (or High
Temperature Gas-Cooled Reactor (HTGR)) technologies. Molten fluoride salts as working fluids
for nuclear reactors have been explored since the 1960s and are desirable because of their high-
temperature performance and overall chemical stability [3]. Using molten salts for reactor coolant
introduces inherent safety compared to water due to the salts’ high boiling temperature and high
volumetric heat capacitygle\rliminat-i?g“ the risk of coolant boiling off, resulting in fuel elements

Ths &
overheating [4]. The leading candidate coolant salt is the fluoride salt LisBeF, (FLiBe), which
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remains liquid without pressurization up to 1400 °C and a larger pCpithan water 4, 1]. FHRs are
favorable compared to ; liquid fuel reactor; such as MSR systems, because the solid fuel cladding
adds an extra barrier to fission product reltaase [4].

VHTR technology has been studied since the 1970s because it delivers heat at substantially
highntemperatures than Light Water Reactors (LWRs), resulting in the following advantages: in-
cre;sred power conversion efficiency, reduced waste heat generation, and co-generation and process
heat capabilities [3]. In VHTRs, the helium coolant is held at a high pressure of approximately 100
atm, whereas the FHR’s FLiBe coolant is at room pressure, resulting in lower construction costs
since a thick concrete reactor vessel is not required. The molten salt coolant has superior cooling
and moderating properties compared to helium coolant in VHTRs, resulting in FHRs operating at
power densities two to six times higher than VHTRs [3, 1]. Therefore, by combining the FLiBE
coolant from MSR technology and Tristructural Isotropic (TRISO) particles from VHTR technol-
ogy, the FHR benefits from the low operating pressure and large thermal margin provided by using
a molten salt coolant and the accident-tolerant qualities of TRISO particle fuel.

Several types of FHR conceptual designs exist worldwide: Pebble-Bed Fluoride-Salt-Cooled
High-Temperature Reactor (PB-FHR) at U€B with circulating pebble-fuel [5, 6], the Solid Fuel
Thorium Molten Salt Reactor (SF-TMSR) at the Shanghai Institute of Applied Physics (SINAP) in
China with static pebble-fuel [7], the large central-station AHTR at Oak Ridge National Laboratory
(ORNL) [8, 9] and the Small Modular AHTR (SmAHTR) at ORNL [10] with static plate-fuel.

| et S
1.1.1 AHTw pe 0 sold o be
$lipped?.

This proposed work focuses on the(FHR design with hexagonal fuel elements consisting of TRISO
fuel particles embedded in plates ("planks”), i.e., the AHTR design developed by ORNL." The
AHTR has 3400 MWt thermal power and 1400 MW electric power with inlet/outlet temperatures
of 650/700°C' [9]. Figure 1.1 shows the prismatic AHTR’s fuel element and core configuration.
o un-italitize,
Each hexagonal fuel element features plate-type fuel consisting of eighteen plates arranged in three
diamond-shaped sectors, with a central Y-shaped structure and external channel (wrapper). Each
fuel plank contains an isostatically pressed carbon with fuel stripes on each plank’s outer side. The

i on indviowal otom?
fuel stripes are prismatic regions composed of a graphite matrix filled with a cubic lattice of TRISO
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particles. The core consists of 252 assemblies radially surrounded by reflectors [11]. Chapter®??

details the specifications of the AHTR geometry modeled in this proposed work.
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Figure 1.1: FHR ¢core configuration and fuel element [11].
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1.1.2 Previous AHTR modeling efforts and challenges

Modeling and simulation of the AHTR design have been an ongoing effort since its conception in

Wy BETTS 2003 [12]. The AHTR core design differs significantly from the present LWR-based nuclear power
NOY dfterenk
- 8%
more. ¥ and simulation methods [11]. Verification and validation of neutronics and thermal-hydraulics

plants. These differences lead to modeling challenges and the need to verify and validate modeling

tools’ capability to successfully model the AHTR design rs—a’crumal step in support of licensure
of the AHTR design towards the eventual goal of deploym‘(;,er’lt [13, 14]. Several neutronic studies
conducted along the way to the current AHTR design have shed light on the technical challenges
facing the design [11, 15, 10].

