
Chapter 3

Fluoride-Salt-Cooled
High-Temperature Reactor
Benchmark
The FHR is a reactor concept that uses TRISO fuel and a low-pressure liquid fluoride-salt

coolant. FHR technology combines FLiBe coolant from MSRs and TRISO particles from

VHTRs to enable a reactor with low operating pressure, large thermal margin, and accident-

tolerant qualities. The AHTR is a FHR type that has plate-based fuel in a hexagonal fuel

assembly. To address the AHTR modeling challenges, such as multiple heterogeneity and

material cross-section data, the OECD-NEA and Georgia Tech initiated the FHR benchmark

for the AHTR design in 2019 [2]. In section 2.1, I gave an FHR concept overview, a AHTR

design description, a review of previous efforts towards modeling these designs, and how

these efforts led to the benchmark initiation.

The FHR benchmark has several phases, starting with a single fuel assembly simula-

tion without burnup and gradually extending to full core depletion. Table 3.1 outlines the

complete and incomplete benchmark phases.

Table 3.1: The Fluoride-Salt-Cooled High-Temperature Reactor benchmark’s Phases [2].

Phases Sub-phases Description Completed?

Phase I: fuel assembly

(2D/3D with depletion)

I-A 2D model, steady-state (no depletion)

I-B 2D model depletion

I-C 3D model depletion

Phase II: 3D full core with

depletion

II-A Steady-state (no depletion)

II-B Depletion

Phase III: 3D full core with

feedback & multicycle analysis

III-A Full core depletion with feedback

III-B Multicycle analysis

In the subsequent sections, I will describe the benchmark’s specifications for the AHTR

design and Phase I. Then, I will share our Phase I-A and I-B results.

25

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.1: Advanced High Temperature Reactor schematic (left) and vessel (right) [2].

3.1 Benchmark Specifications: AHTR Design

The Advanced High Temperature Reactor has 3400 MWt thermal power and 1400 MW

electric power [81]. Figure 3.1 shows the reactor schematic and a vertical cut of the reactor

vessel. Figure 2.1 shows a single fuel assembly’s geometry and all assemblies’ configuration

in the core. The AHTR’s hexagonal fuel assembly detailed 2D view is shown in Figure 3.2. It

features plate-type fuel with hexagonal fuel assembly consisting of eighteen planks arranged

in three diamond-shaped sectors, with a central Y-shaped structure and external channel

(wrapper). The diamond-shaped sections have 120-deg rotational symmetry with each other

[81, 60, 2]. The fuel planks have semi-cylindrical spacers attached, their radius being equal

to the coolant channel thickness.

Figure 3.3 shows the external channel wrapper and structural Y-shape, which are made

of C-C composite and have extra notches to hold the fuel plates in place. The gap between

the fuel assemblies and fuel plates is filled with FLiBe coolant. The Y-shaped control rod

slot at the center of the Y-shape structure contains FLiBe coolant when the control blade is

not in the slot (as seen in Figure 3.2) [81, 60, 2]. Each fuel plank is made of an isostatically

26

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.2: Advanced High Temperature Reactor fuel assembly with 18 fuel plates
arranged in three diamond-shaped sectors, with a central Y-shaped and external channel
graphite structure. Blue: FliBE coolant in between fuel assemblies and plates, and in the
control rod slot, Gray: graphite structural components, Red: graphite fuel plank, Pink:
graphite spacers, Green: graphite matrix with embedded TRISO particles.

27

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.3: Advanced High Temperature Reactor fuel assembly’s structural components
[2].

pressed carbon with fuel stripes on each outer side of the plank, as seen in Figure 3.4. The

fuel stripes are prismatic regions composed of a graphite matrix filled with a cubic lattice of

TRISO particles with a 40% packing fraction. The lattice is 210 TRISO particles wide in the

x-direction, four particles deep in the y-direction, and 5936 particles tall in the z-direction.

Each TRISO particle has five layers (Figure 3.5): oxycarbide fuel kernel, porous carbon

buffer, inner pyrolytic carbon, silicon carbide layer, and the outer pyrolitic carbon.

For reactivity control, burnable poisons and control rods are included in some configu-

rations of the AHTR. The burnable poisons consist of europium oxide, Eu2O3, and have a

discrete or integral (dispersed) option. In the discrete option, small spherical Eu2O3 particles

are stacked axially at five locations in each fuel plank, as shown in Figure 3.6. In the integral

option, Eu2O3 is homogenously mixed with the fuel plank graphite matrix (including the

graphite in fuel stripes matrix and plank ends indented to structural sides, but excluding

the graphite in spacers and graphite in TRISO particles). Each control rod is uniformly

composed of molybdenumhafnium carbide alloy (MHC) and is inserted into the Y-shaped

control rod slot where it displaces the FLiBe that occupies the slot (Figure 3.2).

28

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.4: Advanced High Temperature Reactor’s fuel plank, with the magnification of a
spacer and segment of the fuel stripe with embedded TRISO particles.

Figure 3.5: Advanced High Temperature Reactor’s TRISO particle schematic [2].

29

Kdh

Kdh

Figure 3.6: Placement of axial stacks of burnable poisons in the Advanced High
Temperature Reactor [2].

Figure 3.7: Visualization of periodic boundary conditions for a single fuel assembly in the
AHTR[2].

