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Abstract
Vast amounts of transcriptomic data reside in public repositories, but effective reuse
remains challenging. Issues include unstructured dataset metadata, inconsistent data
processing and quality control, and inconsistent probe–gene mappings across microar-
ray technologies. Thus, extensive curation and data reprocessing are necessary prior
to any reuse. The Gemma bioinformatics system was created to help address these
issues. Gemma consists of a database of curated transcriptomic datasets, analytical
software, a web interface and web services. Here we present an update on Gemma’s
holdings, data processing and analysis pipelines, our curation guidelines, and software
features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily
human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic
platforms (both microarray and RNA sequencing). Dataset topics were represented with
10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean
topics/dataset=5.2). While Gemma has broad coverage of conditions and tissues, it
captures a large majority of available brain-related datasets, accounting for 34% of its
holdings. Users can access the curated data and differential expression analyses through
the Gemma website, RESTful service and an R package.
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Introduction

As of June 2020, NCBI Gene Expression Omnibus (GEO)
contains 97 379 transcriptomic studies, 71 233 (73%) of
which are generated in human, mouse and rat (1). This
vast resource presents a rich opportunity for data reuse and
secondary analyses. Some examples of data reuse include
performing meta-analyses using published data, borrow-
ing power across similar studies to draw conclusions with
greater confidence (2–9); generation of co-expression net-
works (10), model generation for predicting gene expres-
sion (11), and the creation of derivative databases (12–14).

While the data in GEO are plentiful, in our experi-
ence, substantial effort in curating and reprocessing is
necessary before high-quality secondary analyses can be
performed. This effort is necessary because GEO was orig-
inally intended mainly to be an archive of published data
(15). Accordingly, it was designed to accept as many types
of data possible with low burden on data submitters, thus
necessitating a relatively simple data model. While this may
have been important for the rapid uptake of GEO as a
key repository, it leaves researchers who want to reuse the
data with some problems. These problems can be roughly
grouped into affecting three aspects: metadata, microarray
platform probe annotations and the expression data itself.

In some datasets, the available metadata consist of a
very brief description of the study and cryptically named
samples; in others, there is insufficient sample information
to easily reconstruct the underlying study design, despite
the MIAME standard (“Minimum Information About a
Microarray Experiment”) that GEO follows (16). This
problem is exacerbated when, as is sometimes the case,
the relevant publication is not linked to the dataset record.
Regarding microarray platforms, different manufactur-
ers have varying methods of associating probes to genes,
and this inconsistency may result in lower comparability
between datasets. Additionally, probe sequences for many
microarray platforms were not submitted to GEO; thus,
the mapping of probes to genes cannot be substantiated,
much less reproduced or updated, without referring to
other sources of information. Lastly, expression data in
GEO do not undergo any quality control (QC) aside from
whatever the submitters might have performed, and it can-
not be assumed that this was sufficient (17). Furthermore,
while GEO stores raw expression data (e.g. Affymetrix
CEL files and RNA-Sequencing FASTQ files), the processed
data are provided by the submitters, leaving consistency of
processing approach a concern. For all of these reasons,
instead of simply working directly with processed data and
metadata downloaded from GEO, users are compelled to
(or at least should) independently annotate, reprocess and

perform QC on the downloaded raw data before perform-
ing downstream analyses.

To help address these issues, we created Gemma (18), a
bioinformatics system consisting of a database of curated
gene expression studies sourced primarily from GEO, anal-
ysis pipelines, and accompanying website and web services.
In this paper, we describe the data processing and curation
pipelines in Gemma and the key design rationales involved,
provide summaries and updates on the data contained in
Gemma’s database, compare and contrast Gemma with
other similar projects in the bioinformatics literature, and
present a summary of notable Gemma features.

Methods

Data model

The Gemma data model was influenced by (but does not
fully adopt) an early microarray data model, MAGE-
OM (19), and some of our internal terminologies carry
its vestiges. Central entities in the Gemma data model
are ExpressionExperiments [representing datasets of mul-
tiple samples, often corresponding to a single GEO Series
(GSE)] and ArrayDesigns [transcriptome platforms, gener-
ally corresponding to a single GEO Platform (GPL); the
same concept is adapted for RNA-sequencing (RNA-seq)].
ExpressionExperiments are made up of BioAssays [approx-
imately corresponding to a GEO sample (GSM IDs)], which
bring together a BioMaterial (the RNA sample) and an
ArrayDesign. Note that GEO does not have a separate
concept of a BioMaterial, but this concept is necessary to
accommodate datasets where the same RNA sample was
run on more than one platform (discussed further below
under ‘Processing of expression data’). For each Expres-
sionExperiment, the expression data itself are stored at the
level of CompositeSequences (platform elements: probes or
probe sets for microarrays and genes for RNA-seq). Com-
positeSequences are mapped to GeneProducts (and thus
Genes) via separate BioSequenceAssociation entities. The
Gemma model has other entities to model sample anno-
tations, publications, external database references (e.g. to
GEO), data analyses, groups of datasets or genes, as well
as security-related concepts such as users; full description
of which is omitted here.

The Gemma framework

Processing of large amounts of gene expression data into
Gemma involves numerous steps. Major grouping of these
steps include dataset selection, platform processing, expres-
sion data processing, metadata curation and downstream
analyses. Many of these steps are automated, with some
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human intervention and manual curation at key stages,
described in the subsequent sections. Before delving fur-
ther, we first lay out the decisions that influenced the
framework’s design.

The main goal of Gemma’s data processing and cura-
tion pipelines is to provide a rich yet usable representation
of a dataset; the representation can be described as hav-
ing three parts. First, the expression data are needed, such
that the data can be usefully represented as a single matrix
where rows represent ‘platform elements’ (genes, probes
or probe sets) and columns represent RNA samples, with
entries being expression levels. Ideally, these data are pro-
cessed using a uniform set of procedures. Second, the
samples need to be described: what tissues, conditions etc.
they were derived from and what role they play in the study
(e.g. control or treated samples). Third, for microarrays,
the probes need to be mapped to genes (there is an analo-
gous step for RNA-seq data), and this also should be done
in a consistent manner.

The information provided by GEO is only a starting
point to meeting these needs. Expression levels can be
obtained from GEO for many datasets, but they are pro-
vided by submitters and thus are not processed in a consis-
tent manner. Samples are described in GEO using free text
with limited structure provided by key–value pairings, but
the descriptions are written by data submitters and are gen-
erally not adequate for our purposes, especially in the lack
of harmonization that the use of formal ontologies affords.
Mappings of microarray probes to genes are generally pro-
vided by data submitters (i.e. microarray manufacturers)
and are often based on provided GenBank IDs for mRNAs.
GenBank IDs rarely correspond to the actual sequences on
the microarray, which are generally short oligonucleotides
or (for some older platforms) PCR products.

To address these issues, Gemma implements a com-
prehensive data processing pipeline (Figure 1). Gemma
natively handles data from GEO, but can take data from
other sources formatted as a simple tab-delimited text file.
In the following subsections describing our procedures,
we do not give full details of every step and parame-
ter, and we omit many software implementation details.
Instead, we attempt to document key steps and highlight
aspects that are unique to Gemma. Additional details are
available within the Gemma codebase (https://github.com/
PavlidisLab/Gemma/).

Dataset selection
For Gemma, our goal is not to capture all available
datasets, in part because of resource limitations. Ini-
tially, we accumulated data on any domain of biology
for seven taxa of interest (Homo sapiens, Mus musculus,
Rattus norvegicus, Danio rerio, Drosophila melanogaster,

Caenorhabditis elegans and Saccharomyces cerevisiae).
More recently, we have specifically increased our coverage
of studies relating to the nervous system and on datasets
studying human, mouse or rat. We de-prioritize datasets
that have small sample sizes (i.e. less than 10 samples in
total) as these are less suitable for the downstream anal-
yses implemented in Gemma. We also prefer studies that
have biological replication and a clear experimental design
affording specific comparisons between contrasting condi-
tions. That said, we do accommodate user requests for
loading datasets that do not meet these criteria. A notable
current omission is single-cell RNA-sequencing (scRNA-
seq) datasets, because most of the available datasets to date
have minimal (if any) biological replication and are often
surveys intended for cell type identification. Additionally,
there is little consistency in how single-cell datasets are rep-
resented in GEO, with some datasets having GSM identi-
fiers for each individual cell while others for each processed
pool of cells. Anticipating that future scRNA-seq studies
will eventually shift to designs with replicates, incorpo-
rating single-cell data into Gemma is a key area of future
work.