Georgia Institute of Technology led an Integrated Research Project to understand challenges

in FHR materials)j"and modeling the neutronics and thermal-hydraulics in both plate and pebble

(eory' &

Teun. fuelled FHRs [16]. During the research project, a panel of subject matter expertswm'e-mgeﬂrerze
Jaid owk ’g\chmhd

WO 'bo—generarte)é, Phenomena Identification and Ranking Table (PIRT)cbyridentifying phenomenjm9 D
areos s : L e » ok ¥
MO, FELOTON and-ranking-their-importance. The PIRT identifies areas that need additional research to better

in PR understand important phenomena for adequate future modeling [13]. Table 1.1 lists the phenomena
moyeviolS

identified as requiring further research.

The AHTR has a complex core design due to the multiple heterogeneity present in the fuel
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Table 1.1: “PIRT, identified FHR physical phenomena requiring further research [13].

Category Phenomena

Fundamental cross section data | - Moderation in FliBe

- Thermalization in FliBe
- Absorption in FliBe

- Thermalization in carbon

- Absorption in carbon

Material Composition - Fuel particle distribution

Computational Methodology - Solution Convergence

- Granularity of depletion regions

- Multiple heterogeneity treatment for generating multigroup
cross sections

- Selection of multigroup structure

General Depletion Spectral history

introduced by TRISO particles’ presence embedded in plates [11, 13]. Agcurately-modeling the
FHR’s complex geometry with individual TRISO particle fidelity is necessary to obtain detailed
reference power distributions to assess lower-fidelity models’ accuracy. However, it is challenging,

particularly for deterministic codes that use multigroup cross sections and traditional homoge-

nization methods [11]5Whm&—hefﬂegeﬁim-&hed’§ are insufficient to capture the
correct physics in FHRsydue to the multiple heterogeneity [11]. In the AHTR, single and multiple
slab homogenization decreased computation time by 1(%\:" il-lf(:gvever?they introduce a nontrivial error
of ~3% [11, 17]. To determine the feasibility and safety of the AHTR design, we must calculate
core physics parameters to an acceptable uncertainty. For Monte Carlo codes, increasing neutron
histories reduces statistical uncertainty but comes at an increased computational cost.

Another technical challenge the AHTR design faces is the uncertainty of the graphite and
carbonaceous moderator material properties: densities, temperatures, and thermal scattering data.
Also, the thermal scattering data (S(«, 3) matrices) for the bound nuclei in the Fluoride-Lithium-

Probenataally, . . .
Beryllium (FLiBe) salt are lacking [11]. Mei et al. [18] and Zhu et al. [19] examined the thermal
scattering behavior of solid and liquid FLiBe. They concluded that the bound and free atom cross

section of FLiBe are identical above 0.1eV and diverges below 0.01eV, which means that the use

or absence of thermal scattering data will impact the accuracy of the results [11].

- Boundary conditions for multigroup cross section generation 10 P



1.1.3 AHTR Benchmark

To address and further understand the technical challenges described in the previous section, in
2019, the OECD-NEA initiated a benchmark to assess thesstaterofitherartymodeling and simula-
9 cowlo g Cwx 40 ow0ick vageRition
tion capabilities for FHRs with TRISO fuel embedded in fuel plates (”planks”) of hexagonal fuel
elements [20]. The benchmark plans to have three phases, starting from a single fuel element sim-
ulation without burnup, gradually extending to full core depletion and feedback. The benchmark’s
overarching objective is to identify the applicability, accuracy, and practicality of the e&r;%e‘\fgmeth—
ods and codes to assess the current state of the art of FHR simulation and modeling [21]. The
benchmark also enables the cross-verification of codes and methodologies for the challenging AHTR
geometry, which is especially useful since applicable reactor physics experiments for code validation
are scarce [22, 21]. Chapter ?? will provide a detailed description of the benchmark phases and
results obtained so far. \3 don \