3.2 Benchmark Specifications: Phase I

The FHR benchmark’s Phase I consists of a steady-state 2D model (Phase I-A) and depletion

(Phase I-B) of one FHR fuel assembly. For a single fuel assembly, the internal 120-degree

rotational symmetry is represented by periodic boundary conditions, as seen in Figure 3.7.

The benchmark required the following results for Phases I-A and I-B:

(a) effective multiplication factor

(b) reactivity coefficients (βeff , fuel Doppler coefficient, FLiBe temperature coefficient,

graphite temperature coefficient)

30

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

(c) tabulated fission source distribution by one-fifth fuel stripe

(d) neutron flux averaged over the whole model tabulated in three coarse energy groups

(e) neutron flux distribution in three coarse energy groups

(f) fuel assembly averaged neutron spectrum

Next, I report the equations used to calculate these required results.

Reactivity Coefficients (b)

Effective delayed neutron fraction (βeff) is the fraction of delayed neutrons in the core.

I assumed one energy group and six delayed groups for βeff . Reactivity coefficient is the

change in reactivity (ρ) of the material per degree change in the material’s temperature (T). I

calculated each reactivity coefficient and its corresponding uncertainty with these equations:

∆ρ

∆T
=
ρThigh − ρTlow
Thigh − Tlow

[pcm
K

] (3.1)

δ
∆ρ

∆T
=

√
δ(ρThigh)2 + (δρTlow)2

Thigh − Tlow
[pcm
K

] (3.2)

Fission Source Distribution / Fission Density (c)

I calculated fission density (FD) with OpenMC’s fission tally score (f) for each region

divided by the average fission tally score of all the regions:

FDi =
fi
fave

(3.3)

where

fi = fission reaction rate in a single region [reactions/src]

fave = average of all fi [reactions/src]

31

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

The uncertainty calculations for FDi and fave:

δFDi = ∣FDi∣
√

(δfi
fi

)2 + (δfave
fave

)2 (3.4)

δfave =
1

N

¿
ÁÁÀ N

∑
i

f 2
i (3.5)

where

N = No. of fission score values

Neutron Flux (d, e, f)

OpenMC’s flux score is in [neutrons cmsrc] units. For the benchmark, I converted flux to [neutronscm2s]

units using the following equations:

Φc =
N ×Φo

V
(3.6)

N = P × ν
Q × k (3.7)

32

Kdh

Kdh

Kdh

Kdh

where

Φc = converted flux [neutronscm2s]

Φo = original flux [neutrons cmsrc]

N = normalization factor [srcs]

V = volume of fuel assembly [cm3]

P = power [Js]

ν = νf
f [neutronsfission]

Q = Energy produced per fission [J
fission] = 3.2044 × 10−11 J per U235 fission

k = keff [neutronssrc]

The flux standard deviation is:

δΦc = Φc ×
¿
ÁÁÀ(δΦo

Φo

)2 + (δνf
νf

)2 + (δk
k

)2 + (δf
f

)2 (3.8)

I calculated reactor power based on the given reference specific power (Psp) of 200 W
gU :

P = Psp × VF × ρF ×
wt%U

100
(3.9)

33

Kdh

Kdh

Kdh

where

VF = volume of fuel [cm3] = 4

3
πr3f ×Ntotal

rf = radius of fuel kernel

Ntotal = total no. of TRISO particles in fuel assembly = 101 × 210 × 4 × 2 × 6 × 3

ρF = density of fuel [g/cc]

wt%U = at%U235 ×AMU235 + at%U238 ×AMU238

∑(at%i ×AMi)
× 100

AM = atomic mass

3.2.1 Benchmark Specifications: Phase I-A

For Phase I-A, the benchmark specifies that each participant must produce a steady-state

2D model of one fresh fuel assembly for nine cases and report the required results listed in

Section 3.2. Table 3.2 describes each case.

Table 3.2: Description of the Fluoride-Salt-Cooled High-Temperature Reactor benchmark
Phase I-A cases [2].

Case Description

1A Reference case. Hot full power (HFP), with temperatures of 1110K for fuel kernel and 948K for

coolant and all other materials (including TRISO particle layers other than fuel kernel). Nominal

(cold) dimensions, 9 wt% enrichment, no Burnable Poison (BP), control rods (CRs) out.

2AH Hot zero power (HZP) with uniform temperature of 948 K, otherwise same as Case 1A. Comparison

with Case 1A provides HZP-to-HFP power defect.

2AC Cold zero power (CZP). Same as Case 2AH, but with uniform temperature of 773 K. Comparison

with Case 2AH provides isothermal temperature coefficient.

3A CR inserted, otherwise same as Case 1A.

4A Discrete europia BP, otherwise same as Case 1A.

4AR Discrete europia BP and CR inserted, otherwise same as Case 1A.

5A Integral (dispersed) europia BP, otherwise same as Case 1A.

6A Increased heavy metal (HM) loading (4 to 8 layers of TRISO) decreased C/HM ratio (from about

400 to about 200) and decreased specific power to 100 W/gU, otherwise same as Case 1A.

7A Fuel enrichment 19.75 wt%, otherwise same as Case 1A.

34

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

3.2.2 Benchmark Specifications: Phase I-B

For Phase I-B, the benchmark specifies that each participant must produce depletion results

for three cases: 1B, 4B, and 7B. These are the same as cases 1A, 4A, and 7A, but with

depletion steps added. The benchmark assumes that depletion occurs only in the fuel and

BPs and that the depletion performs under the critical spectrum assumption.