Platform selection
Gemma can handle a wide range of microarray plat-
forms including Affymetrix GeneChips, Agilent spotted
arrays, Illumina BeadArrays and many two-color plat-
forms, as well as short-read RNA-seq data such as Illumina
sequencing-by-synthesis. Gemma does not yet have facil-
ities to handle long-read sequencing data (e.g. PacBio or
Oxford Nanopore), but since these are less commonly used
and less suitable for quantification of expression levels,
implementing support for these technologies have not been
a priority. Gemma can also handle microRNA (miRNA)
microarray platforms. Finally, we no longer routinely add
data from two-color microarrays, partly because they are
no longer in much active use. They also tend to have poor
gene coverage and/or do not provide sufficient metadata to
permit probe sequence analysis (see ‘Processing platform
information’), as well as have other complications such as
dye-swap or ‘loop’ designs that hinder automated analysis.

Auditing and curation assistance tools
Gemma has a robust security model that permits control of
ownership and visibility of underlying entities. All datasets
when first loaded into Gemma are marked ‘private’ and
can only be viewed by curators and administrators. This
allows us to curate and preprocess the data before making it
available publicly. Gemma also has an audit trail system, in
which updates and key events are recorded during process-
ing. Curators can attach notes to datasets, mark datasets
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Figure 1. Flowchart showing the flow of data from NCBI GEO into the Gemma database. Three classes of information are processed: platform
metadata, gene expression data and metadata. While microarray data reside on GEO, raw RNA-sequencing (RNA-seq) data are obtained from NCBI
Sequence Read Archive (SRA). AE: ArrayExpress, DE: differential expression, and CoEx: co-expression.

as needing curation or flag datasets as unusable (we sup-
port most of these features for platforms as well). Platforms
or datasets that are confirmed as unusable are blacklisted,
to avoid inadvertently reloading them in the future. Col-
lectively, these tools enable curators and administrators to
easily assess the curation state of a dataset, track down the
source of errors and coordinate curation efforts.

Processing of platform information

A key step in Gemma data processing is linking expression
data to genes. This is especially important for microarray
platforms, where the probe sequences on the arrays were
often designed prior to the availability of high-quality ref-
erence genome sequences and annotations. We decouple the

expression data from the underlying microarray platform,
enabling us to update the relationships between probes and
genes with minimal disruption.

We apply different probe-to-gene mapping strategies
depending on the type of platform (e.g. Affymetrix probe
sets, single oligonucleotide probes and cDNA probes); this
is done internally by adopting a previously described pro-
tocol (20) with some minor modifications. We first have
to obtain the actual nucleotide sequences of the probes.
These are often not available from GEO, thus we acquire
them either from the manufacturers’ websites or by directly
contacting them. Despite these efforts, for some platforms,
the probe sequences remain unavailable. We blacklist these
platforms as unusable because there is no way to confirm
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that the probe corresponds to the gene claimed. As these
platforms tend to be used for very few datasets (often just
one), the overall impact of this blacklisting is minor.

For platforms with probe sequences, the processing
proceeds as follows. For Affymetrix platforms specifi-
cally, we perform an additional step where we collapse
the Affymetrix probe sets (consisting of multiple 25-bp
oligonucleotides each) to a single representative sequence,
resolving overlaps, as described previously (20). Next, for
all platforms, we then align the probe sequences against
the appropriate reference genome with BLAT (21). When-
ever a new genome assembly is available, the probes are
realigned. The reference genome versions we currently use
for human, mouse and rat are hg38, mm10 and rn6, respec-
tively. Alignments are then evaluated and filtered for probes
yielding specific alignments. Finally, probes are mapped to
transcripts using genome annotations from UCSC Golden-
Path (22). These mappings are also refreshed periodically
to reflect updates to the UCSC annotations. Gene mapping
details and links to visualization of alignments in the UCSC
Genome Browser are provided through the platform’s page
in Gemma, along with downloads of the annotations in
a tab-delimited format. Overall, this procedure ensures
(to the best of our ability) that probe annotations reflect
the actual physical probe on the array and are annotated in
a consistent manner.

For RNA-seq data, a different strategy is employed
while still accommodating them in the same general frame-
work. For each taxon, we define a ‘pseudo-platform’,
where the entire platform’s elements are the set of known
genes recorded in the reference genome annotations
(e.g. https://tinyurl.com/Gemma-HumanNCBI). The out-
put of our RNA-seq data processing pipeline (see ‘Process-
ing of expression data’ below) can then be linked to these
‘generic’ platforms based on NCBI gene IDs.

Processing of expression data

Loading and pre-processing
First, basic dataset metadata (e.g. dataset title and descrip-
tion, number of samples, sample annotations etc.) are
parsed and loaded from GEO SOFT files (Gemma can also
load data from other sources ad hoc using a simple tab-
delimited file). This is generally based on a GEO Series
(GSE ID), and the system automatically retrieves any asso-
ciated ‘GEO DataSets’ (GDS IDs) if available. Unlike GEO
Series, DataSets are curated by GEO and provide additional
metadata including basic information on the experimental
design; they are, however, only available for <5% of GEO
Series. Where possible, free-text sample annotations from
GEO are mapped to an appropriate ontology term based on

a pre-defined dictionary, which currently contains 674 text-
to-term mappings. Parsing of these files and mapping them
to the Gemma datamodel results in an initial representation
of the dataset in Gemma.

Next, expression level information is acquired. The
default method extracts the expression levels included in
the SOFT file at initial loading, if present. This method
is predominant for Illumina BeadArrays, as bead-level
raw data are rarely provided with the GSE entries. For
datasets using spotted microarray platforms (including Agi-
lent microarrays), we attempt to extract the data for
both channels separately (including background levels) for
assessing spot quality; spots which have low signal in both
channels are flagged as missing data.

For Affymetrix microarrays, we reprocess the data
from CEL files (when available) using the Affymetrix
Analysis Power Tools provided by the manufacturer
[https://tinyurl.com/Affy-APT; specifically ‘apt-probeset-
summarize’ with the RMA algorithm (23)]. These data
replace those which were obtained from the SOFT file.
We always use the manufacturer-provided probe group-
ings (‘CDF’ files); thus ‘custom CDF’ analyzed datasets in
GEO are reanalyzed using the standard CDF for the plat-
form. This further enhances consistency compared to the
user-submitted processed data in GEO.

For RNA-seq data, a separate pipeline (https://github.
com/PavlidisLab/rnaseq-pipeline) is used to download
FASTQ files from the SRA or EMBL-EBI European
Nucleotide Archive (24, 25), read adapters trimmed with
Cutadapt (26) and reads aligned with STAR (27), followed
by quantification using RSEM (28). This also results in
metadata on alignment statistics. Gene-level quantification
data are then loaded into Gemma’s database.

After the data are loaded into Gemma (through either
of the above streams), the resulting expression data are
processed through a common post-processing pipeline,
including steps described below. The expression data
are log2-transformed (if not already) and then quantile
normalized.

Batch correction
Where possible, the data are batch corrected, which is per-
formed only after the curation of the experimental design.
Importantly, batch information is almost never explic-
itly provided as sample annotations by the submitters in
GEO. In Gemma, batches are defined automatically using
information in the raw data files. For microarrays, date
stamps can usually be found in CEL files for Affymetrix
datasets and in GenePix output files for Agilent (and other
spotted platforms) datasets. Occasionally, batch infor-
mation is instead obtained manually from supplementary
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information provided by the data submitter or the asso-
ciated publication. Through the date stamps, batches are
defined using simple heuristics (essentially a one-dimension
clustering): samples that are processed closely in time are
considered a separate batch if a larger time gap occurred
before processing of the next sample. In practice this almost
always yields a batch factor that is correlated with one of
the first three principal components of the expression level
data. For RNA-seq datasets, no relevant dates are asso-
ciated with the records in GEO or in SRA. Instead, we
attempt to use information from the FASTQ headers, which
for Illumina platforms often contain information on the
‘device’, ‘run’, ‘flow cell’ and/or ‘lane’. Any batch infor-
mation obtained is stored as a factor in the experimental
design. Despite these efforts, for many datasets we are
unable to obtain batch information.

Batch correction is conducted using an in-house imple-
mentation of the ComBat algorithm (29), enhanced to
automatically select covariates to include from the exper-
imental design based on their loadings in the principal
components of the data. Batch correction is not performed
when batches are confoundedwith experimental design fac-
tors or when no substantial batch effect is detected. Such
cases are assigned special flags in the system that can be
used during downstream analysis.

Diagnostics
A number of diagnostics are computed and stored for each
dataset, such as principal component analysis (PCA) of
the expression levels, the relationship between the prin-
cipal components and curated experimental factors, the
mean–variance relationship of expression levels [which is
especially important for RNA-seq data (30)] and sample–
sample expression level correlations. These are used for
manual and automated QC processes, such as outlier detec-
tion, described next.

