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Chapter 1

Introduction

1.1 Motivation

Increased global average surface temperatures, sea levels, and severe weather events caused

by elevated Greenhouse Gas (GHG) concentrations show the substantial negative impact of

climate change on natural and human systems [5]. Energy use and production contribute

two-thirds of total GHG emissions [5]. Furthermore, as the human population increases and

previously underdeveloped nations rapidly industrialize, global energy demand will continue

to rise. Because energy generation technology selection profoundly impacts climate change,

large scale emissions-free nuclear power deployment could significantly reduce GHG produc-

tion but faces both cost and perceived adverse safety challenges [5, 65]. The nuclear power

industry must overcome these challenges to ensure continued global use and expansion of

nuclear energy technology to provide low-carbon electricity worldwide. The Generation IV

International Forum aims to enhance the role of nuclear energy in our global energy ecosys-

tem by leading and planning research and development to support a new and innovative

Generation IV nuclear energy systems [30]. Generation IV nuclear systems target goals in

four areas: sustainability, economics, safety and reliability, and proliferation resistance and

physical protection [30]. Table 1.1 summarizes the goals in each area.

The Generation IV International Forum’s methodology working groups developed an

evaluation and selection methodology based on these goals and correspondingly selected

six Generation IV systems: Gas-Cooled Fast Reactors (GFRs), Lead-Cooled Fast Reactors

(LFRs), Molten Salt Reactors (MSRs), Sodium-Cooled Fast Reactors (SFRs), Supercritical-
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Table 1.1: Goals of Generation IV Nuclear Systems [30, 7]

Area Goals

Sustainability - Have a positive impact on the environment through the displacement of

polluting energy and transportation sources by nuclear electricity generation

and nuclear-produced hydrogen

- Promote long-term availability of nuclear fuel

- Minimize volume, lifetime, and toxicity of nuclear waste

Economics - Have a life cycle and energy production cost advantage over other energy

sources

- Reduce economic risk to nuclear projects by developing plants using

innovative fabrication and construction techniques

Safety and Reliability - Increase the use of robust designs, and inherent and transparent safety

features that can be understood by non-experts

- Enhance public confidence in the safety of nuclear energy

Proliferation Resistance - Provide continued effective proliferation resistance of nuclear energy

and Physical Protection systems through improved design features and other measures

- Increase the robustness of new facilities

Water-Cooled Reactors (SCWRs), and Very-High-Temperature Reactors (VHTRs) [30].

This proposed work will consider the MSR and VHTR systems.

MSR systems produce fission power in a circulating molten salt fuel mixture. It has a

closed fuel cycle tailored to the efficient utilization of plutonium and minor actinides. Molten

fluoride salts have very low vapor pressure, which reduces stress on the system. MSR systems

also incorporate inherent system safety with fail-safe drainage, passive cooling, and a low

inventory of volatile fission products in the fuel. MSR systems closed fuel cycle and excellent

waste burndown performance make it top-ranked in sustainability. MSR systems are top-

ranked in sustainability because of their closed fuel cycle and excellent waste burndown

performance. They rate well in safety and proliferation resistance and physical protection,

due to their inherent safety features, and rate neutrally in economics because of their large

number of subsystems [30].

VHTR systems use a once-through uranium cycle and leverage their high outlet tem-

perature for high-temperature heat applications, such as hydrogen production. Graphite-

moderated and helium-cooled, VHTRs use Tristructural Isotropic (TRISO) fuel which easily
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withstands high burnup and temperature. VHTR systems’ high hydrogen production effi-

ciency, high safety and reliability, and inherent fuel and reactor safety features make it

highly ranked in economics. An open fuel cycle results in VHTR systems’ ranking well in

proliferation resistance and physical protection and neutrally in sustainability [30].

In the proposed PhD work, I will explore the Fluoride-Salt-Cooled High-Temperature

Reactor (FHR) concept, which combines the best aspects of MSR and VHTR technologies.

FHRs use high-temperature coated-particle fuel (similar to the VHTRs) and a low-pressure

liquid fluoride-salt coolant (similar to the MSRs) [22, 20]. The proposed work focuses on

a prismatic FHR design with hexagonal fuel assemblies consisting of TRISO fuel particles

embedded in planks, i.e., the Advanced High Temperature Reactor (AHTR) design. To

address and further understand the technical challenges associated with the AHTR design,

such as the multiply heterogeneous AHTR fuel, I will participate in the Organisation for

Economic Co-operation and Development (OECD)-Nuclear Energy Agency (NEA)’s FHR

benchmarking exercise.

In the next section of the proposed PhD work, I will explore the impact of additive man-

ufacturing technology advancements on reactor geometry optimization, specifically for the

AHTR design. In recent years, additive manufacturing technology, popularly known as ‘3D

printing’, has advanced and altered the manufacturing and design of engineered hardware

[79]. The automotive and aircraft industries have successfully fabricated car and airplane

components with key additive manufacturing technologies that are relevant to nuclear reac-

tor core structures [54]. For example, Boeing successfully used additive manufacturing to

reduce weight in the 787 Dreamliner [4] and SES-15 spacecraft [1]. The highly-regulated

aerospace industry’s successful additive manufacturing applications shows promise for the

also highly-regulated nuclear industry. Using additive manufacturing to fabricate nuclear

reactor components could drastically reduce cost and timelines, and increase safety and

performance by tailoring local material properties and redesigning for optimal geometries

[79].
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With further advancement of additive manufacturing technologies, a reactor core could

be 3D printed in the near future. Oak Ridge National Laboratory (ORNL) leads this initia-

tive through the 2019 Transformational Challenge Reactor (TCR) Demonstration Program.

The TCR program will leverage recent scientific achievements in advanced manufacturing,

nuclear materials, machine learning, and computational modeling and simulation to build

a microreactor. The program aims to design, manufacture, and operate a demonstration

reactor by 2023 [84]. Applying additive manufacturing to nuclear reactor design will free

complex reactor geometries from previous manufacturing constraints, opening the door for

a re-examination of nuclear reactor optimization [81]. Optimization efforts towards clas-

sically manufactured nuclear reactors, and now 3D printed nuclear reactors have focused

on parameters such as core radius, cylinder height, fuel enrichment, etc [81, 73, 45, 61].

Leveraging additive manufacturing technology enables us to surpass classical manufacturing

constraints, such as straight fuel channels or homogenous fuel enrichment, and optimize for

arbitrary geometries and parameters such as non-uniform channel shapes, and inhomoge-

neous fuel distribution throughout the core.

Multi-objective design problems, such as reactor design optimization, inevitably require

a trade-off between desirable attributes [11, 78]. For example, the neutron economy and fuel

enrichment trade-off in nuclear reactor design. A reactor design should maximize neutron

economy and minimize fuel enrichment to reduce proliferation risk and cost. Conflicting

objectives results in no one perfect solution but a set of equally optimal solutions [11].

Multi-objective problems are challenging to optimize; therefore, they cannot be handled

by classical optimization methods, such as gradient methods, which may find local optima

while missing the global optimum [69]. Evolutionary algorithms have proven successful in

optimizing multi-objective problems [41], as they can find solutions at the global optimum

[69]. They also take advantage of parallel systems for reduced computational cost. Genetic

algorithms are the most frequently used evolutionary algorithms for solving multi-objective

problems [11, 41]. Genetic algorithms imitate natural selection to evolve solutions by [69]:
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1. maintaining a population of solutions

2. allowing fitter solutions to reproduce

3. letting lesser fit solutions die off, resulting in final solutions that are better than the

previous generations

To enable the use of evolutionary algorithms for reactor design optimization, in this

preliminary work I designed an optimization tool that uses the evolutionary algorithm opti-

mization technique with nuclear transport and thermal-hydraulics software. In this prelimi-

nary work, I demonstrate using the optimization tool to maximize keff in an AHTR fuel slab

by varying fuel distribution. In the proposed PhD scope, I will further demonstrate using

evolutionary algorithms for multi-objective AHTR optimization of arbitrary geometries and

fuel distribution, which are now possible with additive manufacturing technology.

1.2 Objectives

I developed the proposed PhD scope’s main objectives based on further understanding the

AHTR design through neutronics and thermal-hydraulics modeling, and leveraging artifi-

cial intelligence tools with validated nuclear transport and thermal-hydraulics software to

create an open-source tool which enables nuclear reactor design optimization with arbitrary

parameters. The proposed work’s objectives are:

I Model the FHR with established nuclear transport software. To demonstrate

success in modeling the FHR with nuclear transport before using the optimization tool,

I will participate in the OECD NEA’s FHR benchmark [2].

II Develop a tool that applies evolutionary algorithms to optimize nuclear re-

actor design. This tool will not reinvent the wheel—it will utilize a well-documented

and validated open-source evolutionary algorithm Python package with established
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nuclear transport and thermal-hydraulics software. This tool will run parallel on high-

performance computing (HPC) machines, be open-source, and follow the rules for

ensuring reproducibility, effectiveness, and usability [51, 58, 74].

III Demonstrate optimization tool with a single objective AHTR design opti-

mization problem. I will demonstrate successful implementation of the optimization

tool with a nuclear transport software by optimizing an AHTR fuel slab’s fuel distri-

bution for a single objective function.

IV Model the FHR with established thermal-hydraulics software. To demon-

strate success in modeling the FHR with thermal hydraulics before using the opti-

mization tool, I will participate in the OECD NEA’s FHR benchmark [2].

V Demonstrate multi-objective nuclear reactor design optimizations for neu-

tronics and thermal-hydraulics problems. I will demonstrate successful use of

the optimization tool for multi-objective AHTR optimization. I will vary parameters

such as reactor geometry and fuel distribution with objectives such as maximizing keff ,

maximizing heat transfer, and minimizing power peaking factor.

This preliminary work completes objectives I, II, and III. These objectives provide the

basis and proof of concept for objectives IV and V.

1.3 Outline

This document outlines the motivation, preliminary work, and future work proposed toward

developing an open-source reactor evolutionary algorithm optimization tool to optimize nu-

clear reactor design beyond classical parameters. Chapter 1 describes the motivation and

objectives of the proposed work. Chapter 2 presents a literature review that organizes and

reports on previous relevant work. Chapter 3 describes the FHR benchmark specifications
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and the results obtained thus far. Chapter 4 details the computational design of the de-

veloped optimization tool. Chapter 5 demonstrates nuclear reactor optimization with the

optimization tool. Chapter 6 summarizes the remaining future work.
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Chapter 2

Literature Review

This chapter provides a literature review of relevant past research efforts giving context to

this proposed work. Recent advancements in additive manufacturing applications for nu-

clear reactor core components have removed traditional manufacturing constraints on reactor

design, enabling reactor designers to reexamine optimization. The proposed work aims to

provide a fresh perspective to nuclear reactor optimization by applying evolutionary algo-

rithm methods to explore non-conventional reactor geometries and fuel distributions. With

the many benefits of FHRs and growing interest in the nuclear science community with FHR

designs, I chose to apply the optimization methods to this reactor type, and also participate

in the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy

Agency’s (NEA) FHR benchmarking exercise. Thus, I begin this literature review with an

overview of the FHR concept, then go into detail about one specific FHR design: the AHTR,

previous efforts and technical challenges of modeling the design, and a description of how

these efforts led to the OECD NEA’s initiation of the AHTR benchmark. Next, I outline

additive manufacturing’s history and describe the current research towards applying additive

manufacturing to the fabrication of nuclear reactor core components. I also review previous

efforts towards nuclear reactor design optimization, describe how additive manufacturing of

nuclear reactor components enables optimization for less constrained reactor geometries, and

types of optimization methods that can be leveraged in this expanded design space. Finally,

I give a background of evolutionary algorithms and detail a specific evolutionary algorithm:

the genetic algorithm and how it works to conduct global optimization robustly.
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2.1 Fluoride-Salt-Cooled High-Temperature Reactor

The FHR concept introduced in 2003 uses high-temperature coated-particle fuel and a low-

pressure liquid fluoride-salt coolant [23, 20]. However, the term Fluoride-Salt-Cooled High-

Temperature Reactor was only introduced in 2010 to distinguish fluoride salt-cooled MSRs

from other MSRs. FHR technology combines the best aspects of MSR and VHTR (or High

Temperature Gas-Cooled Reactor (HTGR)) technologies. High-temperature performance

and overall chemical stability make molten fluoride salts desirable as working fluids for

nuclear reactors [76]. Using molten salts as reactor coolants introduces inherent safety due

to the salts’ high boiling temperature and high volumetric heat capacity [34]. One coolant

salt is the fluoride salt Li2BeF4 (FLiBe), which remains liquid without pressurization up to

1400 ○C and has a bigger heat capacity than water [34, 22]. FHRs’ TRISO particles’ solid

fuel cladding adds an extra barrier to fission product release compared to MSRs with liquid

fuel. [34].

VHTR technology delivers heat at substantially higher temperatures than Light Water

Reactors (LWRs), resulting in the following advantages: increased power conversion effi-

ciency, reduced waste heat generation, and co-generation and process heat capabilities [76].

VHTRs system helium coolant’s high 100 atm pressurization requires an expensive thick

concrete reactor vessel whereas, the FHR system room pressure FLiBe coolant does not.

The molten salt coolant has superior cooling and moderating properties compared to helium

coolant in VHTRs. Accordingly, FHRs operate at power densities two to six times higher

than VHTRs [76, 22]. By combining the FLiBE coolant from MSR technology and TRISO

particles from VHTR technology, the FHR benefits from a low operating pressure and large

thermal margin enabled by the molten salt coolant and the thermal resilience of TRISO

particle fuel.

Several types of FHR conceptual designs exist worldwide: the Pebble-Bed Fluoride-Salt-

Cooled High-Temperature Reactor (PB-FHR) at University of California Berkeley (UCB)
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with circulating pebble-fuel [77, 44], the Solid Fuel Thorium Molten Salt Reactor (SF-TMSR)

at the Shanghai Institute of Applied Physics (SINAP) in China with static pebble-fuel [52],

the large central-station AHTR at ORNL [36, 90] and the Small Modular AHTR (SmAHTR)

at ORNL [33] with static, plate fuel.

2.1.1 Advanced High Temperature Reactor Design

This proposed work focuses on a prismatic FHR design with hexagonal fuel assemblies

consisting of TRISO fuel particles embedded in planks, i.e., the AHTR design developed

by ORNL. The AHTR has 3400 MWt thermal power and 1400 MW electric power with

inlet/outlet temperatures of 650/700○C [90]. Figure 2.1 shows the prismatic AHTR’s fuel

assembly and core configuration. Each hexagonal fuel assembly features plate-type fuel

consisting of eighteen planks arranged in three diamond-shaped sectors, with a central Y-

shaped structure and external channel (wrapper). The fuel planks contain an isostatically

pressed carbon with fuel stripes on each plank’s outer side. Within each fuel stripe is a

graphite matrix filled with a cubic lattice of TRISO particles. The core consists of 252

assemblies radially surrounded by reflectors [68]. Chapter 3 details the specifications of the

AHTR geometry modeled in this proposed work.