3.3 Results

Several organizations participated in the benchmark with various Monte Carlo and Deter-

ministic neutronics codes, such as Serpent [41], OpenMC [62], and WIMS [42]. University

of Illinois at Urbana-Champaign (UIUC) participated in the benchmark with the OpenMC

Monte Carlo code [62] and the ENDF/B-VII.1 material library [10]. The fhr-benchmark

Github repository contains all the results submitted by UIUC for the FHR benchmark [11].

The benchmark used a phased blind approach – participants were asked to submit Phase

I-A and I-B results without knowledge of other submissions. Petrovic et al. [56] describes

the preliminary results of the benchmark results across several institutions and concludes

that the overall observed agreement is satisfactory. In the subsequent sections, I will share

the results obtained by UIUC.

3.3.1 Results: Phase I-A

Petrovic et al. [56] compared the effective multiplication factor (keff) for all participants

and Phase I-A cases in the FHR benchmark. They reported that the standard deviation

between participants for each case was in the 231 to 514 pcm range, acceptable and notably

close given a blind benchmark, assuring us that our Phase I-A results are acceptable and in

agreement with other benchmark participants.

Table 3.2 reports Phase I-A keff and reactivity coefficients results. I ran the simulations

on UIUC’s BlueWaters supercomputer with 64 XE nodes, which each have 32 cores [48]. To

35

Kdh

Kdh

Kdh

reduce keff ’s statistical uncertainty to ∼10pcm, I ran each simulation with 500 active cycles,

100 inactive cycles, and 200000 neutrons. Each simulation took wall-clock-time (WCT)

ranging from 2 to 5 hours.

Table 3.3: University of Illinois at Urbana-Champaign’s Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark Phase I-A results [11].

Case Summary WCT [hr] keff* βeff** Fuel ∆ρ
∆T

FliBe ∆ρ
∆T

Graphite ∆ρ
∆T

1A Reference 2.82 1.39389 0.006534 -2.24±0.15 -0.15±0.15 -0.68±0.15

2AH HZP 2.82 1.40395 0.006534 -3.14±0.15 -0.20±0.14 -0.85±0.14

2AC CZP 2.75 1.41891 0.006534 -3.36±0.14 -0.11±0.14 0.07±0.14

3A CR 2.49 1.03147 0.006534 -4.03±0.28 -0.83±0.27 -3.18±0.29

4A Discrete BP 5.08 1.09766 0.006542 -4.06±0.24 -1.55±0.23 -6.51±0.24

4AR Discrete BP +

CR

4.59 0.84158 0.006553 -5.60±0.49 -1.78±0.46 -10.44±0.47

5A Dispersed BP 2.33 0.79837 0.006556 -5.09±0.40 -4.87±0.40 -22.99±0.38

6A Increased HM 3.52 1.26294 0.006556 -4.46±0.19 0.16±0.20 -0.39±0.20

7A 19.75% Enriched 2.21 1.50526 0.006530 -2.49±0.13 -0.12±0.12 -0.62±0.12

* All keff values have an uncertainty of 0.00010.

** All βeff values have an uncertainty of 0.000001.

Cases 2AH and 2AC are at zero power, meaning that the fuel assembly is exactly

critical but not producing any energy. For both cases, keff is higher than the reference Case

1A, which I attribute to lower fuel temperatures. At lower fuel temperatures, less doppler

broadening occurs, resulting in less neutron capture, thus, increasing keff . As expected,

keff is lower for Cases 3A, 4AR, and 5A than reference case 1A since these cases introduce

burnable poisons and control rods to the fuel assembly. Also, as expected, keff is higher

for Case 7A than reference Case 1A, since it has a higher enrichment. However, Case 6A

deviated from expectations with a lower keff despite an increase in heavy metal loading.

This behavior is due to reduced moderation and worsened fuel utilization brought about

by self-shielding, demonstrating that an increase in fuel packing fraction does not always

correspond with an increased keff .

βeff increased by 10-20pcm for Cases 4A, 4AR, 5A, and 6A compared to reference Case

1A due to the introduction of control rods and poisons that shift the average neutron velocity

36

Kdh

Kdh

Kdh

to higher values, resulting in decreased thermal fission and increased fast fission [78]. Table

3.3 reports that most of the temperature coefficients are negative, exemplifying the AHTR’s

passive safety behavior. Negative reactivity feedback results in a self-regulating reactor; if

the reactor’s power rises, resulting in temperature increase, the negative reactivity reduces

power.

Figure 3.8 shows the fission source distribution by one-fifth fuel stripe for Cases 1A and

3A. Case 4AR has a similar fission source distribution as Case 3A since both cases have

control rod insertion. All other cases have similar fission source distribution shape to Case

1A. For Case 1A, intuitively, I would assume that the highest fission source would occur in

the center of the diamond fuel segment; however, the opposite is true. Power peaking occurs

on exterior stripes and is minimum on the interior stripes. Gentry et al. [25] reported similar

power peaking phenomena towards the lattice cell’s exterior closest to the Y-shaped carbon

support structure where the thermal flux is most elevated. The lowest power is found in the

interiors of the lattice tri-sections. This fission source distribution is caused by diminished

resonance escape probability in the interior due to the higher relative fuel-to-carbon volume

ratio. For Case 3A with an inserted control rod, the fission source is lower in the one-fifth

stripes closer to the control rod. Cases 6A and 7A demonstrate a further diminished fission

source in the interior stripes due to the higher fuel-to-carbon ratio. This is seen in Figure

3.8 in which case 1A and 6A have similar fission distribution shapes, but case 6A’s has a

bigger fission source value range.