1.2 Additive Manufacturing

" \}

AM isl the formal“ized termee? for what used to be calledvrapid prototypingvand what is popularly
calledb3D printing [23]. The basic principle of AM is that a model is initially generated using a three-
dimensional Computer-Aided Design (3D CAD) system and is fabricated directly without the need
for process planning. In AM, the parts are made by adding materials in layers; each layer is a thin
cross section of the 3D CAD designed part, as opposed to subtractive manufacturing methods such
as traditional machining [24]. All commercialized AM machines to date use a layer-based approach,
and the major ways that they differ are in materials, layer creation method, and how the layers are
bonded to each other [23]. These major differences will determine the following factors: accuracy
of the final part, material and mechanical properties, the time required to manufacture the part,
the need for post-processing, size of AM machine, and ,overall cost of the machine and the process
[23]. Initially, AM was used*:(‘)&manufacture prototyp-‘e‘ls\? However, with improvements in material
properties, accuracy, and overall quality of AM output, the applications for AM expanded to the
ewrren® point T}:T which some industries build parts for direct assembly purposes [25]. Furthermore,

at
using AM in conjunction with other technologies, such as high-power laser,\tfedﬁn-roi'ogﬁ has enabled

S



AM teehnetoss to manufacture parts made from various metals [23].

1.2.1 Application of Additive Manufacturing to Nuclear Reactor Core

Components

AM has progressed rapidly in the last 30 years, from rapid design prototyping with polymers in
the automotive industry to scale production of metal components. Examples include Boeing using
AM to reduce the 979 Dreamliner’s weight [26] and General Electric using AM to produce fuel
injection nozzles [27]. The most common metal AM technologies, selective laser melting (SLM),
electron beam melting (EBM), laser directed energy deposition (L-DED), and binder jetting, are
not currently used to manufacture nuclear power plant parts. Wide-spread adoption of these
methods in the nuclear industry could drastically reduce fabrication costs and timelines, combine
multiple systems and assembled components into single parts, increase safety and performance by
tailoring local material properties, and enable geometry redesign for optimal load paths [28]. Many
generation IV advanced reactor concepts have complex geometries, such as hex-ducts for sodium-
cooled fast reactors, that are costly and difficult to fabricate using standard processing techniques.
Traditional manufacturing routes also restrict the viable geometries for reactor designers [29]. In
summary, the main benefits of using AM for reactor core components is that we are no longer
geometrically constrained by conventional fuel manufacturing and can further optimize and improve
fuel geometries to enhance fuel performance and safety wftlrdre-a'd'd'e'd-}\a'eneﬁt-oﬂower cost'\[30].
Experimental work in the nuclear materials field demonstrates thea;pplication,\?f AMsto nu-
clear fuel and structural core material fabrication. Bergeron et al. [30] successfullys(iemonstrated
additively manufacturing thorium dioxide using a stereolithography-based 3D printer and pho-
topolymer resin. The high-density thorium dioxide objects were printed and sintered to densities
of ~90% [30]. Rosales et al. [31] conducted a feasibility study of direct routes to fabricate dense
uranium silicides(UsiSig) fg‘?l“_pellets using the Idaho National Laboratory (INL) invented Additive
Manufacturing as an\vA‘\l?ceLI?a}cgfle Fabrication Technique (AMAFT)"UsSis is an accident-tolerant
nuclear fuel candidate due to its high uranium density and improved thermal properties. Its current

metallurgical fabrication process is expensive and long; the goal of AMAFT is to fabricaté UsSia at

a lower cost in a timely and commercially-reliable manner [31]. Sridharan et al. [29] demonstrated



