
1. Introduction 
A generalized additive model (GAM) is a GLM in which the linear predictor depends linearly on 
predictor variables and smooth functions of predictor variables.  We will follow closely the 
implementation in [1].  Another good resource for GAM can be found in [2] 
 

2. A Simple Linear Model 
Consider 𝑛 observations, 𝑥𝑖 with response variable 𝑦𝑖 where 𝑦𝑖 is an observation on random 
variable 𝑌𝑖.  Let 𝑢𝑖 ≡ E(𝑌𝑖).  Assuming a linear relationship between the predictor variables and 
the response, the following relationship exists between 𝑥𝑖  and 𝑌𝑖 as: 
 

𝑌𝑖 = 𝑢𝑖 + 𝜖𝑖  where 𝑢𝑖 = 𝛽1𝑥𝑖 + 𝛽0  
 
and 𝛽0, 𝛽1 are unknown parameters, 𝜖𝑖 are i.i.d zero mean variables with variances 𝛿2.  We 

already know how to estimate 𝛽0, 𝛽1 using GLM.  The matrix 𝑋 that contains [
𝑥1 1
𝑥2 1
… …

] is 

referred to as the model matrix. 
 

3. A Simple Linear GAM Model 
Using the same observations as in section 2, a linear GAM model can be: 
 

𝑌𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 where 𝑓(𝑥𝑖) = ∑ 𝑏𝑗(𝑥𝑖)
𝑘
𝑗=1 𝛽𝑗+𝛽0 

 
Again, 𝛽 = [𝛽0, 𝛽1, … , 𝑏𝑘] is an unknown parameter vector which can also be estimated using 
GLM.  This can be done by using [𝑏1(𝑥𝑖), 𝑏2(𝑥𝑖),… , 𝑏𝐾(𝑥𝑖)] as the predictor variables instead of 
𝑥𝑖.  The model matrix 𝑋 in this case will contain  

[
𝑏1(𝑥1) 𝑏2(𝑥1)… 1

𝑏1(𝑥2) 𝑏2(𝑥2)… 1
… … …

] 

Here, we are basically estimating 𝑓(𝑥𝑖) using a set of basis functions {𝑏1(𝑥𝑖), 𝑏2(𝑥𝑖),… , 𝑏𝐾(𝑥𝑖)} 
where 𝑘 is the number of basis functions used.  Note that, for each predictor variables, we get 
to decide the types of basis functions and the number of basis functions that we would like to 
use to best generate a GAM. 
 

4. A Simple Piecewise Linear Basis Function 
To understand the role of basis functions, we are going to use a linear tent function. 
 
Using piecewise basis functions, we need to pay attention to the locations of the function’s 
derivative discontinuities, that is by the locations at which the linear pieces join up.  These 
locations are referred to as the knots and denoted by {𝑥𝑖

∗: 𝑗 = 1,… ,𝐾} and suppose that the 
knots are sorted meaning that 𝑥𝑖

∗ > 𝑥𝑖−1
∗ .  Then for 𝑗 = 2,… ,𝐾 − 1, we have basis function 

𝑏𝑗(𝑥) defined as 

 



𝑏𝑗(𝑥) =

{
 
 

 
 
(𝑥 − 𝑥𝑗−1

∗ )
(𝑥𝑗

∗ − 𝑥𝑗−1
∗ )⁄ , 𝑥𝑗−1

∗ ≤ 𝑥 ≤ 𝑥𝑗
∗

(𝑥𝑗+1
∗ − 𝑥)

(𝑥𝑗+1
∗ − 𝑥𝑗

∗)⁄ , 𝑥𝑗
∗ < 𝑥 ≤ 𝑥𝑗+1

∗

0,                        otherwise

. 

 
For 𝑘 = 1, we have  

𝑏1(𝑥) = {
(𝑥2

∗ − 𝑥)
(𝑥2

∗ − 𝑥1
∗)⁄ , 𝑥 ≤ 𝑥2

∗

0,                    otherwise
. 

For 𝑘 = 𝐾, we have 

𝑏𝐾(𝑥) = {
(𝑥−𝑥𝐾−1

∗ )
(𝑥𝐾

∗ − 𝑥𝐾−1
∗ )⁄ , 𝑥 > 𝑥𝐾−1

∗

0,                    otherwise
. 

