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Abstract

What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost
completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ
from well-studied genes? To address these two questions, we devised a computational approach that defines so-called
ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in
brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant
literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome
over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature
has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied
genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs,
or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery
being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive
genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire
ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In
several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets,
and reverse genetic methods to evaluate the function of ignorome genes.
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Introduction

The distribution of research on genes is highly skewed and is

made up of a small set with dense literature coverage and a larger

set with minimal coverage [1]. The distribution follows a power

law [2], probably because researchers tend to work collaboratively

and collectively on genes they perceive to be important [3]. Pfeiffer

and Hoffmann highlight the social bias that can produce this type

of bandwagon effect, but they also point to the opposite tendency

to explore the unknown. The disappointing fact is that after two

decades of intense and sophisticated molecular and genetic

analyses, more than a third of all protein-coding genes have

almost no literature or known function. We refer to this subset of

the genome as an ignorome. If ‘‘real knowledge is to know the

extent of one’s ignorance’’ (paraphrasing Confucius, analects

2:17), then we currently need to determine the extent of the

ignorome and whether it arises from social patterns of research or

unusual biological properties.

An ignorome can be computed at the level of an entire genome,

but as we show here, an ignorome can also be computed at the

level of a single organ, tissue, or cell type using patterns and levels

of expression as a metric of functional importance. These more

refined ignoromes are particularly useful when the goal is to define

gene or protein function. In the present study we focus on the

mammalian CNS—mainly of mouse and human. We have

computed ignorome scores that are a function of (1) gene

expression in the brain, (2) selectivity of expression in brain versus

other organs, and (3) the size of the neuroscience literature. Two

steps are essential to define an ignorome using this quantitative

approach: accurate assignment of expression data to the correct

gene, and precise estimation of the neuroscience literature

coverage for each gene. For the first step we used deep RNA-

seq data that we recently generated for whole brain [4–6] to

correctly assign genes in large expression data sets. For the second

step, we used a generalizable data mining approach that

minimizes irrelevant and false literature linkages created by

ambiguous gene names. Using these methods we have been able

to extract the most interesting fraction of the ignorome that has

both intense and highly selective expression (ISE) in the brain.

These genes are likely to have greater impact on brain function

and behavior, and can be more readily evaluated using genetic,

genomic, and phenotypic resources.

Remarkably, we find that the ignorome does not differ from

well-studied genes in terms of connectivity in coexpression
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networks. Numbers of orthologs, paralogs, or protein domains do

not differ greatly between the two types of genes. This strongly

supports the idea that the neglected subset of the genome is more

of a matter of the sociology of science that of inherent differences

in biology. Supporting this hypothesis we find that well-studied

genes have much earlier discovery dates by an average of 10 years.

We used multiple genomic resources and a variety of

approaches to provide a useful functional context for a significant

majority of brain ignorome genes including: gene coexpression

analysis, protein domain comparison, analysis of in situ expression

in many CNS cell types, and a novel genetic method referred to as

reverse complex trait analysis [6,7]. We close by giving several

specific and intriguing examples of ignorome genes likely to be of

importance in CNS function. The methods we have developed

here can be applied widely to prioritize genes for detailed

functional analysis in many different tissues, cells, and systems.

Results

Genes with intense and selective expression in the brain
To extract the list of genes with intense and selective expression

we compared patterns of gene expression in the brain with those in

more than 20 other organs and tissue types using both Illumina

MouseWG-6 v2 and Affymetrix M430 2.0 arrays. We selected all

assays of mRNA expression—probes and probe sets—that had at

least eight-fold higher expression in brain compared to other

tissues (Methods). We identified 493 and 615 probes and probe

sets with intense and selective expression (ISE) in brain,

respectively. While we have mostly exploited murine data sets,

in the text below, we have used human gene symbols whenever

possible.

