
Chapter 6

Future Work and Proposed
Simulations

The need for this work is shown by a summary of how additive manufacturing of nuclear

reactor core components frees complex reactor geometries from previous manufacturing con-

straints enabling reactor designers to reexamine reactor core design optimization. The lit-

erature review (Chapter 2) concluded that stochastic evolutionary algorithm optimization

methods could find global optimums for reactor design problems in the vast exploration

design space enabled by additive manufacturing. Chapter 3 introduced the Fluoride-Salt-

Cooled High-Temperature Reactor (FHR) benchmark (AHTR design) and highlighted the

reactor’s benefits, such as passive safety behavior with negative temperature coe�cients.

Chapter 4 introduced the Reactor Evolutionary Algorithm Optimizer (REALM) software

package which applies evolutionary algorithm optimization techniques to nuclear reactor de-

sign. Chapter 5 demonstrated successfully applying REALM to optimize the TRISO packing

fraction distribution in an AHTR slab.

Based on the preliminary work conducted, this chapter proposes future simulations

categorized into two groups: AHTR development and REALM optimization. The proposed

work aims to address AHTR modeling challenges further and demonstrate using REALM

for multi-objective AHTR optimization of arbitrary geometries and fuel distribution. For

AHTR development, I propose the following simulations:

• AHTR 3D full core neutronics OpenMC simulation

• AHTR fuel slab and one-third fuel assembly multiphysics Moltres simulation

For REALM optimization, I propose the following REALM simulations:
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• AHTR slab geometry optimization to maximize keff , minimize power peaking, and

maximize heat transfer by varying TRISO x-axis distribution and FLiBe channel shape

using OpenMC.

• AHTR one-third fuel assembly optimization to maximize keff , minimize power peak-

ing, and maximize heat transfer by varying TRISO XY axes distribution and FLiBe

channel shape using OpenMC.

6.1 AHTR Model Development

The FHR benchmark introduced in Chapter 3 is an ongoing NEA project to assess the

modeling and simulation capabilities for the AHTR. Benchmark participants’, including the

UIUC team, contributed Phases I-A and I-B (2D assembly steady-state and depletion) so

far. The upcoming phases consist of 3D neutronics models and multiphysics models. Thus,

to support the FHR benchmark, the proposed work will complete the benchmark’s Phase

I-C. In preparation for the later multiphysics benchmark phases, the proposed work will

utilize Moltres to model AHTR multiphysics.

6.1.1 FHR Benchmark Phase I-C

The FHR benchmark’s Phase I-C extends the 2D assembly model from Phases I-A and I-

B into a 3D assembly model. The benchmark organizers will release Phase I-C’s detailed

specifications and required results in June 2021.

6.1.2 AHTR Multiphysics Model

Setting up a Moltres multiphysics simulation requires the user to provide group constant data

from a neutron transport solver, such as OpenMC. The group constants used for neutronics
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calculations in Moltres are [49, 58]:

⌃f
g : macroscopic fission cross section in group g,

⌃r
g: macroscopic removal cross section in group g,

⌃s
g′→g: macroscopic scattering cross section from group g’ to g,

Dg: di↵usion coe�cient of neutrons in group g,

✏g: average fission energy per fission by a neutron from group g,

⌫: average neutron yield per fission by a neutron from group g,

1

v
: inverse neutron speed in group g,

�i: decay constant of delayed neutron precursor (DNP) group i,

�eff : e↵ective delayed neutron fraction.

These group constants are extracted from the neutron transport solver’s output files using a

Python script from the Moltres Github repository [48]. The Python script currently enables

group constant extraction from Serpent [45] and SCALE [10] output files. I used OpenMC to

model the neutronics of the AHTR for the FHR benchmark; thus, I will add the capability to

extract group constants from OpenMC output files to the Moltres Python group constants

extraction script.

Section 5.2 demonstrated that multigroup neutronics simulation with four-group energy

and spatial homogenization of the AHTR fuel slab generated a keff within uncertainty of

the continuous energy and space neutronics simulation. I will utilize these homogenizations

to create group constants for the Moltres AHTR fuel slab simulation. I will then set up a

mesh for the AHTR fuel slab and run a Moltres simulation and verify Moltres’ ability to

reproduce the following key neutronics parameters:

• keff (e↵ective multiplication factor)

• reactivity coe�cients: �eff , ↵D (doppler coe�cient), ↵T,F liBe (FLiBe temperature co-
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Table 6.1: Reactor Evolutionary Algorithm Optimizer (REALM) optimization problem
objectives with their quantification descriptions.

Objective Quantification

Best neutronics Maximize keff

Maximize heat transfer Maximize �total in areas along FLiBe coolant

Minimize power peaking Minimize Phigh − Plow

e�cient), ↵M (moderator temperature coe�cient)

• Neutron energy spectrum

• �1(�x, �y),�2(�x, �y),�3(�x, �y) (neutron flux distribution in four coarse energy groups)

Once verified, I will run a steady-state Moltres multiphysics simulation to determine the

maximum temperature in the fuel slab at steady-state.

With information gleaned from the Moltres AHTR fuel slab simulation, I will test out

energy and spatial homogenization for generating group constants for a one-third AHTR fuel

assembly model. Then, proceed to set up the one-third AHTR fuel assembly model simula-

tion, verify its key neutronics parameters, and finally run a steady-state Moltres simulation.

