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Chapter 1

REALM: Reactor Evolutionary
Algorithm Optimizer

In this chapter, I introduce the Reactor Evolutionary Algorithm Optimizer (REALM) frame-
work developed for the proposed work. REALM is a Python package that applies evolu-
tionary algorithm optimization techniques to nuclear reactor design. Applying evolutionary
algorithms to nuclear design problems is not new, as I previously discussed in Section 77,
and many evolutionary algorithm packages can be used with reactor design optimization
problems. However, the evolutionary algorithm setup is highly customizable with an as-
sortment of genetic algorithm designs and operators. A reactor designer unfamiliar with
evolutionary algorithms will have to go through the cumbersome process of customizing a
genetic algorithm for their needs and deciding what operators and hyperparameters work
best for their problem. Furthermore, computing fitness values with nuclear software are com-
putationally expensive, necessitating using supercomputers, requiring the reactor designer
to set up parallelization for the genetic algorithm.

Therefore, the motivation behind creating REALM is to limit these inconveniences and
ease the use of evolutionary algorithms for reactor design optimization by creating a tool
that provides a general genetic algorithm framework, sets up parallelization for the user,
and enables usability by designing an input file that only exposes mandatory parameters.
REALM also strives to be effective, flexible, open-source, parallel, reproducible, and usable.

I briefly summarize how REALM achieves these goals:

e Effective: REALM is well documented, well tested, and version-controlled on Github

.



e Flexible: The proposed work aims to utilize REALM to explore arbitrary reactor ge-
ometries and inhomogeneous fuel distributions. However, I acknowledge that future
users might want to utilize REALM with other arbitrary parameters that I overlooked.
Thus, I designed the REALM framework with this in mind. The user can vary any
imaginable parameter as REALM uses a templating method to edit the coupled soft-

ware’s input file.

e Open-source: [ utilized a well-documented open-source evolutionary algorithm (EA)
Python package to drive the genetic algorithm optimization. I utilized established
open-source nuclear transport, OpenMC [7], and thermal-hydraulics, Moltres [5], soft-
ware to compute the objective function and constraints. I also provide a simple tutorial
for future developers to follow for coupling other nuclear software to the REALM pack-

age.

e Parallel: REALM runs parallel on high-performance computing (HPC) machines using

the multiprocessing on dill Python package [§].

e Reproducible: Data from every REALM run saves into a unique pickled file, and all

results from this work are available on Github.

e Usable: I did not reinvent the wheel-instead combined available evolutionary algo-
rithm, nuclear transport, and thermal-hydraulics software to create a new optimiza-
tion tool for easy leveraging of evolutionary algorithms to construct arbitrary reactor

designs.

REALM essentially couples an evolutionary algorithm driver with nuclear software such
as nuclear transport and thermal-hydraulics codes. Figure ?? from Chapter 7?7 outlined an
evolutionary algorithm’s iterative problem solving process. I modified Figure ?? to produce
Figure which depicts how the nuclear transport and thermal-hydraulics software fit

within the process. Therefore, REALM will initially read and validate the JSON input file,



. EA: Evolutionary algorithm
(_) NS: Nuclear software
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Figure 1.1: Process of finding optimal solutions for a problem with a genetic algorithm
with evaluation conducted with nuclear software.



initialize the Distributed Evolutionary Algorithms in Python (DEAP) genetic algorithm
hyperparameters and operators, and finally run the genetic algorithm following the flow
chart in Figure[1.1]in which the nuclear software evaluates each individual’s fitness.

In the subsequent sections, I will describe the evolutionary algorithm software that
drives REALM, the nuclear software coupled to REALM, and details about the REALM

framework, such as the input file format and software architecture.

1.1 Evolutionary Algorithm Driver

Evolutionary algorithm computation is a sophisticated field with diverse techniques and
mechanisms, resulting in even well-designed coded-up frameworks being complicated under
the hood. Therefore, utilizing a previously used evolutionary algorithm framework brings
up issues in extending implementation intricacies as the user has to edit the source code
[2]. Therefore, an evolutionary algorithm computation framework that gives the user the
capability to build custom evolutionary algorithms is ideal for this project.