Outlier sample detection
A common data quality problem in expression datasets is
the presence of one or more samples that deviate markedly
(in non-biologically relevant ways) from the properties of
other samples. Gemma flags potential outlier samples auto-
matically, which are then manually reviewed. Samples
confirmed to be outliers are not permanently removed from
the system: we represent them as missing data instead.
This ensures transparency of the process and also affords
us the possibility to reverse the decision easily. Our out-
lier detection algorithm uses the sample–sample expression
level correlation matrix, the idea being that samples which
have low correlations with all other samples are potentially
outliers. Omitting some details, the algorithm is as fol-
lows: the correlation matrix is first adjusted by regressing

out the effect of major experimental factors such as tis-
sue type, so that identifiable biological groups of samples
are not treated as outliers. Samples are considered poten-
tial outliers if their adjusted median correlation is outside
the interquartile range of correlations of the sample with
the closest median correlation to them. All outliers called
by the algorithm are reviewed and approved by a curator.
With outlier removal and batch correction, the data are
now finalized for downstream analyses.

Multi-platform, multi-species and overlapping
datasets; GEO SuperSeries and SubSeries

Datasets in GEO are very diverse in how they are repre-
sented. Gemma is designed to automatically handle many
complexities that arise; in some cases, a curator needs to
review the dataset and take an appropriate action.

Overlaps
When a dataset’s SOFT file is downloaded from GEO and
parsed in preparation for loading, Gemma checks to see if
any of the samples are already included in another dataset
in Gemma, based on the ‘GEO Sample’ ID (GSM IDs). Any
duplicated samples are removed and noted in the dataset
description (this does not catch cases where the same data
are submitted to GEO twice, yielding different GSM IDs,
though we have caught such cases by manual curation).
This is necessary to avoid double counting when perform-
ing meta-analysis in Gemma. Occasionally, this results
in a suboptimal representation of either dataset or both
datasets, e.g. it can result in the removal of all control
samples from a dataset if the controls are shared between
two datasets. To resolve this issue, we determine which of
the overlapping datasets results in the best use of the sam-
ples and then reload the ‘better’ dataset to have a usable
design.

Multi-species
Datasets that include samples from multiple species are
detected and split apart so that a separate Gemma Expres-
sionExperiment is created for the samples from each
taxon [e.g. GSE23579 (31) consists of both human and
mouse samples and are split into two Gemma datasets:
GSE23579.1 (https://tinyurl.com/Gemma-GSE23579-1)
for human and GSE23579.2 (https://tinyurl.com/Gemma-
GSE23579-2) for mouse]. Samples from taxa that are not
supported by Gemma are rejected.

Multi-platform
A common occurrence in GEO is that a dataset uses
more than one platform. For datasets that include non-
expression profiling data, only the transcriptome samples
are retained. We then apply procedures to resolve the use
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of multiple transcriptome profiling platforms in the dataset.
First, if the platforms are considered incompatible, the
dataset will be split by the platforms, similar to how we
handle the multi-species case. An example would be the use
of a two-color spotted array platform and an Affymetrix
platform in the same dataset. If the platforms are compat-
ible (e.g. all Affymetrix platforms or multiple generations
of Illumina short-read sequencing platforms), then the data
from the two platforms are combined. There are two major
sub-cases. In the first case, each sample was run on a differ-
ent platform, e.g. some samples were run on the HG-U95A
platform and others on HG-U95Av2. These two platforms
are very similar, so a combined dataset can be constructed
where common probe sets have data for all the samples.
The second case arises with multi-part microarray plat-
forms, such as HG-U133A and HG-U133B, where samples
were run on both platforms. In this case a combined dataset
is constructed by ‘stacking’ the data for the two plat-
forms. This however is not straightforward: deciding which
HG-U133A sample matches the corresponding HG-U133B
sample is non-trivial, because GEO does not model the
concept of an RNA sample, and thus there is nothing for-
mally linking the two samples together. Gemma has tools
to assist matching samples across platforms automatically
(through a heuristic based on sample names and metadata),
followed bymanual review; alternatively, the matching step
can also be performed entirely manually. Once resolved,
such datasets are represented in Gemma as being conducted
on a single merged platform that encompasses all of the
platform elements.

SuperSeries and SubSeries
GEO has the concept of SubSeries, which are grouped
together to make up a SuperSeries. However, the seman-
tics of this relationship are not consistent. Sometimes a
SuperSeries is made up of related but separate datasets,
and this is probably how it is intended to be used; but in
other cases, GEO submitters use the concept to represent
an experimental design, such as putting all control samples
in one SubSeries and all treated samples in another Sub-
Series. Because of these kinds of issues, we manually review
SubSeries and SuperSeries datasets to decide whether they
should be imported into Gemma at the SuperSeries level or
as separate SubSeries datasets.

Other instances of dataset-splitting
As described above, we often divide GEO GSE records
into more than one Gemma dataset based on species, plat-
form or SubSeries. However, there are other cases where
it is desirable to split datasets. One example is when
there is a batch confound with the experimental design,
and splitting the dataset by the ‘batch’ factor would yield

multiple usable sets of samples. A factor often found con-
founded with the batch factor is tissue (‘organism part’).
By splitting such datasets, we sacrifice the ability to do tis-
sue comparisons, but salvage other aspects of the study.
Another situation that arises when the GEO submitter
should have represented their study as multiple GEO series
(perhaps SubSeries) or when an otherwise ‘clean’ experi-
mental design is disrupted by the inclusion of an ‘extrane-
ous’ sample, such as a technical control from a non-relevant
cell line. The ability to split datasets ad hoc is a relatively
new feature in Gemma and has not yet been applied to
many studies.

Gene Expression Experiment Quality score

In the course of curating datasets with wildly varying prop-
erties, we decided it would be beneficial to provide a
summary of various considerations to give a ‘gestalt’ sense
of data quality, which we call Gene Expression Experiment
Quality (GEEQ) scores. The GEEQ score was developed
to reflect the qualities of good data in a topic-agnostic
manner. The quality score is meant to help answer the
question ‘How well can I trust the results of an analy-
sis of these data?’ The features that are used to com-
pute the score and their weightings are described here
(https://pavlidislab.github.io/Gemma/geeq.html). Some of
the properties we take into account include the number
of replicates for each condition, severity of batch effects
(unless corrected) and median sample–sample correlation.
Prior experience has shown that datasets that have issues in
these categories tend to give results that are noisy and less
reproducible; we assign a lower GEEQ score to reflect that.
Based on extensive experience, we calibrated the GEEQ
scores such that values in the lowest and highest quin-
tiles reflect the extremes of observed data quality. These
scores are merely a rough guide to assist users in identifying
datasets that might be especially suitable or problematic.

Curation of dataset metadata

After loading and basic preprocessing has been done to
the extent possible via automation, every dataset is man-
ually curated. Our manual curation is largely performed
by trained undergraduate research assistants who follow a
written set of guidelines. Here we describe the curation of
dataset metadata, which encompasses annotating both the
experimental design and the ‘topics’ of the dataset. Man-
ual QC checks (i.e. batch correction and outlier removal)
as described earlier are performed after metadata curation.

The task of curating a large number of datasets con-
sistently by different curators is a challenge in balanc-
ing different priorities. The process itself should be fast,
while or dataset retrieval and downstream analysis (i.e.
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differential expression) and maintaining enough consis-
tency to facilitate cross-dataset comparisons. We developed
a set of curation guidelines that accommodate many types
of commonly encountered dataset topics and experimental
designs. The guidelines provides instructions for correctly
mapping a dataset’s experimental design into the appro-
priate representation in Gemma (including the level of
detail to be used and standardizing the choice of ontology
terms used during annotation) and guidance on prioritiz-
ing dataset topics for annotation. New rules are introduced
only when absolutely necessary, to avoid the guidelines
from becoming too unwieldy.

Over the next few subsections, we will describe the
metadata curation guidelines. First, we describe the
rationale for using ontologies and our approach of doing
so. Second, we describe the specific details for design-
and dataset-level metadata curation. Third, we describe
how the dataset search system is supported by our use of
ontologies.

Use of ontologies

For both tasks of annotating and searching datasets, it is
advantageous to use formal ontologies. Ontologies are cre-
ated to capture various concepts in the form of ‘terms’
and elucidate the relationships between those concepts;
both of which are performed in a standardized manner.
Cross-ontology relationships are also captured through
the use of ‘concept imports’. By using ontologies during
metadata annotation, we have more assurance that the
design and topics are captured in a standardized manner
and provide potential for interoperability with external
resources that utilize the same ontologies. Similarly, we can
harness the strengths of ontologies during searches, espe-
cially through inference of the ontology’s graph structure

(see ‘Dataset search’). Our use of ontologies in Gemma
is semantically simplistic and is best represented as key–
value pairs: an entity is annotated with a ‘Category’ and
a ‘Value’. For example, if a sample was treated with vin-
cristine it would be annotated with Category= ‘treatment’
(EFO_0000727) and Value= ‘vincristine’ (CHEBI_28445).
Multiple annotations of a single entity are treated as a
‘bag-of-pairs’, with no explicit semantics linking them,
e.g. 10 µM vincristine has the Value= [‘vincristine’
(CHEBI_28445), ‘10 µM’]. This design decision favors
simplicity of implementation and speed of curation at
some cost of power for inference. Next, we will discuss
the standards used for the ‘Category’ and ‘Value’ pairs
separately.

