
Chapter 5

REALM Demonstration

This chapter demonstrates using REALM to apply genetic algorithms to maximize keff in

a single AHTR fuel slab. The dissertation-results Github repository contains all the

scripts, results, and plots shown in this chapter [?].

5.1 Straightened AHTR Fuel Slab

5.1.1 Problem Definition

This demonstration explores how inhomogeneous fuel distributions impact keff compared

with homogenous fuel distributions customary in most reactor designs. The reactor core

explored is a straightened slab from the FHR benchmark’s AHTR design. Figure 5.1 il-

lustrates the straightened fuel slab. The slab has 27.1 × 3.25 × 1.85 cm3 dimensions with

periodic boundary conditions in the x and y directions and reflective boundary conditions

in the z-direction. The materials are the same as in the FHR benchmark, except for the

∎ FLiBe
∎ Graphite (Fuel Plank)
∎ Graphite (Fuel Stripe)
∎ TRISO particle

Figure 5.1: Straightened Advanced High Temperature Reactor (AHTR) fuel slab.
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homogenization of each TRISO particle’s four outer layers: porous carbon buffer, inner py-

rolytic carbon, silicon carbide layer, and the outer pyrolitic carbon. The TRISO particles’

dimensions remain the same. The keff for this original straightened AHTR configuration is

1.38625 ± 0.00109.

The REALM optimization problem’s objective is to maximize the slab’s keff by varying

the TRISO particle packing fraction across the slab while keeping total TRISO particle the

total packing fraction constant at 0.0979. This total packing fraction is consistent with the

original straightened slab with TRISO particles in fuel stripes (Figure 5.1). The slab is

divided into ten slices along the x-axis between the FLiBe and graphite buffers resulting in

ten 2.31 × 2.55 × 1.85 cm3 slices. A sine distribution governs the TRISO particle packing

fraction’s distribution across slices:

PF (x) = (a sin(bx + c) + 2) ×NF (5.1)

where

PF = packing fraction [−]

a = amplitude, peak deviation of the function from zero [−]

b = angular frequency, rate of change of the function argument [radians
cm

]

c = phase, the position in its cycle the oscillation is at t = 0 [radians]

x = midpoint value for each slice [cm]

NF = Normalization factor [−]

The sine distribution’s value at each of the ten x-slices’ midpoints is collected and normalized

by the total packing fraction to ensure a consistent number of TRISO particles in the slab.

Thus, for a packing fraction distribution of PF (x) = (0.5 sin(π3x + π) + 2) × NF . The

packing fraction for the ten slices are 0.103, 0.120, 0.049, 0.138, 0.076, 0.081, 0.136, 0.048,
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Figure 5.2: Below: PF (x) = (0.5 sin(π3x + π) + 2) ×NF sine distribution with red points
indicating the packing fraction at each slice. Above: Straightened Advanced High
Temperature Reactor (AHTR) fuel slab with varying TRISO particle distribution across
ten slices based on the sine distribution.

0.125, 0.098, respectively. Figure 5.2 shows this sine distribution, highlights the packing

fraction at the respective midpoints, and the slab’s XY view with packing fraction varying

based on this sine distribution.

In REALM, a genetic algorithm varies the a, b, and c variables to find a combination

which produces a packing fraction distribution that maximizes the slab’s keff . The upper

and lower bounds of a, b and c are:

• 0 < a < 2

• 0 < b < π
2

• 0 < c < 2π

The a variable’s bounds were selected to keep the sine distribution from falling below zero.

b and c variable bounds are wide enough to allow the genetic algorithm to explore various
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sine distributions. The OpenMC evaluator calculates keff . Each OpenMC simulation is run

with 80 active cycles, 20 inactive cycles, and 8000 particles to reach ∼130pcm uncertainty.

Figure 5.3 shows the REALM input file for this genetic algorithm optimization problem.

ahtr slab openmc.py is the template OpenMC straightened AHTR slab script that accepts

a, b and c from REALM, calculates packing fraction distribution, and assigns packing fraction

values to each fuel slice. Subsequently, REALM runs the templated OpenMC script to

generate keff .

5.1.2 Hyperparameter Search

In REALM’s input file, the user defines the genetic algorithm’s hyperparameters. A good hy-

perparameter set guides the optimization process by balancing exploitation and exploration

to find an optimal solution quickly and accurately. Finding a good set of hyperparameters

requires a trial and error process.