There are many evolutionary algorithm computation packages available: DEAP [2], in-
spyred [], Pyevolve [6], and OpenBEAGLE [3]. DEAP is the most newly created package
and places a high value on code compactness and code clarity [2]. DEAP is the only frame-
work that allows the user to prototype evolutionary algorithms rapidly and define custom
algorithms without digging deep into the source code to modify lines, making it the code
of choice for the REALM framework’s evolutionary algorithm driver component. . DEAP
provides building blocks for each optimizer function and allows the user to customize and

design a specialized algorithm to fit their project [2].

1.1.1 Distributed Evolutionary Algorithms in Python

DEAP is composed of two simples structures: a creator and a toolbox. The creator module

is a meta-factory that allows the run-time creation of classes via inheritance and compo-
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from deap import creator, base, tools, algorithms
creator.create("Objective", base.Fitness, weights=(-1.0,)) # minimum

creator.create("Individual", list, fitness=creator.Objective)

toolbox = base.Toolbox()
toolbox.register("variable_1", random.uniform, 0.0, 10.0)
toolbox.register("variable_2", random.uniform, -1.0, 0.0)
def individual_creator():

return creator.Individual ([toolbox.variable_1(), toolbox.variable_2()])
toolbox.register("individual", individual_creator())
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evaluator_fn(individual):

return tuple([sum(individual)])
toolbox.register("evaluate", evaluator_fn)

toolbox.register("select", tools.selBest, k=5)

toolbox.register("mutate", tools.mutPolynomialBounded, eta=0.5, low=[0, -1], up=[-1, 0])

toolbox.register("mate", tools.cxOnePoint)

Figure 1.2: DEAP sample code demonstrating the usage of the creator and toolbox
modules to initialize the genetic algorithm. In REALM, DEAP’s creator and toolbox
modules are initialized in the source code based on the genetic algorithm parameters
defined by the user in the REALM input file.

sition, enabling individuals and populations’ creation from from any data structure: lists,
sets, dictionaries, trees, etc [2]. The toolbox is a container for the tools/operators that the
user manually populates with selected tools for the evolutionary algorithm. The toolbozx is
where the user would define the selection, crossover, and mutation operator types and hy-
perparameters. For example, the user would register a crossover operator under the ‘mate’
alias. Then, the evolutionary algorithms would be built with these aliased operators, and if
the user wanted to change the crossover operator, they would update the ‘mate’ alias in the
toolbox, and the algorithm would remain unchanged [2].

Figure [1.2] illustrates DEAP’s usage of the creator and toolbox modules. On line 2, a
single-objective fitness class Objective is created. The first argument defines the name of the
derived class, the second argument specifies the inherited base class (base.fitness), and the

third argument is the weights attribute initialized with a tuple that indicates one-objective



fitness (—1.0 indicates a minimum objective, and +1.0 indicates a maximum objective). On
line 3, an Individual class is derived from the Python list and composed with our newly
created Objective object. On lines 5-9, we initialize the DEAP toolbox, register variable_1
and variable_2 with their upper and lower bounds, and defined the individual creator
function to return an Individual initialized with variable_1, and variable_2. Lines 10-
11 and 14-17 have aliases for initializing individuals and population, specifying variation
operators (select, mutate, mate), and evaluating individual fitness (evaluate) [2]. Lines
12-13 define the evaluation function that returns the fitness values.

In REALM, DEAP’s creator and toolbox modules are initialized in the source code based
on the genetic algorithm parameters defined by the user in the REALM input file, and the

evaluation function will run the nuclear software and return user-defined fitness values.

1.1.2 General Genetic Algorithm Framework

The creators’ of DEAP provided an example of a classical genetic algorithm exposing differ-
ent explicitness levels [2]. The high-level examples use the in-built DEAP genetic algorithms,
whereas the low-level example completely unpacks the genetic algorithm to expose a gen-
erational loop. The general genetic algorithm included in the Algorithm class is based
on the low-level example. The algorithm begins by initializing the starting population and
evaluating each individual’s fitness value; then, it enters a generational loop. During each
iteration, selection, mating, and mutation operators are applied to the population, then the

new individuals are evaluated, the constraints are applied, and the results are saved.

