Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
200 lines (176 sloc) 10.2 KB
"""Transformer to parse and augment US zipcodes with info from zipcode database."""
from h2oaicore.transformer_utils import CustomTransformer
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning
import datatable as dt
import numpy as np
_global_modules_needed_by_name = ['pycodestyle==2.5.0', 'uszipcode==0.2.2']
from uszipcode import SearchEngine
class USZipcodeDBTransformer(CustomTransformer):
_allow_transform_to_modify_output_feature_names = True
_numeric_output = True
@staticmethod
def do_acceptance_test():
return True
@staticmethod
def get_default_properties():
return dict(col_type="categorical", min_cols=1, max_cols=1, relative_importance=1)
@staticmethod
def to_dict_values(data, name):
result = dict()
data = data[name]
if data is None or len(data) == 0:
return result
for k in range(len(data)):
key = data[k]['key']
values = data[k]['values']
names = [d['x'] for d in values]
if len(data) > 1:
keys = [name + '_' + key + '_' + str(y) for y in names]
else:
keys = [name + '_' + str(y) for y in names]
vals = [d['y'] for d in values]
result = {**result, **dict(zip(keys, vals))}
return result
@staticmethod
def replaceBannedCharacters(str):
return str.replace('<', ' less ').replace('[', '(').replace(']', ')')
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.transformer_name = self.__class__.__name__
if self.transformer_name.endswith("Transformer"):
self.transformer_name = self.transformer_name[:-len("Transformer")]
search = SearchEngine(simple_zipcode=False)
def get_zipcode_features(self, value):
if value is None or not value:
return self.get_zipcode_null_features()
elif len(value) < 3:
# raise ValueError("Value '{}' too short for zip code.".format(value))
return self.get_zipcode_null_features()
elif value[:5] in ['000', '0000', '00000', ' ', ' ', ' ']:
return self.get_zipcode_null_features()
else:
lookup_value = value[:5] # US zipcode only
zip_data = self.search.by_zipcode(lookup_value)
if (zip_data.zipcode_type == None):
return self.get_zipcode_null_features()
# raise ValueError("Value '{}' not a zipcode.".format(value))
else:
zip_dict = zip_data.to_dict()
result = { # 'zip_key': value,
# 'zipcode_type': zip_dict['zipcode_type'],
# 'major_city': zip_dict['major_city'],
# 'post_office_city': zip_dict['post_office_city'],
# 'common_city_list': zip_dict['common_city_list'][0],
# 'county': zip_dict['county'],
# 'state': zip_dict['state'],
'lat': zip_dict['lat'],
'lng': zip_dict['lng'],
# 'timezone': zip_dict['timezone'],
'radius_in_miles': zip_dict['radius_in_miles'],
# 'area_code_list': ['469', '972'],
'population': zip_dict['population'],
'population_density': zip_dict['population_density'],
'land_area_in_sqmi': zip_dict['land_area_in_sqmi'],
'water_area_in_sqmi': zip_dict['water_area_in_sqmi'],
'housing_units': zip_dict['housing_units'],
'occupied_housing_units': zip_dict['occupied_housing_units'],
'median_home_value': zip_dict['median_home_value'],
'median_household_income': zip_dict['median_household_income'],
'bounds_west': zip_dict['bounds_west'],
'bounds_east': zip_dict['bounds_east'],
'bounds_north': zip_dict['bounds_north'],
'bounds_south': zip_dict['bounds_south'],
# 'zipcode': zip_dict['zipcode']
}
return {**result,
**self.to_dict_values(zip_dict, 'population_by_year'),
**self.to_dict_values(zip_dict, 'population_by_age'),
**self.to_dict_values(zip_dict, 'population_by_gender'),
**self.to_dict_values(zip_dict, 'population_by_race'),
**self.to_dict_values(zip_dict, 'head_of_household_by_age'),
**self.to_dict_values(zip_dict, 'families_vs_singles'),
**self.to_dict_values(zip_dict, 'households_with_kids'),
**self.to_dict_values(zip_dict, 'children_by_age'),
**self.to_dict_values(zip_dict, 'housing_type'),
**self.to_dict_values(zip_dict, 'year_housing_was_built'),
**self.to_dict_values(zip_dict, 'housing_occupancy'),
**self.to_dict_values(zip_dict, 