2.1.2 Previous AHTR modeling efforts and challenges

AHTR Neutronics Modeling

The AHTR core design differs significantly from the present LWR-based nuclear power

plants. These differences lead to modeling challenges and the need to verify and validate

simulation methods [68]. Verification and validation of neutronics and thermal-hydraulics

simulation capabilities in the context of the AHTR design crucially support licensure of the

AHTR design towards the eventual goal of deployment [66, 67]. Several neutronic stud-

ies conducted along the way to the current AHTR design have shed light on the technical
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Figure 2.1: Advanced High Temperature Reactor fuel assembly (left) and core
configuration (right) reproduced from [68].

challenges facing the design [68, 35, 33].

The Georgia Institute of Technology (Georgia Tech) led an Integrated Research Project

to understand challenges in AHTR materials and modeling its neutronics and thermal-

hydraulics [91]. During the research project, a panel of subject matter experts generated a

Phenomena Identification and Ranking Table (PIRT). The PIRT identifies areas that need

additional research to better understand important phenomena for adequate future modeling

[66]. Table 2.1 lists the phenomena identified as requiring further research.

The multiply heterogeneous AHTR fuel, comprised of TRISO particles embedded in

strategically arranged plates, presents simulation challenges. Researchers must obtain de-

tailed reference power distributions with individual TRISO particle fidelity to best under-

stand the AHTR’s nuances. However, deterministic codes that use multigroup cross sections

and traditional homogenization methods [68], insufficiently capture the correct physics in

AHTRs due to these multiple heterogeneities [68]. In the AHTR, single and multiple slab

homogenization decreased total neutron transport simulation time by an order of 10; how-

ever, the homogenization introduced a nontrivial error of ∼3% [68, 15]. To determine the

feasibility and safety of the AHTR design, researchers must calculate core physics parame-

11



Table 2.1: Phenomena Identification and Ranking Table identified Advanced High
Temperature Reactor physical phenomena requiring further research [66].

Category Phenomena

Fundamental cross section data - Moderation in FliBe

- Thermalization in FliBe

- Absorption in FliBe

- Thermalization in carbon

- Absorption in carbon

Material Composition - Fuel particle distribution

Computational Methodology - Solution Convergence

- Granularity of depletion regions

- Multiple heterogeneity treatment for generating multigroup

cross sections

- Selection of multigroup structure

- Boundary conditions for multigroup cross section generation

General Depletion Spectral history

ters to an acceptable uncertainty. With Monte Carlo neutron transport, increasing neutron

histories reduces statistical uncertainty but increases computational cost typically, requiring

the use of supercomputers to run the simulations.

This AHTR presents another technical challenge: the uncertainty of graphite moderator

material properties: densities, temperatures, and thermal scattering data. Problematically,

the thermal scattering data (S(α,β) matrices) for the bound nuclei in Fluoride-Lithium-

Beryllium (FLiBe) salts are lacking [68]. Mei et al. [53] and Zhu et al. [92] examined the

thermal scattering behavior of solid and liquid FLiBe. They concluded that the bound and

free atom cross section of FLiBe are identical above 0.1eV and diverges below 0.01eV, which

means that the use or absence of thermal scattering data will impact the accuracy of the

results [68].

AHTR Multiphysics Modeling

In past effort towards multiphysics modeling of the AHTR, Gentry et al [28] developed an

adapted lattice physics-to-core simulator two-step procedure with Serpent [46] and Nodal

Eigenvalue, Steady-state, Transient, Le core Evaluator (NESTLE) [88]. The adapted lattice

12



physics-to-core simulator two-step procedure proved to be successful for LWRs in which

few group assembly homogenized group constants are generated by 2-D transport lattice

calculation and then core analysis is performed by 3-D nodal simulation [39, 28]. NESTLE’s

thermal-hydraulics utilizes a Homogenous Equilibrium Mixture (HEM) model for two-phase

flow and it solves the few-group neutron diffusion equation utilizing the Nodal Expansion

Method (NEM) for cartesian and hexagonal reactor geometries. Lin [47] used RELAP5, a

system-level code, to perform AHTR thermal hydraulics transient simulations to investigate

the capability of the passive heat removal system. In this AHTR RELAP5 model, the

252 assemblies are separated into four concentric rings and a uniform power distribution is

assigned to the fuel assemblies in each ring, and more fidelity is placed on the primary and

Direct Reactor Auxiliary Cooling System (DRACS) system loops.

2.1.3 AHTR Benchmark

To address and further understand the technical challenges described in the previous sec-

tion, in 2019, the OECD-NEA initiated a benchmark exercise to assess the modeling and

simulation capabilities for AHTRs with TRISO fuel embedded in fuel planks of hexagonal

fuel assemblies [2]. The benchmark plans to have three phases, starting from a single fuel

assembly simulation without burnup, gradually extending to full core depletion and feed-

back. The benchmark’s overarching objective is to identify the applicability, accuracy, and

practicality of the latest methods and codes to assess the current state of the art of FHR

simulation and modeling [64]. The benchmark also enables the cross-verification of software

and methods for the challenging AHTR geometry, which is especially useful since applicable

reactor physics experiments for code validation are scarce [63, 64]. Chapter 3 will provide a

detailed description of the benchmark phases and results obtained so far.
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2.2 Additive Manufacturing

Additive manufacturing is the formal term for what is popularly known as ‘3D printing’ [29].

The basic principle of additive manufacturing is that a model is initially generated using a

three-dimensional Computer-Aided Design (3D CAD) system and then fabricated directly

without the need for process planning. Additive manufacturing, as the name implies, adds

material in layers, such that each layer is a thin cross section of 3D CAD-designed part, as

opposed to traditional machining which subtracts material instead [83]. All commercialized

additive manufacturing machines to date use a layer-based approach, and the major ways

that they differ are in materials, layer creation method, and how the layers are bonded

to each other [29]. These major differences will determine the: accuracy of the final part,

material and mechanical properties, the time required to manufacture the part, the need

for post-processing, the size of additive manufacturing machine, and the overall cost of the

machine and the process [29]. Initially, industries only utilized additive manufacturing for

manufacturing prototypes. However, with improvements in material properties, accuracy,

and overall quality of additive manufacturing output, the applications for additive manu-

facturing expanded to the point at which some industries build parts for direct assembly

purposes [89]. Furthermore, using additive manufacturing in conjunction with other tech-

nologies, such as high-power lasers, has enabled additive manufacturing of parts made from

various metals [29].

Additive manufacturing has progressed rapidly in the last 30 years, from rapid design

prototyping with polymers in the automotive industry to scale production of metal compo-

nents. Examples include Boeing using additive manufacturing to reduce the 979 Dreamliner’s

weight [4] and General Electric using additive manufacturing to produce fuel injection nozzles

[6]. The most common metal additive manufacturing technologies, selective laser melting

(SLM), electron beam melting (EBM), laser directed energy deposition (L-DED), and binder

jetting, are not currently used to manufacture nuclear power plant parts.
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The U.S. Department of Energy (DOE), National Laboratories, Electric Power Research

Institute (EPRI) support research and development efforts towards deployment, testing, and

qualification of additive manufacturing methods for nuclear components. However, the nu-

clear industry’s efforts to incorporate additive manufacturing into the supply chain lags

behind the auto and aerospace industries due to the lack of clarity on regulatory path-

ways. The aerospace and automotive industries benefit from long-standing and resourced

regulatory and standards development activities [3]. Thus, in 2019 the Nuclear Regulatory

Commission (NRC) addressed these regulatory challenges by issuing a draft action plan to

prepare the agency to review applications for additive manufacturing of nuclear components

and clarify the industry’s expectations of their use [3].

2.2.1 Benefits of Additive Manufacturing for Nuclear Reactor

Core Components

Wide-spread adoption of these methods in the nuclear industry could drastically reduce

fabrication costs and timelines, combine multiple systems and assembled components into

single parts, increase safety and performance by tailoring local material properties, and en-

able geometry redesign for optimal load paths [79]. Many Generation IV advanced reactor

concepts have complex geometries, such as hex-ducts for sodium-cooled fast reactors, that

are costly and difficult to fabricate using standard processing techniques. Traditional manu-

facturing routes also restrict many viable geometries for reactor designers to explore [82]. In

summary, reactor core component fabrication with additive manufacturing enables further

optimization and improvement of fuel geometries to enhance fuel performance at lower costs

[8].
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2.2.2 Demonstration of Additive Manufacturing for Nuclear

Reactor Core Components

Recent nuclear materials experiments have demonstrated the application of additive man-

ufacturing to nuclear fuel and structural core material fabrication. Rosales et al. [71]

conducted a feasibility study of direct routes to fabricate dense uranium silicide (U3Si2)

fuel pellets using the Idaho National Laboratory (INL) approach known as Additive Manu-

facturing as an Alternative Fabrication Technique (AMAFT). U3Si2 demonstrates desirable

accident-tolerant nuclear fuel properties such as high uranium density and improved thermal

properties, however, it has an expensive and long metallurgical fabrication process. Thus, us-

ing AMAFT to fabricate U3Si2 will lower cost and ensure a timely and commercially-reliable

fabrication process [71]. Sridharan et al. [82] demonstrated the application of the laser-

blown-powder additive manufacturing process to fabricate ferritic/martensitic (FM) steel,

a type of steel commonly used for cladding and structural components in nuclear reactors.

Koyanagi et al. [40] presented the latest additive manufacturing technology for manufactur-

ing nuclear-grade silicon carbide (SiC) materials. They demonstrated that combinations of

additive manufacturing techniques and traditional SiC densification methods enabled new

designs of SiC components with complex shapes. SiC demonstrates excellent strength at

elevated temperatures, chemical inertness, relatively low neutron absorption, and stability

under neutron irradiation up to high doses [75, 80, 40]. These qualities make SiC suitable

for many applications in nuclear systems such as fuel cladding, constituents of fuel parti-

cles [80] and pellets [85], and core structural components in fission reactors [75]. Trammel

et al [87] conducted a preliminary investigation to assess the possibilities of fabricating a

fuel element with embedded TRISO fuel using additive manufacturing techniques, such as

binderjet printing and chemical vapor infiltration (CVI). They successfully demonstrated a

fabrication method using the following steps (depicted in Figure 2.2):

1. A SiC fuel element structure is first printed with binderjet technology.
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Figure 2.2: Stages of additive manufacturing fabrication conducted at Oak Ridge National
Laboratory to produce a fuel element with non-homogenously shaped coolant channels
and TRISO particles embedded in a SiC matrix [87].

2. The designated fueled region of the element is loaded with surrogate TRISO particles

and additional SiC powder to fill interstitial spaces between particles.

3. The loaded fuel element is densified in a CVI process to achieve microencapsulation of

TRISO particles in a SiC matrix.

Many of the materials and fabrication methods discussed are applicable for FHR-part

manufacturing. Therefore, this reiterates the possibility of leveraging additive manufacturing

to 3D print a FHR-type reactor with non-conventional geometry.

2.3 Nuclear Reactor Design Optimization

With the conception of nuclear reactors came along the practice of nuclear reactor opti-

mization. Nuclear engineering sub-fields such as reactor design, reactor reloading patterns,

and the nuclear fuel cycle utilize optimization. Traditional manufacturing constraints limit

nuclear reactor core design optimization. In the proposed work, I will reexamine nuclear re-

actor core design optimization for arbitrary reactor geometries and fuel distributions enabled

by additive manufacturing.
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2.3.1 Previous Efforts for Reactor Design Optimization

Previous efforts towards reactor design optimization processes utilized deterministic and

stochastic optimization techniques, coupled with surrogate models. Deterministic optimiza-

tion methods usually start from a guess solution. Then, the algorithm suggests a search

direction by applying local information to a pre-specified transition rule. Any better so-

lution becomes the new solution, and the above procedure continues several times [18].

Drawbacks of deterministic methods include: algorithms tend to get stuck at suboptimal

solutions, and an algorithm efficient in solving one type of problem may not solve a different

problem efficiently [18]. Stochastic optimization methods, such as evolutionary algorithms

amd simulated annealing, minimize or maximize an objective function when randomness is

present. Stochasticity enables them to find globally optimal solutions more reliably than

deterministic methods.

A nuclear reactor’s complexity results in reactor design optimization being a multi-

objective design problem requiring a tradeoff between desirable attributes [11, 78]. When

multiple conflicting objectives compete no single optimum solution simultaneously optimizes

all objectives. Instead, multi-objective optimization returns multiple optimal solutions that

meets each objective to varying degrees [18]. For a multi-objective problem like reactor

design, an ideal optimization method should find widely spread solutions in the obtained

non-dominated front [18]. For each solution in a set of non-dominated front solutions, none

of the objective functions can be improved in value without degrading some of the other

objective values.

Recent efforts towards nuclear reactor optimization have relied heavily on the aforemen-

tioned stochastic methods, with the occasional addition of stochastic-deterministic hybrid

methods.
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Stochastic Optimization: Simulated Annealing Method

Simulated annealing iteratively updates one candidate solution until it reaches the termina-

tion criteria. At each iteration, the simulated annealing algorithm selects a random move.

If the selected move improves the solution, it is always accepted; however, if it does not

improve the solution, the algorithm updates the solution with some probability of less than

1.

Sacco et al. [73, 72] used stochastic simulated annealing and deterministic-stochastic hy-

brid optimization techniques to optimize reactor dimensions, enrichment, materials, etc., to

minimize the average peaking factor in a three-enrichment-zone reactor. Odeh et al. [57] used

the simulated annealing stochastic algorithm coupled with neutronics and thermal-hydraulics

simulation tools, Purdue Advanced Reactor Core Simulator (PARCS) and RELAP5 [21], to

develop an optimal Purdue Novel Modular Reactor (NMR-50) core design with a 10-year

cycle length and minimal fissile loading. Kropaczek et al. [43] demonstrated the constraint

annealing method: a highly scalable method based on the method of parallel simulated

annealing with mixing of states [42] for the solution of large-scale, multiconstrained prob-

lems in LWR fuel cycle optimization. These papers demonstrate the simulated annealing

optimization method’s success in reactor design optimization problems.

Nuclear reactor optimization problems require computationally expensive neutronics

and thermal-hydraulics software to compute the objective function and constraints. Multiple

papers utilized stochastic optimization methods with surrogate models and replace, high-

fidelity neutronics or thermal hydraulics simulations to reduce computational cost. Kumar

et al. [45] combined genetic algorithm optimization with a surrogate model to optimize for

high breeding of 233U and 239Pu in desired power peaking limits and keff by varying: fuel

pin radius, fissile material isotopic enrichment, coolant mass flow rate, and core inlet coolant

temperature. Betzler et al. [9] developed a systematic approach to build a surrogate model

to serve in place of high-fidelity computational analyses. They leveraged the surrogate model
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with a simulated annealing optimization algorithm to generate optimized designs at a lower

computational cost and understand the impact of design decisions on desired metrics for

High Flux Isotope Reactor (HFIR) low-enriched uranium (LEU) core designs.

The simulated annealing method uses a point-by-point approach: one solution gets up-

dated to a new solution in one iteration, which does not exploit parallel systems’ advantages.

Finding an optimal solution with simulated annealing methods takes very long if high-fidelity

computationally expensive codes are used to compute the objective function and constraints.