I performed the hyperparameter search with a coarse-to-fine random sampling scheme,

whose advantages were previously discussed in Section 2.4.2. The hyperparameters varied

include population size, number of generations, mutation probability, mating probability,

selection operator, selection operator’s number of individuals, selection operator’s tourna-

ment size, mutation operator, and mating operator. I started with 25 coarse experiments

and fine-tuned the hyperparameters with 15 more experiments. For each genetic algorithm

experiment, I hold the number of OpenMC evaluations constant at 600. The number of

evaluations correlates the population size and number of generations. I randomly sample

population size and use the following equation to calculate the number of generations:

no. of generations = no. of evaluations

population size
(5.2)

Table 5.1 shows the lower and upper bounds used for each hyperparameter’s random sam-

pling.
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1 {

2 "control_variables": {

3 "a": {"min": 0.0, "max": 2.0},

4 "b": {"min": 0.0, "max": 1.57},

5 "c": {"min": 0.0, "max": 6.28},

6 },

7 "evaluators": {

8 "openmc": {

9 "input_script": "ahtr_slab_openmc.py",

10 "inputs": ["a", "b", "c"],

11 "outputs": ["keff"],

12 "keep_files": false,

13 }

14 },

15 "constraints": {"keff": {"operator": [">="], "constrained_val": [1.0]}},

16 "algorithm": {

17 "objective": "max",

18 "optimized_variable": "keff",

19 "pop_size": 60,

20 "generations": 10,

21 "mutation_probability": 0.23,

22 "mating_probability": 0.46,

23 "selection_operator": {"operator": "selTournament", "k": 15, "tournsize": 5},

24 "mutation_operator": {

25 "operator": "mutPolynomialBounded",

26 "eta": 0.23,

27 "indpb": 0.23,

28 },

29 "mating_operator": {"operator": "cxBlend", "alpha": 0.46},

30 },

31 }

Figure 5.3: Reactor Evolutionary Algorithm Optimizer (REALM) JSON input file to
maximize keff in the straightened Advanced High Temperature Reactor (AHTR) fuel slab
by varying packing fraction distribution with control variables, a, b, c.
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Table 5.1: Hyperparameter search is conducted in three phases: Coarse Search, Fine
Search 1, Fine Search 2. Each hyperparameter’s lower and upper bounds for each search
phase is listed.

Hyperparameter Type Coarse Search

Bounds

Fine Search 1

Bounds

Fine Search 2

Bounds

Experiments - 0 to 24 24 to 34 35 to 39

Population size (pop) Continuous 10 < x < 100 20 < x < 60 60

Mutation probability Continuous 0.1 < x < 0.4 0.2 < x < 0.4 0.2 < x < 0.3

Mating probability Continuous 0.1 < x < 0.6 0.1 < x < 0.3 0.45 < x < 0.6

Selection operator Discrete SelTournament,

SelBest, SelNSGA2

SelTournament,

SelBest, SelNSGA2

SelTournament

Selection individuals Continuous 1
3
pop < x < 2

3
pop 1

3
pop < x < 2

3
pop 15

Selection tournament size

(only for SelTournament)

Continuous 2 < x < 8 2 < x < 8 5

Mutation Operator Discrete mutPolynomialBounded mutPolynomialBounded mutPolynomialBounded

Mating Operator Discrete cxOnePoint,

cxUniform, cxBlend

cxOnePoint,

cxUniform, cxBlend

cxOnePoint, cxBlend

The initial 25 coarse experiments’ objective is to narrow down the hyperparameters to

find a smaller set of optimal hyperparameter bounds that produce higher final generation

keff values. Figure 5.4 shows the hyperparameters’ plotted against each other with a third

color dimension representing the average keff value in each experiment’s final generation.

The lighter the scatter point is, the higher the final population’s average keff value is,

the better the hyperparameter set. The hyperparameters are plotted against each other to

visualize the interdependence between hyperparameters. From the coarse hyperparameter

search, the trends that stood out were:

• Mutation probability has a higher keffave between 0.2 and 0.4.

• Mating probability has a higher keffave between 0.1 and 0.3.

• Population size has a higher keffave between 20 and 60.

There is also no interdependence between hyperparameters.