'vancancy_reason'),
**self.to_dict_values(zip_dict, 'owner_occupied_home_values'),
**self.to_dict_values(zip_dict, 'rental_properties_by_number_of_rooms'),
**self.to_dict_values(zip_dict, 'monthly_rent_including_utilities_studio_apt'),
**self.to_dict_values(zip_dict, 'monthly_rent_including_utilities_1_b'),
**self.to_dict_values(zip_dict, 'monthly_rent_including_utilities_2_b'),
**self.to_dict_values(zip_dict, 'monthly_rent_including_utilities_3plus_b'),
**self.to_dict_values(zip_dict, 'employment_status'),
**self.to_dict_values(zip_dict, 'average_household_income_over_time'),
**self.to_dict_values(zip_dict, 'household_income'),
**self.to_dict_values(zip_dict, 'annual_individual_earnings'),
**self.to_dict_values(zip_dict,
'sources_of_household_income____percent_of_households_receiving_income'),
**self.to_dict_values(zip_dict,
'sources_of_household_income____average_income_per_household_by_income_source'),
**self.to_dict_values(zip_dict,
'household_investment_income____percent_of_households_receiving_investment_income'),
**self.to_dict_values(zip_dict,
'household_investment_income____average_income_per_household_by_income_source'),
**self.to_dict_values(zip_dict,
'household_retirement_income____percent_of_households_receiving_retirement_incom'),
**self.to_dict_values(zip_dict,
'household_retirement_income____average_income_per_household_by_income_source'),
**self.to_dict_values(zip_dict, 'source_of_earnings'),
**self.to_dict_values(zip_dict, 'means_of_transportation_to_work_for_workers_16_and_over'),
**self.to_dict_values(zip_dict, 'travel_time_to_work_in_minutes'),
**self.to_dict_values(zip_dict, 'educational_attainment_for_population_25_and_over'),
**self.to_dict_values(zip_dict, 'school_enrollment_age_3_to_17')
}
def get_zipcode_null_features(self):
null_dict = self.get_zipcode_features('79936')
for key, value in null_dict.items():
null_dict[key] = None
return null_dict
def get_zipcode_null_result(self, X, original_zip_column_name):
X[:, 'zip_key'] = '79936'
zip_list = ['79936']
zip_features = [self.get_zipcode_null_features() for x in zip_list]
X_g = dt.Frame({"zip_key": zip_list})
X_g.cbind(dt.Frame(zip_features))
X_g.key = 'zip_key'
X_result = X[:, :, dt.join(X_g)]
self._output_feature_names = ["{}:{}.{}".format(self.transformer_name,
original_zip_column_name, self.replaceBannedCharacters(f)) for f
in list(X_result[:, 1:].names)]
self._feature_desc = ["Property '{}' of zipcode column ['{}'] from US zipcode database (recipe '{}')".format(
f, original_zip_column_name, self.transformer_name) for f in list(X_result[:, 1:].names)]
return X_result[:, 1:]
def fit_transform(self, X: dt.Frame, y: np.array = None):
return self.transform(X)
def transform(self, X: dt.Frame):
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir)
X = dt.Frame(X)
original_zip_column_name = X.names[0]
X = X[:, dt.str64(dt.f[0])]
X.names = ['zip_key']
try:
zip_list = dt.unique(X[~dt.isna(dt.f.zip_key), 0]).to_list()[0] + ['79936']
zip_features = [self.get_zipcode_features(x) for x in zip_list]
X_g = dt.Frame({"zip_key": zip_list})
X_g.cbind(dt.Frame(zip_features))
X_g.key = 'zip_key'
X_result = X[:, :, dt.join(X_g)]
self._output_feature_names = ["{}:{}.{}".format(self.transformer_name,
original_zip_column_name, self.replaceBannedCharacters(f))
for f in list(X_result[:, 1:].names)]
self._feature_desc = [
"Property '{}' of zipcode column ['{}'] from US zipcode database (recipe '{}')".format(
f, original_zip_column_name, self.transformer_name) for f in list(X_result[:, 1:].names)]
return X_result[:, 1:]
except ValueError as ve:
loggerinfo(logger, "Column '{}' is not a zipcode: {}".format(original_zip_column_name, str(ve)))
return self.get_zipcode_null_result(X, original_zip_column_name)
except TypeError as te:
loggerwarning(logger, "Column '{}' triggered TypeError: {}".format(original_zip_column_name, str(te)))
raise te
You can’t perform that action at this time.