Figure 3.9 shows the average neutron flux in the fuel assembly in three coarse energy

groups. Most of the cases have the most flux in the intermediate group, followed by the

thermal group, and the least flux in the fast group. Figure 3.10 shows the neutron flux

distribution in a 100 × 100 mesh for Cases 1A, 3A, and 6A for three coarse energy groups.

For all three cases, fast-flux peaks in the diamond-shaped sectors containing the fuel stripes,

whereas thermal flux peaks outside of the diamond-shaped sectors. This is attributed to

fission occurring at thermal energies in the fuel stripe area. For Case 3A, the thermal and

37

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.8: Fission Source Distribution per one-fifth fuel stripe for Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark’s Phase I-A Case 1A (top), Case 3A (middle), and
Case 6A (bottom).

38

Kdh

Figure 3.9: Fluoride-Salt-Cooled High-Temperature Reactor Benchmark’s Neutron flux,
averaged over the whole model, tabulated in three coarse energy groups for each Phase I-A
case.

intermediate neutron flux is depressed in the fuel assembly’s control rod region. Case 6A

has an increased heavy metal loading, resulting in a more pronounced fast-flux peaking and

thermal flux dip in the fuel stripe area.

Figure 3.11 shows the neutron spectrum for Cases 1A and 6A. Case 7A has a similar

neutron spectrum as Case 6A since both cases have higher fuel content. All other cases have

a similar neutron spectrum to Case 1A. The neutron spectrum is faster for Cases 6A and

7A due to more heavy metal loading and higher enrichment, respectively.

3.3.2 Results: Phase I-B

Figure 3.12 shows the keff evolution during depletion for Cases 1B, 4B, and 7B. The keff

at zero burnup corresponds to each case’s corresponding Phase I-A keff value reported in

Table 3.3. Case 1B is the reference case with 9% fuel enrichment and no BPs. Case 1B’s

keff steadily decreases until it reaches 0.967845 at the final 70 GWd/tU burnup. Case 4B

includes burnable poisons resulting in a lower initial keff . Its keff decreases at a slower rate

39

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Figure 3.10: Fluoride-Salt-Cooled High-Temperature Reactor Benchmark’s Neutron flux
distribution in 100 × 100 mesh for three coarse energy groups: Case 1A (above), Case 3A
(middle), Case 6A (below). Energy group 1: E > 0.1 MeV, Energy group 2:
3 × 10−6 < E < 0.1 MeV, Energy group 3: E < 3 × 10−6 MeV.

40

Kdh

Kdh

Figure 3.11: Neutron spectrum for Fluoride-Salt-Cooled High-Temperature Reactor
Benchmark’s Phase I-A Case 1A (left) and Case 6A (right).

41

Kdh

Figure 3.12: Fluoride-Salt-Cooled High-Temperature Reactor Benchmark’s Phase I-B
depletion keff evolution for Cases 1B, 4B, and 7B. Case 1B is the reference case, Case 4B
is the discrete BP case, and Case 7B is the 19.75% enrichment case. Error bars are
included but are barely visible due to the low uncertainty of ∼40pcm.

42

Kdh

in the beginning due to the presence of burnable poisons, which decreases flux in the core.

At approximately 20 GWd/tU, keff begins decreasing at a faster rate, assumedly due to

burn-up of the poison material. Case 7B has a 19.75% fuel enrichment, resulting in a higher

initial keff . With a higher enrichment, the fuel can achieve a final burnup of 160 GWd/tU.

3.4 Summary

This chapter described the FHR benchmark specifications, AHTR design, and Phase I-A and

I-B results obtained by the UIUC team. The benchmark results highlight the AHTR’s passive

safety behavior with negative temperature coefficients. Results such as a lower keff for

the AHTR configuration with higher heavy metal loading demonstrated how increased fuel

packing does not always correspond with increased keff due to self-shielding effects. These

results hint at the possibility of minimizing fuel required by optimizing for inhomogeneous

fuel distributions within the core. This will be further explored in the later chapters.

43

Kdh

Kdh

Kdh

Chapter 4

REALM: Reactor Evolutionary
Algorithm Optimizer

In this chapter, I introduce the Reactor Evolutionary Algorithm Optimizer (REALM) frame-

work developed for the proposed work. REALM is a Python package that applies evolu-

tionary algorithm optimization techniques to nuclear reactor design. Applying evolutionary

algorithms to nuclear design problems is not new, as I previously discussed in Section 2.3,

and available evolutionary algorithm packages can be customized for reactor design opti-

mization problems. However, evolutionary algorithm setup is highly customizable with an

assortment of genetic algorithm designs and operators. A reactor designer unfamiliar with

evolutionary algorithms will have to go through the cumbersome process of customizing a

genetic algorithm for their needs and determine which operators and hyperparameters work

best for their problem. Furthermore, computing fitness values with nuclear software is com-

putationally expensive, necessitating using supercomputers and setting up parallelization for

the genetic algorithm.