the application of the laser-blown-powder AM process to fabricate ferritic/martensitic (FM) steel,
a type of steel commonly used for cladding and structural components in nuclear reactors. Koy-
anagi et al. [32] presented, AM technology s—current-status for manufacturing nuclear-grade silicon
we iatest

carbide (SiC) materials; they demonstrated that combinations of AM techniques and traditional
SiC densification methods enabled new designs of SiC components with complex shapes. SiC has
excellent strength at elevated temperatures, chemical inertness, relatively low neutron absorption,
and stability under neutron irradiation up to high doses [33, 34, 32]. These qualities make SiC suit-
able for many applications in nuclear systems such as fuel cladding, constituents of fuel particles
[34] and pellets [35] core structural components in fission reactors [33].

and

1.3 Nuclear Reactor Design Optimization

The practice of nuclear reactor optimization has-—beeﬁ—a-fe-uﬁd—s;\hiree*the conception of nuclear
an with
reactors. Optimization has been applied to nuclear reactor design, reactor reloading patterns, and

the nuclear fuel cycle. In the proposed work, we will focus on the optimization of nuclear reactor core

design. Previous efforts towards nuclear reactor core design optimization include deterministic and

stochastic optimization techniques,\aﬂd_these—ep‘ei-ﬁa-iﬂ-a-bbﬂ—met-heé? coupled with surrogate models.

)
Deterministic optimization methods usually start from a guess solutio:%ghen, the algorithm

suggests a search direction JD&S@%—G-H’ applying local information to a pre-specified transition rule.
b
The best solution becomes the new solution, and the above procedure continues several times;?,

[36]. Drawbacks of deterministic methods include: algorithms tend to get stuck fga suboptimal

solution, and an algorithm efficient in solving one type of problem may not solve a different problem

efficiently [36]. Stochastic optimization methods,minimize or maximize an objective function when
JSuch o3 evolukhonavy algoitnmg onk Simulaked mneling,

randomness is present; they tend to find globally optimal solutions more reliably than deterministic

methods.Fvolutiomary atgorithmmsand-simtated annealing are examplesof stoehasticoptimmzation
rithms

A nuclear reactor’s complexity results in reactor design optimization being a multi-objective
design problem requiring a tradeoff between desirable attributes [37, 38]. When multiple conflict-
ing objectives are important, there is no single optimum solution that simultaneously optimizes all

objectives. Instead, the multi-objective optimization problem’s outcome is a set of optimal solu-



tions with varying degree objective values [36]. For a multi-objective problem like reactor design
optimization, an ideal multi-objective optimization method should find widely spread solutions in
the obtained non-dominated front [36].

Recent efforts towards nuclear reactor optimization have relied heavily on,stochastic meth-

o ofoiementioned
with the occasional addition of

stochastic-deterministic hybrid methods. Sacco et al. [39, 40] used stochastic simulated annealing
and deterministic-stochastic hybrid optimization techniques to optimize reactor dimensions, en-

richment, materials, etc., in order to minimize the average peak factor in a three-enrichment-zone

W\
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reactor. Odeh et al. [41] used the simulated annealing stochastic algorithm coupled with neutronics 0% 'W\‘\uﬁ‘
1

2e% PR
>4 %%i and thermal-hydraulics codes, Purdue Advanced Reactor Core Simulator (PARCS) and RELAPS5; oo
g
g; Tb% to develop an optimum Purdue Novel Modular Reactor (NMR-50) core design to achieve a 10-
= =
;ﬁéf—z’ j‘ year cycle length with minimal fissile loading. Kropaczek et al. [42] demonstrated the constraint
o

annealing method/"\a highly scalable method based on the method of parallel simulated anneal-
ing with mixing of: states [43]7for the solution of large-scale, multiconstrained problems in LWR
fuel cycle optimization. Peireira et al. [44, 45] used a coarse-grained parallel Genetic Algorithm
(GA) and a niching GA to optimize the same problem as [39]. Kamalpour et al. [46] utilized the
N Sacco et al.
imperialist competitive algorithm, a type of evolutionary algorithm, to optimize an fully ceramic
microencapsulated (FCM) fuelled Pressurized Water Reactor (PWR) to extend the reactor core
cycle length.
Nuclear reactor optimization problems require computationally extensive neutronics and thermal-