 
 

5. Using Piecewise Tent Function to Approximate One Predictor Variable 
To illustrate how we can use the piecewise tent functions to approximate a predictor variable, 
let’s use the following example for a predictor: 

• Predictor value goes from 0.0 to 1.0; 

• Set 𝐾 = 10 to use 10 piecewise tent functions; 

• The knots are located at 0, 1/9, 2/9, 3/9, …, 8/9, 1. 
 
The basis function values are plotted in Figure 1.  Note that there are 10 basis functions.  The 
basis function values overlap with its neighbors from the left and the right except for the first 
and the last basis functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Piecewise tent basis functions 

 



For simplicity, let’s assume that we only have 21 predictor values uniformly spreading over the 
range from 0 to 1 with values 0, 0.05, 0.1, 0.15, …, 1.0.  The next task is to express each 𝑥𝑗 using 

the set of 10 basis function values.  This means that for every value of 𝑥𝑗, we will obtain 10 

values, each one corresponding to the contribution from one of the basis function.   
 
For the predictor value at 0, the only basis function that contribute to its value is the first one.  
All the other basis function contributes 0 to the predictor value.  Hence, for 𝑥𝑗 = 0, the vector 

corresponding to all basis functions will have the following values: {1,0,0,0,0,0,0,0,0,0} because 
the first basis function value is 1 at 𝑥𝑗 = 0 (substitute 𝑥 = 0 to the first basis function 𝑏1(𝑥) =

(
1

9
− 𝑥)

(
2

9
−
1

9
)

⁄ ).   

 
For predictor value 0.05, only the first and second basis functions contribute to its value while 
the other basis functions are 0 at 0.05.  The value of the first basis function is 0.55 (substitute 

𝑥 = 0.05 to the first basis function 𝑏1(𝑥) =
(
1

9
− 𝑥)

(
2

9
−
1

9
)

⁄ ).  The value of the second basis 

function at 0.05 is 0.45 (substitute 𝑥 = 0.05 to the second basis function 𝑏2(𝑥) =
𝑥
(
1

9
)⁄ ).  

Hence, for  𝑥𝑗 = 0.05, the vector corresponding to all basis function is 
{0.55,0.45,0,0,0,0,0,0,0,0}. 
 
I have calculated the expanded basis function vector for all predictor values and they can be 
found in following table. 
 

xj b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

0 1 0 0 0 0 0 0 0 0 0 

0.05 0.55 0.45 0 0 0 0 0 0 0 0 

0.1 0.1 0.9 0 0 0 0 0 0 0 0 

0.15 0 0.65 0.35 0 0 0 0 0 0 0 

0.2 0 0.2 0.8 0 0 0 0 0 0 0 

0.25 0 0 0.75 0.25 0 0 0 0 0 0 

0.3 0 0 0.3 0.7 0 0 0 0 0 0 

0.35 0 0 0 0.85 0.15 0 0 0 0 0 

0.4 0 0 0 0.4 0.6 0 0 0 0 0 

0.45 0 0 0 0 0.95 0.05 0 0 0 0 

0.5 0 0 0 0 0.5 0.5 0 0 0 0 

0.55 0 0 0 0 0.05 0.95 0 0 0 0 



0.6 0 0 0 0 0 0.6 0.4 0 0 0 

0.65 0 0 0 0 0 0.15 0.85 0 0 0 

0.7 0 0 0 0 0 0 0.7 0.3 0 0 

0.75 0 0 0 0 0 0 0.25 0.75 0 0 

0.8 0 0 0 0 0 0 0 0.8 0.2 0 

0.85 0 0 0 0 0 0 0 0.35 0.65 0 

0.9 0 0 0 0 0 0 0 0 0.9 0.1 

0.95 0 0 0 0 0 0 0 0 0.45 0.55 

1 0 0 0 0 0 0 0 0 0 1 
 
 