Therefore, the motivation behind creating REALM is to limit these inconveniences and

facilitate using evolutionary algorithms for reactor design optimization. REALM provides

a general genetic algorithm framework, sets up parallelization for the user, and promotes

usability with an input file that only exposes mandatory parameters. REALM also strives

to be effective, flexible, open-source, parallel, reproducible, and usable. I briefly summarize

how REALM achieves these goals:

• Effective: REALM is well documented, well tested, and version-controlled on Github

[12].

44

Kdh

Kdh

Kdh

• Flexible: The proposed work aims to utilize REALM to explore arbitrary reactor

geometries and inhomogeneous fuel distributions. However, future users might want

to utilize REALM with other arbitrary parameters. Thus, I designed the REALM

framework accordingly. The user can vary any imaginable parameter because REALM

uses a templating method to edit the coupled software’s input file.

• Open-source: I utilize a well-documented, open-source evolutionary algorithm Python

package to drive the optimization process, and established open-source nuclear soft-

ware, OpenMC [62] and Moltres [43], to compute the objective function and con-

straints. I also provide a simple tutorial for future developers to follow for coupling

other nuclear software to REALM.

• Parallel: REALM runs parallel on HPC machines using the mpi4py Python package

[14].

• Reproducible: Data from every REALM run saves into a unique, pickled file (pickle

is a Python module that serializes Python objects), and all results from this work are

available on Github.

• Usable: I did not reinvent the wheel–instead, I combined available evolutionary algo-

rithm, nuclear transport, and thermal-hydraulics software to create an optimization

tool for easy leveraging of evolutionary algorithms to construct arbitrary reactor de-

signs.

REALM essentially couples an evolutionary algorithm driver with nuclear software, such

as nuclear transport and thermal-hydraulics codes. Figure 2.3 from Chapter 2 outlines an

evolutionary algorithm’s iterative problem solving process. I modified Figure 2.3 to produce

Figure 4.1, which depicts how the nuclear transport and thermal-hydraulics software fit

within the process. Therefore, REALM initially reads and validates the JSON input file,

initializes the Distributed Evolutionary Algorithms in Python (DEAP) genetic algorithm

45

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Create initial population

Evaluate initial population

Create new population:

1. Select individuals for mating

2. Create offspring by crossover

3. Mutate selected individuals

4. Keep selected individuals from
previous generation

Evaluate new population

Is termination
criteria satisfied?

Best solution is returned!

yes

no

EA: Evolutionary algorithm

NS: Nuclear software

Figure 4.1: Process of finding optimal solutions for a problem with a genetic algorithm.
Nuclear software evaluates each new population.

46

hyperparameters and operators, and finally runs the genetic algorithm following the flow

chart in Figure 4.1, in which the nuclear software evaluates each individual’s fitness.

In the subsequent sections, I describe the evolutionary algorithm software that drives

REALM, the nuclear software coupled to REALM, and details about the REALM framework,

such as the input file format and software architecture.

4.1 Evolutionary Algorithm Driver

Evolutionary algorithm computation is a sophisticated field with diverse techniques and

mechanisms, resulting in even the most well-designed, coded-up frameworks being compli-

cated under the hood. Utilizing an existing evolutionary algorithm framework brings up

issues in extending implementation intricacies as the user has to edit the source code [22].

Therefore, an evolutionary algorithm computation framework that gives the user the capa-

bility to build custom evolutionary algorithms is ideal for this project.

There are many evolutionary algorithm computation packages available: DEAP [22],

inspyred [24], Pyevolve [54], and OpenBEAGLE [23]. DEAP is the newest package and

places a high value on code compactness and clarity [22]. DEAP is the only framework that

allows the user to prototype evolutionary algorithms rapidly and define custom algorithms

without digging deep into the source code to modify lines. This makes DEAP the code

of choice for the REALM framework’s evolutionary algorithm driver component. DEAP

provides building blocks for each optimizer function and allows the user to customize a

specialized algorithm to fit their project [22].

4.1.1 Distributed Evolutionary Algorithms in Python

DEAP is composed of two simples structures: a creator and a toolbox. The creator module

is a meta-factory that allows the run-time creation of classes via inheritance and composi-

tion, enabling individual and population creation from from any data structure: lists, sets,

47

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

1 from deap import creator, base, tools, algorithms

2 creator.create("Objective", base.Fitness, weights=(-1.0,)) # minimum

3 creator.create("Individual", list, fitness=creator.Objective)

4

5 toolbox = base.Toolbox()

6 toolbox.register("variable_1", random.uniform, 0.0, 10.0)

7 toolbox.register("variable_2", random.uniform, -1.0, 0.0)

8 def individual_creator():

9 return creator.Individual([toolbox.variable_1(), toolbox.variable_2()])

10 toolbox.register("individual", individual_creator())

11 toolbox.register("population", tools.initRepeat, list, toolbox.individual)

12 def evaluator_fn(individual):

13 return tuple([sum(individual)])

14 toolbox.register("evaluate", evaluator_fn)

15 toolbox.register("select", tools.selBest, k=5)

16 toolbox.register("mutate", tools.mutPolynomialBounded, eta=0.5, low=[0, -1], up=[-1, 0])

17 toolbox.register("mate", tools.cxOnePoint)

Figure 4.2: DEAP sample code demonstrating the usage of the creator and toolbox
modules to initialize the genetic algorithm. In REALM, DEAP’s creator and toolbox
modules are initialized in the source code based on the genetic algorithm parameters
defined by the user in the REALM input file.

dictionaries, trees, etc [22]. The toolbox is a container that the user manually populates. In

the toolbox, the user defines the selection, crossover, and mutation operator types and hy-

perparameters. For example, the user registers a crossover operator under the ‘mate’ alias,

and a selection operator under the ‘select’ alias. Then, the evolutionary algorithm uses

these aliased operators from the toolbox. If the user wants to change the crossover operator,

they would update the ‘mate’ alias in the toolbox, while keeping the evolutionary algorithm

unchanged [22].