hydraulics software to compute the objective function and constraints. Multiple papers utilized

optimization methods with surrogate models to replace computationally;zxpensive ,gligh fidelity

neutronics or thermal hydraulics simulations bﬁeéaee—t-he-eempkﬁ%ﬂkal-ee&s-ef—u%*ﬁﬂg stochas-

n
uued In
Kumar et al. [47] combined genetic algorithm optimization with regression splines

tic methods.
surrogate model to optimize a reactor model for high breeding ofU-233 and ‘Pu-239 in desired
Yuse isotogic natation: *3|)
power peaking limits, desired keff using the following parameters: radius of a fuel pin cell, isotopic
enrichment of the fissile material in the fuel, the mass flow rate of the coolant, and temperature

of the coolant at the core inlet. Betzler et al. [48] developed a systematic approach to build a

surrogate model to serve in place of high-fidelity computational analyses. They leveraged the sur-

Verfind OO rwn-on,
can s ke split? 8



rogate model with a simulated annealing optimization algorithm to generate optimized designs at a
lower computational cost to understand design decisions’ impact on desired metrics for High Flux
Isotope Reactor (HFIR) low-enriched uranium (LEU) core designs.

The simulation annealing method uses a point-by-point approach,,?\’ ¢ne solution gets updated
to a new solution in one iteration, vvk;ieﬁ'does not exploit parallel sy;tems’ advantages. Finding

but
an optimal solution with simulation annealing methods w‘i-l-l—;c-\a-ke’very long if high—ﬁdelity,,\compu—

Hoees \anor Nyphenarad eartier
tationally expensive codes are used to compute the objective function and constraints. Therefore,
using the simulation annealing method is only practical if a surrogate evaluation model is used as
described in [48] and [47] .%Volutionary algorithmAmethods mimic nature’s evolutionary principles

o names *o0 . (ER)

to drive its search towards an optimal solution.
[é—Contrary to a single solution per iteration in deterministic and stochastic simulation anneal-
ing methods, evolutionary algorithms {EAs¥ use a population of solutions in each iteration [36].
With the affordability and availability of parallel computing systems, the evolutionary algorithm
optimization method stands out as a method that easily and conveniently exploits parallel sys-
tems. Further, EAs have proved amenable to high-performance computing (HPC) solutions and

scalable to tens of thousands of processors [43]. Therefore, in this proposed work, we will utilize

the evolutionary algorithm optimization method.

1.3.1 Impact of additive manufacturing on nuclear reactor design optimization

In -g_ection 1.2.1, we discussed how, with the advancements of AM for reactor core components,
reactor designers are no longer geometrically constrained by conventional fuel manufacturing and
can further optimize and improve fuel geometries to enhance fuel performance and safety. Reactor
design objectives remain consistent with past objectives, such as minimizing fuel amount and min-
imizing the maximum fuel temperature for a given power level. However, we can now approach the
nuclear design problems with truly arbitrary geometries, no longer limited by traditional geometric
shapes that are easy to manufacture with traditional processes: slabs as fuel plates, cylinders as

fuel rods, spheres as fuel pebbles, axis-aligned coolant channels, etc [49]. Thefe£9¥e;°£his has opened

the door for a,ge—examination of optimization'\}ﬂ—a-eegyple.telghnewa,y? determining the optimal

. omplekt, L metnod§ .
arbitrary geometry for a given objective function [49] with a much smaller set of constraints.