Using a simulated annealing method is only practical if a surrogate evaluation model is used,

as described in Betzler et al. [9] and Kumar et al. [45]. Therefore, in the proposed PhD

scope, the stochastic evolutionary algorithm optimization method is used.

Stochastic Optimization: Evolutionary Algorithm Method

Peireira et al. [60, 61] used a coarse-grained parallel genetic algorithm and a niching genetic

algorithm to optimize the same problem as Sacco et al. [73]. Kamalpour et al. [38] utilized

the imperialist competitive algorithm, a type of evolutionary algorithm, to optimize a fully

ceramic microencapsulated (FCM) fuelled Pressurized Water Reactor (PWR) to extend the

reactor core cycle length.

Contrary to a single solution per iteration in deterministic and stochastic simulated an-

nealing methods, evolutionary algorithms use a population of solutions in each iteration [18].

Evolutionary algorithm methods mimic nature’s evolutionary principles to drive the search

towards an optimal solution. With the affordability and availability of parallel computing

systems, the evolutionary algorithm optimization method stands out as a method that eas-

ily and conveniently exploits parallel systems. Further, evolutionary algorithms have proved

amenable to HPC solutions and scalable to tens of thousands of processors [42]. Thus, for

optimization problems that require high-fidelity evaluation software, the evolutionary algo-

rithm method can leverage parallel computing to find a solution faster than the simulated

annealing method. Therefore, in this proposed work, I will utilize the evolutionary algorithm
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optimization method.

2.3.2 Impact of Additive Manufacturing on Nuclear Reactor

Design Optimization

Previous efforts toward nuclear reactor optimization, as discussed in the above section, fo-

cused on optimizing classical reactor parameters such as radius of fuel pellet and clad,

enrichment of fuel, pin pitch, etc. Additive manufacturing advancements for reactor core

components remove conventional fuel manufacturing geometric constraints, allowing the re-

actor designers to optimize beyond classical parameters to enhance fuel performance and

safety further. Reactor design objectives remain consistent with past objectives, such as

minimizing fuel amount and minimizing the maximum fuel temperature for a given power

level. However, reactor designers can now approach the nuclear design problems with truly

arbitrary geometries, no longer limited by traditional geometric shapes that are easy to

manufacture with traditional processes: slabs as fuel planks, cylinders as fuel rods, spheres

as fuel pebbles, axis-aligned coolant channels, etc [81]. This has opened the door for a re-

examination of reactor core optimization in a completely new way, determining the optimal

arbitrary geometry for a given objective function with a much smaller set of constraints [81].

With a substantial increase and change in an arbitrary geometry’s design space, it

becomes time consuming for a human reactor designer to thoroughly explore and find optimal

geometries in the expanded design space. Instead, we can leverage artificial intelligence (AI)

optimization methods (such as evolutionary algorithms) to promptly explore the large design

space to find global optimal designs. AI does not replace the human reactor designer but

shifts the human designer’s focus away from conjecturing suitable geometries to defining

design criteria to find optimal designs [81]. Thus, when the human designer changes the

reactor criteria, the AI model will quickly adapt and produce new global optimal designs to

fit the new criteria.
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2.4 Evolutionary Algorithms

AI research studies ‘intelligent agents’: any device that perceives its environment and takes

actions that maximize its chance of successfully achieving its goals [17]. Evolutionary al-

gorithms, a subset of AI, create a population of individual solutions, inspired by biological

evolution, and induce goals by using a ‘fitness function’ to mutate and preferentially repli-

cate high-scoring individuals to reach an optimal solution. Evolutionary algorithms often

perform well at approximating solutions to many problem types because they do not make

any assumptions about the underlying fitness landscape. Genetic algorithms are the most

popular evolutionary algorithms for solving multi-objective problems [11, 41].

2.4.1 Genetic Algorithms

Genetic algorithms imitate natural genetics and selection to evolve solutions by maintaining

a population of solutions, allowing fitter solutions to reproduce and letting lesser fit solutions

die off, resulting in final solutions that are better than the previous generations [69]. From

here, we will refer to a solution as an individual within the population. Genetic algorithms

efficiently exploit historical information to speculate new search points, improving each sub-

sequent population’s performance [31]. They are theoretically and empirically proven to

provide robust search in complex spaces and are computationally simple yet powerful in

their search for improvement [31]. Genetic algorithms trounce deterministic and stochastic

simulated annealing optimization methods, because they:

1. search from a population of points

2. use objective function information, not derivatives or other auxiliary knowledge of the

problem

3. tuse probabilistic transition rules, not deterministic rules
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Create initial population

Evaluate initial population

Create new population:

1. Select individuals for mating

2. Create offspring by crossover

3. Mutate selected individuals

4. Keep selected individuals from
previous generation

Evaluate new population

Is termination
criteria satisfied?

Best solution is returned!

yes

no

Figure 2.3: Process of finding optimal solutions for a problem with a evolutionary
algorithm [69].

Figure 2.3 depicts the iterative process of using a genetic algorithm to solve a problem.

The genetic algorithm generates new populations iteratively until it meets the termination

criteria.

Genetic algorithms use mechanisms inspired by biological evolution such as selection,

crossover, and mutation. The three operators are simple and straightforward. The selection

operator selects good individuals. The crossover operator recombines good individuals to

form a better individual. The mutation operator alters individuals to create better individ-

uals [18]. Next, we provide more description and common methods for each operator.
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Selection Operator

The selection operator duplicates good individuals and eliminates bad individuals while

keeping the population constant [18]. It achieves this by identifying above-average individ-

uals in a population, eliminating bad individuals from the population, and replacing them

with copies of good individuals. Selection operator methods utilized in the proposed work

include tournament selection, best selection, and Non-dominated sorting genetic algorithm

II (NSGA-II) selection. In tournament selection, a user-defined number of individuals play

in tournaments, and the best individual proceeds to the next population. This repeats until

all the population’s spots are filled. In best selection, the operator selects a user-defined

number of best individuals, and copies are made to keep the population size constant. In

NSGA-II selection, the operator selects the best individuals from the combination of parent

and offspring populations [19]. The operator maintains population size by adding copies of

the best individuals.

The selection operator does not create any new individuals in the population and only

makes more copies of good individuals at the expense of not-so-good individuals. Instead,

crossover and mutation operators perform the creation of new solutions.

Crossover/Mating Operator

In most crossover operators, the operator picks two individuals from the population at

random. The operator exchanges some portion of each individuals’ attributes with one

another to create two new individuals [18]. Crossover operator methods utilized in the

proposed work include single-point crossover, uniform crossover, and blend crossover. In the

single-point crossover, the operator randomly selects two individuals from the population

and a site along the individual’s definition. For example, if the individual is a list, the

operator randomly chooses an element in the list and attributes on this cross site’s right

side are exchanged between the two individuals, creating two new offspring individuals.

In a uniform crossover, the user defines an independent probability for each individual’s

24



attribute to be exchanged; usually, p = 0.5 is used. In blend crossover, the operator creates

two offspring (O) individuals based on a linear combination of two-parent (P) individuals

using the following equations:

O1 = P1 − α(P1 − P2) (2.1)

O2 = P2 + α(P1 − P2) (2.2)

where

α = Extent of the interval in which the new values can be drawn

for each attribute on both side of the parents attributes (user-defined)

The user defines a crossover probability (pc) to preserve some good individuals selected

during the selection operator stage. Therefore, the crossover operator only operates on

100pc% of the population; the rest proceed to the new population [18]. The crossover

operator covers the search aspect of the genetic algorithms, whereas the mutation operator

keeps diversity in the population [18].

Mutation Operator

The mutation operator alters one or more attributes of an individual within a population.

Mutation occurs in the genetic algorithm based on a user-defined mutation probability (pm).

A low pm prevents a primitive random search. Mutation operator methods utilized in the

proposed work include polynomial bounded mutation, in which each attribute in each indi-

vidual is mutated based on a polynomial distribution. The user also defines each attribute’s

upper and lower bounds and the crowding-degree of the mutation, η (a large η will produce

a mutant resembling its parent, while a small η will produce the opposite).
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2.4.2 Genetic Algorithm Hyperparameter Tuning

Hyperparameters refer to parameters whose value controls the genetic algorithm’s process,

such as the population size. A well-performing genetic algorithm needs to balance the

extent of exploration and exploitation; by finding a balance between the conservation of

valuable individuals obtained until the current generation while exploring new individuals.

With over exploitation of previously obtained individuals, the population loses its diversity,

resulting in premature convergence to a suboptimal solution. Alternatively, if too much

stress is given on exploration, the algorithm did not appropriately utilize the information

obtained thus far, and the genetic algorithm’s search procedure behaves like a random search

process [18]. A quantitative balance between these two issues, exploitation and exploration,

is challenging to achieve. Deb et al. [18] and Goldberg et al. [32] quantified the relationship

between exploitation and exploration. They found that for the one-max test problem, in

which the objective seeks to maximize the number of 1s in a string, a genetic algorithm

with any arbitrary hyperparameter setting does not work well even on a simple problem.

Only genetic algorithms with a selection pressure (s) and crossover probability (pc) falling

inside the control map (Figure 2.4) will find the desired optimum. Another consideration

is the population size. A function with considerable variability in objective function values

demands a large population size to find a global optimum [18].

Therefore, finding an optimized solution with genetic algorithms requires the user to con-

duct a hyperparameter search. Ng et al. [56] suggest that a coarse-to-fine sampling scheme

is the best way to perform a systematic hyperparameter search. For a two-dimensional ex-

ample of a coarse-to-fine sampling scheme, the user first does a coarse sample of the entire

square, then a fine search on the coarse search’s best-performing region. Ng et al. also

suggests to use random sampling over grid sampling because of the former’s efficiency in

high-dimensional spaces. Figure 2.5 illustrates how grid sampling gives even coverage in the

original 2-d space, but provides inefficient coverage in projections onto either the x1 or x2
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Figure 2.4: Figure reproduced from [32, 18] shows a control map region of selection
pressure (s) and crossover probability (pc) values in which the genetic algorithm will find
the desired optimum for the one-max problem.

subspace. In contrast, random sampling produces a less even distribution in the original

space, but a far more even distribution in the subspaces.

2.5 Summary

This chapter provided a literature review of relevant past research efforts that give context to

the proposed PhD scope. In summary, participation in the OECD-NEA FHR benchmark-

ing exercise contributes to the assessment of the current neutron transport and thermal-

hydraulics modeling and simulation capabilities for the AHTR design. Also, additive manu-

facturing of nuclear reactor components is a quickly developing field thanks to the aerospace

and auto industries, which led to breakthroughs in additive manufacturing fabrication of

metal components. The promise of cheaper and faster manufacturing of reactor components

with additive manufacturing frees complex reactor geometries from previous manufacturing

constraints and allows reactor designers to reexamine reactor design optimization. Stochastic

optimization methods such as evolutionary algorithms have proven to work well for finding

global optimums in multi-objective design problems such as nuclear reactor optimization
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Figure 2.5: The impact of grid sampling vs random sampling on coverage of projections
into subspaces (reproduced from [37]). Random sampling has better coverage in the
subspaces.

and can be leveraged to explore the vast exploration design space enabled by additive man-

ufacturing.
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Chapter 3

Fluoride-Salt-Cooled
High-Temperature Reactor
Benchmark
Fluoride-Salt-Cooled High-Temperature Reactors (FHRs) use TRISO fuel and a low-pressure

liquid fluoride-salt coolant. FHR technology combines FLiBe coolant from MSRs and TRISO

particles from VHTRs to enable a reactor with low operating pressure, large thermal margin,

and accident-tolerant qualities. Within the FHR reactor class, AHTRs have plate-based

fuel in a hexagonal fuel assembly. To address the AHTR modeling challenges, described

in Chapter 2, such as multiple heterogeneity and material cross-section data, the OECD-

NEA and Georgia Tech initiated the FHR benchmark for the AHTR design in 2019 [2].

In section 2.1, I gave an FHR concept overview, an AHTR design description, a review of

previous efforts towards modeling these designs, and how these efforts led to the benchmark

initiation.

The three-phase FHR benchmark begins with a single fuel assembly simulation without

burnup and gradually extends to full core depletion. Table 3.1 outlines the complete and

incomplete benchmark phases. In the subsequent sections, I will describe the benchmark’s

Table 3.1: Organisation for Economic Co-operation and Development (OECD) Nuclear
Energy Agency (NEA) Fluoride-Salt-Cooled High-Temperature Reactor (FHR) benchmark
Phases [2].

Phases Sub-phases Description Completed?

Phase I: fuel assembly

I-A 2D model, steady-state

I-B 2D model depletion

I-C 3D model depletion

Phase II: 3D full core
II-A Steady-state

II-B Depletion

Phase III: 3D full core with

feedback & multicycle analysis

III-A Full core depletion with feedback

III-B Multicycle analysis
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Figure 3.1: Advanced High Temperature Reactor (AHTR) schematic (left) and vessel
(right) reproduced from [2].

specifications for the AHTR design and Phase I. Then, I will share our Phase I-A and I-B

results generated with the OpenMC neutronics code [70].

3.1 FHR Benchmark Advanced High Temperature

Reactor Design

Figure 3.1 shows the Advanced High Temperature Reactor (AHTR) schematic and a vertical

cut of the reactor vessel. The AHTR operates at 3400 MWt thermal power and 1400

MWe electric power [90]. The 10m-diameter exterior reactor vessel contains an 8m-diameter

reactor core that which in turn contains 252 hexagonal fuel assemblies.

Each 6m high fuel assembly comprises a 5.5m active core region, which contains TRISO

particles, and 0.25m top and bottom non-fuelled reflector regions. Figure 2.1, from Chapter

2, shows a single hexagonal fuel assembly geometry and the arrangement of all assemblies in

the core. All dimensions specified are at room temperature. The benchmark’s phases I and II

use room temperature dimensions while phase III will address dimensional changes brought
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about by temperature expansion. Figure 3.2 shows a detailed 2D view of the AHTR’s

hexagonal fuel assembly. The hexagonal fuel assembly consists of eighteen fuel-containing

graphite planks arranged in three diamond-shaped sectors, with a external channel wrapper

and structural Y-shape, made of C-C composite with extra notches to hold the fuel planks in

place. The diamond-shaped sections have 120○ rotational symmetry with each other [90, 68,

2]. Semi-cylindrical spacers attach to the fuel planks with radius equalling to coolant channel

thickness. FLiBe coolant fills the gaps between the fuel planks, and between assemblies (note:

FliBe layer around the single assembly). The Y-shaped control rod slot at the center of the

Y-shape structure contains FLiBe coolant when the control blade is not in the slot (as seen

in Figure 3.2) [90, 68, 2]. For a single fuel assembly, the internal 120○ rotational symmetry

is represented by periodic boundary conditions, as seen in Figure 3.3.