Next, I proceeded to the fine search. From Figure 5.4, I narrowed down population size,

mutation probability, and mating probability bounds, as shown in Table 5.1’s Fine Search
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Figure 5.4: Coarse hyperparameters search’s results. Hyperparameter values are plotted
against each other with a third color dimension representing each experiment’s final
population’s average keff .
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1 Bounds column. There were no significant trends in the other hyperparameters, so I left

them as is. I ran ten more experiments (25 to 34) with sampling hyperparameters from

the Fine Search 1 Bounds. From these results, I conducted a second fine search with five

experiments (35 to 39) with further tuned hyperparameter bounds as shown in Table 5.1’s

Fine Search 2 Bounds column. These new hyperparameter bounds were determined based

on these reasons:

• Mutation probability has a higher keffave between 0.2 and 0.3.

• I overlooked keffave peaking at mating probability between 0.45 and 0.6 in the previous

Fine Search 1, thus shifted the bounds.

• The highest keffave occurred for selTournament.

• I narrowed down mating operator options to cxBlend and cxOnePoint since they had

higher keffave.

• I decided to select an arbitrary number for population size, selection individuals, and

tournament size since they did not correlate with keffave values.

Figure 5.5 shows the relationship between hyperparameter values and a,b,c control parame-

ters, final generation keffmax, and final generation keffave. The coarse experiments’ scatter

points are 50% transparent, while the fine experiments’ scatter points are opaque. In Figure

5.5, on average, the fine experiments (opaque scatter points) have higher keffave, which in-

dicates that the hyperparameter search process met its objective of finding hyperparameter

bounds that enable quicker and more accurate optimization.

Table 5.2 shows the hyperparameters for the five experiments with the highest final gen-

eration keffave. Figure 5.6 shows the packing fraction distributions that produced the keffmax

from the top five experiments. Four experiments had similar packing fraction distributions

peaking at approximately 0.23 in the slab’s, while one experiment had an exponential-looking

distribution with peak packing fraction of 0.31 at the slab’s side. The similar final packing
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Figure 5.5: Hyperparameters search’s results. Hyperparameters are plotted against a,b,c
control parameters, each experiment’s final generation keffmax, and final generation keffave
with a third dimension representing each experiment’s final population’s average keff .
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Table 5.2: Control Parameters, keff results, and hyperparameter values for the five
hyperparameter search experiments with the highest final generation keffave.

Control/Output

Parameters

Experiment 6 Experiment 15 Experiment 24 Experiment 36 Experiment 39

keffave 1.39876 1.40175 1.40118 1.39906 1.40165

keffmax 1.40954 1.40440 1.40365 1.40590 1.40519

a 1.993 1.998 1.999 1.997 1.989

b 0.057 0.367 0.320 0.339 0.354

c 3.571 3.022 3.615 3.053 3.143

Hyperparameter

Population size 83 28 74 60 60

Generations 8 22 9 10 10

Mutation probabil-

ity

0.32 0.26 0.21 0.23 0.23

Mating probability 0.17 0.53 0.48 0.59 0.46

Selection operator selTournament selTournament selBest selTournament selTournament

Selection individu-

als

38 14 25 15 15

Selection tourna-

ment size

7 5 - 5 5

Mutation Operator mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

Mating Operator cxOnePoint cxOnePoint cxUniform cxBlend cxBlend

Figure 5.6
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fraction distributions demonstrate genetic algorithms’ robustness to find the optimal global

solutions with different hyperparameters.

These simulations are run on the BlueWaters supercomputer [48]. In each REALM

simulation, a population size number of individual OpenMC simulations are run at each

generation. Each OpenMC simulation takes approximately 13 minutes to run on a single

BlueWaters XE node. With approximately 600 OpenMC evaluations per REALM simula-

tion, the total REALM simulation time is about 130 BlueWaters node-hours. The hyperpa-

rameter search ran 40 REALMsimulations, thus using approximately 5200 node-hours.

5.1.3 Results for best hyperparameter set

I define the best-performing hyperparameter set as the experiment that produces the highest

keffave in its final generation. The best performing hyperparameter set is from the final Fine

Search 2. It is experiment 39 in Table 5.2 with center-peaking packing fraction distribution

with keffmax = 1.40519. Experiment 39’s keffmax is ∼ 2000pcm higher than the original

straightened AHTR configuration’s keff . Figures 5.7 show the packing fraction distribution

that produced keffmax = 1.40519.