Figure 4.2 illustrates DEAP’s usage of the creator and toolbox modules. Line 2 creates a

single-objective fitness class, Objective. The first argument defines the name of the derived

class, the second argument specifies the inherited base class, base.fitness, and the third

argument indicates the objective fitness (−1.0 indicates a minimum objective, +1.0 indicates

a maximum objective). Line 3 derives an Individual class from the standard Python list

48

type, and defines its fitness attribute to be the newly created Objective object. Lines 5-9

initialize the DEAP toolbox, register variable 1 and variable 2 with their upper and lower

bounds, and define the individual creator function to return an Individual initialized

with variable 1, and variable 2. Lines 10-11 and 14-17 are aliases for initializing individ-

uals and population, specifying variation operators (select, mutate, mate), and evaluating

individual fitness (evaluate) [22]. Lines 12-13 define the evaluation function that returns

the fitness values.

In REALM, DEAP’s creator and toolbox modules are initialized in the source code

based on the genetic algorithm parameters defined by the user in the REALM input file.

The evaluation function runs the nuclear software and returns user-defined fitness values.

4.1.2 General Genetic Algorithm Framework

The creators’ of DEAP provided variations of a classical genetic algorithm exposing different

explicitness levels [22]. The high-level examples use the in-built DEAP genetic algorithms,

whereas the low-level example completely unpacks the genetic algorithm to expose a gen-

erational loop. The general genetic algorithm included in the Algorithm class is based

on the low-level example. The algorithm begins by initializing the starting population and

evaluating each individual’s fitness value. Then, it enters a generational loop. During each

iteration, selection, mating, and mutation operators are applied to the population, then, the

new individuals are evaluated, the constraints are applied, and the results are saved.

4.2 Nuclear Software

Many nuclear software have restricted public access. In the proposed work, I enabled

REALM to work with open-source nuclear transport and thermal-hydraulics software, OpenMC

[62] and Moltres [43]. OpenMC is an open-source Monte Carlo neutron transport code ca-

pable of performing k-eigenvalue calculations on models built using either constructive solid

49

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

geometry or CAD representation. OpenMC can run in parallel using a hybrid Message

Passing Interface (MPI) and OpenMP programming model. Moltres is an open-source tool

designed to simulate MSRs using deterministic neutronics and thermal-hydraulics imple-

mented as an application atop the Multiphysics Object-Oriented Simulation Environment

(MOOSE) finite-element framework. Moltres solves arbitrary-group neutron diffusion, tem-

perature, and precursor governing equations on a single mesh and can be deployed on an

arbitrary number of processing units [43].

OpenMC and Moltres are both open-source, well-documented, well-supported, and

Github version-controlled codes that can run in parallel on HPC machines. Thus they

achieve the REALM goals listed at the start of this chapter, making them suitable to be

used as REALM’s nuclear software. However, users can easily use restricted nuclear software

with REALM by coupling REALM with the restricted software on their local machine. In

the REALM documentation [12], I outline how to couple other nuclear software to REALM.

4.3 REALM Input File

REALM’s input file is in JSON format. There are four sections that the user must define:

control variables, evaluators, constraints, and algorithm. Figure 4.3 shows an ex-

ample REALM input file. In this simulation, REALM uses a genetic algorithm with the

defined hyperparameters to minimize the output1 parameter which is calculated using the

OpenMC evaluator that accepts input parameters: variable1 and variable2.

Next, I will describe how to define each section of a REALM input file. The REALM

documentation [12] provides further descriptions for setting up a REALM input file.

4.3.1 Control Variables

Control variables are parameters the genetic algorithm will vary. For each control variable,

the user must specify its minimum and maximum values. For example, Lines 2 to 5 in Figure

50

Kdh

Kdh

1 {

2 "control_variables": {

3 "variable1": {"min": 0.0, "max": 10.0},

4 "variable2": {"min": -1.0, "max": 0.0}

5 },

6 "evaluators": {

7 "openmc": {

8 "input_script": "openmc_inp.py",

9 "output_script": "openmc_output.py",

10 "inputs": ["variable1", "variable2"],

11 "outputs": ["output1", "output2"]

12 }

13 },

14 "constraints": {

15 "output1": {"operator": [">=", "<"], "constrained_val": [1.0, 1.5]}

16 },

17 "algorithm": {

18 "objective": "min",

19 "optimized_variable": "output1",

20 "pop_size": 100,

21 "generations": 10,

22 "mutation_probability": 0.5,

23 "mating_probability": 0.5,

24 "selection_operator": {"operator": "selBest", "k": 1},

25 "mutation_operator": {

26 "operator": "mutPolynomialBounded",

27 "indpb": 0.5,

28 "eta": 0.5

29 },

30 "mating_operator": {"operator": "cxOnePoint"}

31 }

32 }

Figure 4.3: Reactor Evolutionary Algorithm Optimizer (REALM) sample JSON input file.