6. Spline functions 
It has been proven in [2] that the natural cubic splines are the smoothest interpolators.  For a 
set of points {𝑥𝑖, 𝑦𝑖: 𝑖 = 1,… , 𝑛} where 𝑥𝑖 ≤ 𝑥𝑖+1.  The natural cubic spline, 𝑔(𝑥), interpolating 
these points, is a function made up of sections of cubic polynomial, one for each [𝑥𝑖 , 𝑥𝑖+1].  
They are joined up together so that the whole spline is continuous to second derivative, while 
𝑔(𝑥𝑖) = 𝑦𝑖 and 𝑔′′(𝑥1) = 𝑔

′′(𝑥𝑛) = 0.  To ensure smooth function, we can add a penalty 

function 𝐽(𝑓) = ∫ (𝑓′′(𝑥))2𝑑𝑥
𝑥𝑛
𝑥1

 to the actual objective function that we are trying to optimize.  

The rationality behind this penalty is that the second derivative of a function measures the 
gradient change.  For functions that wriggles a lot, it will have a higher second derivative 
magnitude.  For a straight line which does not wriggle at all, the second derivative is zero. 
 

6.1. Cubic regression splines 
Following the implementation in [1], we have implemented the cubic regression splines for a 
single predictor variable.  This approach defines the splines in terms of its values at the knots.  
Next, we define a cubic spline function, 𝑓(𝑥), with 𝑘 knots, 𝑥1, 𝑥2, … , 𝑥𝑘.  Let 𝛽𝑗 = 𝑓(𝑥𝑗) and 

𝛿𝑗 = 𝑓
′′(𝑥𝑗) =

𝑑2𝑓(𝑥𝑗)

𝑑2𝑥
.   The splines can be written as 

𝑓(𝑥) = 𝑎𝑗
−(𝑥)𝛽𝑗 + 𝑎𝑗

+(𝑥)𝛽𝑗+1 + 𝑐𝑗
−(𝑥)𝛿𝑗 + 𝑐𝑗

+(𝑥)𝛿𝑗+1 for 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1 

where 

• 𝑎𝑗
−(𝑥) = (𝑥𝑗+1 − 𝑥)/ℎ𝑗, 𝑎𝑗

+(𝑥) = (𝑥 − 𝑥𝑗)/ℎ𝑗 

• 𝑐𝑗
−(𝑥) = [

(𝑥𝑗+1−𝑥)
3

ℎ𝑗
− ℎ𝑗(𝑥𝑗+1 − 𝑥)] /6, 𝑐𝑗

+(𝑥) = [
(𝑥−𝑥𝑗)

3

ℎ𝑗
− ℎ𝑗(𝑥 − 𝑥𝑗)] /6 

Note that in order to ensure smooth fitting functions at the knots, the spline must be 
continuous to second derivative, at the 𝑥𝑗, and should have zero second derivative at 𝑥1 and 𝑥𝑘.  

It can be shown that 𝐵𝛿− = 𝐷𝛽 (I have proved this and will add it to Appendix later) where  

• 𝛿− = (𝛿2, 𝛿3, … , 𝛿𝑘−1)
𝑇 since 𝛿1 = 𝛿𝑘 = 0; 



• 𝐵 =

{
 
 

 
 𝐵𝑖,𝑖 =

(ℎ𝑖+ℎ𝑖+1)

3
, 𝑖 = 1…𝑘 − 2

𝐵𝑖,𝑖+1 =
ℎ𝑗+1

6
, 𝑖 = 1…𝑘 − 3

𝐵𝑖+1,𝑖 =
ℎ𝑗+1

6
, 𝑖 = 1…𝑘 − 3

; 

• 𝐷 = {

𝐷𝑖,𝑖 =
1

ℎ𝑖
, 𝑖 = 1…𝑘 − 2

𝐷𝑖,𝑖+1 = 1/ℎ𝑖 − 1/ℎ𝑗+1, 𝑖 = 1… 𝑘 − 2

𝐷𝑖,𝑖+2 = 1/ℎ𝑗+1, 𝑖 = 1…𝑘 − 2

; 

 
 