Figure 3.4 magnifies a single fuel plank. Fuel stripes line the upper and lower sides

of each graphite fuel plank. Each fuel stripe contains a graphite matrix filled with a cubic

lattice of TRISO particles with 40% packing fraction. The lattice is 210 TRISO particles

wide in the x-direction, four particles deep in the y-direction, and 5936 particles tall in the

z-direction. Figure 3.5 shows the TRISO particle’s cross section which consists of five layers:

oxycarbide fuel kernel, porous carbon buffer, inner pyrolytic carbon, silicon carbide layer,

and the outer pyrolitic carbon.

To control reactivity, the FHR benchmark includes AHTR configurations with burnable

poisons and control rods. The burnable poisons consist of europium oxide, Eu2O3, and

have a discrete or integral (dispersed) option. Figure 3.6 shows the discrete option with

z-direction axially stacked small spherical Eu2O3 particles at five XY locations in each fuel

plank. The integral options consists of Eu2O3 homogenously mixed with the graphite fuel

plank (including the graphite in fuel stripes matrix and plank ends indented to structural

sides, but excluding the graphite in spacers and graphite in TRISO particles).

The molybdenumhafnium carbide alloy (MHC) control rod inserts into the Y-shaped

control rod slot where it displaces the FLiBe that occupies the slot (shown in Figure 3.2).
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∎ FLiBe
∎ Graphite (Fuel Structure)
∎ Graphite (Fuel Plank)
∎ Graphite (Fuel Stripe)
∎ TRISO particle
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Figure 3.2: Advanced High Temperature Reactor (AHTR) fuel assembly with 18 fuel
plates arranged in three diamond-shaped sectors, with a central Y-shaped and external
channel graphite structure.

32



x

y z

Figure 3.3: Visualization of periodic boundary conditions for a single fuel assembly in the
Advanced High Temperature Reactor (AHTR), reproduced from [2].

∎ FLiBe
∎ Graphite (Fuel Structure)
∎ Graphite (Fuel Plank)
∎ Graphite (Fuel Stripe)
∎ TRISO particle
∎ Graphite (Spacer)

x

y z

Figure 3.4: Advanced High Temperature Reactor (AHTR)’s fuel plank, with the
magnification of a spacer and segment of the fuel stripe with embedded TRISO particles.

33



Figure 3.5: Advanced High Temperature Reactor’s TRISO particle schematic reproduced
from [2].

x

y z

Figure 3.6: XY Placement of z-direction axial burnable poisons stacks in the Advanced
High Temperature Reactor [2].
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3.2 Benchmark Phase I Specifications

The FHR benchmark Phase I consists of three subphases. First, a steady-state 2D model

(Phase I-A), depletion of one 2D FHR fuel assembly (Phase I-B), and depletion of one 3D

FHR fuel assembly (Phase I-C). Benchmark organizers have only released Phase I-A and

I-B’s specifications, thus Phase I-C’s specifications will be omitted in this section.

The benchmark requires the following results for Phases I-A and I-B:

(a) keff (effective multiplication factor)

(b) reactivity coefficients: βeff , αD (doppler coefficient), αT,F liBe (FLiBe temperature co-

efficient), αM (moderator temperature coefficient)

(c) tabulated fission source distribution by one-fifth fuel stripe

(d) φ̄1, φ̄2, φ̄3 (neutron flux averaged over the whole model tabulated in three coarse energy

groups)

(e) φ1(x⃗, y⃗), φ2(x⃗, y⃗), φ3(x⃗, y⃗) (neutron flux distribution in three coarse energy groups)

(f) fuel assembly averaged neutron spectrum

Next, I report the equations used to calculate these required results.

Reactivity Coefficients (b)

I assumed one energy group and six delayed groups for βeff . Reactivity coefficient, α, is the

change in reactivity (ρ) of the material per degree change in the material’s temperature (T). I

calculated each reactivity coefficient and its corresponding uncertainty with these equations:

∆ρ

∆T
=
ρThigh − ρTlow
Thigh − Tlow

[pcm
K

] (3.1)

δ
∆ρ

∆T
=

√
δ(ρThigh)2 + (δρTlow)2

Thigh − Tlow
[pcm
K

] (3.2)
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Fission Source Distribution / Fission Density (c)

I calculated fission density (FD) with OpenMC’s fission tally score (f) for each region

divided by the average fission tally score of all the regions:

FDi =
fi
fave

[−] (3.3)

where

fi = fission reaction rate in a single region i [reactions/src]

fave = average of all fi [reactions/src]

The uncertainty calculations for FDi and fave:

δFDi = ∣FDi∣

¿
ÁÁÀ(δfi

fi
)
2

+ (δfave
fave

)
2

(3.4)

δfave =
1

N

¿
ÁÁÀ N

∑
i

f 2
i (3.5)

where

N = No. of fission score values

Neutron Flux (d, e, f)

OpenMC’s flux score is normalized per source particle simulated, resulting in [neutrons cmsrc ]

units. This is an unnatural unit for system analysis, and thus to better compare OpenMC

results with other software results in the benchmark, I converted flux to [neutronscm2s ] units using
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the following equations:

Φc =
N ⋅Φo

V
(3.6)

N = P ⋅ ν
Q ⋅ k (3.7)

where

Φc = converted flux [neutronscm2s ]

Φo = original flux [neutrons cmsrc ]

N = normalization factor [ srcs ]

V = volume of fuel assembly [cm3]

P = power [Js ]

ν = νf
f [neutronsfission ]

Q = Energy produced per fission [ J
fission ]

= 3.2044 × 10−11 J per U235 fission

k = keff [neutronssrc ]

The flux standard deviation is:

δΦc = Φc ×
¿
ÁÁÀ(δΦo

Φo

)2 + (δνf
νf

)2 + (δk
k

)2 + (δf
f

)2 (3.8)

I calculated reactor power based on the given reference specific power (Psp) of 200 W
gU :

P = Psp × VF × ρF ×
wt%U

100
(3.9)
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where

VF = volume of fuel [cm3]

= 4

3
πr3f ×Ntotal

rf = radius of fuel kernel within TRISO particle

Ntotal = total no. of TRISO particles in fuel assembly

= 101 × 210 × 4 × 2 × 6 × 3

ρF = density of fuel [g/cc]

wt%U = at%U235 ×mU235 + at%U238 ×mU238

∑(at%i ×mi)
× 100

m = atomic mass

3.2.1 Phase I-A Specifications

For Phase I-A, the benchmark specifies that each participant must produce a steady-state

2D model of one fresh fuel assembly for nine cases and report the required results listed in

Section 3.2. Table 3.2 describes each case.

3.2.2 Phase I-B Specifications

For Phase I-B, the benchmark specifies that each participant must produce depletion results

for three cases: 1B, 4B, and 7B. These are the same as cases 1A, 4A, and 7A, but with

depletion steps added. The benchmark assumes that depletion occurs only in the fuel and

burnable poisons and that the depletion performs under the critical spectrum assumption.
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Table 3.2: Description of the Fluoride-Salt-Cooled High-Temperature Reactor benchmark
Phase I-A cases [2].

Case Description

1A Reference case. Hot full power (HFP), with temperatures of 1110K for fuel kernel and 948K for

coolant and all other materials (including TRISO particle layers other than fuel kernel). Nominal

(cold) dimensions, 9 wt% enrichment, no burnable poison, control rod out.

2AH Hot zero power (HZP) with uniform temperature of 948 K, otherwise same as Case 1A. Comparison

with Case 1A provides HZP-to-HFP power defect.

2AC Cold zero power (CZP). Same as Case 2AH, but with uniform temperature of 773 K. Comparison

with Case 2AH provides isothermal temperature coefficient.

3A Control rod inserted, otherwise same as Case 1A.

4A Discrete europia burnable poison, otherwise same as Case 1A.

4AR Discrete europia burnable poison and control rod inserted, otherwise same as Case 1A.

5A Integral (dispersed) europia burnable poison, otherwise same as Case 1A.

6A Increased heavy metal (HM) loading (4 to 8 layers of TRISO) decreased C/HM ratio (from about

400 to about 200) and decreased specific power to 100 W/gU, otherwise same as Case 1A.

7A Fuel enrichment 19.75 wt%, otherwise same as Case 1A.

3.3 Benchmark Phase I Results

Several organizations participated in the benchmark with various Monte Carlo and Deter-

ministic neutronics software, such as Serpent [46], OpenMC [70], and WIMS [48]. The

University of Illinois at Urbana-Champaign (UIUC) participated in the benchmark with

the OpenMC Monte Carlo code [70] and the ENDF/B-VII.1 material library [12]. The

UIUC team consists of myself and my advisor, Dr. Kathryn Huff. I contributed Methodol-

ogy, Software, Validation, Formal Analysis, and Visualization, while Dr. Huff contributed

Resources, Supervision, and Funding acquisition. The fhr-benchmark Github repository

contains all the results submitted by UIUC for the FHR benchmark [13]. The benchmark

used a phased blind approach – participants were asked to submit Phase I-A and I-B results

without knowledge of other submissions. Petrovic et al. [64] describes the preliminary results

of the benchmark results across several institutions and concludes that the overall observed

agreement is satisfactory. In the subsequent sections, I will share the results obtained by

UIUC.
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Table 3.3: University of Illinois at Urbana-Champaign’s Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark Phase I-A results [13].

Case Summary WCT [hr] keff* βeff** Fuel ∆ρ
∆T

FliBe ∆ρ
∆T

Graphite ∆ρ
∆T

1A Reference 2.82 1.39389 0.006534 -2.24±0.15 -0.15±0.15 -0.68±0.15

2AH HZP 2.82 1.40395 0.006534 -3.14±0.15 -0.20±0.14 -0.85±0.14

2AC CZP 2.75 1.41891 0.006534 -3.36±0.14 -0.11±0.14 0.07±0.14

3A CR 2.49 1.03147 0.006534 -4.03±0.28 -0.83±0.27 -3.18±0.29

4A Discrete BP 5.08 1.09766 0.006542 -4.06±0.24 -1.55±0.23 -6.51±0.24

4AR Discrete BP +

CR

4.59 0.84158 0.006553 -5.60±0.49 -1.78±0.46 -10.44±0.47

5A Dispersed BP 2.33 0.79837 0.006556 -5.09±0.40 -4.87±0.40 -22.99±0.38

6A Increased HM 3.52 1.26294 0.006556 -4.46±0.19 0.16±0.20 -0.39±0.20

7A 19.75% Enriched 2.21 1.50526 0.006530 -2.49±0.13 -0.12±0.12 -0.62±0.12

BP: burnable poison, CR: control rod

* All keff values have an uncertainty of 0.00010.

** All βeff values have an uncertainty of 0.000001.

3.3.1 Results: Phase I-A

In a recently submitted American Nuclear Society (ANS) M&C 2021 conference paper (which

I am a co-author on), Petrovic et al. [64] compared FHR benchmark participants’ Phase I-A

keff results. We reported that the standard deviation between participants for each case was

in the 231 to 514 pcm range, acceptable and notably close given a blind benchmark, assur-

ing that UIUC’s Phase I-A results are acceptable and in agreement with other benchmark

participants.

Results: Effective Multiplication Factor (a)

Table 3.3 reports Phase I-A keff and reactivity coefficients results. I ran the simulations

on UIUC’s BlueWaters supercomputer with 64 XE nodes, which each have 32 cores [55].

To reduce the statistical uncertainty of keff to ∼10pcm, I ran each simulation with 500

active cycles, 100 inactive cycles, and 200000 neutrons. Each simulation took wall-clock-

time (WCT) ranging from 2 to 5 hours.

Cases 2AH and 2AC are at zero power, meaning that the fuel assembly is exactly
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critical but not producing any energy. For both cases, keff is higher than the reference Case

1A, which I attribute to lower fuel temperatures. At lower fuel temperatures, less doppler

broadening occurs, resulting in less neutron capture, thus, increasing keff . As expected,

keff is lower for Cases 3A, 4AR, and 5A than reference case 1A since these cases introduce

burnable poisons and control rods to the fuel assembly. Also, as expected, keff is higher

for Case 7A than reference Case 1A, since it has a higher enrichment. However, Case 6A

deviated from expectations with a lower keff despite an increase in heavy metal loading.

This behavior is due to reduced moderation and worsened fuel utilization brought about

by self-shielding, demonstrating that an increase in fuel packing fraction does not always

correspond with an increased keff .

Results: Reactivity Coefficients (b)

βeff increased by 10–20[pcm] for Cases 4A, 4AR, 5A, and 6A compared to reference Case 1A

due to the introduction of control rods and poisons that shift the average neutron velocity

to higher values, resulting in decreased thermal fission and increased fast fission [86]. Table

3.3 reports that most of the temperature coefficients are negative, exemplifying the AHTR’s

passive safety behavior. Negative reactivity feedback results in a self-regulating reactor; if

the reactor power rises, resulting in temperature increase, the negative reactivity reduces

power.

Results: Fission Source Distribution (c)

Figure 3.7 shows Cases 1A and 3A’s fission source distribution discretized by one-fifth fuel

stripe. Case 4AR has a similar fission source distribution to Case 3A since both cases have

control rod insertion. Case 7A has a similar fission source distribution to case 6A since both

have higher heavy metal loading. All other cases have similar fission source distributions to

Case 1A.

For Case 1A, intuitively, one might assume that the highest fission source would occur
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Figure 3.7: University of Illinois at Urbana-Champaign results: Normalized Fission Source
Distribution [-] per one-fifth fuel stripe for Fluoride-Salt-Cooled High-Temperature
Reactor Benchmark’s Phase I-A Case 1A (top), Case 3A (middle), and Case 6A (bottom).
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Figure 3.8: University of Illinois at Urbana-Champaign results: Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark’s Neutron flux, averaged over the whole model,
tabulated in three coarse energy groups for each Phase I-A case.

in the center of the diamond fuel segment; however, the opposite is true. Power peaking

occurs on exterior stripes and is minimum on the interior stripes. Gentry et al. [28] reported

similar power peaking phenomena towards the lattice cell’s exterior closest to the Y-shaped

carbon support structure. This fission source distribution is caused by diminished resonance

escape probability in the interior due to the higher relative fuel-to-carbon volume ratio.

For Case 3A with an inserted control rod, the fission source is lower in the one-fifth

stripes closer to the control rod. Case 6A demonstrates a further diminished fission source

in the interior stripes due to the higher fuel-to-carbon ratio. This is seen in Figure 3.7 in

which case 1A and 6A have similar fission distribution shapes, but case 6A has a bigger

fission source value range.

Results: Average Neutron Flux (d)

Figure 3.8 shows the average neutron flux in the fuel assembly in three coarse energy groups.

Most of the cases have the most flux in the intermediate group, followed by the thermal group,

and the least flux in the fast group.
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Results: Neutron Flux Distribution (e)

Figure 3.9 shows the neutron flux distribution in a 100 × 100 mesh for Cases 1A, 3A, and 6A

for three coarse energy groups. For all three cases, fast-flux peaks in the diamond-shaped

sectors containing the fuel stripes, whereas thermal flux peaks outside of the diamond-shaped

sectors. This can be attributed to fission occurring at thermal energies in the fuel stripe

area. For Case 3A, the thermal and intermediate neutron flux is depressed in the fuel

assembly’s control rod region. An increased heavy metal loading in Case 6A results in a

more pronounced fast-flux peaking and thermal flux dip in the fuel stripe area.