Annotation of intense and selectively expressed genes. Many

probes that target specific transcripts in the brain are still poorly

annotated, and as a result probes that actually target well-studied

genes can be incorrectly nominated as part of an ignorome. We used

deep RNA sequencing (RNA-seq) for whole brain (,1 billion

strand-specific tags from 34 strains of mice, see Methods) to

reevaluate the annotation for a small subset of ambiguous probes

and their associated transcripts (n = 28, Table S1). For example,

Affymetrix probe set 1457743_at was not assigned to any gene in the

original annotation file, but actually maps to the distal 39 UTR of

RGS7BP. Similarly, probe set 1443205_at was initially assigned to

the ignorome gene D5Buc30e, but correctly maps to the distal 39

UTR of GABRB1 (Figure S1).

We removed redundant probes and retained 406 and 478 ISE

genes in the two data sets (Table S2 and S3), and a union of ,650

genes. Not surprisingly, this set of 650 genes contains intensively

studied genes known to be involved in brain function and

development. With the exception of Zfp941, all 650 have

unequivocal human orthologs and also have supporting identifiers

in different databases including Refseq, MGI, and Ensemble.

More than 98% are conserved across five or more species. A few

genes, such as CMTM5 and PRR18, appear to be restricted to

mammals. Many others, such as SGTB and RNFT2, are conserved

in more than 10 species (n = 170 genes). We have used the union of

the two ISE sets as starting material to define a brain ignorome.

Neuroscience-specific literature coverage
The number of publications for these 650 ISE genes is highly

skewed (Figure 1). The top 5% account for ,68% of the relevant

literature whereas the bottom 50% of genes account for only 1%

of the literature. Forty-six genes including GFAP, MBP, VIP,

GRIA1, and GRIA2 are associated with over 1000 PubMed

citations each. In contrast, approximately one-sixth of these genes

comprise the core brain ignorome, and are associated with fewer

than one paper each (38 papers total). One-tenth of these ISE

genes are not associated with any citations and are part of an

absolute ignorome. A sample of genes that have no neuroscience

publications as of February 2013 include FAM155A, C16orf45,

C8orf46, VSTM2A, PNMAL1, LONRF2, PGBD5, and MAP7D2.

Their high brain expression selectivity (Figure 2) was confirmed

independently using multiple sources (Methods), with the expected

exception that several have high expression in pituitary, retina,

and more rarely, testis.

There are a number of technical issues associated with precisely

determining the neuroscience literature coverage of ISE genes. We

briefly discuss some steps used to minimize the retrieval of

irrelevant literature.

1. Ambiguity associated with gene names: Ambiguity of gene names—

symbols, aliases and other designations—adds significant error

to estimates of literature coverage derived from PubMed [8].

We used a simple disambiguation approach that combines

ambiguous gene names with informative and gene-specific key

words (Methods). For example, NSE is an alias for ENO2, a

neuronal enolase. However, NSE also stands for ‘‘normal

squamous epithelia’’ and ‘‘neutron spin-echo’’. By combining

‘‘NSE’’ with ‘‘enolase’’ to produce a joint search, we were able

to disambiguate PubMed analysis for this gene.

2. Neuroscience-restricted search: The literature for many ISE genes is

not restricted to neuroscience. For example, pleiotrophin

(PTN), a neurotrophic factor for spinal motor neurons, has

been studied primarily in the context of bone morphogenesis

[9,10]. As described in Methods, we developed a simple

algorithm that enables us to restrict PubMed searches to a

specific literature subset—in this case a neuroscience-specific

subset.

3. Inflation due to a noisy or uninformative literature: Large-scale

genomic studies often list hundreds of genes but provide only

generic and cursory annotations. Notable examples include

studies representing genome-wide surveys such as ‘‘The

transcriptional landscape of the mammalian genome’’ [11].

We generated a list of approximately 850 of these articles

(Methods) and excluded them from downstream analysis.