1.2 Nuclear Software

Many nuclear software have restricted public access. In the proposed work, I enabled
REALM to work with open-source nuclear transport and thermal-hydraulics software, OpenMC

[7] and Moltres [5]. OpenMC is an open-source Monte Carlo neutron transport code capa-



ble of performing k-eigenvalue calculations on models built using either constructive solid
geometry or CAD representation. OpenMC can run in parallel using a hybrid MPI and
OpenMP programming model. Moltres is an open-source tool designed to simulate Molten
Salt Reactors (MSRs) using deterministic neutronics and thermal-hydraulics, implemented
as an application atop the Multiphysics Object-Oriented Simulation Environment (MOOSE)
finite-element framework. Moltres solves arbitrary-group neutron diffusion, temperature,
and precursor governing equations on a single mesh and can be deployed on an arbitrary
number of processing units [5].

OpenMC and Moltres are both open-source, well-documented, well-supported, and
Github version-controlled codes that run in parallel on HPC machines, thus, achieving
the REALM goals listed at the start of this chapter, making them suitable to be used as
REALM’s nuclear software. However, REALM users can easily use restricted nuclear soft-
ware with REALM by using REALM with the restricted software on their local machine. In

the REALM documentation [I], I outline how to couple other nuclear software to REALM.

1.3 REALM Input File

REALM’s input file is in JSON format. There are four sections that the user must define:

control variables, evaluators, constraints, and algorithm. Figure shows an ex-
ample REALM input file. Next, we will describe how to define each section of a REALM
input file. Detailed descriptions of setting up REALM can be found in the REALM docu-

mentation [I].

1.3.1 Control Variables

The control variables are parameters that the user wants the genetic algorithm to vary.
For each control variable, the user must specify the minimum and maximum values (lower

and upper bounds). For example, lines 2 to 5 in Figure demonstrate that the control
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"control_variables": {

T,

"variablel": {"min": 0.0, "max": 10.0},

"variable2": {"min": -1.0, "max": 0.0}

"evaluators": {

3,

"openmc": {
"input_script": "openmc_inp.py",
"output_script": "openmc_output.py",
"inputs": ["variablel", "variable2"],

"outputs": ["outputl", "output2"]

"constraints": {

3,

"output_1": {"operator": [">=", "<"], "constrained_val":

"algorithm": {

"objective": "min",
"optimized_variable": "outputl",
"pop_size": 100,

"generations": 10,
"mutation_probability": 0.5,
"mating_probability": 0.5,

"selection_operator": {"operator": "selBest", "k": 1},

"mutation_operator": {

"operator": "mutPolynomialBounded",
"indpb": 0.5,
"eta": 0.5

1,

"mating_operator": {"operator": "cxOnePoint"}

Figure 1.3: REALM sample input file.

[1.0, 1.5]}



import openmc 1 import openmc

# templating 2 # templating
variablel = {{variablell}} 3 variablel = 3.212
variable2 = {{variable2}} 4 variable2 = -0.765
# run openmc 5 # run openmc

Figure 1.4: openmc_inp.py input script template (left). Templated openmc_inp.py with
variablel and variable2 values defined (right).

variables, variablel and variable2, can be varied from 0 to 10 and -1 to 0 respectively.

1.3.2 Evaluators

Evaluators are the software REALM utilizes to calculate objective functions. Presently, only
openmc and moltres evaluators are available in REALM. In a single REALM input file, a user
may define any number of evaluators. For each evaluator, mandatory input parameters are
input_script, inputs, and outputs, and the optional input parameters is output_script.
The input_script is an input file template for the evaluator software. The inputs param-
eter lists the control variables that are placed into the input file template. REALM utilizes
jinja2 templating to insert the control variable values into the input_script. Lines 6 to
12 in the REALM input file (Figure demonstrate that variablel and variable2 are
inputs into the openmc_inp.py input_script. Figure [1.4] shows the template and tem-
plated openmc script; once the openmc_inp.py input_script is templated, {{variablel}}
and {{variable2}} on lines 3 and 4 will be replaced with values selected by the REALM
genetic algorithm.

The outputs parameters lists the output variables that the user wants to return to
the genetic algorithm from the evaluator. These output parameters are also known as the
objective functions used to evaluate the individual. There are three methods to returning
an output parameter. First, if the output parameter is also an input parameter, REALM

will automatically return the input parameter’s value. Second, the user can use predefine



evaluations. For example, we have predefined a keff evaluation for OpenMC. The user
may also add predefine evaluations to OpenMCEvaluation or MoltresEvaluation, or any
other coupled codes’ evaluation file. Third, the user may include an output_script that
returns the desired output parameters. The output_script must include a line that prints
a dictionary containing the output parameters’ names and their corresponding value as

key /value pairs.

