Permalink
Cannot retrieve contributors at this time
Fetching contributors…

//test_involute_curve(); | |
//test_gears(); | |
//demo_3d_gears(); | |
// Geometry Sources: | |
// http://www.cartertools.com/involute.html | |
// gears.py (inkscape extension: /usr/share/inkscape/extensions/gears.py) | |
// Usage: | |
// Diametral pitch: Number of teeth per unit length. | |
// Circular pitch: Length of the arc from one tooth to the next | |
// Clearance: Radial distance between top of tooth on one gear to bottom of gap on another. | |
module gear(number_of_teeth, | |
circular_pitch=false, diametral_pitch=false, | |
pressure_angle=20, clearance = 0) | |
{ | |
if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch"); | |
//Convert diametrial pitch to our native circular pitch | |
circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch); | |
// Pitch diameter: Diameter of pitch circle. | |
pitch_diameter = number_of_teeth * circular_pitch / 180; | |
pitch_radius = pitch_diameter/2; | |
// Base Circle | |
base_diameter = pitch_diameter*cos(pressure_angle); | |
base_radius = base_diameter/2; | |
// Diametrial pitch: Number of teeth per unit length. | |
pitch_diametrial = number_of_teeth / pitch_diameter; | |
// Addendum: Radial distance from pitch circle to outside circle. | |
addendum = 1/pitch_diametrial; | |
//Outer Circle | |
outer_radius = pitch_radius+addendum; | |
outer_diameter = outer_radius*2; | |
// Dedendum: Radial distance from pitch circle to root diameter | |
dedendum = addendum + clearance; | |
// Root diameter: Diameter of bottom of tooth spaces. | |
root_radius = pitch_radius-dedendum; | |
root_diameter = root_radius * 2; | |
half_thick_angle = 360 / (4 * number_of_teeth); | |
union() | |
{ | |
rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001); | |
for (i= [1:number_of_teeth]) | |
//for (i = [0]) | |
{ | |
rotate([0,0,i*360/number_of_teeth]) | |
{ | |
involute_gear_tooth( | |
pitch_radius = pitch_radius, | |
root_radius = root_radius, | |
base_radius = base_radius, | |
outer_radius = outer_radius, | |
half_thick_angle = half_thick_angle); | |
} | |
} | |
} | |
} | |
module involute_gear_tooth( | |
pitch_radius, | |
root_radius, | |
base_radius, | |
outer_radius, | |
half_thick_angle | |
) | |
{ | |
pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius ); | |
outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius ); | |
base1 = 0 - pitch_to_base_angle - half_thick_angle; | |
pitch1 = 0 - half_thick_angle; | |
outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle; | |
b1 = polar_to_cartesian([ base1, base_radius ]); | |
p1 = polar_to_cartesian([ pitch1, pitch_radius ]); | |
o1 = polar_to_cartesian([ outer1, outer_radius ]); | |
b2 = polar_to_cartesian([ -base1, base_radius ]); | |
p2 = polar_to_cartesian([ -pitch1, pitch_radius ]); | |
o2 = polar_to_cartesian([ -outer1, outer_radius ]); | |
// ( root_radius > base_radius variables ) | |
pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius ); | |
root1 = pitch1 - pitch_to_root_angle; | |
root2 = -pitch1 + pitch_to_root_angle; | |
r1_t = polar_to_cartesian([ root1, root_radius ]); | |
r2_t = polar_to_cartesian([ -root1, root_radius ]); | |
// ( else ) | |
r1_f = polar_to_cartesian([ base1, root_radius ]); | |
r2_f = polar_to_cartesian([ -base1, root_radius ]); | |
if (root_radius > base_radius) | |
{ | |
//echo("true"); | |
polygon( points = [ | |
r1_t,p1,o1,o2,p2,r2_t | |
], convexity = 3); | |
} | |
else | |
{ | |
polygon( points = [ | |
r1_f, b1,p1,o1,o2,p2,b2,r2_f | |
], convexity = 3); | |
} | |
} | |
// Mathematical Functions | |
//=============== | |
// Finds the angle of the involute about the base radius at the given distance (radius) from it's center. | |
//source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html | |
function involute_intersect_angle(base_radius, radius) = sqrt( pow(radius/base_radius,2) - 1); | |
// Polar coord [angle, radius] to cartesian coord [x,y] | |
function polar_to_cartesian(polar) = [ | |
polar[1]*cos(polar[0]), | |
polar[1]*sin(polar[0]) | |
]; | |
// Test Cases | |
//=============== | |
module test_gears() | |
{ | |
gear(number_of_teeth=51,circular_pitch=200); | |
translate([0, 50])gear(number_of_teeth=17,circular_pitch=200); | |
translate([-50,0]) gear(number_of_teeth=17,diametral_pitch=1); | |
} | |
module demo_3d_gears() | |
{ | |
//double helical gear | |
// (helics don't line up perfectly - for display purposes only ;) | |
translate([50,0]) | |
{ | |
linear_extrude(height = 10, center = true, convexity = 10, twist = -45) | |
gear(number_of_teeth=17,diametral_pitch=1); | |
translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45) | |
gear(number_of_teeth=17,diametral_pitch=1); | |
} | |
//spur gear | |
translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0) | |
gear(number_of_teeth=17,diametral_pitch=1); | |
} | |
module test_involute_curve() | |
{ | |
for (i=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) | |
{ | |
translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5); | |
} | |
} |