Functional characterization of the ignorome
The ignorome score is a function of both literature coverage

information and expression selectivity and ranges from 0 (relatively

well known) to 1 (relatively unknown, Table S4).We have defined

the core brain ignorome as those genes that have no more than a

single neuroscience article in PubMed (Table S4). One-hundred

and six out of 650 ISE genes belong to this core ignorome. One-

tenth still retain their original names given by the RIKEN Mouse

Gene Encyclopedia project [12]. Other subsets belong to the

solute carrier family (SLC39A12, SLC35F3, SLC35F1), the TAFA

family [13] (FAM123C, FAM131B, FAM155A, FAM171B,

FAM189A1, FAM19A1, FAM19A2, and FAM81A), and the family

of transmembrane proteins (TMEM130, TMEM145, TMEM178A,

TMEM179, TMEM59L, TMEM88B, TMEM91).

Calculation of the ignorome score relied on whole brain gene

expression, and as expected 95% of the core has both intense and

relatively uniform expression across many brain regions. However,

there are interesting exceptions (Figure 3): (1) KIAA1239 has

extraordinarily high and selective expression in Purkinje cells,

habenula, pyriform cortex, superficial layer 2 of neocortex, and

CA3 of hippocampus; (2) C8orf46 has extremely high expression

only in cortex (archi-, paleo- and neocortex) but low expression in

Analysis of an Ignorome
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layer 4 of neocortex and part of CA3; (3) FAM123C has highest

expression in granule cells of cerebellum, dentate gyrus, and

olfactory bulbs, and finally, (4) FRRS1L has highest expression in

Purkinje cells, neocortex, and CA1–3. We also used in situ

hybridization images downloaded from the Allen Brain Atlas [14]

to evaluate patterns of expression in subsets of easily resolvable cell

types (e.g., Purkinje cells, Bergmann glia, astrocytes, dentate gyrus

granule cells, pyramidal neurons, and white matter oligodendro-

cytes). Again, more than 95% of ignorome genes have high

expression in neurons (e.g., ZCCHC18 has pan-neuronal expres-

sion in Figure 3) and comparatively modest, if any, expression in

oligodendrocyte or astrocyte. Only two ignorome genes

(SLC39A12, CMTM5) are expressed preferentially in astrocytes,

Bergmann glia, and oligodendrocytes (Figure 3).

Eighty-five percent of the core ignorome contains known

protein domains cataloged in InterPro [15] or Pfam [16]. As

shown in Table S5, common domains include leucine-rich repeats

(SLITRK4, LRRC40, LRRC24), C2 calcium-dependent membrane

targeting domains (SYT16, CPNE9, CPNE4), small GTPase

domains (DIRAS2, RAB9B, DIRAS1), and zinc finger motifs

(Zfp941, RNFT2, ZMAT4, LONRF2, ZCCHC18, and DZANK1).

A subset of core ignorome genes (n = 10) have known orthologs

in worm. With few exceptions, such as SLITRK4 and SMAP1 that

are associated with embryonic lethality in worms, we were

unfortunately not able to add significant functional annotation

using this comparative approach and exploiting WormBase [17].

Gene function can often be predicted from patterns of

coexpression—guilt by association. We extracted the top 100

covariates of each member of the core ignorome and carried out

gene ontology (GO) enrichment analysis using the hypergeometric

distribution (FDR-corrected p value ,0.05) [18]. Every ignorome

gene was successfully assigned to one or more GO terms, including

ion-channel activity, beta-amyloid binding, GABA metabolic

process, neurotransmitter transport, neuron migration, synapse,

and voltage-gated calcium channel complex (Table S5).

Network properties of the ignorome
We defined large sets of genes that covary with members the

ISE set (n = 306, see Methods) using several large brain

transcriptome data sets (whole brain, cerebellum, hippocampus,

nucleus accumbens, and prefrontal cortex) at thresholds of

|r| = 0.75, 0.80, 0.85, 0.90, and 0.95. Remarkably, there is no

correlation between the depth of literature coverage and the

number of super-threshold covariates in any data set at any level.

We conclude that connectivity of ISE genes in any of several well

defined brain regions does not predict how well it has been

studied. A few ignorome genes including RUFY3, TRNP1,

FAM81A, SLITRK4, and CNIH3 are among the top 20 most

highly connected genes in the brain and have higher connectivity

than extraordinarily well-studied genes such as GABRB3, MBP,

SYP, and SNCA.