Results: Neutron Spectrum (f)

Figure 3.10 shows the neutron spectrum for Cases 1A and 6A. Case 7A has a similar neutron

spectrum to Case 6A since both cases have higher fuel content. All other cases have a similar

neutron spectrum to Case 1A. The neutron spectra in Cases 6A and 7A are faster due to

more heavy metal loading and higher enrichment, respectively.

3.3.2 Results: Phase I-B

Figure 3.11 shows the keff evolution during depletion for Cases 1B, 4B, and 7B. The keff at

zero burnup corresponds to each case’s corresponding Phase I-A keff value reported in Table

3.3. Case 1B is the reference case with 9% fuel enrichment and no burnable poisons (BPs).

Case 1B’s keff steadily decreases until it reaches 0.967845 at the final 70 GWd/tU burnup.

Case 4B includes burnable poisons resulting in a lower initial keff . Its keff decreases at a

slower rate in the beginning due to the presence of burnable poisons, which decreases the

flux in the core. At approximately 20 GWd/tU, keff begins decreasing at a faster rate,

presumably due to burn-up of the poison material. Case 7B has a 19.75% fuel enrichment,

resulting in a higher initial keff . With a higher enrichment, the fuel can achieve a final

burnup of 160 GWd/tU.
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Figure 3.9: University of Illinois at Urbana-Champaign results: Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark neutron flux distribution in 100 × 100 mesh for
three coarse energy groups: Case 1A (above), Case 3A (middle), Case 6A (below). Energy
group 1: E > 0.1 MeV, Energy group 2: 3 × 10−6 < E < 0.1 MeV, Energy group 3:
E < 3 × 10−6 MeV.
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Figure 3.10: University of Illinois at Urbana-Champaign results: Neutron spectrum for
Fluoride-Salt-Cooled High-Temperature Reactor Benchmark Phase I-A Case 1A (left) and
Case 6A (right).
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Figure 3.11: University of Illinois at Urbana-Champaign results: Fluoride-Salt-Cooled
High-Temperature Reactor Benchmark Phase I-B depletion keff evolution for Cases 1B,
4B, and 7B. Case 1B is the reference case, Case 4B is the discrete burnable poison case,
and Case 7B is the 19.75% enrichment case. Error bars are included but are barely visible
due to the low ∼40pcm uncertainty.
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3.4 Summary

This chapter described the FHR benchmark specifications, AHTR design, and Phase I-A and

I-B results obtained by the UIUC team, consisting of myself and my advisor. The benchmark

results highlight the AHTR’s passive safety behavior with negative temperature coefficients.

Results such as a lower keff for the AHTR configuration with higher heavy metal loading

demonstrated that increased fuel packing does not always correspond with increased keff due

to self-shielding effects. These results hint at the possibility of minimizing fuel required by

optimizing for heterogenous fuel distributions within the core. This will be further explored

in the later chapters.
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Chapter 4

ROLLO: Reactor evOLutionary
aLgorithm Optimizer

In this chapter, I introduce the ROLLO framework developed as preliminary work for the

proposed PhD scope. ROLLO is a Python package that applies evolutionary algorithm

techniques to optimize nuclear reactor design. Applying evolutionary algorithms to nuclear

design problems is not new, as I previously discussed in Section 2.3, and available evo-

lutionary algorithm packages can be customized for reactor design optimization problems.

However, evolutionary algorithm setup is highly customizable with an assortment of genetic

algorithm designs and operators. A reactor designer unfamiliar with evolutionary algorithms

will have to go through the cumbersome process of customizing a genetic algorithm for their

needs and determine which operators and hyperparameters work best for their problem.

Furthermore, computing fitness values with nuclear software is computationally expensive,

necessitating using supercomputers and setting up parallelization for the genetic algorithm.

Therefore, the motivation behind creating ROLLO is to limit these inconveniences and

facilitate using evolutionary algorithms for reactor design optimization. ROLLO provides

a general genetic algorithm framework, sets up parallelization for the user, and promotes

usability with an input file that only exposes mandatory parameters. ROLLO also strives

to be effective, flexible, open-source, parallel, reproducible, and usable. I briefly summarize

how ROLLO achieves these goals:

• Effective: ROLLO is well documented, tested, and version-controlled on Github [?].

• Flexible: The proposed work aims to utilize ROLLO to explore arbitrary reactor ge-

ometries and heterogeneous fuel distributions. However, future users might want to
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utilize ROLLO to explore other arbitrary design parameters. Thus, I designed the

ROLLO framework accordingly. The user can vary any imaginable parameter because

ROLLO uses a templating method to edit the input file of the coupled software.

• Open-source: ROLLO utilizes a well-documented, open-source evolutionary algorithm

Python package to drive the optimization process, and established open-source nuclear

software (OpenMC [70] and Moltres [50]) to compute the objective function and con-

straints. I also provide a simple tutorial for future developers to follow for coupling

other nuclear software to ROLLO.

• Parallel: Users have the option to run ROLLO in parallel using either the

multiprocessing on dill or mpi4py Python packages [16].

• Reproducible: Data from every ROLLO run saves into a unique, pickled file (pickle is

a Python module that serializes Python objects), and all results from this work are

available on Github.

ROLLO essentially couples an evolutionary algorithm driver with nuclear software, such

as neutron transport and thermal-hydraulics codes. Figure 2.3 from Chapter 2 outlines the

evolutionary algorithm iterative problem solving process. I modified Figure 2.3 to produce

Figure 4.1, which depicts how the nuclear transport and thermal-hydraulics software fit

within the process. Therefore, ROLLO initially reads and validates the JSON input file,

initializes the Distributed Evolutionary Algorithms in Python (DEAP) [24] genetic algorithm

hyperparameters and operators, and finally runs the genetic algorithm following the flow

chart in Figure 4.1, in which the nuclear software evaluates each individual’s fitness.

In the subsequent sections, I describe the evolutionary algorithm software (DEAP) that

drives ROLLO, the nuclear software coupled to ROLLO, and details about the ROLLO

framework, such as the input file format and software architecture.
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Create initial population

Evaluate initial population

Create new population:

1. Select individuals for mating

2. Create offspring by crossover

3. Mutate selected individuals

4. Keep selected individuals from
previous generation

Evaluate new population

Is termination
criteria satisfied?

Best solution is returned!

yes

no

EA: Evolutionary Algorithm

NS: Nuclear Software

Figure 4.1: Process of finding optimal solutions for a problem with a genetic algorithm.
Nuclear software evaluates each new population.
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4.1 Evolutionary Algorithm Driver

Evolutionary algorithm computation uses sophisticated, diverse techniques and mechanisms,

resulting in even the most well-designed, software frameworks being complicated under the

hood. Utilizing an existing evolutionary algorithm framework presents implementation chal-

lenges as the user must edit the framework’s source code to customize for their application

and hyperparameters [24]. Therefore, a computation framework that gives the user the

capability to build custom evolutionary algorithms is ideal for this project.

Many evolutionary algorithm computation packages exist: DEAP [24], inspyred [26],

Pyevolve [62], and OpenBEAGLE [25]. DEAP is the newest package and places a high

value on code compactness and clarity [24]. DEAP is the only framework that allows the

user to prototype evolutionary algorithms rapidly and define custom algorithms without

digging deep into the source code to modify hyperparameters and their application meth-

ods. Accordingly, I chose DEAP to drive the ROLLO framework’s evolutionary algorithm

component. DEAP provides building blocks for each optimizer function and allows the user

to customize a specialized algorithm to fit their project [24].

4.1.1 Distributed Evolutionary Algorithms in Python

DEAP is composed of two simples structures: a creator and a toolbox. The creator module

allows the run-time creation of classes via inheritance and composition, enabling individual

and population creation from from any data structure: lists, sets, dictionaries, trees, etc [24].

The toolbox is a container that the user manually populates. In the toolbox, the user defines

the selection, crossover, and mutation operator types and hyperparameters. For example,

the user registers a crossover operator under the ‘mate’ alias, and a selection operator under

the ‘select’ alias. Then, the evolutionary algorithm uses these aliased operators from the

toolbox. If the user wants to change the crossover operator, they would update the ‘mate’

alias in the toolbox, while keeping the evolutionary algorithm unchanged [24].
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1 from deap import creator, base, tools, algorithms

2 creator.create("Objective", base.Fitness, weights=(-1.0,)) # minimum

3 creator.create("Individual", list, fitness=creator.Objective)

4

5 toolbox = base.Toolbox()

6 toolbox.register("variable_1", random.uniform, 0.0, 10.0)

7 toolbox.register("variable_2", random.uniform, -1.0, 0.0)

8 def individual_creator():

9 return creator.Individual([toolbox.variable_1(), toolbox.variable_2()])

10 toolbox.register("individual", individual_creator())

11 toolbox.register("population", tools.initRepeat, list, toolbox.individual)

12 def evaluator_fn(individual):

13 return tuple([sum(individual)])

14 toolbox.register("evaluate", evaluator_fn)

15 toolbox.register("select", tools.selBest, k=5)

16 toolbox.register("mutate", tools.mutPolynomialBounded, eta=0.5, low=[0, -1], up=[-1, 0])

17 toolbox.register("mate", tools.cxOnePoint)

Figure 4.2: DEAP sample code demonstrating the usage of the creator and toolbox
modules to initialize the genetic algorithm. In ROLLO, DEAP’s creator and toolbox
modules are initialized in the source code based on the genetic algorithm parameters
defined by the user in the ROLLO input file.

Figure 4.2 illustrates DEAP’s usage of the creator and toolbox modules. Line 2 creates a

single-objective fitness class, Objective. The first argument defines the name of the derived

class, the second argument specifies the inherited base class, base.fitness, and the third

argument indicates the objective fitness (−1.0 indicates a minimum objective, +1.0 indicates

a maximum objective). Line 3 derives an Individual class from the standard Python list

type, and defines its fitness attribute to be the newly created Objective object. Lines 5-9

initialize the DEAP toolbox, register variable 1 and variable 2 with their upper and lower

bounds, and defines the individual creator function to return an Individual initialized

with variable 1, and variable 2. Lines 10-11 and 14-17 are aliases for initializing individ-

uals and population, specifying variation operators (select, mutate, mate), and evaluating

individual fitness (evaluate) [24]. Lines 12-13 define the evaluation function that returns

the fitness values.
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ROLLO initializes DEAP’s creator and toolbox modules based on the genetic algorithm

parameters defined by the user in the ROLLO input file. The evaluation function runs the

nuclear software and returns user-defined fitness values.

4.1.2 General Genetic Algorithm Framework

DEAP creators provided variations of a classical genetic algorithm exposing different ex-

plicitness levels [24]. The high-level examples use the built-in DEAP genetic algorithms,

whereas the low-level example completely unpacks the genetic algorithm to expose a gen-

erational loop. The general genetic algorithm included in the Algorithm class is based

on the low-level example. The algorithm begins by initializing the starting population and

evaluating each individual’s fitness value. Then, it enters a generational loop. During each

iteration, selection, mating, and mutation operators are applied to the population, then, the

new individuals are evaluated, the constraints are applied, and the results are saved.

4.2 Nuclear Software

Many nuclear software tools, applications, libraries, packages have restricted public access.

In the preliminary work, I enabled ROLLO to work with open-source nuclear transport and

thermal-hydraulics software, OpenMC [70] and Moltres [50]. OpenMC is an open-source

Monte Carlo neutron transport code capable of performing k-eigenvalue calculations on mod-

els built using either constructive solid geometry or CAD representation. OpenMC can run in

parallel using a hybrid Message Passing Interface (MPI) and OpenMP programming model.

Moltres is an open-source tool designed to simulate MSRs using deterministic neutronics and

thermal-hydraulics implemented as an application atop the Multiphysics Object-Oriented

Simulation Environment (MOOSE) finite-element framework. Moltres solves arbitrary-

group neutron diffusion, temperature, and precursor governing equations on a single mesh

and can be deployed on an arbitrary number of processing units [50].
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OpenMC and Moltres are both open-source, well-documented, well-supported, and

Github version-controlled codes that can run in parallel on HPC machines. Thus they

achieve the ROLLO goals listed at the start of this chapter, making them suitable to be

used as ROLLO’s nuclear dependency. However, users can easily use restricted nuclear soft-

ware if they so desire with ROLLO by coupling ROLLO with the restricted software on

their local machine. In the ROLLO documentation [?], I outline how to couple other nuclear

software to ROLLO.

4.3 ROLLO Input File

ROLLO’s input file is in JSON format. There are four sections that the user must define:

control variables, evaluators, constraints, and algorithm. Figure 4.3 shows an ex-

ample ROLLO input file. In this simulation, ROLLO uses a genetic algorithm with the

defined hyperparameters to minimize the output1 parameter which is calculated using the

OpenMC evaluator that accepts input parameters: variable1 and variable2.

Next, I will describe how to define each section of a ROLLO input file. The ROLLO

documentation [?] provides further descriptions for setting up a ROLLO input file.

4.3.1 Control Variables

Control variables are parameters the genetic algorithm will vary. For each control variable,

the user must specify its minimum and maximum values. For example, Lines 2 to 5 in Figure

4.3 demonstrate that the control variables, variable1 and variable2, will be varied from

0 to 10 and -1 to 0, respectively.

4.3.2 Evaluators

Evaluators are the nuclear software ROLLO utilizes to calculate objective functions. Presently,

only openmc and moltres evaluators are available in ROLLO. In a single ROLLO input file,
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1 {

2 "control_variables": {

3 "variable1": {"min": 0.0, "max": 10.0},

4 "variable2": {"min": -1.0, "max": 0.0}

5 },

6 "evaluators": {

7 "openmc": {

8 "input_script": "openmc_inp.py",

9 "output_script": "openmc_output.py",

10 "inputs": ["variable1", "variable2"],

11 "outputs": ["output1", "output2"]

12 }

13 },

14 "constraints": {

15 "output1": {"operator": [">=", "<"], "constrained_val": [1.0, 1.5]}

16 },

17 "algorithm": {

18 "objective": ["min"],

19 "optimized_variable": ["output1"],

20 "pop_size": 100,

21 "generations": 10,

22 "mutation_probability": 0.23,

23 "mating_probability": 0.46,

24 "selection_operator": {"operator": "selTournament", "inds": 15, "tournsize":5},

25 "mutation_operator": {

26 "operator": "mutPolynomialBounded",

27 "indpb": 0.23,

28 "eta": 0.23

29 },

30 "mating_operator": {"operator": "cxBlend", "alpha": 0.46}

31 }

32 }

Figure 4.3: Reactor evOLutionary aLgorithm Optimizer (ROLLO) sample JSON input
file.
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1 import openmc

2 # templating

3 variable1 = {{variable1}}

4 variable2 = {{variable2}}

5 # run openmc

6 ...

1 import openmc

2 # templating

3 variable1 = 3.212

4 variable2 = -0.765

5 # run openmc

6 ...