51

Kdh

1 import openmc

2 # templating

3 variable1 = {{variable1}}

4 variable2 = {{variable2}}

5 # run openmc

6 ...

1 import openmc

2 # templating

3 variable1 = 3.212

4 variable2 = -0.765

5 # run openmc

6 ...

Figure 4.4: openmc inp.py input script template (left). Templated openmc inp.py with
variable1 and variable2 values defined (right).

4.3 demonstrate that the control variables, variable1 and variable2, will be varied from

0 to 10 and -1 to 0, respectively.

4.3.2 Evaluators

Evaluators are the nuclear software REALM utilizes to calculate objective functions. Presently,

only openmc and moltres evaluators are available in REALM. In a single REALM input

file, a user may define any number of evaluators. For each evaluator, mandatory input

parameters are input script, inputs, and outputs, and the optional input parameter is

output script. The input script is input file template’s name for the evaluator soft-

ware. The user must include a input file template in the same directory as the REALM

input file. The inputs parameter lists the control variables that are placed into the input

file template. REALM utilizes jinja2 templating to insert the control variable values into

the input script. Lines 6 to 12 in the REALM input file (Figure 4.3) demonstrate that

variable1 and variable2 are inputs into the openmc inp.py input script. Figure 4.4

shows the template and templated openmc script; once the openmc inp.py input script

is templated, {{variable1}} and {{variable2}} on Lines 3 and 4 will be replaced with

values selected by the REALM genetic algorithm.

The outputs parameter lists the output variables that the evaluator will return to the

genetic algorithm. These output parameters are also known as the objective functions used

to evaluate the individual. REALM uses three methods to return an output parameter.

52

Kdh

First, if the output parameter is also an input parameter, REALM will automatically return

the input parameter’s value. Second, the user can use predefined evaluations. For example,

in OpenMCEvaluation, there is a predefined keff evaluation. The user may also add prede-

fined evaluations to OpenMCEvaluation or MoltresEvaluation, or any other coupled codes’

evaluation file. Third, the user may include an output script that returns the desired out-

put parameters. The output script must include a line that prints a dictionary containing

the output parameters’ names and their corresponding value as key-value pairs.

4.3.3 Constraints

In the constraints section, the user can define constraints on any output parameter. Any

individual that does not meet the defined constraints is removed from the population, en-

couraging the proliferation of individuals that meet the constraints. For each constrained

output parameter, the user lists the operators and constrained vals as in Line 15 of the

REALM input file (Figure 4.3). Thus, for this REALM simulation, output 1 is constrained

to be >= 1.0 and < 1.5.

4.3.4 Algorithm

In the algorithm section, the user defines all the hyperparameters for the genetic algorithm.

The mandatory input parameters include optimized variable, objective, pop size, and

generations. The user specifies an optimized variable, which must be an output pa-

rameter from the evaluators’ outputs. The user has the option to maximize or minimize

this optimized variable by defining the objective variable as max or min. The user must

also specify the population size (pop size) and number of generations (generations) in the

genetic algorithm.

The optional input parameters include mutation probability, mating probability,

selection operator, mutation operator, and mating operator. As mentioned previ-

53

Kdh

Kdh

Table 4.1: Selection, mutation, and mating operators available in Reactor Evolutionary
Algorithm Optimizer (REALM) and their corresponding hyperparameters.

Operator Available Options Hyperparameters

Selection

selTournament
tournsize: no. of individuals in each tournament

k: no. of individuals to select

selNSGA2 k: no. of individuals to select

selBest k: no. of individuals to select

Mutation mutPolynomialBounded
eta: crowding degree of the mutation

indpb: independent probability for each attribute to be

mutated

Mating

cxOnePoint -

cxUniform indpb: independent probability for each attribute to be

exchanged

cxBlend alpha: Extent of the interval in which the new values can

be drawn for each attribute on both side of the parents

attributes

ously in Section 2.4.1, it is important to select genetic algorithm hyperparameters that

balance the extent of exploration and exploitation. The user can define the mutation and

mating probability or not define them which results in the default values of 0.3 and 0.4, re-

spectively. For each operator, the user can choose from a list of operators and define each of

their required hyperparameters. Table 4.1 shows the available operators and their respective

hyperparameters. The default selection operator is selNSGA2 with a default k value, two-

thirds the population size. The default mutation operator is mutPolynomialBounded with

default eta and indpb values of 0.3. The default mating operator is cxBlend with a default

alpha of 0.4. Lines 17 to 31 in the example REALM input file (Figure 4.3) demonstrate

algorithm specifications.

4.4 REALM Software Architecture

In this section, I will describe REALM v1.0’s software architecture and how all the parts come

together to optimize reactor design. Table 4.2 outlines the classes in the REALM software

and describes each class’s purpose. Figure 4.5 depicts REALM’s software architecture. When

54

Kdh

Kdh

Kdh

Table 4.2: Classes that makeup REALM’s architecture and their description.

Class Description

InputValidation The InputValidation class contains methods to read and validate the JSON

REALM input file to ensure the user defined all key parameters. If they did

not, REALM raises an exception to tell the user which parameters are miss-

ing.

Evaluation DEAP’s fitness evaluator (as mentioned in Section 4.1.1) requires an evalu-

ation function to evaluate each individual’s fitness values. The Evaluation

class contains a method that creates an evaluation function that runs the nu-

clear software and returns the required fitness values, defined in the input

file.