With a substantial increase and change in an arbitrary geometry’s design space, it becomes
time%onsuming for a human reactor designer to thoroughly explore and find optimal geometries
in the expanded design space. Instead, we can leverage /é’(rtiﬁcial ntelligence (AI) optimization
methods{such as EA) to promptly explore the large design space to find global optimal designs. Al
would ngt replace t'Le human reactor designer but shifts the human designer’s focus away from
conjecturing suitable geometries to defining design criteria to find optimal designs [49]. Thg%ei-’efe*,
when the human designer changes the reactor criteria, the Al model will quickly adapt and gn)‘:iuce

new global optimal designs to fit the new criteria.

1.4 Evolutionary Algorithms

EAs mimic natural evolutionary principles to constitute search and optimization procedures [36].
Evolutionary algorithms often perform well at approximating solutions to many problem types
because they do not make any assumptions about the underlying fitness landscape. The most

popular EAs used to solve multi-objective problems are genetic algorithms (GA) [37, 50].

1.4.1 Genetic Algorithms

GAs imitate natural genetics and selection to evolve solutions by maintaining a population of so-
lutions, allowing fitter solutions to reproduce)%nd letting lesser fit solutions die off, resulting in
final solutions that are better than the previous generations [51]. From here, we will refer to a
solution as an individual within the population. GAs efficiently exploit historical information to
speculate new search points, improving each subsequent population’s performance [52]. GAs are
theoretically and empirically proven to provide robust search in complex spaces and are computa-
tionally simple yet powerful in their search for improvement [52]. GAs are advantageous compared
to deterministic and stochastic simulated annealing optimization methods,because (1) it searches
from a population of points;;\ (2) uses objective function information, not dlerivatives or other aux-
iliary knowledge of the probl-’em,;\’and (3) uses probabilistic transition rules, not deterministic rules.
Figure 1.2 depicts the iterative '[i)rocess of using a GA to solve a problem. The GA generates new

populations iteratively until it meets the termination criteria.

GAs uses mechanisms inspired by biological evolution such as selection, crossover, and mu-

10
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Figure 1.2: Process of solving a problem with genetic algorithm [51].
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tation. The three operators are simple and straightforward. The selection operator selects good
individuals. The crossover operator recombines togetheY good individuals to form a better individ-
ual. The mutation operator alters individuals to create a? better individual,[36].¢In:the:subsequent

S
section, we will provide more description and common methods for each operator.
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Selection Operator (IM- e 3

The selection operator’s primary objective is to duplicate good individuals and eliminate bad
individuals while keeping the population constant [36]. It achieves this by identifying above-average
individuals in a population, eliminating bad individuals from the population, and replacing them
with copies of good individuals. Selection operator methods utilized in the proposed work include
tournament selection, best selection, and NSGA-II selection. In tournament selection, tournaments
are played between a user-defined number of individuals, and the best individual is kept in the
population. This repeatedly occurs until all the population’s spots are filled. In best selection,
a user-defined number of best individuals are selected, and copies are made to keep'\population
size constant. In NSGA-II selection, parent and offspring populations are combined, 3’?1'61 the best
individuals (with respect to fitness and spread) are selected [53].Agopies of the best individuals are
made to keep'\population size constant. Aﬂ“‘“:

The selection operator cannot create any new individuals in the population and only makes
more copies of good individuals at the expense of not-so-good individuals. N’fhe crossover and

mutation operators perform the creation of new solutions. lns+ead,

Crossover Operator

The crossover operator is also known as the mating operator. In most crossover operators, two in-
dividuals are picked from the population at random, and some portion of the individuals’ attributes
are exchanged with one another to create two new individuals [36]. Crossover operator methods
utilized in the proposed work include single-point crossover, uniform crossover, and blend crossover.
In the single-point crossover, two individuals are selected from the population, and a site along the
individual’s definition is randomly chosen. Attributes on this cross site’s right side are exchanged

between the two individuals, creating two new offspring individuals. In a uniform crossover, the

12
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user defines an independent probability for each individual’s attribute to be exchanged; usually,
p = 0.5 is used. In blend crossover, two offspring (O) individuals are created based on a linear

combination of two-parent (P) individuals using the following equations:

O1=P -a(P, - Py) (1.1)

02 =P2+OJ(P1—P2) (12)
where

o« = Extent of the interval in which the new values can be drawn

for each attribute on both side of the parents attributes (user-defined)

To preserve some good individuals selected during the selection operator stage, not all individ-
uals are used in a crossover; this is implemented by having the user define a crossover probability
(pc). Therefore, the crossover operator is only applied to 100p.% of the population; the rest are
copied to the new population [36].