Category standardization

As shown in the previous example, we include ‘Categories’
when annotating Gemma entities. This is done for two key
reasons: by assigning a category to the terms’ ‘Value’, we
provide additional context to those terms and we enable
easier grouping of entities. To illustrate the point: if a
sample is annotated with the gene symbol IGF1, assign-
ing the category ‘genotype’ indicates that there is a geno-
typic modification of the gene IGF1 in the sample’s cells,
whereas assigning the category ‘treatment’ indicates that
external IGF1 proteins were introduced into the sample’s
culture media. In terms of grouping entities, when ‘cate-
gories’ are used as factors, it enables us to group samples
by the respective factors’ levels and perform differential
expression analysis. Additionally, categories can be used
as filters when searching for annotations in Gemma. Thus,
it is essential that the use of categories is standardized.
In Table 1, we list the mapping of categories to their
appropriate category ontology term [mostly derived from

Table 1. Table of concept categories, their assigned category ontology term and examples of concepts for use during Gemma

curation

Concept category Category ontology term Concept examples

Genetic manipulation Genotype [EFO_0000513] Gene knock-outs/-downs, over-expression
Chemical/physical treatment Treatment [EFO_0000727] Drugs, burns
Tissue/organ Organism part [EFO_0000635] Liver, brain
Cell type Cell type [EFO_0000324] Hepatocytes, astrocytes
Disease Disease [EFO_0000408] Breast cancer, Parkinson’s disease
Disease stage Disease stage [EFO_0000410] Metastatic cancer
Mouse/rat strain Strain [EFO_0005135] C57BL/6, Long–Evans
Sex Biological sex [PATO_0000047] Male, female
Cell line Cell line [CLO_0000031] HeLa, MCF7
Sampling time Timepoint [EFO_0000724] 5 h, 10 min
Developmental stage Developmental stage [EFO_0000399] Embryonic stage day 5 (E5), Post-natal day 2 (P2)
Age Age [EFO_0000246] 25 years, 70 years

Category ontology terms are mostly derived from terms in EFO, with some exceptions derived from the Phenotype and Trait Ontology (PATO) and the Cell Line Ontology (CLO).
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Experimental Factor Ontology (EFO) with some excep-
tions] and examples of concepts in which the category is
applied.

Ontology selection

Gemma currently supports 12 different ontologies
(Table 2). There were multiple considerations in selecting
ontologies that would be supported by the system. Cura-
tors must be able to search the ontologies and identify the
concepts they need to use, and having too many ontolo-
gies makes this more difficult. Having too many ontologies
also impacts search performance (speed and precision).
For example, we decided to support the Uberon ontology
(32), in lieu of the extensively overlapping Foundational
Model of Anatomy ontology (33). Despite choosing ontolo-
gies judiciously, there remain duplicated concepts across
ontologies [e.g. the HeLa cell line exists in both the Exper-
imental Factor Ontology (EFO_0001185) and Cell Line
Ontology (CLO_0003684)]. Our curation standards help
enforce consistency. Thus for example, cell lines are anno-
tated with CLO terms as far as possible. In Table 2, we list
the general groupings of concepts and the recommended
source ontology in which the terms (to represent those
concepts) are to be used during curation.

Table 2. Table of concept categories and their recommended

source ontologies for use during Gemma curation

Concept category Recommended ontology

Genetic manipulation NCBI Genes *a

Gemma Ontology (TGEMO)
Drugs/chemicals Chemical Entities of Biological

Interests (ChEBI) (34)
Tissues/organs Uberon Multi-Species Anatomy

Ontology (UBERON) (32)
Cell types Cell Ontology (CL) (35)
Cell lines CLO (36)
Diseases Human Disease Ontology (DO) (37)
Phenotypes Human Phenotype Ontology (HPO)

(38)
Mammalian Phenotype Ontology
(MP) (39)

Mouse/rat strains Gemma Ontology (TGEMO)
EFO (40)

Baseline information *b Ontology for Biomedical Investiga-
tions (OBI) (41)

*c Gene Ontology (GO) (42, 43)
EFO

Strictly speaking, there is no formal ontology for genes; we generated a ‘pseudo-ontology’
from the gene accession IDs to represent the genes of the seven taxa supported by Gemma
(*a). ‘Baseline’ concepts are used exclusively for design-level annotation, while the others
are used for both design- and dataset-level annotation (*b). For concepts that are infre-
quently occurring or could not be grouped, we usually default to using terms in GO and
EFO whenever possible (*c).

During the curation process, we found that a num-
ber of concepts are not represented in the ontologies we
use. We created The Gemma Ontology (TGEMO; https://
github.com/PavlidisLab/TGEMO) to capture these terms,
with the intent of replacing them with the appropriate
ontology terms in the future. Currently, TGEMO contains
101 ontology terms and implements concepts for genetic
modifications (e.g. knockdowns), some mouse/rat strains
(e.g. DB/2) and some terms for our internal usage.

Free-text annotation standards

While the coverage of concepts by the ontologies we use
is fairly extensive, there still are concepts for which we
resort to free text. These are predominantly numerical
measures, such as developmental stages of an organism
(e.g. E3, P4, etc.), sampling time intervals (e.g. 3 h) and
dosages (e.g. 3 µg/ml, 2 mM/ml). We established style
standards for free-text annotations to ensure consistent
and unambiguous annotation (e.g. usage of SI units and
abbreviations, appropriate spacing, official nomenclature
guidelines etc.)

Separately, while our design decision of representing
characteristics as ‘bag-of-pairs’ is adequate for the major-
ity of use cases, this is less so for more complex situ-
ations, such as some genetic experiments. For example,
in GSE1463 [https://tinyurl.com/Gemma-GSE1463, (44)],
there is a group of samples in which both the Dmd
and Utrn genes were simultaneously knocked out. With-
out the free-text annotation, it might be possible to
infer from the ontology terms used that both genes were
knocked out; this is made more explicit and unambigu-
ous with the free-text annotation. Another example is
GSE52022 [https://tinyurl.com/Gemma-GSE52022, (45)],
where mutated human APP and PSEN1 genes were intro-
duced and expressed in transgenic mouse models. With the
free-text annotation, it is clear which mutations belonged
to which genes and the entire mouse genotype can be easily
read.

In-built concept curation support

Gemma has built-in search support for the use of ontologies
during curation. When a curator is inputting the text values
of an ontology term to express a concept (e.g. a drug), the
input box automatically searches and provides a list of rec-
ommended matching terms, along with an indication as to
whether (and how often) the term has been used previously
in the system. Frequently used terms are favored. When no
suitable term is identified, the curator can choose to use
free text to annotate the concept by following formatting
guidelines of common cases. This also promotes the reuse of
previously used free-text strings, which are also presented
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in the concept recommendation results (albeit with a lower
ranking).

Experimental design curation

In Gemma, the concept of an ‘experimental design’ refers to
the characteristics of a dataset’s samples, in which groups
can be formed for downstream analysis of the data, such
as differential expression. These characteristics are used as
input in our statistical models (see ‘Downstream analysis’)
and also in dataset searches. Experimental designs are
modeled as follows. A dataset can have one or more
ExperimentalFactors that describe a feature (or factor) that
varies across samples, while the different levels of the fea-
ture are called FactorValues. For example, the dataset
GSE2198 [https://tinyurl.com/Gemma-GSE2198; (46)] has
three factors: ‘organism part’ for different tissues, ‘geno-
type’ for different genotypic states and ‘block’ for sample
batches. With the exception of ‘block’ that has four levels
(i.e. four sample batches), both ‘organism part’ and ‘geno-
type’ have three levels each. Gemma supports both cate-
gorical and continuous factors, though nearly all factors
are categorical.

Most datasets, when first imported into Gemma, do not
have any information on the experimental design. Excep-
tions to this are datasets (specifically GEO Series ‘GSE’)
that have an associated GEO DataSet ‘GDS’, which have
been manually curated by NCBI GEO staff. For such
datasets, we automatically initialize an experimental design
layout based on that in the GDS. In either case, we manu-
ally curate the experimental design to add ontology terms
and to enforce uniformity in how factors and levels are
described.

Considering the diversity in experimental design of the
datasets submitted to GEO, we elect to prioritize key exper-
imental factors during curation. The rationale is that while
we could invest more time to exhaustively curate every sin-
gle potential factor within a dataset, it would be a large
effort with diminishing returns. Instead, we prioritize fac-
tors that are highly recurrent across many studies, which
would give us the greatest value. These factors include
‘genotype’ for genetic manipulations; ‘treatment’ for both
chemical and physical treatments; ‘disease’ for diseases and
disorders; and ‘disease staging’ for the varying stages or
severity of disease. For time-course datasets, factors such as
‘timepoint’ for sampling time points; ‘developmental stage’
and ‘age’ for patient ages are also prioritized. Other pop-
ular factors that are taken into account include ‘organism
part’ for tissues and organs; ‘cell types’; ‘cell lines’; ‘strain’
for mouse or rat strains and ‘biological sex’.