1.3.3 Constraints

In constraints, the user can choose to constrain any output parameter. Any individual that
does not meet the constraints will be removed from the population, encouraging the pro-
liferation of individuals that meet the constraints. For each constrained output parameter,
the user lists the operators and constrained vals as in line 15 of the REALM input file
(Figure . Thus, for this REALM simulation, output_1 is constrained to be >= 1.0 and
< 1.5.

1.3.4 Algorithm

In the algorithm section, the user defines all the hyperparameters for the genetic algorithm.
The mandatory input parameters include optimized variable, objective, pop_size, and
generations. The user specifies an optimized variable which must be an output param-
eter from the evaluators’ outputs. The user has the option to maximize or minimize this
optimized_variable by defining the objective variable as max or min. The user must also
specify the population size (pop_size) and no. of generations (generations) in the genetic
algorithm.

The optional input parameters include mutation probability, mating probability,
selection operator, mutation operator, and mating operator. As mentioned previ-

ously in section 7?7, it is important to select genetic algorithm hyperparameters that balance
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Table 1.1: Selection, mutation, and mating operators available in REALM and their
corresponding hyperparameters.

Operator | Available Options Hyperparameters

tournsize: no. of individuals in each tournament

selTournament o
] k: no. of individuals to select
Selection —
selNSGA2 k: no. of individuals to select
selBest k: no. of individuals to select

eta: crowding degree of the mutation

1S5

Mutation | mutPolynomialBounde . . .
indpb: independent probability for each attribute to be mutated

cxOnePoint -
Mating cxUniform indpb: independent probability for each attribute to be exchanged
cxBlend alpha: Extent of the interval in which the new values can be

drawn for each attribute on both side of the parents attributes

the extent of exploration and exploitation. The user can define the mutation and mating
probability or use default values of 0.3 and 0.4, respectively. For each operator, the user can
choose from a list of operators and define the hyperparameters required for them. Table
shows the available operators and their respective hyperparameters. The default selection
operator is selNSGA2, with k being two-thirds of the population size. The default mutation
operator is mutPolynomialBounded with an eta of 0.3 and indpb of 0.3. The default mating
operator is cxBlend with an alpha of 0.4. Lines 17 to 31 in the example REALM input file

(Figure demonstrate algorithm specifications.

1.4 REALM Software Architecture

In this section, I will describe REALM v1.0’s software architecture and how all the parts
come together to meet the goal of optimizing reactor design. Table outlines the classes
in the REALM software and describes each class’s purpose. Figure depicts REALM’s
software architecture. When the user runs a REALM input file, the Executor class drives
REALM’s execution from beginning to end. The Executor calls InputValidation to

parse the input file to ensure that the user defined all mandatory parameters and used
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Table 1.2: Classes that makeup REALM'’s architecture and their description.

Class

Description

InputValidation

The InputValidation class contains methods to read the JSON REALM
input file and conduct a validation to ensure the user defined all key pa-
rameters, and if they did not, REALM raises an exception to tell the user

which parameters are missing.

FEvaluation

DEAP’s fitness evaluator (as mentioned in Section |1.1.1]) requires an eval-
uation function to evaluate each individual’s fitness values. The Fvalua-
tion class contains a method that returns an evaluation function that runs

the nuclear software and returns the fitness values listed in the user input
file.

OpenM CFEvaluation

The OpenM CFEvaluation class contains built-in methods for evaluating
OpenMC output files. Developers can update this file with methods to
evaluate frequently used OpenMC outputs.

ToolboxGenerator

The ToolboxGenerator class initializes DEAP’s toolbox and creator
modules with genetic algorithm hyperparameters defined in the user in-

put file.

Constraints

The Constraints class contains methods to initialize constraints defined
in the user input file and apply the constraints by removing individuals

that do not meet the constraint.

BackEnd

The BackEnd class contains methods to save genetic algorithm popula-
tion results into a pickled checkpoint file and to restart a partially com-

pleted genetic algorithm from the checkpoint file.

Algorithm

The Algorithm class contains methods to initialize and execute the ge-
netic algorithm. It executes a general genetic algorithm framework that
uses the hyperparameters defined in the ToolboxGenerator, applies con-
straints defined in Constraints, evaluates fitness values using the eval-
uation function produced by Fwvaluation, and saves all the results with
BackEnd.

