Skip to content
This repository
Fetching contributors…

Cannot retrieve contributors at this time

file 148 lines (116 sloc) 4.885 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
\name{translate_qplot_base}
\alias{translate_qplot_base}
\title{Translating between qplot and base graphics}
\description{
  There are two types of graphics functions in base
  graphics, those that draw complete graphics and those
  that add to existing graphics.
}
\details{
  qplot() has been designed to mimic plot(), and can do the
  job of all other high-level plotting commands. There are
  only two graph types from base graphics that cannot be
  replicated with ggplot2: filled.contour() and persp()
}
\examples{
\donttest{

# High-level plotting commands

x <- runif(10)
y <- 1:10
plot(x, y); dotchart(x, y)
qplot(x, y)

plot(x, y, type = "l")
qplot(x, y, geom = "line")

plot(x, y, type = "s")
qplot(x, y, geom = "step")

plot(x, y, type = "b")
qplot(x, y, geom = c("point", "line"))

boxplot(x, y)
qplot(x, y, geom = "boxplot")

hist(x)
qplot(x, geom = "histogram")

# cdplot(factor(x), y)
# qplot(x, fill = y, geom = "density", position = "fill")

# coplot(y ~ x | a + b)
# qplot(x, y, facets = a ~ b)

# Many of the geoms are parameterised differently than base graphics. For
# example, hist() is parameterised in terms of the number of bins, while
# geom_histogram() is parameterised in terms of the width of each bin.
hist(x, bins = 10)
qplot(x, geom = "histogram", binwidth = .1)

# qplot() often requires data in a slightly different format to the base
# graphics functions. For example, the bar geom works with untabulated data,
# not tabulated data like barplot(); the tile and contour geoms expect data
# in a data frame, not a matrix like image() and contour().
barplot(table(x))
qplot(x, geom = "bar")

barplot(x)
qplot(seq_along(x), x, geom = "bar", stat = "identity")

# image(x)
# qplot(X1, X2, data = melt(x), geom = "tile", fill = value)

# contour(x)
# qplot(X1, X2, data = melt(x), geom = "contour", fill = value)

# Generally, the base graphics functions work with individual vectors, not
# data frames like ggplot2. qplot() will try to construct a data frame if one
# is not specified, but it is not always possible. If you get strange errors,
# you may need to create the data frame yourself.
df <- data.frame(x = x, y = y)
with(df, plot(x, y))
qplot(x, y, data = df)

# By default, qplot() maps values to aesthetics with a scale. To override
# this behaviour and set aesthetics, overriding the defaults, you need to use I().
plot(x, y, col = "red", cex = 1)
qplot(x, y, colour = I("red"), size = I(1))

# Low-level drawing

# The low-level drawing functions which add to an existing plot are equivalent
# to adding a new layer in ggplot2.

# Base function ggplot2 layer
# curve() geom_curve()
# hline() geom_hline()
# lines() geom_line()
# points() geom_point()
# polygon() geom_polygon()
# rect() geom_rect()
# rug() geom_rug()
# segments() geom_segment()
# text() geom_text()
# vline() geom_vline()
# abline(lm(y ~ x)) geom_smooth(method = "lm")
# lines(density(x)) geom_density()
# lines(loess(x, y)) geom_smooth()

plot(x, y)
lines(x, y)

qplot(x, y) + geom_line()

# Or, building up piece-meal
qplot(x, y)
last_plot() + geom_line()

# Legends, axes and grid lines

# In ggplot2, the appearance of legends and axes is controlled by the scales.
# Axes are produced by the x and y scales, while all other scales produce legends.
# See ?theme for help changing the appearance of axes and legends.
# The appearance of grid lines is controlled by the grid.major and grid.minor
# theme options, and their position by the breaks of the x and y scales.

# Colour palettes

# Instead of global colour palettes, ggplot2 has scales for individual plots. Much
# of the time you can rely on the default colour scale (which has somewhat better
# perceptual properties), but if you want to reuse an existing colour palette, you
# can use scale_colour_manual(). You will need to make sure that the colour
# is a factor for this to work.

palette(rainbow(5))
plot(1:5, 1:5, col = 1:5, pch = 19, cex = 4)

qplot(1:5, 1:5, col = factor(1:5), size = I(4))
last_plot() + scale_colour_manual(values = rainbow(5))

# In ggplot2, you can also use palettes with continuous values,
# with intermediate values being linearly interpolated.

qplot(0:100, 0:100, col = 0:100, size = I(4)) +
  scale_colour_gradientn(colours = rainbow(7))
last_plot() + scale_colour_gradientn(colours = terrain.colors(7))

# Graphical parameters

# The majority of par settings have some analogue within the theme system, or
# in the defaults of the geoms and scales. The appearance plot border drawn
# by box() can be controlled in a similar way by the panel.background and
# plot.background theme elements. Instead of using title(), the plot title is
# set with the title option. See ?theme for more theme elements.
last_plot() + labs(title = "My Plot Title")
}
}
Something went wrong with that request. Please try again.