The crossover operator is mainly responsible for the search aspect of the GAs, whereas the

mutation operator is needed to keep diversity in the population [36].

Mutation Operator

The mutation operator alters one or more attributes of an individual within a population. Mutation
occurs in the GA based on a user-defined mutation probability (p,,) that is setzlowto prevent

a primitive random search. Mutation operator methods utilized in the proposed work include

polynomial bounded mutation/h-pebmem-iai—be&nded_miaﬁ.oa? neach attribute in each individual
m whion
is mutated based on a polynomial distribution. The user also defines each attribute’s upper and

lower bounds and the crowding-degree of the mutation, 7 (‘l\arge 1 will produce a mutant resembling

its parent, while a small 7 will produce the opposite). *

13
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1.4.2 Balancing Genetic Algorithm Hyperparameters i
on v
e sQlix/
In the proposed work, hyperparameters refer to parameters whose value controls the GA’s process, “pv\m\l’.d .

such as each genetic operator’s associated parameters and population size. A good optimiz'ﬁ)ﬁ it's o
method needs to balance the extent of exploration of information obtained until the current gen- (2‘:\ S:\;S\f\é
eration through the crossover and mutation operators with the extent of exploitation through the

selection operator. If previously obtained individuals are exploited too much, the population loses

its diversity, and premature convergence to a sub,%ptimal solution is expected. Whereas if too

al-\fma\—'we\\l
much stress is given on exploration, the information obtained thus far has not been appropriate

)
y
utilized, and the GA’s search procedure behaves like a random search process [36]. A quantitative
balance between these two issues, exploitation and exploration, is challenging to achieve. Deb et
al. [36] and Goldberg et al. [54] quantified the relationship between exploitation and exploration.
They found that for the one-max test problem, in which the objective is to maximize the number
of 1s in a string, a GA with any arbitrary hyperparameter setting does not work well even on a

simple problem. Only GAs with a selection pressure, s, and crossover probability, p., falling inside

the control map (figure 1.3), find the desired optimum.

Simulation results
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Figure 1.3: Simulation results of the region in which the GA will find the desired optimum for
the one-max problem [54, 36]. —=7 mve detail coud \» added 40 Mol -Wis
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Another consideration is the population sizej0 a function with considerable variability in ob-

jective function values demands a large population size to find a global optimum [36]. Therefore,
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finding an optimized solution with GAs requires the user to conduct a hyperparameter search. Ng
et al. [b5] suggest that a coarse to fine sampling scheme is the best way to perform a system-
atic hyperparameter search. For a two-dimensional example of a coarse to fine sampling scheme,
the user first does a coarse sample of the entire square. A fine search is then conducted on the

best-performing region of the coarse search.

1.5 Summary

This chapter provided a literature review of relevant past research efforts that give context to this
proposed work. In summary, additive manufacturing of nuclear reactor components is a quickly
developing field thanks to the aerospace and auto industries, which led to breakthroughs in AM

fabrication of metal components. The promise of cheaper and faster manufacturing of reactor | feel line

. . . . . e's o
components with AM frees complex reactor geometries from previous manufacturing constraints ;\w\"\ssm

and allows reactor designers to reexamine reactor design optimization. Stochastic optimization  \veve

methods such as evolutionary algorithms have proven to work well for finding global optimums
in multi-objective design problems such as nuclear reactor optimization and can be leveraged to

explore the vast exploration design space enabled by AM.
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