Figure 4.4: openmc inp.py input script template (left). Templated openmc inp.py with
variable1 and variable2 values defined (right).

a user may define any number of evaluators. For each evaluator, mandatory input pa-

rameters are input script, inputs, and outputs, and the optional input parameters are

output script and keep files. The input script is input file template’s name for the

evaluator software. The user must include a input file template in the same directory as the

ROLLO input file. The inputs parameter lists the control variables that are placed into the

input file template. ROLLO utilizes jinja2 templating to insert the control variable values

into the input script. Lines 6 to 12 in the ROLLO input file (Figure 4.3) demonstrate that

variable1 and variable2 are inputs into the openmc inp.py input script. Figure 4.4

shows the template and templated openmc script; once the openmc inp.py input script

is templated, {{variable1}} and {{variable2}} on Lines 3 and 4 will be replaced with

values selected by the ROLLO genetic algorithm.

The outputs parameter lists the output variables that the evaluator will return to the

genetic algorithm. These output parameters are also known as the objective functions used

to evaluate the individual. ROLLO uses three methods to return an output parameter.

First, if the output parameter is also an input parameter, ROLLO will automatically return

the input parameter’s value. Second, the user can use predefined evaluations. For exam-

ple, in OpenMCEvaluation, there is a predefined keff evaluation. The user may also add

predefined evaluations to OpenMCEvaluation or MoltresEvaluation, or any other coupled

software’s evaluation file. Third, the user may include an output script that returns the

desired output parameter. The output script must include a line that prints a dictionary
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containing the output parameters’ names and their corresponding value as key-value pairs.

The keep files parameter accepts true or false, which directs ROLLO to save or not save

each evaluations templated input file and output files.

4.3.3 Constraints

In the constraints section, the user can define constraints on any output parameter. Any

individual that does not meet the defined constraints is removed from the population, en-

couraging the proliferation of individuals that meet the constraints. For each constrained

output parameter, the user lists the operators and constrained vals as in Line 15 of the

ROLLO input file (Figure 4.3). Thus, for this ROLLO simulation, output 1 is constrained

to be >= 1.0 and < 1.5.

4.3.4 Algorithm

In the algorithm section, the user defines all the hyperparameters for the genetic algorithm.

The mandatory input parameters include optimized variable, objective, pop size, and

generations. The user may define a single or multi objective optimization problem with

the optimized variable and objective parameters. The user specifies a list of

optimized variables, which must be output parameters from the evaluators’ outputs. The

user has the option to maximize or minimize each of the optimized variables by defining

the objective parameter as a list of max or min values which correspond to the variable

order in the optimized variable parameter. The user must also specify the population size

(pop size) and number of generations (generations) in the genetic algorithm.

The optional input parameters include parallel, mutation probability,

mating probability, selection operator, mutation operator, and mating operator.

There are three options for the parallel parameter: none, multiprocessing, and mpi evals.

The none option results in ROLLO running without parallelization, and the multiprocess-
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Table 4.1: Selection, mutation, and mating operators available in Reactor evOLutionary
aLgorithm Optimizer (ROLLO) and their corresponding hyperparameters.

Operator Available Options Hyperparameters

Selection

selTournament
tournsize: no. of individuals in each tournament

inds: no. of individuals to select

selNSGA2 inds: no. of individuals to select

selBest inds: no. of individuals to select

Mutation mutPolynomialBounded
eta: crowding degree of the mutation

indpb: independent probability for each attribute to be

mutated

Mating

cxOnePoint -

cxUniform indpb: independent probability for each attribute to be

exchanged

cxBlend alpha: Extent of the interval in which the new values can

be drawn for each attribute on both side of the parents

attributes

ing option results in ROLLO using the multiprocessing on dill Python module to run

ROLLO’s nuclear software evaluations in parallel. The mpi evals option is specially created

for supercomputer parallelization, and will be further discussed in Section 4.4.2.

As mentioned previously in Section 2.4.1, it is important to select genetic algorithm

hyperparameters that balance the extent of exploration and exploitation. The user can define

the mutation and mating probability or use default values of 0.23 and 0.46, respectively.

For each operator, the user can choose from a list of operators and define each of their

required hyperparameters. Table 4.1 shows the available operators and their respective

hyperparameters. The default selection operator is selTournament with a default inds value

of 15 and tournsize value of 5. The default mutation operator is mutPolynomialBounded

with default eta and indpb values of 0.23. The default mating operator is cxBlend with

a default alpha of 0.46. Lines 17 to 31 in the example ROLLO input file (Figure 4.3)

demonstrate algorithm specifications.
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InputValidation

Evaluation

OpenMCEvaluation

ToolboxGenerator

MoltresEvaluation

Constraints

BackEnd

Executor

1) User input file validation with InputValidation

2) Evaluation function generation with Evaluation

3) DEAP toolbox initialization with ToolboxGenerator

4) Constraints initialization with Constraints

5) Genetic algorithm execution with Algorithm

Algorithm

1) Accepts initialized toolbox, constraints, and evaluator

function

2) Runs the genetic algorithm

3) Saves results with BackEnd

Figure 4.5: Visualization of ROLLO architecture.

4.4 ROLLO Software Architecture

In this section, I will describe the ROLLO v1.0 software architecture and how all the parts

come together to optimize reactor design. Table 4.2 outlines the classes in the ROLLO

software and describes each class’s purpose. Figure 4.5 depicts the ROLLO software ar-

chitecture. When the user runs a ROLLO input file, the Executor class drives ROLLO’s

execution from beginning to end. The Executor calls InputValidation to parse the input

file to ensure that the user defined all mandatory parameters and used the correct format-

ting. Next, it initializes an Evaluator object based on the evaluators specifications in the

input file. It uses the Evaluator object to create a function that will run each evaluator

software with the desired input parameters and return the output parameters calculated by

the evaluator software. Next, it uses the ToolboxGenerator to create an initialized DEAP

toolbox object based on the input file’s algorithm specifications. The ToolboxGenerator

object accepts the Evaluator object and registers it as the toolbox’s ‘evaluate’ tool. Then,

it initializes a Constraints object to contain constraints specified in the input file. Next,

the Executor initializes an Algorithm object that accepts the initialized DEAP toolbox

and Constraints object. Finally, the Executor class uses a method in the Algorithm

object to run a general genetic algorithm with hyperparameters from the DEAP toolbox,
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Table 4.2: Classes that make up the ROLLO architecture.

Class Description

InputValidation The InputValidation class contains methods to read and validate the JSON

ROLLO input file to ensure the user defined all key parameters. If they did

not, ROLLO raises an exception to tell the user which parameters are miss-

ing.

Evaluation DEAP’s fitness evaluator (as mentioned in Section 4.1.1) requires an evalu-

ation function to evaluate each individual’s fitness values. The Evaluation

class contains a method that creates an evaluation function that runs the nu-

clear software and returns the required fitness values, defined in the input

file.

OpenMCEvaluation The OpenMCEvaluation class contains built-in methods for evaluating

OpenMC output files. Developers can update this file with methods to evalu-

ate frequently used OpenMC outputs.

ToolboxGenerator The ToolboxGenerator class initializes DEAP’s toolbox and creator mod-

ules with genetic algorithm hyperparameters defined in the input file.

Constraints The Constraints class contains methods to initialize constraints defined in

the input file and applies the constraints by removing individuals that do not

meet the constraint.

BackEnd The BackEnd class contains methods to save genetic algorithm population

results into a pickled checkpoint file and to restart a partially completed ge-

netic algorithm from the checkpoint file.

Algorithm The Algorithm class contains methods to initialize and execute the genetic

algorithm. It executes a general genetic algorithm framework that uses the

hyperparameters defined in the ToolboxGenerator , applies constraints de-

fined in Constraints, evaluates fitness values using the evaluation function

produced by Evaluation , and saves all the results with BackEnd .

Executor The Executor class drives the ROLLO code execution with the following

steps:

1) User input file validation with InputValidation

2) Evaluation function generation with Evaluation

3) DEAP toolbox initialization with ToolboxGenerator

4) Constraint initialization with Constraints

5) Genetic algorithm execution with Algorithm
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apply constraints defined in the Constraints object, and calculate objective functions using

the evaluation function created by the Evaluator object, all the while saving the results

using the BackEnd class.

In the ROLLO Github repository [?], I include a tests directory that contains unit tests

for all methods in the classes described above.

4.4.1 Installing and Running ROLLO

There are two ways to install ROLLO. First, a user can utilize The Python Package In-

dex (PyPI) to install ROLLO: python -m pip install rollo [14]. Second, a user can

download the ROLLO Github repository [?] and install it from source.

ROLLO is run from the command line interface. A user should first set up the ROLLO

JSON input file and evaluator scripts in a directory. When running ROLLO from the

command line, there is one mandatory argument and one optional argument. The mandatory

argument is the input file (-i). The optional argument is the checkpoint file (-c). Thus,

the structure of a command line input for running ROLLO is:

python -m rollo -i <input file name> -c <checkpoint file name>

The checkpoint file holds the results from the ROLLO simulation and also acts as a

restart file. Thus, if a ROLLO simulation ends prematurely, the checkpoint file can be used

to restart the code from the most recent population and continue the simulation. The user

must include each evaluator software’s input script template and optional output script in

the same directory as the ROLLO input file.

4.4.2 ROLLO parallelization for High Performance Computers

The mpi evals option is specially created for supercomputer parallelization, particularly the

BlueWaters supercomputer [55]. The multiprocessing on dill Python module only par-

allelizes the ROLLO simulation across one BlueWaters node, thus, to enable parallelization
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across multiple BlueWaters nodes, the mpi4py Python module is used. However, the user

must ensure that the nuclear evaluation software does not utilize MPI for parallelization. I

had to recompile OpenMC without MPI to successfully use the mpi evals option. There-

fore, mpi evals uses MPI to run each nuclear software evaluation in parallel on different

BlueWaters nodes.

4.4.3 ROLLO Results Analysis

The BackEnd class manages results from each ROLLO simulation. BackEnd puts all the

results in a pickled dictionary, which is saved as checkpoint.pkl in the same directory as

the input file. The checkpoint file can be loaded into a Jupyter notebook and organized to

produce desired plots. Examples of ROLLO results analysis can be found in the ROLLO

documentation [?].

The evaluation function creates a new directory for each software, generation, and

individual and stores the templated input file and output files associated with that particular

run. The generation and individual values are indexed by zero. For example, the directory

containing files associated with an OpenMC run for the tenth individual in the genetic

algorithm’s third generation will be named: openmc 2 9. If the keep files parameter in

the evaluators section of the input file is set false, ROLLO will delete each directory once

it extracts the fitness values.

4.5 Summary

This chapter described the Reactor evOLutionary aLgorithm Optimizer (ROLLO) frame-

work developed as preliminary work for the proposed PhD scope. ROLLO is a Python

package that applies evolutionary algorithm optimization techniques to nuclear reactor de-

sign using the Distributed Evolutionary Algorithms in Python (DEAP) module, OpenMC,

and Moltres. The motivation for ROLLO is to enable reactor designers to utilize robust
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evolutionary algorithm optimization methods without going through the cumbersome pro-

cess of setting up a genetic algorithm framework, selecting appropriate hyperparameters,

and setting up its parallelization. ROLLO is designed to be effective, flexible, open-source,

parallel, reproducible, and usable. ROLLO is hosted on Github [?].
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Chapter 5

AHTR Optimization Preliminary
Work

This chapter demonstrates the preliminary work completed for AHTR optimization. I used

ROLLO to apply genetic algorithms to maximize keff in a single AHTR fuel slab. Then, I

presented spatial and energy homogenizations for applications to AHTR multiphysics simu-

lations. The dissertation-results Github repository contains all the scripts, results, and

plots shown in this chapter [?].

5.1 ROLLO Optimization: AHTR Fuel Slab

This demonstration problem explores how heterogenous fuel distributions impact keff com-

pared with homogenous fuel distributions customary in most reactor designs. I use OpenMC

v0.12.0 for these neutronics calculations with the ENDF/B-VII.1 data library [12].

5.1.1 Problem Definition

The reactor core explored is a single fuel slab from the FHR benchmark AHTR design. I

modified the fuel slab to be straightened with perpendicular sides, instead of slanted as in

Figure 3.4. Figure 5.1 illustrates the straightened fuel slab with periodic boundary conditions

in the x-y axis. The periodic surfaces are: 1-3, 2-4. The slab has 27.1 × 3.25 × 1.85 cm3

dimensions with reflective top and bottom (along z-axis) boundary conditions. I use the

same materials as in the FHR benchmark, except that I homogenized each TRISO particle’s

four outer layers: porous carbon buffer, inner pyrolytic carbon, silicon carbide layer, and

the outer pyrolytic carbon. The TRISO particle dimensions remain the same. Table 5.1
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x

y z

∎ FLiBe
∎ Graphite (Fuel Plank)
∎ Graphite (Fuel Stripe)
∎ TRISO particle

Figure 5.1: Straightened Advanced High Temperature Reactor (AHTR) fuel slab.

Table 5.1: Straightened Advanced High Temperature Reactor (AHTR) fuel slab keff for
case with no TRISO homogenization and case with homogenization of the four outer
layers. Both simulations were run on one BlueWaters XE Node.

TRISO Homogenization keff Simulation time [s]

None 1.38548 ± 0.00124 233

Four outer layers 1.38625 ± 0.00109 168

reports the keff for this original straightened AHTR configuration with and without the

outer layer TRISO homogenization. The TRISO particle outer four-layer homogenization

resulted in a 30% speed-up without compromising accuracy with keff values within each

other’s uncertainty.

The ROLLO optimization objective aims to maximize the slab keff . It does so by

varying the TRISO particle packing fraction across the slab while keeping the total pack-

ing fraction constant at 0.0979. This total packing fraction is consistent with the original

straightened slab with TRISO particles in fuel stripes (Figure 5.1). I divided the slab

into ten cells along the x-axis between the FLiBe and graphite buffers, resulting in ten

2.31 × 2.55 × 1.85 cm3 cells. A sine distribution governs the TRISO particle packing frac-

tion’s distribution across cells:

PF (x) = (a ⋅ sin(b ⋅ x + c) + 2) ⋅NF (5.1)
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where

PF = packing fraction [−]

a = amplitude, peak deviation of the function from zero [−]

b = angular frequency, rate of change of the function argument [radians
cm

]

c = phase, the position in its cycle the oscillation is at t = 0 [radians]

x = midpoint value for each cell [cm]

NF = Normalization factor [−]

The normalization factor ensures a consistent total packing fraction in the slab regardless

the TRISO particle distribution. For example, a packing fraction distribution of PF (x) =

(0.5 ⋅ sin(π3 ⋅ x + π) + 2)⋅NF , results in the following packing fractions for the ten cells: 0.103,

0.120, 0.049, 0.138, 0.076, 0.081, 0.136, 0.048, 0.125, and 0.098. Figure 5.2 shows this sine

distribution, highlights the packing fraction at the respective midpoints, and displays the

slab’s x-y axis view with packing fraction varying based on this sine distribution.

