Proof of the exercise 25.1-4

LI Junkang

September 6, 2016

Theorem 1. The matrix multiplication $(X, Y)_{ij} = \min_k(x_{ik} + y_{kj})$ defined by EXTEND-SHORTEST-PATHS is associative.

Proof. Let X, Y, Z be three $n \times n$ matrixs, we shall prove that ((X, Y), Z) = (X, (Y, Z)).

For a given pair of i and j, since $(X, Y)_{ij} = \min_k (x_{ik} + y_{kj})$, we have

$$((X,Y),Z)_{ij} = \min_{k'} \left(\min_{k} (x_{ik} + y_{kk'}) + z_{k'j} \right)$$
$$= \min_{k'} \min_{k} (x_{ik} + y_{kk'} + z_{k'j}).$$

The last equality is due to the fact that $z_{k'j}$ does not depend on k. On the other hand, we have $(Y, Z)_{ij} = \min_k (y_{ik} + z_{kj})$ and

$$(X, (Y, Z))_{ij} = \min_{k'} \left(x_{ik'} + \min_{k} (y_{k'k} + z_{kj}) \right)$$
$$= \min_{k'} \min_{k} (x_{ik'} + y_{k'k} + z_{kj}).$$

By an exchange of variables $k \leftrightarrow k'$, we can conclude that $((X,Y),Z)_{ij} = (X,(Y,Z))_{ij}$. Since the equality is true for any pair of i and j, we have proven that ((X,Y),Z) = (X,(Y,Z)). Thus the matrix multiplication is associative.