Another aspect of design curation is the identifica-
tion of the ‘baseline condition’ of the study, which is

important for differential expression analysis. Assign-
ment of the baseline condition is not performed for
all factors, as there might not be any to begin with
(e.g. ‘organism part’ and ‘biological sex’). For factors that
do have a baseline condition (e.g. ‘genotype’, ‘treatment’
and ‘timepoint’), the condition is annotated with spe-
cific ontology terms such as ‘reference substance role’ etc.
(see ‘Downstream analysis’). For more complex datasets
that involve positive and negative controls, we use the
‘control’ term to annotate what we perceive as the ‘true’
baseline condition of the dataset. For example, in dataset
GSE40463 [https://tinyurl.com/Gemma-GSE40463; (47)],
for one of the ‘genotype’ factors, there were four levels:
over-expression of Tbx21, over-expression of Gata3, pres-
ence of the empty transgene vector and a negative control
without the transgene vector. Since the first two levels
(i.e. transgene over-expression) rely on the presence of a
transgene vector, we consider the samples with the empty
transgene vector to be the baseline condition.

Dataset topic tags

Dataset-level annotations are used to capture information
that is often not explicitly part of the experimental design
and not otherwise captured. An example would be a tissue
or disease state that is constant across all of the samples in a
dataset but also relevant topics that might not be otherwise
explicit. These tags are used to help ensure that searches for
a relevant concept would retrieve the dataset. For exam-
ple, GSE36051 (https://tinyurl.com/Gemma-GSE36051), a
study of breast tumor cells (48), is annotated with Disease
Ontology terms ‘breast cancer’ (DOID_1612). Similarly,
relevant disorder terms are tagged on datasets using animal
models, such as GSE14499 (https://tinyurl.com/Gemma-
GSE14499), a dataset concerning a mouse model for
Alzheimer’s disease (49). In this case, the Disease Ontology
term ‘Alzheimer’s disease’ [DOID_10652] is used because
even though the study is not directly studying Alzheimer’s
disease, it would be reasonable for users searching for
Alzheimer’s disease to see this dataset in the results. In
keeping with this philosophy and to avoid unnecessary
curation, terms that are used in annotating the experimen-
tal design or samples are not repeated in the topic tags,
and vice versa, since all of them are available to the search
engine. We ensure that certain types of information are
always captured including tissue of origin, cell type, cell
line, mouse/rat strains and biological sex.

Dataset search

An important use case for Gemma is searching for datasets
based on keywords. The system we have developed per-
forms search based on both full-text indexing as well as
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ontology inference. In text searches, we search all dataset-
associated text fields (e.g. title, description, sample names,
etc.); while ontology searches are performed in two differ-
ent ways—free-text searches are used to retrieve ontology
terms based on an index of the ontology-associated text (via
Apache Jena’s LARQ package; https://tinyurl.com/JENA-
LARQ), and ontology Uniform Resource Identifiers can
be used directly as search terms. In either case, retrieved
ontology terms are expanded to include all child terms via
‘part-of’ and ‘is-a’ relationships. This means that searching
for the term ‘cerebral cortex’ will not only retrieve datasets
that contain that term either in free-text or in ontology term
but also datasets associated with the term ‘hippocampus’
(in both free-text or ontology term), since ‘hippocampus’
(UBERON_0001954) is a child term of ‘cerebral cortex’
(UBERON_0000956).

Downstream analysis

At this point in the processing pipeline, the data have been
processed (normalized and batch corrected), the experi-
mental design and other relevant metadata populated and
a final manual review has been performed.

Next, differential expression analysis is performed on
the dataset based on the annotated experimental design.
In cases where certain terms are used [e.g. ‘reference
substance role’ (OBI_0000025), ‘reference subject role’
(OBI_0000220), ‘initial time point’ (EFO_0004425), ‘wild
type genotype’ (EFO_0005168), ‘control’ (EFO_0001461),
etc.], Gemma automatically assigns these conditions as the
baseline control group; in absence of a clear control con-
dition, a baseline is arbitrarily selected. To perform the
analysis, a generalized linear model is fit to the data for
each platform element (probe/gene). For RNA-seq data,
we use weighted regression, using an in-house implementa-
tion of the voom algorithm (30) to compute weights from
the mean–variance relationship of the data. Contrasts of
each condition are then compared to the selected base-
line. In datasets where the ‘batch’ factor is confounded
with another factor, separate differential expression analy-
ses are performed on subsets of the data; the subsets being
determined by the levels of the confounding factor. This
is reasonable for many cases we have observed (as men-
tioned earlier, in some cases, splitting the dataset is a better
approach). One common situation is where different tis-
sues [‘organism part’ (EFO_0000635)] were analyzed in
batches.

The output of the differential expression analysis is then
stored in the database. For each platform elements, this
includes at the factor-level, the main effect’s P-value and
associated false discovery rate (q-value), and at the contrast
level, the test statistics (t-statistic), the log2 fold change and

its associated P-value. The results are available for down-
load as tab-delimited files, and the top-most differentially
expressed platform elements can be visualized on Gemma.

The other major type of analysis supported by Gemma is
co-expression. This analysis has been performed on selected
datasets that have sufficient number of samples (generally at
least 20). Additionally, aggregation of data across datasets,
i.e. meta-analysis, for both co-expression and differential
expression can also be performed in Gemma. As these com-
ponents of Gemma are currently undergoing redesign, we
omit a detailed description of the associated methods.

Manuscript-specific code

Figure generation and numerical reporting was per-
formed with code using Jython, Python and R. Scripts
and relevant data files are provided on Github (https://
github.com/PavlidisLab/GemmaPaper-2020).

Results

Dataset and sample statistics

As of June 2020, Gemma provides 10 811 curated gene
expression datasets, with a total of 395 419 independent
samples. These datasets span seven major taxa (H. sapiens,
M. musculus, R. norvegicus, D. rerio, D. melanogaster,
C. elegans and S. cerevisiae). For most of this paper, we
will focus our analyses and descriptions to the three pri-
mary taxa: human, mouse and rat; each having 4593, 4933
and 894 datasets, respectively (Figure 2A). Similarly, they
account for most of the samples in Gemma, with human,
mouse and rat totaling 237 000, 123 000 and 26 000 sam-
ples, respectively (Figure 2B). All of these datasets were
generated using either microarray or Illumina RNA-seq
technologies, with the majority being microarray datasets
(8429/10 420, 81%; accounting for 342 635/385 397 or
89% of all samples). Almost all datasets (10 351/10 420,
99.3%) were obtained from NCBI GEO and are derived
from 10288 unique GEO Series (i.e. GSE), with the balance
coming from manual uploads of data from other sources
(e.g. ArrayExpress). Putting the numbers in perspective,
Gemma contains 14% of all expression profiling studies
available on GEO for these three taxa. Neuronal-related
datasets (largely excluding brain cancer) currently account
for about 34% of all datasets within Gemma; as a point of
comparison, 17% of Gemma datasets are cancer-related.
Further description of the dataset topics is presented in
a later section (‘Dataset topics’). Aside from the publicly
available 10 811 datasets, Gemma contains another 484
datasets that have been blacklisted and flagged for even-
tual deletion. At the individual dataset level, the number
of samples varies greatly: for the bulk of datasets (90%,
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Figure 2. Horizontal bar charts displaying the number of datasets (A) and samples (B) grouped by taxon; empirical cumulative distribution function
representation of the number of datasets against the number of samples per dataset grouped by taxon (C). ‘Others’ taxon group consists of D. rerio,
D. melanogaster, C. elegans and S. cerevisiae. (Ndataset =10420 in C).

9379/10 420), the sample count ranges from 6 to 2158 sam-
ples, with a mean of 40.5 (Figure 2C). While the range
appears large, only 6.5% (673/10 420) of datasets have 100
or more samples each, and the distribution of sample num-
ber per dataset is similar across the three taxa of interest,
with the human datasets tending to have marginally more
samples than mouse and rat (Figure 2C).

Dataset quality

Over the course of curating datasets, we noticed that stud-
ies vary widely in their data quality. We developed the
GEEQ scoring scheme as a means for quantifying the data
quality (see ‘Methods’). These scores are publicly viewable
(see ‘User interface’), thus researchers could use these scores
in determining which datasets of interest they could focus
on (or omit) in their downstream analyses. We stress that
these scores are only a rough guide and a dataset’s quality
score can sometimes be improved by curation.

