Proof of the exercise 25.1-4

LI Junkang

September 6, 2016

Theorem 1. The matrix multiplication $(X, Y)_{i j}=\min _{k}\left(x_{i k}+y_{k j}\right)$ defined by EXTEND-SHORTEST-PATHS is associative.

Proof. Let X, Y, Z be three $n \times n$ matrixs, we shall prove that $((X, Y), Z)=$ $(X,(Y, Z))$.

For a given pair of i and j, since $(X, Y)_{i j}=\min _{k}\left(x_{i k}+y_{k j}\right)$, we have

$$
\begin{aligned}
((X, Y), Z)_{i j} & =\min _{k^{\prime}}\left(\min _{k}\left(x_{i k}+y_{k k^{\prime}}\right)+z_{k^{\prime} j}\right) \\
& =\min _{k^{\prime}} \min _{k}\left(x_{i k}+y_{k k^{\prime}}+z_{k^{\prime} j}\right)
\end{aligned}
$$

The last equality is due to the fact that $z_{k^{\prime} j}$ does not depend on k. On the other hand, we have $(Y, Z)_{i j}=\min _{k}\left(y_{i k}+z_{k j}\right)$ and

$$
\begin{aligned}
(X,(Y, Z))_{i j} & =\min _{k^{\prime}}\left(x_{i k^{\prime}}+\min _{k}\left(y_{k^{\prime} k}+z_{k j}\right)\right) \\
& =\min _{k^{\prime}} \min _{k}\left(x_{i k^{\prime}}+y_{k^{\prime} k}+z_{k j}\right) .
\end{aligned}
$$

By an exchange of variables $k \leftrightarrow k^{\prime}$, we can conclude that $((X, Y), Z)_{i j}=$ $(X,(Y, Z))_{i j}$. Since the equality is true for any pair of i and j, we have proven that $((X, Y), Z)=(X,(Y, Z))$. Thus the matrix multiplication is associative.