In ROLLO, a genetic algorithm varies the a, b, and c variables to find a combination

that produces a packing fraction distribution that maximizes the slab’s keff . I defined a, b,

and c’s upper and lower bounds as:

0 < a < 2

0 < b < π
2

0 < c < 2π

The bounds of a keep the sine distribution from falling below zero. The b and c vari-

able bounds spread wide enough to allow the genetic algorithm to explore various sine

distributions. The OpenMC evaluator calculates keff . OpenMC runs each simulation
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Figure 5.2: Above: Straightened Advanced High Temperature Reactor (AHTR) fuel slab
with varying TRISO particle distribution across ten cells based on the sine distribution.
Below: PF (x) = (0.5 sin(π3x+ π)+ 2)×NF sine distribution with red points indicating the
packing fraction at each cell.
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with 80 active cycles, 20 inactive cycles, and 8000 particles to reach ∼130pcm uncertainty.

Figure 5.3 shows the ROLLO input file for this genetic algorithm optimization problem.

ahtr slab openmc.py is the template OpenMC straightened AHTR slab script that accepts

a, b and c from ROLLO, calculates packing fraction distribution, and assigns packing frac-

tion values to each fuel cell. Subsequently, ROLLO runs the templated OpenMC script to

generate keff .

5.1.2 Hyperparameter Search

In a ROLLO input file, the user defines hyperparameters for the genetic algorithm. A good

hyperparameter set guides the optimization process by balancing exploitation and explo-

ration to find an optimal solution quickly and accurately. Finding a good hyperparameter

set requires a trial-and-error process.

I performed the hyperparameter search with a coarse-to-fine random sampling scheme,

whose advantages I previously discussed in Section 2.4.2. The hyperparameters varied in-

cluded population size, number of generations, mutation probability, mating probability,

selection operator, selection operator’s number of individuals, selection operator’s tourna-

ment size, mutation operator, and mating operator. I started with 25 coarse experiments

and fine-tuned the hyperparameters with 15 more experiments. For each genetic algorithm

experiment, the number of OpenMC evaluations remained constant at 600. The number of

evaluations correlated the population size and number of generations. I randomly sampled

population size and used the following equation to calculate the number of generations:

no. of generations = no. of evaluations

population size
(5.2)

Table 5.2 shows the lower and upper bounds used for randomly sampling each hyperparam-

eter.

The initial 25 coarse experiments’ sought to narrow down the hyperparameters to find
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1 {

2 "control_variables": {

3 "a": {"min": 0.0, "max": 2.0},

4 "b": {"min": 0.0, "max": 1.57},

5 "c": {"min": 0.0, "max": 6.28},

6 },

7 "evaluators": {

8 "openmc": {

9 "input_script": "ahtr_slab_openmc.py",

10 "inputs": ["a", "b", "c"],

11 "outputs": ["keff"],

12 "keep_files": false,

13 }

14 },

15 "constraints": {"keff": {"operator": [">="], "constrained_val": [1.0]}},

16 "algorithm": {

17 "objective": "max",

18 "optimized_variable": "keff",

19 "pop_size": 60,

20 "generations": 10,

21 "mutation_probability": 0.23,

22 "mating_probability": 0.46,

23 "selection_operator": {"operator": "selTournament", "inds": 15, "tournsize": 5},

24 "mutation_operator": {

25 "operator": "mutPolynomialBounded",

26 "eta": 0.23,

27 "indpb": 0.23,

28 },

29 "mating_operator": {"operator": "cxBlend", "alpha": 0.46},

30 },

31 }

Figure 5.3: Reactor evOLutionary aLgorithm Optimizer (ROLLO) JSON input file to
maximize keff in the straightened Advanced High Temperature Reactor (AHTR) fuel slab
by varying packing fraction distribution with control variables a, b, and c.
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Table 5.2: Hyperparameter search is conducted in three phases: Coarse Search, Fine
Search 1, Fine Search 2. Each hyperparameter’s lower and upper bounds for each search
phase are listed.

Hyperparameter Type Coarse Search

Bounds

Fine Search 1

Bounds

Fine Search 2

Bounds

Experiments - 0 to 24 24 to 34 35 to 39

Population size (pop) Continuous 10 < x < 100 20 < x < 60 60

Mutation probability Continuous 0.1 < x < 0.4 0.2 < x < 0.4 0.2 < x < 0.3

Mating probability Continuous 0.1 < x < 0.6 0.1 < x < 0.3 0.45 < x < 0.6

Selection operator Discrete SelTournament,

SelBest, SelNSGA2

SelTournament,

SelBest, SelNSGA2

SelTournament

Selection individuals Continuous 1
3
pop < x < 2

3
pop 1

3
pop < x < 2

3
pop 15

Selection tournament size

(only for SelTournament)

Continuous 2 < x < 8 2 < x < 8 5

Mutation operator Discrete mutPolynomialBounded mutPolynomialBounded mutPolynomialBounded

Mating operator Discrete cxOnePoint,

cxUniform, cxBlend

cxOnePoint,

cxUniform, cxBlend

cxOnePoint, cxBlend

a smaller set of hyperparameter bounds that produce higher keff values. Figure 5.4 shows

the hyperparameters’ plotted against each other with a third color dimension representing

the average keff value (keff ) in each experiment’s final generation. Lighter scatter points

indicate higher final population keff values, which suggests better hyperparameter sets. I

plotted the hyperparameters against each other to visualize the interdependence between

hyperparameters. From the coarse hyperparameter search, I noticed the following trends:

• Mutation probability has a higher keff , between 0.2 and 0.4.

• Mating probability has a higher keff , between 0.1 and 0.3.

• Population size has a higher keff , between 20 and 60.

• No obvious interdependence between hyperparameters.

Next, I proceeded to the fine searches. From Figure 5.4, I narrowed down population

size, mutation probability, and mating probability bounds, as shown in Table 5.2’s Fine

Search 1 Bounds column. I found no significant trends in the other hyperparameters, so
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Figure 5.4: Coarse hyperparameters search’s results. Hyperparameter values are plotted
against each other with a third color dimension representing each experiment’s final
population’s keff .
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I left them as is. I ran ten more experiments (25 to 34), sampling hyperparameters from

the Fine Search 1 Bounds. From these results, I conducted a second fine search with five

experiments (35 to 39) with further tuned hyperparameter bounds, as shown in Table 5.2’s

Fine Search 2 Bounds column. I determined these new hyperparameter bounds based on

these reasons:

• Mutation probability has a higher keff , between 0.2 and 0.3.

• I overlooked keff peaking at mating probability between 0.45 and 0.6 in the previous

Fine Search 1, thus shifted the bounds.

• The highest keff occurred for selTournament.

• I narrowed down mating operator options to cxBlend and cxOnePoint since they had

higher keff .

• I selected arbitrary numbers for population size, selection individuals, and tournament

size since they did not correlate with keff values.

Figure 5.5 shows the relationship between hyperparameter values and a, b, c control param-

eters, final generation keffmax, and final generation keff . The coarse experiments’ scatter

points are 50% transparent, while the fine experiments’ scatter points are opaque. In Figure

5.5, on average, the fine experiments (opaque scatter points) have higher keff , which indi-

cates that the hyperparameter search process met its objective of finding hyperparameter

bounds that enable quicker and more accurate optimization.

Table 5.3 shows the hyperparameters for the five experiments with the highest final gen-

eration keff . Figure 5.6 shows the packing fraction distributions that produced the keffmax

from the top five experiments. Four experiments had similar packing fraction distributions

peaking at approximately 0.23 in the slab’s center. In contrast, one experiment had an

exponential-like distribution with a peak packing fraction of 0.31 at the slab’s side. The
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Figure 5.5: Hyperparameters search’s results for all 40 experiments (coarse and fine). I
plotted the hyperparameters against: a,b,c control parameters, each experiment’s final
generation keffmax, and final generation keff with a third dimension representing each
experiment’s final population’s keff . Coarse experiments’ (0 to 24) scatter points are 50%
transparent, while the fine experiments’ (24 to 39) scatter points are opaque.
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Table 5.3: Control Parameters, keff results, and hyperparameter values for the five
hyperparameter search experiments with the highest final generation keff .

Experiment No.

Control/Output

Parameters

6 15 24 36 39

keff [-] 1.39876 1.40155 1.40118 1.39906 1.40165

keffmax [-] 1.40954 1.40440 1.40365 1.40590 1.40519

a [-] 1.993 1.998 1.999 1.997 1.989

b [ radians
cm

] 0.057 0.367 0.320 0.339 0.354

c [radians] 3.571 3.022 3.615 3.053 3.143

Hyperparameter

Population size 83 28 74 60 60

Generations 8 22 9 10 10

Mutation probabil-

ity

0.32 0.26 0.21 0.23 0.23

Mating probability 0.17 0.53 0.48 0.59 0.46

Selection operator selTournament selTournament selBest selTournament selTournament

Selection individu-

als

38 14 25 15 15

Selection tourna-

ment size

7 5 - 5 5

Mutation operator mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

mutPolynomial

Bounded

Mating operator cxOnePoint cxOnePoint cxUniform cxBlend cxBlend
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Figure 5.6: Packing fraction distribution across the x-axis of the Advanced High
Temperature Reactor (AHTR) slab for the five hyperparameter search experiments with
the highest final generation keff .

similar final packing fraction distributions demonstrate genetic algorithms’ robustness to

find the optimal global solutions with different hyperparameters.

I ran these simulations on the BlueWaters supercomputer [55]. In each ROLLO simu-

lation, each generation runs a population size number of individual OpenMC simulations.

Each OpenMC simulation takes approximately 13 minutes to run on a single BlueWaters XE

node. With approximately 600 OpenMC evaluations per ROLLO simulation, the ROLLO

simulation takes about 130 BlueWaters node-hours. The hyperparameter search ran 40

ROLLO simulations, thus using approximately 5200 node-hours.

5.1.3 Results for Best Hyperparameter Set

I define the best-performing hyperparameter set as the experiment that produces the highest

keff in its final generation. Fine Search 2 ’s experiment 39 produces the best performing

hyperparameter set, shown in Table 5.3, with center-peaking packing fraction distribution

of max(keff) = 1.40519. Experiment 39’s keffmax exceeds the original straightened AHTR
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Figure 5.7: Experiment 39 packing distribution that produced keffmax = 1.40519. Below:
PF (x) = (1.98 sin(0.35x + 3.14) + 2) ×NF sine distribution with red points indicating the
packing fraction at each cell. Above: Straightened Advanced High Temperature Reactor
(AHTR) fuel slab with varying TRISO particle distribution across ten cells based on the
sine distribution.

configuration’s keff by ∼ 2000pcm, proving that optimizing inhomogenous fuel distributions

enables better neutronics. Figure 5.7 shows the packing fraction distribution that produced

keffmax = 1.40519.

Figures 5.8a and 5.8b show the keff evolution and packing fraction distribution through

the best performing 39th experiment’s generations. The keffmax converged quickly by gener-

ation 1; however, this usually does not occur. The genetic algorithm optimizes stochastically,

resulting in the possibility that the algorithm randomly samples a control parameter set that

maximizes the objective function early in the optimization process. The keff demonstrates

how each generation’s average keff converges towards a higher value with each generation’s

improvements. To demonstrate how the genetic algorithm optimization process usually goes,

Figures 5.9a and 5.9b show the keff evolution and packing fraction distribution through the

second-best performing 15th experiment’s generations. Experiment 15 demonstrates how
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(a) Minimum, average, and maximum keff value evolution.

(b) keffmax packing fraction distribution evolution.

Figure 5.8: Each generation’s results for ROLLO’s genetic algorithm optimization of the
Straightened Advanced High Temperature Reactor (AHTR) Fuel Slab. The ROLLO
simulation used the 39th experiment’s hyperparameter set.
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both maximum and average keff converge towards a higher keff with improvements from

each generation.

In both Experiments 39 and 15, packing fractions peaked at approximately 0.23 in the

slab center and decreased to zero at the sides. The amplitude, a, for the packing fraction

distribution that produced keffmax for Experiment 39 and the other top-five experiments

(Table 5.3) have settled at the upper bound of approximately 2. A large sine distribution

amplitude, a, demonstrates that a slab geometry with larger packing fraction variations

results in a higher keff . These observations about packing fraction distribution for keffmax

are consistent with conclusions from the FHR benchmark (Chapter 3): a high keff occurs

with a good balance between fuel loading and moderation space. Fission occurs at high

TRISO particle concentration areas at thermal flux; however, the neutrons are born at fast

flux and require moderation to slow down to thermal ranges. Therefore, larger moderation

areas ensure higher resonance escape probability for the fast neutrons resulting in higher

thermal flux, leading to more fission occurring and a higher keff .

I also observed that TRISO particle packing fraction peaks in the center of the slab,

proving that if the optimization problem focuses purely on the slab’s neutronics by maximiz-

ing keff , the fuel tends to culminate in the middle. Center-peaking fuel density is nonideal for

other key reactor core qualities, such as maximal heat transfer and minimal power peaking

factor (PPF).

5.2 AHTR Multiphysics Model Preliminary Work

In the proposed PhD scope, I will use the open-source simulation tool, Moltres, to conduct

AHTR multiphysics simulations. Moltres, an application built atop the MOOSE parallel

finite element framework [27], contains physics kernels and boundary conditions to solve

arbitrary-group deterministic neutron diffusion and thermal-hydraulics Partial Differential

Equations (PDEs) simultaneously on a single mesh [50, 59]. AHTR Moltres simulations will
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(a) Minimum, average, and maximum keff values evolution.

(b) keffmax’s packing fraction distribution evolution.

Figure 5.9: Results for each generation for ROLLO’s genetic algorithm optimization of the
Straightened Advanced High Temperature Reactor (AHTR) Fuel Slab. The ROLLO
simulation used the 15th experiment’s hyperparameter set.

80



capture thermal feedback effects, absent from the purely neutronics OpenMC simulations.

The objective of setting up the Moltres AHTR simulation is to eventually couple Moltres

with ROLLO for AHTR multiphysics optimization.

The benefits of Moltres over other multiphysics software, RELAP5 and NESTLE (used

previously for AHTR modeling and described in Section 2.1.2), for coupled neutronics and

thermal-hydraulics simulation:

• Moltres supports up to 3-D meshes, solving neutron diffusion and thermal-hydraulics

PDEs simultaneously on the same mesh [59]. This is much more flexible than NES-

TLE and RELAP5, which only support rectangular and hexagonal assembly lattices.

Therefore, Moltres can explore arbitrary reactor geometries easily.

• Moltres tightly couples neutronics and thermal-hydraulics, thus providing higher ac-

curacy in some tightly coupled problems.

• Moltres, a MOOSE-based application, uses MPI for parallel computing, and compiles

and runs on HPCs.

To run Moltres simulations, the user provides group constant data from a neutron trans-

port solver, such as OpenMC, for the Moltres multigroup neutron diffusion calculations and

a mesh file representing the reactor geometry. A TRISO-level fidelity mesh file is impractical

and will result in an extremely long Moltres runtime. For successful AHTR Moltres simu-

lation, I must establish suitable spatial and energy homogenization that preserves accuracy

while maintaining an acceptable runtime.