Multiple dataset properties are used in determining the
GEEQ score. Here, we present some additional data for
three of the properties: median sample–sample correla-

tion, presence of outliers in the dataset and ‘batching’
information. It is well established that a high correlation
of gene expression profiles between replicate samples is a
good indicator of data reproducibility (50, 51). Using the
same logic, while many datasets contain samples of dif-
ferent conditions (e.g. treatment–control comparisons), we
expect to see strong agreement (i.e. high median sample–
sample correlation) between biological replicates of the
same condition, and in general after adjusting for known
covariates, within a dataset. In Figure 3 we observe that
the distribution of median correlations is centered at 0.91,
with a mode of 0.99; the range of correlation spans
from −0.7 to 1.0. This indicates that for most datasets
(8512/10 420, 82%), the within-dataset sample agree-
ment is strong (ρmedian ≥0.9). As high sample agreement is
indicative of data quality, such datasets are given a higher
GEEQ score. For the next property, 8% (825/10 420) of
datasets had at least one outlier sample flagged and manu-
ally confirmed during QC. The number of outliers removed
ranges from 1 to 21 samples in those datasets; when con-
verted to a ratio of outlier samples over the total number
of samples in each dataset, the outlier removal ratio ranges
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Figure 3. Histogram displaying the distribution of the median design-
regressed sample–sample correlation per dataset, for all human, mouse
and rata datasets (Ndataset =10420).

from 0.002 to 0.36, with a mean ratio of 0.04. In relation
to the GEEQ score, only the presence of predicted out-
liers negatively affects it. Once they have been reviewed
and accepted by a curator, they are marked as missing
data (see ‘Methods’) and their contribution to the GEEQ
score is also removed. Finally, 62% (6460/10 420) of all
datasets contain inferred batch information, of which 47%
(3047/6460) were judged as not requiring batch correction,
19% (1231/6460) were batch corrected and the remainder
(34%, 2182/6460) could not be corrected due to confounds
between the batches and another experimental factor. It is
concerning that almost 38% of all datasets lack batch infor-
mation, which raises questions on whether the data can be
fully trusted (and accordingly we downgrade these datasets
with lower GEEQ scores); we found that this is preva-
lent in datasets using the Illumina BeadArray technology
(1330/1356, 98%), as the submitted data files (both raw or
processed) and metadata in GEO almost never contain any
batch information or date stamps. We have observed that
a fair number of batch-confounded datasets could be ‘res-
cued’ by splitting the datasets on one of the factors that the
original submitters did not intentionally control for (often-
times either by tissue or cell line). Rescuing of these datasets
is a recent addition to our curation process that is still being
put into effect.

Separate from the GEEQ score framework, we explored
two other dataset properties that may influence the dataset
and curation quality: availability of raw expression data
and association of a PubMed publication to the dataset.
For the first, 64% (6686/10 420) had raw expression data
that were successfully reprocessed through our pipeline

[70% of which were microarray platforms (4704/6686)].
Since all of our RNA-seq data are reprocessed, this indicates
that 56% (4704/8429) of microarray data had raw data
that could be successfully reprocessed. For the second, 86%
(8981/10 420) had an association with a PubMed publica-
tion ID, indicating that for a vast majority of datasets, our
curators will be able to better curate those datasets using
additional information from the publications.

Platforms

In Gemma, a total of 811 platforms have been loaded,
though only 357 platforms are linked to datasets; the
remaining 454 platforms are not used actively in Gemma
for various reasons which we will discuss. Out of the
357 fully curated platforms, 92% (329/357) of them are
used in human, mouse or rat (N=150, 125 and 54
for human, mouse and rat, respectively). All but seven
are microarray platforms (the remainder being RNA-seq
‘pseudo-platforms’). Gemma also contains 21 ‘merged plat-
forms’ to accommodate datasets in which the same sample
is analyzed on different (but closely related) platforms.

In GEO, RNA-seq data are linked to far too numerous
platforms due to the various iterations of Illumina short-
read systems; in Gemma however, these platforms (53/454
unused platforms) are collapsed into a single taxon-specific
‘pseudo-platform’ that contains all known genes of the
taxon (see ‘Methods’). Similarly, there are 88/454 alter-
native Affymetrix ‘platforms’ that are listed separately in
GEO despite using the same physical array, because they
were processed using ‘custom CDFs’; datasets using these
are remapped in Gemma to use the ‘official’ manufacturer-
designated probe set layout, except in cases where raw
CEL files are not available. A further 160/454 unused plat-
forms have no datasets currently linked with them and
are retained for record keeping (many of these platforms
are eventually merged). 34% (153/454) of the remaining
platforms have been considered unusable for various rea-
sons, such as microarray platforms lacking specific probe
sequence information, and have been blacklisted. Much of
the processing and harmonization of platforms in Gemma
reduces the complexity of managing platform redundancies
and improves platform comparability across technologies
within each taxon.

The platforms with the most associated datasets for
human, mouse and rat are GPL570 (Affymetrix GeneChip
Human Genome U133 Plus 2.0 Array), mouse RNA-Seq
and GPL1355 (Affymetrix GeneChip Rat Genome 230 2.0
Array; N=1335, 1325 and 263 respectively; Figure 4C),
respectively. There are many platforms that have very few
datasets run on them: 42% (137/329) of platforms are asso-
ciated with only a single dataset (and this is nearly always
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Figure 4. Distribution of platforms by the number of associated datasets for each platform (N=357; A); scatterplot of the fraction of protein-coding
gene coverage of each microarray platform with its number of associated datasets (N=354; B) and bar chart of the top 10 platforms with the
most associated datasets for human, mouse and rat (C). The names of the listed platforms (C): Affymetrix GeneChip Human Genome U133 Plus 2.0
Array (GPL570), Affymetrix GeneChipMouse Genome 430 2.0 Array (GPL1261), AffymetrixMouse Gene 1.0 ST Array (GPL6246), Affymetrix GeneChip
HumanGenomeU133 Array Set HG-U133A (GPL96), Affymetrix HumanGene 1.0 STArray (GPL6244), Illumina HumanHT-12 v4.0 Expression Beadchip
(GPL10558), Affymetrix GeneChip Rat Genome 230 2.0 Array (GPL1355) and Illumina MouseWG-6 v2.0 Expression Beadchip (GPL6887).

representative of the platform’s usage frequency in GEO)
and 79% (259/329) of platforms are associated with 10 or
fewer datasets (Figure 4A). On the other hand, 7% (22/329)
of platforms are associated with 100 or more datasets
each, and taken together represent 78% (8079/10 420)
of all the datasets (human, mouse and rat) contained in
Gemma. We also observe that microarray platforms that
have more datasets tend to have a slightly better coverage
of protein-coding genes (Figure 4B); the mean fraction for
protein-coding gene coverage of microarray platforms with
100 or more datasets is 0.71 or 71% of known protein-
coding genes, with a range from 0.33 to 0.94. In other
words, 72% (6096/8429) of microarray datasets (human,
mouse and rat) contain data for on average 71% of known
protein-coding genes.

Dataset topics

Dataset topics are best understood as conceptual terms
that are relevant to a particular dataset and are dis-
played in a ‘bag-of-terms’ model on Gemma. Across

the curated datasets in Gemma, a total of 54 316 terms
have been used to annotate their ‘topics’; 97% of which
(52 762/54 316) were used to annotate human, mouse
and rat datasets—which we will further describe. Due to
use of ontologies during curation, 98% (51 479/52 762)
of dataset topics are represented by 9379 distinct
ontology terms and the remainder are free-text terms
(836 distinct free-text terms). The mean number of topics
per dataset is 5.2.

In Gemma, the displayed dataset topics originate from
three different levels of curation: dataset, experimental
design and sample-level curation. Dataset-level annotations
are used to describe the general intent of the dataset and
background information not captured at the other levels
(e.g. ‘Alzheimer’s disease’ for mouse models of Alzheimer’s,
etc.); they are appended to the datasets directly and repre-
sent 38% (20 332/52 762) of all dataset topics. Design-level
annotations are used to describe the underlying experi-
mental design of the study (i.e. different ‘factors’ or sam-
ple groupings), while sample-level annotations are used
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Figure 5. Numbers of datasets grouped by body system (A), organ/tissue (B) and cell type (C). The values are further grouped by taxon and are
represented using different colors (Ndataset =8292).

Figure 6. Numbers of datasets grouped by organ/tissue (A) and cell type (B); the colors indicate the number of associated datasets before (red) and
after (blue) ontology inference (Ndataset =8292).

to describe various sample characteristics. As design and
sample-level annotations are not appended to the dataset
directly, relevant annotations are algorithmically selected
to reflect key information of the dataset and are presented
alongside dataset annotations as dataset topics. Design and
sample-level annotations represent 56% (29 393/52 762)
and 6% (3037/52 762) of all dataset topics.

Separately, we also track the source of dataset anno-
tations by adopting a framework derived from GO evi-
dence codes; this reflects the two main methods in which
annotations are appended to various Gemma entities:
manual curation and automation (see ‘Methods’). The
bulk of dataset topics are manually curated (code ‘IC’
or ‘inferred by curator’), representing 95% of all dataset
topics (49 890/52 762), while the remainder are auto-
mated (code ‘IEA’ and ‘IIA’, or ‘inferred from electronic
annotation’ and ‘inferred from imported annotation’). We
next describe summaries of dataset topics using three dif-
ferent groupings (reflective of the core ontologies used):
tissue/cell-type, disease and chemical substances.