Let 𝐵𝑖𝑛𝑣𝐷 =  𝐵−1𝐷 and let 𝐹 = [
0

𝐵𝑖𝑛𝑣𝐷
0

], the spline can be rewritten entirely in terms of 𝛽 as  

𝑓(𝑥) = 𝑎𝑗
−(𝑥)𝛽𝑗 + 𝑎𝑗

+(𝑥)𝛽𝑗+1 + 𝑐𝑗
−(𝑥)𝐹𝑗𝛽 + 𝑐𝑗

+(𝑥)𝐹𝑗+1𝛽 for 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1 

which can be re-written as 𝑓(𝑥𝑖) = ∑ 𝑏𝑗(𝑥𝑖)
𝑘
𝑗=1 𝛽𝑗+𝛽0 where 𝑏𝑗(𝑥𝑖) are the basis functions and 

𝛽0, 𝛽1, … , 𝛽𝑘  are the unknown parameters which can be estimated using GLM.  In addition, the 
penalty term added to the final objective function can be derived to be:  

∫ (𝑓′′(𝑥))2𝑑𝑥

𝑥𝑘

𝑥1

= 𝛽𝑇𝐷𝑇𝐵−1𝐷𝛽 = 𝛽𝑇𝐷𝑇𝐵𝑖𝑛𝑣𝐷𝛽 = 𝛽𝑇𝑆𝑜𝑟𝑖𝑔𝛽 

where 𝑆𝑜𝑟𝑖𝑔 = 𝐷𝑇𝐵−1𝐷.  However, in R, more scaling is performed on 𝑆𝑜𝑟𝑖𝑔 as follows: 

- 𝑚𝑎𝑋𝑋 = max (𝑎𝑏𝑠(𝑟𝑜𝑤 𝑠𝑢𝑚 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑋 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑐𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑜𝑛𝑒𝑠); 

- 𝑚𝑎𝑆 = max (𝑎𝑏𝑠(𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆𝑜𝑟𝑖𝑔)) /𝑚𝑎𝑋𝑋; 

- final penalty matrix 𝑆 = 𝑆𝑜𝑟𝑖𝑔/ 𝑚𝑎𝑆. 

 
For linear regression models, the final objective function to minimize is  

∑(𝑦𝑖 − (∑𝑏𝑗(𝑥𝑖)

𝑘

𝑗=1

𝛽𝑗 + 𝛽0))

2
𝑛

𝑖=1

+ 𝜆𝛽𝑇𝑆𝛽 

Note that 𝜆 will be another parameter for the user to choose using gridsearch.  In future 
release, we may use cross-validation to automatically choose 𝜆. 
 
Hence, at this point, we can call our GLM.  However, we still need to add the contribution of the 
penalty term to the gradient and hessian calculation. 
 

6.2.  Future Spline Functions 
 

7. General GAM  
In a general GAM, using the GLM jargon, the link function can be constructed using a mixture of 
predictor variables and smooth functions of predictor variables as follows:  



𝑔(𝑢𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑚𝑥𝑚𝑖 +∑𝑏𝑗
1(𝑥𝑙𝑖)𝛽𝑚+𝑗 +⋯+∑𝑏𝑗

𝑞(𝑥𝑙𝑖)𝛽𝑚+𝑘1+⋯+𝑘𝑞−1+𝑗

𝑘𝑞

𝑗=1

𝑘1

𝑗=1

 

This is the GAM we implemented in H2O.  However, with multiple predictor variables in any 
form, we need to resolve the identifiability problems by adding identifiability constraints. 
 

7.1. Identifiability Constraints 
Consider GAM with multiple predictor smooth functions like the following: 

𝑦𝑖 = 𝛼 + 𝑓1(𝑥𝑖) + 𝑓2(𝑣𝑖) + 𝜖𝑖  
The model now contains more than one function introduces an identifiability problem: 𝑓1 and 
𝑓2 are each only estimable to within an additive constant.  This is due to the fact that 𝑓1(𝑥𝑖) +
𝑓2(𝑣𝑖) = (𝑓1(𝑥𝑖) + 𝐶) + (𝑓2(𝑣𝑖) − 𝐶).  Hence, identifiability constraints have to be imposed on 
the model before fitting to avoid the identifiability problem.  The following sum-to-zero 
constraints are implemented in H2O:  

∑𝑓𝑝(𝑥𝑖) = 0 = 1
𝑇

𝑛

𝑖=1

𝑓𝑝 

where 1 is a column vector of 1 and 𝑓𝑝 is the column vector containing 𝑓𝑝(𝑥1),… , 𝑓𝑝(𝑥𝑛).  To 

apply the sum-to-zero constraints, a Householder transform is used.  Refer to [1] for details.  
This transform is applied to each basis function of any predictor column we choose on its own. 
 