OpenMCEvaluation The OpenMCEvaluation class contains built-in methods for evaluating

OpenMC output files. Developers can update this file with methods to evalu-

ate frequently used OpenMC outputs.

ToolboxGenerator The ToolboxGenerator class initializes DEAP’s toolbox and creator mod-

ules with genetic algorithm hyperparameters defined in the input file.

Constraints The Constraints class contains methods to initialize constraints defined in

the input file and applies the constraints by removing individuals that do not

meet the constraint.

BackEnd The BackEnd class contains methods to save genetic algorithm population

results into a pickled checkpoint file and to restart a partially completed ge-

netic algorithm from the checkpoint file.

Algorithm The Algorithm class contains methods to initialize and execute the genetic

algorithm. It executes a general genetic algorithm framework that uses the

hyperparameters defined in the ToolboxGenerator , applies constraints de-

fined in Constraints, evaluates fitness values using the evaluation function

produced by Evaluation , and saves all the results with BackEnd .

Executor The Executor class drives the REALM code execution with the following

steps:

1) User input file validation with InputValidation

2) Evaluation function generation with Evaluation

3) DEAP toolbox initialization with ToolboxGenerator

4) Constraint initialization with Constraints

5) Genetic algorithm execution with Algorithm

55

Kdh

Kdh

InputValidation

Evaluation

OpenMCEvaluation

ToolboxGenerator

MoltresEvaluation

Constraints

BackEnd

Executor

1) User input file validation with InputValidation

2) Evaluation function generation with Evaluation

3) DEAP toolbox initialization with ToolboxGenerator

4) Constraints initialization with Constraints

5) Genetic algorithm execution with Algorithm

Algorithm

1) Accepts initialized toolbox, constraints, and evaluator

function

2) Runs the genetic algorithm

3) Saves results with BackEnd

Figure 4.5: Visualization of REALM architecture.

the user runs a REALM input file, the Executor class drives REALM’s execution from

beginning to end. The Executor calls InputValidation to parse the input file to ensure

that the user defined all mandatory parameters and used the correct formatting. Next, it

initializes an Evaluator object based on the evaluators specifications in the input file. It

uses the Evaluator object to create a function that will run each evaluator software with

the desired input parameters and return the output parameters calculated by the evaluator

software. Next, it uses the ToolboxGenerator to create an initialized DEAP toolbox

object based on the input file’s algorithm specifications. The ToolboxGenerator object

accepts the Evaluator object and registers it as the toolbox’s ‘evaluate’ tool. Then, it

initializes a Constraints object to contain constraints specified in the input file. Next,

the Executor initializes an Algorithm object that accepts the initialized DEAP toolbox

and Constraints object. Finally, the Executor class uses a method in the Algorithm

object to run a general genetic algorithm with hyperparameters from the DEAP toolbox,

apply constraints defined in the Constraints object, and calculate objective functions using

the evaluation function created by the Evaluator object, all the while saving the results

using the BackEnd class.

In the REALM Github repository [12], I included a tests directory that contains unit

56

Kdh

tests for all methods in the classes described above.

4.4.1 Installing and Running REALM

There are two ways to install REALM. First, a user can utilize The Python Package Index

(PyPI) to install REALM: pip install realm. Second, a user can download the REALM

Github repository [12] and install it from source.

REALM is run from the command line interface. A user should first set up the REALM

JSON input file and evaluator scripts in a directory. When running REALM from the com-

mand line, there are two mandatory arguments and one optional argument. The mandatory

arguments are the input file (-i) and objective (-p). The optional argument is the checkpoint

file (-c). Thus, the structure of a command line input for running REALM is:

python realm -i <input file name> -p <max or min> -c <checkpoint file name>

The checkpoint file holds the results from the REALM simulation and also acts as a

restart file. Thus, if a REALM simulation ends prematurely, the checkpoint file can be used

to restart the code from the most recent population and continue the simulation.

4.4.2 REALM Results Analysis

The BackEnd class manages each REALM simulation’s results. BackEnd puts all the

results in a pickled dictionary, and it is saved as checkpoint.pkl in the same directory

as the input file. The checkpoint file can then be reloaded into a Jupyter notebook and

organized to produce desired plots. Examples of REALM results analysis can be found in

the REALM documentation [12].

The evaluation function creates a new directory for each software, generation, and

individual and stores the templated input file and output files associated with that particular

run. The generation and individual values are indexed by zero. For example, the directory

57

Kdh

Kdh

Kdh

Kdh

Kdh

Kdh

containing files associated with an OpenMC run for the tenth individual in the genetic

algorithm’s third generation will be named: openmc 2 9.

4.5 Summary

This chapter described the Reactor Evolutionary Algorithm Optimizer (REALM) framework

developed for the proposed work. REALM is a Python package that applies evolutionary

algorithm optimization techniques to nuclear reactor design using the Distributed Evolu-

tionary Algorithms in Python (DEAP) module, OpenMC, and Moltres nuclear software.

The motivation for REALM’s inception is to enable reactor designers to utilize robust evolu-

tionary algorithm optimization methods without going through the cumbersome process of

setting up a genetic algorithm framework, selecting appropriate hyperparameters, and set-

ting up its parallelization. REALM is designed to be effective, flexible, open-source, parallel,

reproducible, and usable and is hosted on Github [12].

58

Kdh

Kdh

Kdh

Kdh