Of the 10 420 human, mouse and rat datasets, 80%
(N=8292) of them contain a dataset topic annotation
related to tissues or cell types (i.e. usage of ontology
terms from the UBERON or CL ontologies). Collectively,

these topic annotations represent 29% (15 202/52 762) of
dataset topics. After ontology inference, the number of
‘dataset-to-topic’ associations increases to 265 087 in total.
After manual inspection, we show the top 10 terms of
varying resolutions that describe the variety of tissues and
cell types represented in Gemma’s datasets (Figure 5). In
Figure 5A, 34% (3517/10 420) of datasets are associated
with the ‘nervous system’ [UBERON_0001016]—a
reflection of our focused curation on nervous system related
datasets in recent years. This is also reflected at the
organ/tissue-level (Figure 5B) in which ‘brain’ (UBERON_
0000955) and ‘spinal cord’ (UBERON_0002240) datasets
collectively represent 25% (2651/10 420) of Gemma
datasets. In a similar vein, datasets related to the
‘hemolyphoid system’ (UBERON_0002193, Figure 5A),
when grouped at the cell type resolution, consist of differ-
ent ‘subtopics’ (i.e. leukocyte, macrophage, T cell and B
cell; Figure 5C).

As mentioned earlier, by annotating datasets with ontol-
ogy terms, we can utilize ontology inference to improve
dataset retrieval during searches by expanding queries
to child terms. In Figure 6 we show that the potential
improvement in dataset retrieval is substantial for more
general terms that have many children in the ontology.
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Figure 7. Numbers of datasets grouped by system-level classification of disorders (A), various cancers (B) and neuronal disorders (C); the values are
further grouped by taxon and are represented using different colors (Ndataset =3602). Abbreviations: amyotrophic lateral sclerosis (ALS), multiple
sclerosis (MS), autism spectrum disorder (ASD), bipolar disorder (BD) and major depressive disorder (MDD).

Figure 8.Numbers of datasets grouped by chemical compounds (A) and biological role/application of compounds (B); the values are further grouped
by taxon and are represented using different colors (Ndataset =2362).

For example, the number of ‘brain’-associated datasets
retrieved increases from 560 to 2442 with ontology infer-
ence, a 4.4-fold increase (Figure 6A); other terms with
major improvements include ‘muscle structure’ and ‘intes-
tine’. We observe similar improvements at the cell type
level, for terms such as ‘hematopoietic cell’ (from 6 to 1328;
221-fold increase), ‘leukocyte’, ‘epithelial cell’ etc. More
specific terms naturally do not benefit as much from infer-
ence, e.g. ‘spleen’ and ‘liver’ (Figure 6A); and some do not
increase at all, e.g. ‘embryonic stem cell’ and ‘microglial
cell’ (Figure 6B). Again, this is reflective of the terms’ speci-
ficity: while ‘microglial cell’ has two children terms, ‘brain’
has 1974 of them.

Next, 35% (3602/10 420) of human, mouse and rat
datasets contain a dataset topic annotation related to dis-
eases and disorders (i.e. usage of ontology terms from
the DO ontology). These topic annotations represent 9%
(4849/52 762) of dataset topics, with the number of topic-
dataset associations increasing to 36 797 after inference. In
Figure 7A, we see that 17% (1733/10 420) of datasets are
associated with ‘cancer’ [DOID_162], followed by ‘nervous
system disease’ [DOID_863] (9%; 903/10 420). Further
inspection of 10 ‘cancer’ children terms showed that human

datasets constitute an overwhelming majority of cancer-
related datasets (Figure 7B), unlike the more ‘mouse-heavy’
distribution observed in Figure 5 (i.e. tissue/cell-type top-
ics). In the case of neuronal disorders, a more varied taxa
distribution is observed (Figure 7C). Disorders such as
schizophrenia, bipolar disorder and major depressive dis-
order are overwhelmingly represented by human datasets,
while diseases such as Alzheimer’s, amyotrophic lateral
sclerosis and Huntington’s are more ‘mouse-heavy’; in
the case of epilepsy datasets, ‘rat-heavy’. This is likely a
reflection of the heavier dependence on animal models in
research for certain disorders and on post-mortem human
brain tissue in others.

Next, 23% (2362/10 420) of datasets contain a topic
annotation related to small molecules (i.e. terms from
the ChEBI ontology). These annotations represent 7%
(3837/52 762) of dataset topics, with the number of topic–
dataset associations increasing to 15 229 after inference.
Figure 8A shows 10 most frequently used ChEBI terms
in Gemma. The most frequently annotated ChEBI term,
‘lipopolysaccharide’ (CHEBI_16412; 5%, 179/3837), is a
compound found in the outer membrane of Gram-negative
bacteria and commonly used to study inflammatory
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Figure 9. Snapshot of Gemma’s dataset page for GSE8030 [https://tinyurl.com/Gemma-GSE8030, (61)]; see main text for description. The red box
indicates the ‘Differential Expression’ buttons for accessing the details shown in Figure 10C.

responses and immune system function [e.g. in datasets
GSE3253, GSE9509 and GSE15721 (52–54)]. On the
other hand, ‘ethanol’ (CHEBI_16236), the secondmost fre-
quently annotated term (2%, 73/3837), is often used in
modeling Fetal Alcohol Spectrum Disorder [e.g. GSE23115
and GSE18162 (55, 56)] or study alcoholism in general
[e.g. GSE13524 and GSE15774 (57, 58)].

As a further exploration, we summarized the annota-
tion counts of compounds using children terms from two
‘role’ branches of ChEBI: ‘biological role’ (CHEBI_24432)
and ‘application’ (CHEBI_33232); a selection of 10
terms is shown in Figure 8B. The role term with
the most number of associated datasets is ‘antineo-
plastic agent’ (CHEBI_35610, N=582); the inferred
associations deriving from 180 children terms used,
including ‘dexamethasone’ (CHEBI_41879, N=66) and
‘tamoxifen’ (CHEBI_41774, N=34), both of which are
listed in Figure 8A. This is followed by ‘neurotoxin’
(CHEBI_50910) that is associated with 182 datasets and 26
contributing children terms, including ‘ethanol’. Another
example is ‘immunosuppressive agent’ (CHEBI_35705,
N=173), deriving its associations from 25 children terms,
such as ‘dexamethasone’. Separately, we found that
‘doxorubicin’ (CHEBI_28748, N=29), a widely used
chemotherapeutic was not included under the term ‘anti-
neoplastic agent’ (59), indicating incompleteness of rela-
tionship annotation in ChEBI, a common problem in
ontologies in general (60).

User interface

In this section, we describe a selection of information
pages that are publicly accessible through the Gemma web
interface. One of the most important is the dataset page
(Figure 9) and its associated tabs (Figure 10). We use
GSE8030 [https://tinyurl.com/Gemma-GSE8030; (61)] and
GSE2426 [https://tinyurl.com/Gemma-GSE2426; (62)] as
examples. On this page, basic information such as the
taxon, number of samples and the number of expression
vectors (i.e. platform elements or ‘Profiles’) is shown. There
are five value-added components we want to focus upon:

Dataset tags
We see there are six dataset tags appended to GSE8030
(e.g. male, Parkinson’s disease etc.) These tags have three
different background colors: green, yellow and blue. Green
tags indicate the tag was added at the dataset level, yel-
low tags at the experimental design level (i.e. levels of a
factor) and blue tags at the sample level. Both the design
and sample level (i.e. yellow and blue) tags are propagated
automatically to the dataset page.

Dataset status
A mix of color-coded emoticons and visuals are used to
display the state and quality of the dataset. Here, we see
a green smiley which represents a high GEEQ score. We
also display batching information (in this case, GSE8030
has batch information and does not have batch effects) and

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab006/6143045 by guest on 24 M

ay 2021

https://tinyurl.com/Gemma-GSE8030
https://tinyurl.com/Gemma-GSE8030
https://tinyurl.com/Gemma-GSE2426
mhh
Highlight

mhh
Highlight

mhh
Highlight

mhh
Highlight



Page 18 of 23 Database, Vol. 00, Article ID baab006

Figure 10. Snapshot of the contents in the ‘Diagnostics’ tab (A), ‘Experimental Design’ tab (B) and the ‘Differential Expression’ buttons (C) for GSE2426
[https://tinyurl.com/Gemma-GSE2426, (62)]. Within the diagnostics tab, a sample–sample gene expression correlation heatmap, PCA scree plot,
PCA–Factor association plot and mean–variance scatterplot are displayed. For the differential expression details, a heatmap of the top differentially
expressed platform elements and histogram of P-value distribution of the platform elements (inset) are provided.

data reanalysis state (GSE8030 has Affymetrix CEL files
and was successfully reprocessed).

Differential expression analysis
Different visualizations are used to present the level of dif-
ferential expression observed in each dataset (Figure 10C).
The user can choose to view the distribution of P-values
for each factor or a heatmap showing the top differentially
expressed platform elements. A complete table contain-
ing the differential expression values (i.e. log2 fold change,
t-statistics and P-value) for all the platform elements can
also be downloaded for further inspection.