Executor

The Ezxecutor class drives the REALM code execution with the following
steps:
1) User input file validation with InputValidation.
2) Evaluation function generation with Evaluation.
3) DEAP toolbox initialization with ToolboxGenerator.
4) Constraint initialization with Constraints.
)

5) Genetic algorithm execution with Algorithm.

12



InputValidation Executor
. \—> 1) User input file validation with InputValidation
‘ OpenMCPBvaluatio ] | 2) Evaluation function generation with Evaluation
Bvaluation 3) DEAP toolbox initialization with ToolboxGenerator
‘ MoltresEvaluation, / 4) Constraints initialization with Constraints
ToolboxGenerator ’—> 5) Genetic algorithm execution with Algorithm
|
Constraints / Algorithm
1) Accepts initialized toolbox, constraints, and evaluator
function
BackEnd \_) 2) Runs the genetic algorithm
3) Saves results with BackEnd

Figure 1.5: Visualization of REALM architecture.

the correct formatting. Next, it initializes an Evaluator object based on the evaluators
specifications in the input file. It uses the Evaluator object to create a function that will run
each evaluator software with the desired input parameters and return the output parameters
calculated by the evaluator software. Next, it uses the ToolboxGenerator to create an
initialized DEAP toolbox object based on the input file’s algorithm specifications. The
ToolboxGenerator object accepts the Evaluator object and registers it as the toolbox’s
‘evaluate’ tool. Next, it initializes a Constraints object to contain constraints specified
in the input file. Next, it initializes an Algorithm object that accepts the initialized
DEAP toolbox and Constraints objects. Finally, the Executor class uses a method in
the Algorithm object to run a general genetic algorithm with hyperparameters from the
DEAP toolbox, apply constraints defined in the Constraints object, calculate objective
functions using the evaluation function created by the Fvaluator object, all the while saving
the results using the BackEnd class.

In the REALM Github repository [I], I included a tests directory that contains unit

tests for all methods in the classes described above.
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1.4.1 Installing and Running REALM

There are two ways to install REALM. First, a user can utilize The Python Package Index
(PyPI) to install REALM: pip install realm. Second, a user can download the REALM
Github repository [I] and install it from source.

REALM is run from the command line interface. A user should first set up the REALM
JSON input file and evaluator scripts in a directory. When running REALM from the com-
mand line, there are two mandatory arguments and one optional argument. The mandatory
arguments are the input file (-1) and objective (-p). The optional argument is the checkpoint

file (=c). Thus, the structure of a command line input for running REALM is:
python realm -i <input file name> -p <max or min> -c <checkpoint file name>

The checkpoint file holds the results from the REALM simulation and also acts as a
restart file. Thus, if a REALM simulation ends prematurely, the checkpoint file can be used

to restart the code from the most recent population and continue the simulation.

1.4.2 REALM Results Analysis

The BackEnd class manages REALM’s results. BackEnd puts all the results in a pickled
dictionary (pickle is a Python module that serializes Python objects), and it is saved as
checkpoint.pkl in the same directory as the input file. The checkpoint file can then be
reloaded into a Jupyter notebook and organized to produce desired plots. Examples of
REALM results analysis can be found in the REALM documentation [IJ.

For closer inspection of the evaluator software’s output files, the evaluation function
creates a new directory for each software, generation, and individual and stores the templated
input file and output files associated with that particular run. The generation and individual
values are indexed by zero. For example, the directory containing files associated with an
OpenMC run for the tenth individual in the genetic algorithm’s third generation will be

named: openmc_2_9.
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1.5 Summary

This chapter described the Reactor Evolutionary Algorithm Optimizer (REALM) framework
developed for the proposed work; REALM is a Python package that applies evolutionary
algorithm optimization techniques to nuclear reactor design using the Distributed Evolu-
tionary Algorithms in Python (DEAP) module and OpenMC and Moltres nuclear software.
The motivation for REALM’s inception is to enable reactor designers to utilize robust evolu-
tionary algorithm optimization methods without going through the cumbersome process of
setting up a genetic algorithm framework, selecting appropriate hyperparameters, and set-
ting up its parallelization. REALM is designed to be effective, flexible, open-source, parallel,

reproducible, and usable and is hosted on Github [I].
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