Figure 5.8a and 5.8b show the keff evolution and packing fraction distribution through

the best performing 39th experiment’s generations. The keffmax converged quickly by gener-

ation 1; however, this is not usually the case. The genetic algorithm optimization process is

stochastic, resulting in the possibility that the algorithm randomly samples a control param-

eter set that maximizes the objective function early in the genetic algorithm optimization

process. The keffave demonstrates how each generation’s average keff converges towards a

higher value with each generation’s improvements To demonstrate how the genetic algorithm

optimization process usually goes, Figures 5.9a and 5.9b show the keff evolution and packing

fraction distribution through the second-best performing 15th experiment’s generations. Ex-

periment 15 demonstrates how both maximum and average keff converges towards a higher

keff with improvements from each generation.
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Figure 5.7: Experiment 39 packing distribution that produced keffmax = 1.40519. Below:
PF (x) = (1.98 sin(0.35x + 3.14) + 2) ×NF sine distribution with red points indicating the
packing fraction at each slice. Above: Straightened Advanced High Temperature Reactor
fuel slab with varying TRISO particle distribution across ten slices based on the sine
distribution.
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(a) Minimum, average, and maximum keff values evolution.

(b) Maximum keff ’s packing fraction distribution evolution.

Figure 5.8: Results for each generation for REALM’s genetic algorithm optimization of the
Straightened Advanced High Temperature Reactor (AHTR) Fuel Slab. The REALM
simulation used the 39th experiment’s hyperparameter set.
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(a) Minimum, average, and maximum keff values evolution.

(b) Maximum keff ’s packing fraction distribution evolution.

Figure 5.9: Results for each generation for REALM’s genetic algorithm optimization of the
Straightened Advanced High Temperature Reactor (AHTR) Fuel Slab. The REALM
simulation used the 15th experiment’s hyperparameter set.
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Both experiments 39 and 15 have packing fractions peaking at approximately 0.23 in

the slab’s center and decreasing to zero at the slab’s sides. The amplitude, a, for the

packing fraction distribution that produced keffmax for experiment 39 and the other top-

five experiments (Table 5.2) have settled at the upper bound of approximately 2. A higher

amplitude, a, shows that a slab geometry with bigger packing fraction variations results

in a higher keff . These observations about packing fraction distribution for keffmax are

consistent with what I understand from the original AHTR: a high keff occurs with a good

balance between fuel loading and moderation space. Fission occurs at high TRISO particle

concentration areas at thermal flux; however, the neutrons are born at fast-flux and require

moderation to slow down to thermal ranges. Therefore, larger moderation areas ensure

higher resonance escape probability for the fast neutrons resulting in higher thermal flux,

leading to more fission occurring and a higher keff .

Another observation is that TRISO particle packing fraction peaks in the center of

the slab, proving that if the optimization problem focuses purely on the slab’s neutronics

by maximizing keff , the fuel tends to want to culminate in the middle. However, this is

not ideal for other important reactor core qualities such as good heat transfer and ensuring

flat power across the core. With these shortcomings in mind, I proceed to the future work

chapter to discuss the simulations that will be run to optimize these other parameters.

5.2 Summary

This chapter demonstrated successfully applying REALM to maximize keff in a straightened

Advanced High Temperature Reactor (AHTR) fuel slab through varying the TRISO particle

packing fraction distribution. I began by conducting a coarse-to-fine random sampling hy-

perparameter search to find the genetic algorithm hyperparameters that worked best for this

optimization problem. Experiment 39 performed the best with a hyperparameter set that

produced the highest final generation average keff of 1.40165. The TRISO particle packing
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fraction distribution that produced the final generation’s maximum keff of 1.40519 peaks at

the slab’s center with packing fraction distribution: PF (x) = 1.989 sin(0.54x+ 3.143). This

problem demonstrated how effective and robust genetic algorithms are for optimizing reactor

parameters for an objective function. This demonstration problem had a single objective

function which was to maximize keff . However, many other objectives should be consid-

ered, such as maximizing heat transfer and minimizing power peaking in the core. Thus,

in the next chapter, I propose future simulations for optimizing these objective functions

simultaneously.
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