Experimental design
Through the ‘Experimental Design’ tab, the layout of the
experimental design for the dataset is shown, with the
number of samples in each combination of factor levels
(Figure 10B). Additional columns are included for more
factors; only the ‘batch’ factor is not shown however.

Outlier removal
In the ‘Diagnostics’ tab, we present different visualizations,
including a heatmap of the sample–sample gene expres-

sion correlations, PCA scree plots, bar plots showing the
association of factors to the principal components and a
mean–variance scatterplot (Figure 10A). Part of the man-
ual QC process involves removal of outlier samples, which
can be observed as ‘grayed’ out rows/columns in the sam-
ple correlation heatmap (the diagonal of the heatmap is also
grayed out).

Another important page is the search page, where the
end user could search for various entities, including genes,
datasets (‘Experiments’) and platforms that are included in
Gemma. Searches can be initiated through the search box
found on the homepage or through the ‘Explore’ panel on
the upper banner present across Gemma (Figure 11A). For
dataset searches, datasets are retrieved if any of their text
fields contains the search term or tagged with the search
term (both free-text and ontology term; see ‘Methods’).
For gene searches, the matches are performed based on
NCBI Gene IDs, Ensembl Gene IDs, gene symbols, gene
names or gene aliases. For platform searches, the matches
are based on platform GPL IDs or the platform title.
Figure 11B shows the query results for datasets that are
annotated with the term ‘Parkinson’s disease’.
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Figure 11. Snapshot of Gemma’s search tools, accessible from the main page (A-left) or upper banner (A-right); and the search results page (B), in
which datasets (‘Experiments’) annotated with the term ‘Parkinson’s disease’ is returned.

Gemma REST API and R package

For end users wishing to retrieve both data and meta-
data from Gemma programmatically, we implemented
a REST-compliant API to assist in this task. Rou-
tine uses of this API include querying information on
datasets, platforms and genes stored on the Gemma
server. The output from these queries is structured
as JSON files (Figure 12A). The complete documenta-
tion of available querying functions can be found here,
https://tinyurl.com/Gemma-REST. For R users, we also
provide an R package that utilizes the Gemma REST-API,
returning the output as R objects that is more conve-
nient to use (https://github.com/PavlidisLab/gemmaAPI.R;
Figure 12B); the documentation of this package is found
here, https://pavlidislab.github.io/gemmaAPI.R/.

Discussion

In this paper, we provide detailed and updated information
on our efforts to facilitate use of publicly available gene

expression profiling datasets. Using Gemma, researchers
can circumvent the need to reprocess and reanalyze tran-
scriptomic datasets, as all of that is performed by Gemma’s
algorithms and our team of curators. Our curation efforts
address some of the limitations of GEO’s data model. For
microarray platforms, we remap probes to genes internally
using an established protocol (20). Our efforts in curat-
ing experimental designs greatly facilitate use of the data.
Problems relating to the data itself are addressed by our
QC checks, correction of batch artifacts whenever possible,
removal of outliers, consistent processing of the expression
data and Gemma’s internal mechanism of removing dupli-
cate samples. Datasets considered unusable are blacklisted
and researchers can pre-emptively avoid them, saving valu-
able time and effort. Additional exploration and checks of
the underlying gene expression data can also be performed
using Gemma’s user interface.

To provide context of Gemma’s data holdings and pro-
cessing pipelines, we compare Gemma to other secondary
gene expression databases: EMBL-EBI’s Gene Expression
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Figure 12. Snapshot of JSON output from searching for ‘Alzheimer’ datasets using the interactive documentation website of the Gemma REST
Application Programming Interface (API) (A) and tabulated output of GSE107999’s (63) metadata and expression data using the GemmaAPI.R
package (B).

Atlas (GXA) (64), the Gene Perturbation Atlas (14) and the
All RNA-seq and ChIP-seq Sample and Signature Search
(65). GXA was created to enable reuse of data resid-
ing in ArrayExpress (66), the European counterpart of
the American NCBI GEO. As of June 2020, GXA con-
tains 3942 datasets covering 65 different taxa. Of those
datasets, 64% (N=2514) were imported fromNCBI GEO;
32% (N=802) of those GEO studies are also contained in
Gemma. While GXA’s taxon coverage is fairly wide and
would benefit researchers interested in taxa not included
by Gemma, Gemma contains far more datasets; more so for
human, mouse and rat. Gemma’s more limited taxon cov-
erage also enables us to focus our curation efforts on those
three taxa. Another core difference is that GXA includes
proteomics data, while Gemma solely processes transcrip-
tomic data. Additionally, there are notable differences in
the tooling and procedures for processing data. Batch cor-
rection of data is performed in Gemma using ComBat,
while it is unclear if correction is implemented in GXA.
For ontology support, while GXA relies exclusively on

EFO (which does import terms from other ontologies), we
rely on 12 different ontologies (including EFO), providing
us greater coverage of concepts. The Gene Perturbation
Atlas (GPA), on the other hand, was created to reuse
expression data generated from human and mouse studies
where genes were manipulated (e.g. knocked-down, over-
expressed etc.). For experiments involving the manipula-
tion of protein-coding genes, this atlas contains data from
1749 GEO microarray datasets; 40% (N=692) of which
are also contained in Gemma. Due to GPA’s focus, users
are constrained to genetic manipulation datasets, whereas
Gemma provides the flexibility to also work with non-
genetic manipulation datasets at the same time. Gemma
also provides data from both microarray and RNA-seq
studies, while GPA is currently solely microarray-based.
Additionally, it is unclear whether the data in GPA were
reprocessed uniformly or if reprocessing from raw data
were performed. Ontologies are not used in GPA, poten-
tially limiting the potential for cross-database connectivity
in the future. The All RNA-seq and ChIP-seq Sample and

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab006/6143045 by guest on 24 M

ay 2021

mhh
Highlight

mhh
Highlight

mhh
Highlight

mhh
Highlight

mhh
Highlight

mhh
Highlight

mhh
Highlight



Database, Vol. 00, Article ID baab006 Page 21 of 23

Signature Search [ARCHS4 (65)] was created to reprocess
RNA-seq and ChIP-seq studies from GEO and provide
users a convenient means of accessing the processed data.
As of June 2020, ARCHS4 contains 18 405 human and
mouse datasets; 8% (n=1462) of which are also con-
tained in Gemma. While ARCHS4’s data holding are much
larger than Gemma’s, Gemma supports data from a much
wider variety of platforms. ARCHS4 only contains data
generated using Illumina HiSeq and NextSeq platforms;
whereas Gemma supports not only those two platforms,
but also other Illumina RNA-seq platforms (e.g. MiSeq and
Genome Analyzer) andmicroarrays, the latter enables users
to also work with older but still useful datasets. ARCHS4
also shares data QC issues identified in GPA: it is unclear
if batch correction or outlier sample removal is performed
on ARCHS4 datasets, both of which are done in Gemma.
It is also unclear if any metadata curation is performed
in ARCHS4; thus, the database shares similar issues we
originally identified in GEO.

Throughout this paper, we have emphasized Gemma’s
utility in allowing access to data and analysis results for
datasets in GEO. We have not detailed other analytical
capabilities (co-expression and meta-analysis for instance)
in Gemma, largely because these features are currently
undergoing redesign and revision. As a data resource,
Gemma’s main shortcoming is that we only have a fraction
of the data contained in GEO. This is a gap that is unlikely
to be closed, because the generation of data outstrips avail-
able resources to perform curation. As such, we have
elected to focus our efforts on curating rodent and human
datasets we deem relevant to neurodevelopment, neuro-
logical and neuropsychiatric conditions—a more manage-
able goal considering the annual submission rate of such
datasets to GEO is approximately 500. However, we do
continue to add data on other topics and are able to respond
to user requests for specific datasets.

There are several features that we plan to implement in
Gemma. First, single-cell RNA-seq is rapidly gaining wider
adoption, and we anticipate a growing number of cell type–
specific studies with biological replication, which we will be
working to accommodate. Second, we will be enhancing
the display and interpretation of differential expression on
Gemma’s ‘Gene Information’ pages. Recently, we showed
that for certain genes, there is some level of predictability
in their differential expression (67). This implies that genes
that are often differentially expressed are less likely to be
specific to a particular condition of interest, and we want to
present this in our gene information panels. Another func-
tion of the ‘Gene Information’ page is to provide further
information on the conditions in which a gene is found dif-
ferentially expressed and can be used to infer the gene’s
function. Our observation of pre-existing tools indicates

that this information is often represented as a long list of
‘relevant conditions’ (64). While manual inspection of these
lists may provide some level of insight, it is time-consuming
and unwieldy, especially for genes found to be differen-
tially expressed in many conditions, and this issue will grow
in severity alongside the continued increase of transcrip-
tomic datasets. We are currently examining the feasibility of
using ontology inference–based summarization techniques
to improve usability of such lists.
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