7.2. Sum-to-zero constraints implementation 
Let 𝑋 be the model matrix that contain the basis functions of one predictor variable, the sum-
to-zero constraints required that  

1𝑇𝑓𝑝 = 0 = 1
𝑇𝑋𝛽 

where 𝛽 contains the coefficients relating to the basis functions of that particular predictor 
column.  The idea is to create a 𝑘 𝑏𝑦 (𝑘 − 1) matrix 𝑍 such that 𝛽 = 𝑍𝛽𝑧, then 1𝑇𝑋𝛽 = 0 for 
any 𝛽𝑧.  To see how this works, let’s go through the following derivations: 

- With 𝑍, we are looking at 0 = 1𝑇𝑋𝛽 = 1𝑇𝑋𝑍𝛽𝑧;  

- Let 𝐶 = 1𝑇𝑋, then the QR decomposition of 𝐶𝑇 = 𝑈 [
𝑃
0
] where 𝐶𝑇 is of size 𝑘 × 1, 𝑈 is 

of size 𝑘 × 𝑘, 𝑃 is of size 1 × 1; 
- 𝑈 is an orthogonal matrix and let’s divide it into two parts as 𝑈 = [𝐷 𝑍] where 𝐷 is of 

size 𝑘 × 1 and 𝑍 is of size 𝑘 × (𝑘 − 1); 

- Substitute everything back to 1𝑇𝑋𝑍𝛽𝑧 = [𝑃𝑇 0] [
𝐷𝑇

𝑍𝑇
] 𝑍𝛽𝑧 = [𝑃𝑇 0] [

𝐷𝑇𝑍𝛽𝑧
𝑍𝑇𝑍𝛽𝑧

] =

𝑃𝑇𝐷𝑇𝑍𝛽𝑧 + 0𝑍
𝑇𝑍𝛽𝑧=0 since 𝐷𝑇𝑍 = 0. 

 
7.3. Generating the 𝑍 matrix 

One Householder reflection is used to generate the 𝑍 matrix.  To create the 𝑍 matrix, we need 
to calculate the QR decomposition of 𝐶𝑇 = 𝑋𝑇1.  Since 𝐶𝑇 is of size 𝑘 × 1, the application of 

one Householder reflection will generate 𝐻𝐶𝑇 = [
𝑅
0
] where 𝑅 is of size 1 × 1.  This implies that 

𝐻 = 𝑄𝑇 = 𝑄 since HouseHolder reflection matrix is symmetrical.  Hence computing 𝑋𝑍 is 
equivalent to computing 𝑋𝐻 and dropping the first column. 



 
7.4. Generating the HouseHolder reflection matrix 𝐻 

Let 𝑥̅ = 𝑋𝑇1 and 𝑥̅′ = [
𝛼‖𝑥̅‖
0

]  𝛼 = {
−1 𝑖𝑓 𝑥[0] > 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, then 𝐻 = (𝐼 − 2

𝑢𝑢𝑇

(𝑢𝑇𝑢)
) and 𝑢 = 𝑥̅ − 𝑥̅′.  

The 𝛼 is introduced for floating-point arithmetic. 
 

7.5. Estimation of GAM coefficients with identifiability constraints 
The following procedure is used to estimate the GAM coefficients: 

- Generating 𝑍 matrix for each predictor column that uses smooth functions; 
- Generate new model matrix for each predictor column smooth function as 𝑋𝑍 = 𝑋𝑍, 

new penalty function 𝛽𝑍
𝑇𝑍𝑇𝑆𝑍𝛽𝑍. 

- Call GLM using model matrix 𝑋𝑍, penalty function 𝛽𝑍
𝑇𝑍𝑇𝑆𝑍𝛽𝑍 to get coefficient 

estimates of 𝛽𝑍; 
- Convert 𝛽𝑍 to 𝛽 using 𝛽 = 𝑍𝛽𝑍 and performing scoring with 𝛽 and the original model 

matrix 𝑋. 
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