6.2 REALM Optimization

Section 5.1 concluded that the AHTR slab optimization problem should be further developed

by considering other objectives such as maximizing heat transfer and minimizing power

peaking in the core. In the proposed work, I will explore each objective separately and then

together. Table 6.1 describes each objective and how the objective will be quantified. The

slab parameters that will be varied to meet the described problem objectives include:

• TRISO particle packing fraction distribution

• FLiBe coolant channel shape
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Table 6.2: Proposed Reactor Evolutionary Algorithm Optimizer (REALM) simulations for
optimizing Advanced High Temperature Reactor (AHTR) fuel assembly. Simulations
explore two geometries: straightened AHTR fuel slab and AHTR’s diamond-shaped
section containing six fuel slabs.

Simulation AHTR Geometry Objectives Varying Parameters

1 Single fuel slab • Maximize keff • TRISO distribution

2 Single fuel slab • Maximize heat transfer • TRISO distribution

3 Single fuel slab • Minimize power peaking • TRISO distribution

4 Single fuel slab • Maximize keff • FLiBe channel shape

5 Single fuel slab • Maximize heat transfer • FLiBe channel shape

6 Single fuel slab • Minimize power peaking • FLiBe channel shape

7 Single fuel slab • Maximize keff • TRISO distribution

• Maximize heat transfer

• Minimize power peaking

8 Single fuel slab • Maximize keff • FLiBe channel shape

• Maximize heat transfer

• Minimize power peaking

9 Single fuel slab • Maximize keff • TRISO distribution

• Maximize heat transfer • FLiBe channel shape

• Minimize power peaking

10 Diamond section with six fuel slabs • Maximize keff • TRISO distribution

• Maximize heat transfer

• Minimize power peaking

11 Diamond section with six fuel slabs • Maximize keff • FLiBe channel shape

• Maximize heat transfer

• Minimize power peaking

12 Diamond section with six fuel slabs • Maximize keff • TRISO distribution

• Maximize heat transfer • FLiBe channel shape

• Minimize power peaking

I will conduct these optimizations for the straightened AHTR fuel slab geometry (as seen in

Figure 5.1) and for one diamond-shaped sector containing six fuel slabs (as seen in Figure

3.2) with x-y periodic and z reflective boundary conditions. Table 6.2 outlines the details of

the proposed simulations. I will use the optimal hyperparameters derived in Section 5.1.2

for the proposed simulations. Ideally, a new hyperparameter search should be conducted

for each simulation to find the best hyperparameter set for each unique problem; however,

the computational expense for conducting 11 hyperparameter searches is impractical. Using

the same hyperparameter set is acceptable because the problems are similar. Table 6.3
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Table 6.3: Hyperparameter values for the best hyperparameter set calculated in Section
5.1.2.

Hyperparameters Values

Population size 60

Generations 10

Mutation probability 0.23

Mating probability 0.46

Selection operator selTournament

Selection individuals 15

Selection tournament size 5

Mutation operator mutPolynomialBounded

Mating operator cxBlend

summarizes the optimal hyperparameters.

The REALM simulations proposed in Table 6.2 could be extended to include Moltres

evaluations if the proposed AHTR multiphysics Moltres simulations (Section 6.1.2) find

approximations and assumptions that maintain accuracy while keeping acceptable Moltres

runtimes.

6.3 Conclusion

Additive manufacturing of nuclear reactor components is a quickly developing field thanks to

breakthroughs in additive manufacturing fabrication of metal components. The promise of

cheaper and faster manufacturing of reactor components with additive manufacturing frees

complex reactor geometries from previous manufacturing constraints and allows reactor de-

signers to reexamine reactor design optimization. Therefore, I propose to explore the vast

design space enabled by additive manufacturing, with the evolutionary algorithm optimiza-

tion technique that works well to find global optimums in multi-objective design problems

such as nuclear reactor optimization.

In the preliminary work, I designed the REALM Python package that applies evolu-

tionary algorithm optimization techniques to nuclear reactor design using the DEAP Python
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module, OpenMC, and Moltres. The motivation for REALM is to enable reactor designers

to utilize robust evolutionary algorithm optimization methods without going through the

cumbersome process of setting up a genetic algorithm framework. With the many benefits

of AHTRs, I chose to apply the evolutionary algorithm optimization methods to this reactor

type. I participated in Phase I-A and I-B of the OECD NEA’s FHR benchmarking exer-

cise. I also applied REALM to a single objective function problem: maximize keff in the

AHTR fuel slab by varying the TRISO particle packing fraction distribution. This problem

demonstrated the e↵ectiveness and robustness of genetic algorithms at optimizing reactor

parameters for an objective function. However, many other objectives should be considered,

such as maximizing heat transfer and minimizing power peaking in the core.

Therefore, I propose to further explore using REALM for multi-objective AHTR op-

timization of arbitrary geometries and fuel distribution. Optimization objectives include

maximizing keff , maximizing heat transfer, and maximizing power peaking. I also pro-

pose to further address AHTR modeling challenges by completing Phase I-C of the FHR

benchmark and set up Moltres simulations to model AHTR multiphysics.
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