5.2.1 Straightened AHTR Fuel Slab Multigroup Simulation

I use the continuous energy OpenMC simulation to generate multigroup cross section data de-

fined over discretized energy groups and spatial segments. I then use OpenMC’s multigroup

calculation mode with the previously generated multigroup cross section data to calculate
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∎ FLiBe ∎ Left Graphite
∎ Right Graphite ∎ Fuel cell 1/6
∎ Fuel cell 2/7 ∎ Fuel cell 3/8
∎ Fuel cell 4/9 ∎ Fuel cell 5/10

Figure 5.10: Straightened Advanced High Temperature Reactor (AHTR) fuel slab
spatially discretized into 13 cells for OpenMC multigroup calculation.

Table 5.4: 4-group energy structures for Advanced High Temperature Reactor (AHTR)
geometry derived by [28].

Group Boundaries [MeV]

Group # Upper Bound Lower Bound

1 2.0000 × 101 9.1188 × 10−3

2 9.1188 × 10−3 2.9023 × 10−5

3 2.9023 × 10−5 1.8554 × 10−6

4 1.8554 × 10−6 1.0000 × 10−12

keff . Comparison of keff for the continuous and multigroup simulations determines if the

energy and spatial homogenization used are acceptable.

In this section, the straightened AHTR fuel slab simulations use the TRISO particle

distribution that generated keffmax from the best hyperparameter set (Section 5.1.3). For

spatial homogenization of the straightened AHTR fuel slab, I used OpenMC’s cell domain

type to compute multigroup cross sections for different cells. I discretized the slab into

13 cells : FLiBe, left graphite, right graphite, and ten fuel cells (each cell has a different

packing fraction). Figure 5.10 illustrates the AHTR spatial homogenization for the OpenMC

multigroup calculation. I used the four group energy structure derived by Gentry et al. [28]

for AHTR geometries. Table 5.4 defines the group boundaries.

Table 5.5 shows the keff values from the continuous energy simulation and the spatial

and energy homogenized simulation. The 26pcm difference between keff values is within both
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Table 5.5: Straightened Advanced High Temperature Reactor (AHTR) fuel slab’s keff for
case with continuous energy and space and case with spatial and energy homogenization.
Both simulations were run on one BlueWaters XE Node, with 80 active cycles, 20 inactive
cycles, and 8000 particles.

Homogenization keff Simulation time [s]

None 1.40473 ± 0.00115 808

Spatial and Energy 1.40499 ± 0.00109 50

uncertainty values, assuring that the spatial and energy homogenization used is suitable for

generating group constants for Moltres.

5.3 Summary

This chapter demonstrated the preliminary work completed for AHTR optimization. I con-

ducted a multigroup AHTR slab simulation with four-group energy and spatial homoge-

nization, which resulted in keff within the uncertainty of the continuous energy simulation.

The minimal keff difference assures that I can use these homogenizations when generat-

ing group constants for Moltres. I also successfully applied ROLLO to maximize keff in a

straightened Advanced High Temperature Reactor (AHTR) fuel slab by varying the TRISO

particle packing fraction distribution. The optimization process began with a coarse-to-fine

random sampling hyperparameter search to find the genetic algorithm hyperparameters that

worked best. Experiment 39 performed the best with a hyperparameter set that produced

the highest final generation keff of 1.40165. The TRISO particle packing fraction distribu-

tion that produced the final generation’s maximum keff of 1.40519 peaks at the slab’s center

with packing fraction distribution: PF (x) = 1.989 sin(0.54x + 3.143). This demonstration

problem had a single objective function of maximizing keff . However, many other objectives

should be considered, such as maximizing heat transfer and minimizing power peaking fac-

tor. Thus, in the next chapter, I propose future simulations for optimizing these objective

functions simultaneously.
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Chapter 6

Future Work and Proposed
Simulations

Chapter 2 demonstrated the need for this work with a summary of how additive manufac-

turing of nuclear reactor core components frees complex reactor geometries from traditional

manufacturing constraints and enables reactor designers to reexamine reactor core design op-

timization. The literature review (Chapter 2) also concluded that stochastic evolutionary al-

gorithm optimization methods could find global optimums for reactor design problems in the

vast exploration design space enabled by additive manufacturing. Chapter 3 introduced the

Fluoride-Salt-Cooled High-Temperature Reactor (FHR) benchmark with the AHTR design

and highlighted its benefits, such as passive safety behavior with negative temperature co-

efficients. Chapter 4 introduced the Reactor evOLutionary aLgorithm Optimizer (ROLLO)

software package, which applies evolutionary algorithm optimization techniques to nuclear

reactor design. In Chapter 5, I successfully applied ROLLO to optimize the TRISO packing

fraction distribution in an AHTR slab and demonstrated the neutron transport energy and

spatial homogenizations for generating group constants for Moltres.

Based on the preliminary work conducted, this chapter proposes future simulations

categorized into two groups: AHTR development and ROLLO optimization. The proposed

work aims to address AHTR modeling challenges further and demonstrate using ROLLO

for multi-objective AHTR optimization of arbitrary geometries and fuel distribution. For

AHTR development, I propose the following simulations:

• AHTR 3D full core neutronics OpenMC simulation

• AHTR fuel slab and one-third fuel assembly multiphysics Moltres simulation
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For ROLLO optimization, I propose the following ROLLO simulations:

• AHTR slab geometry optimization to maximize keff , minimize power peaking factor

(PPF ), and maximize heat transfer (Q̇) by varying TRISO x-axis distribution and

FLiBe channel shape using OpenMC

• AHTR one-third fuel assembly optimization to maximize keff , minimize power peaking

factor, and maximize heat transfer by varying TRISO x-y axis distribution and FLiBe

channel shape using OpenMC

The proposed AHTR simulations contributes to the OECD-NEA FHR benchmark,

which aims to understand the technical challenges and validate the available neutron trans-

port and thermal-hydraulics software for the AHTR design. Previous efforts toward nuclear

reactor optimization, focused on optimizing classical reactor parameters such as radius of

fuel pellet and clad, enrichment of fuel, pin pitch, etc. The promise of cheaper and faster

manufacturing of reactor components with additive manufacturing frees complex reactor ge-

ometries from previous manufacturing constraints and allows reactor designers to reexamine

reactor design optimization. Thus, the proposed multi-objective ROLLO simulations will

be the first to explore optimizing arbitrary reactor geometries and fuel distributions. The

results from these optimization problems will inform on how heterogenous fuel distributions

and arbitrary coolant channel shapes perform compared to classical distributions and shapes

for the AHTR design. These optimization problems will also demonstrate ROLLO’s capabil-

ities for multi-objective reactor design optimization, and ROLLO’s open-source availability

will enable other reactor designers to utilize the tool as well.

6.1 AHTR Model Development

The FHR benchmark introduced in Chapter 3 is an ongoing NEA project to assess the

modeling and simulation capabilities for the AHTR. Benchmark participants, including the
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UIUC team, contributed Phases I-A and I-B (2D assembly steady-state and depletion) so

far. The upcoming phases consist of 3D neutronics models and multiphysics models. Thus,

to support the FHR benchmark, the proposed work will complete the benchmark’s Phase

I-C. In preparation for the later multiphysics benchmark phases, the proposed work will

utilize Moltres to model AHTR multiphysics.

6.1.1 FHR Benchmark Phase I-C

The FHR benchmark’s Phase I-C extends the 2D assembly model from Phases I-A and I-B

into a 3D assembly model. The benchmark organizers will release the Phase I-C detailed

specifications and required results in June 2021.

6.1.2 AHTR Multiphysics Model

Setting up a Moltres multiphysics simulation requires the user to provide group constant

data from a neutron transport solver, such as OpenMC. Moltres neutronics calculations use

the following group constants: [50, 59]:

Σf
g : macroscopic fission cross section in group g

Σr
g: macroscopic removal cross section in group g

Σs
g′→g: macroscopic scattering cross section from group g’ to g

Dg: diffusion coefficient of neutrons in group g

εg: average fission energy per fission by a neutron from group g

ν: average neutron yield per fission by a neutron from group g

1

v
: inverse neutron speed in group g

λi: decay constant of delayed neutron precursor (DNP) group i

βeff : effective delayed neutron fraction.
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A Python script from the Moltres Github repository [49] extracts group constants from the

neutron transport solver’s output files. The Python script currently enables group constant

extraction from Serpent [46] and SCALE [10] output files. I used OpenMC to model the

AHTR neutronics for the FHR benchmark; thus, I will add the capability to extract group

constants from OpenMC output files to the Moltres Python group constants extraction

script.

Section 5.2 demonstrated that the multigroup neutronics simulation with four-group

energy and spatial homogenization of the AHTR fuel slab generated a keff within uncertainty

of the continuous energy and space neutronics simulation. I will utilize these homogenizations

to create group constants for the Moltres AHTR fuel slab simulation. I will then set up

a mesh for the AHTR fuel slab, run a Moltres simulation, and verify Moltres’ ability to

reproduce the following key neutronics parameters:

• keff (effective multiplication factor)

• reactivity coefficients: βeff , αD (doppler coefficient), αT,F liBe (FLiBe temperature co-

efficient), and αM (moderator temperature coefficient)

• Neutron energy spectrum

• φ1(x⃗, y⃗), φ2(x⃗, y⃗), and φ3(x⃗, y⃗) (neutron flux distribution in four coarse energy groups).

Once verified, I will run a steady-state Moltres multiphysics simulation to determine the

maximum temperature in the fuel slab at steady-state.

With information gleaned from the Moltres AHTR fuel slab simulation, I will test out

energy and spatial homogenization for generating group constants for a one-third AHTR fuel

assembly model. Then, I will proceed to set up the one-third AHTR fuel assembly model

simulation, verify its key neutronics parameters, and finally, run a steady-state Moltres

simulation.
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6.2 ROLLO Optimization

Section 5.1 concluded that the AHTR slab optimization problem should be further developed

by considering other objectives such as maximizing heat transfer and minimizing power

peaking factor. In the proposed work, I will explore each objective separately and then

together. Table 6.1 describes each objective and how I will quantify each objective. I will

Table 6.1: Reactor evOLutionary aLgorithm Optimizer (ROLLO) optimization problem
objectives with their quantification descriptions.

Objective Quantification

Best neutronics Maximize keff

Maximize heat transfer Maximize φtotal in areas along FLiBe coolant

Minimize power peaking factor Minimize Phigh − Plow

vary the following slab parameters to meet the described problem objectives:

• TRISO particle packing fraction distribution ρTRISO(r⃗)

• FLiBe coolant channel shape

I will conduct these optimizations for the straightened AHTR fuel slab geometry (as seen in

Figure 5.1) and for one diamond-shaped sector (as seen in Figure 3.2) with x-y axis periodic

and z axis reflective boundary conditions. Table 6.2 outlines the proposed simulations’

details. I will use the optimal hyperparameters derived in Section 5.1.2 for the proposed

simulations. Ideally, a new hyperparameter search should be conducted for each simulation

to find the best hyperparameter set for each unique problem; however, the computational

expense for conducting 11 hyperparameter searches is impractical. Due to the problem

similarity, the hyperparameters can remain unchanged. Table 6.3 summarizes the optimal

hyperparameters.

I will extend the ROLLO simulations proposed in Table 6.2 to include Moltres evalua-

tions if the proposed AHTR multiphysics Moltres simulations (Section 6.1.2) find approxi-

mations and assumptions that maintain accuracy while keeping acceptable Moltres runtimes.

88



Table 6.2: Proposed Reactor evOLutionary aLgorithm Optimizer (ROLLO) simulations
for optimizing Advanced High Temperature Reactor (AHTR) fuel assembly. Simulations
explore two geometries: straightened AHTR fuel slab and AHTR’s diamond-shaped
section, containing six fuel slabs. Q̇: Heat transfer, PPF : Power Peaking Factor,
ρTRISO(r⃗): TRISO particle distribution

Simulation AHTR Geometry Objectives Varying Parameters

1 Single fuel slab • max(keff ) • ρTRISO(r⃗)
2 Single fuel slab • max(Q̇) • ρTRISO(r⃗)
3 Single fuel slab • min(PPF ) • ρTRISO(r⃗)
4 Single fuel slab • max(keff ) • FLiBe channel shape

5 Single fuel slab • max(Q̇) • FLiBe channel shape

6 Single fuel slab • min(PPF ) • FLiBe channel shape

7 Single fuel slab • max(keff ) • ρTRISO(r⃗)
• max(Q̇)

• min(PPF )

8 Single fuel slab • max(keff ) • FLiBe channel shape

• max(Q̇)

• min(PPF )

9 Single fuel slab • max(keff ) • ρTRISO(r⃗)
• max(Q̇) • FLiBe channel shape

• min(PPF )

10 Diamond section with six fuel slabs • max(keff ) • ρTRISO(r⃗)
• max(Q̇)

• min(PPF )

11 Diamond section with six fuel slabs • max(keff ) • FLiBe channel shape

• max(Q̇)

• min(PPF )

12 Diamond section with six fuel slabs • max(keff ) • ρTRISO(r⃗)
• max(Q̇) • FLiBe channel shape

• min(PPF )
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Table 6.3: Hyperparameter values for the best hyperparameter set calculated in Section
5.1.2.

Hyperparameters Values

Population size 60

Generations 10

Mutation probability 0.23

Mating probability 0.46

Selection operator selTournament

Selection individuals 15

Selection tournament size 5

Mutation operator mutPolynomialBounded

Mating operator cxBlend

6.3 Conclusion

Breakthroughs in metal component additive manufacturing fabrication have expedited the

development of methods for nuclear reactor component additive manufacturing. The promise

of cheaper and faster manufacturing of reactor components with additive manufacturing frees

complex reactor geometries from previous manufacturing constraints and allows reactor de-

signers to reexamine reactor design optimization. Therefore, I propose to explore the vast

design space enabled by additive manufacturing with the evolutionary algorithm optimiza-

tion technique to find global optima in multi-objective design problems, such as nuclear

reactor optimization.

In the preliminary work, I designed the ROLLO Python package that applies evolution-

ary algorithm optimization techniques to nuclear reactor design using the DEAP Python

module, OpenMC, and Moltres. ROLLO seeks to enable reactor designers to utilize robust

evolutionary algorithm optimization methods without going through the cumbersome pro-

cess of setting up a genetic algorithm framework. The many advantageous features of AHTRs

led me to choose to apply the evolutionary algorithm optimization methods to this reactor

type. I participated in Phase I-A and I-B of the Organisation for Economic Co-operation

and Development (OECD) NEA’s FHR benchmarking exercise. I also applied ROLLO to

a single objective function problem: maximize keff in the AHTR fuel slab by varying the
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TRISO particle packing fraction distribution. This problem demonstrated the effectiveness

and robustness of genetic algorithms at optimizing reactor parameters for an objective func-

tion. However, many other objectives should also be considered, such as maximizing heat

transfer and minimizing power peaking factor.

Therefore, I propose to further explore using ROLLO for multi-objective AHTR op-

timization of arbitrary geometries and fuel distribution. Optimization objectives include

maximizing keff , maximizing heat transfer, and minimizing power peaking factor. I also

propose to further address AHTR modeling challenges by completing the FHR benchmark

Phase I-C and to set up Moltres simulations to model AHTR multiphysics.
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