Homolog properties of the ignorome
Paralog comparison. There is no significant correlation

between paralog abundance and literature coverage for ISE genes

(r = 20.08). The average numbers of known paralogs for 100

ignorome genes and 100 of the best-studied ISE genes are closely

matched—2.2 and 3.0, respectively. Similar results were obtained

for human orthologs. The correlation between paralog counts and

literature coverage is very close to zero (20.085).

Figure 1. Literature density of 648 genes with intense and selective expression in the brain. The x-axis represents the number of
neuroscience-related references in PubMed as of February 2013. The left y-axis represents the number of genes. The right y-axis represents the
cumulative literature distribution for ISE genes. A subset of ,30 genes to the far right (last two bars) absorb two-thirds of the total neuroscience
literature. In contrast, ,200 genes to the far left (first two bars) absorb only 0.1% of the literature.
doi:10.1371/journal.pone.0088889.g001
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Figure 2. Expression comparison between a few well-studied and ignorome genes in multiple tissues and organs. The x-axis
represents multiple tissues and organs including several brain regions represented by red colored bars. y-axis represents the log2 transformed
expression values downloaded from BioGPS (www.biogps.org). We included interesting examples including (1) GAPDH, a house keeping gene, (2)
MBP, an extensively studied gene with high brain selectivity, (3) HTT (HD), an important neuroscience gene with low brain selectivity, and ignorome
genes including FAM155A, C16orf15, VSTM2A, and LONRF2 with highly selective expression in brain.
doi:10.1371/journal.pone.0088889.g002

Analysis of an Ignorome

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88889



Ortholog comparison. Using comparative data for 21

species in HomoloGene (ftp.ncbi.nih.gov/pub/HomoloGene)[19],

there is a highly statistically significant positive correlation between

ortholog number and literature coverage (r = 0.16) using the

logarithm of the literature coverage to normalize the distribution.

Ignorome members have slightly fewer orthologs with a slope of

0.4 orthologs per 10-fold increase in literature, but this difference

while significant, only accounts for 2–3% of the variance. The

average numbers of known orthologs for 100 ignorome genes and

100 of the best-studied ISE genes are—8.19 and 9.79, respectively.

Protein signature analysis. The correlation between the

logarithm of the neuroscience literature and numbers of protein

domains for all 650 ISE gene is again weakly positive (+0.7

domains per 10-fold increase in literature, r2 = 4.2%) but is still

highly significant (p,.0001). This trend is much more evident in

the extremes of the distribution—the average domain count for

the best studied set of 100 genes is more than twice that of the

worst studied subset of 100 genes (n = 4.7 vs 2.0 domains). Twenty

ignorome genes have no known protein signatures, whereas all

well-studied ISE genes have at least one protein domain.

Time series analysis of the ignorome
We evaluated whether sparse functional annotation and lack of

scientific attention focused on the ignorome is simply a matter of

discovery date and duration of study. For every ISE gene, we

retrieved the year that the gene or its orthologs were first

referenced in sequence databases including GenBank

(ftp.ncbi.nlm.nih.gov/refseq/M_musculus/mRNA_Prot). In most

cases, this date corresponds to the year the first cDNA clone was

submitted to GenBank (ftp.ncbi.nlm.nih.gov/refseq/M_muscu-

lus/mRNA_Prot). As anticipated, the well-studied subset of genes

was generally introduced earlier to the research community than

the ignorome subset— with medians of 1988 and 2002,

respectively (p,10218, one sided t test). Forty percent of ignorome

genes were introduced during the watershed sequencing years

(2001–2003) for mouse and human genomes (Figure 4). However,

it is serious concern that 60% of the ignorome have been well

defined protein-coding genes for over a decade.

Rate of evaporation. Will untargeted and semi-random

community research effectively remove the ignorome in the next

few years? To address this question we calculated the rate at which

the ignorome has shrunk over the past two decades? Our starting

point for this analysis was 1991. At this early stage of genomics,

two-thirds of our reference set of 648 ISE genes had no literature

at all. This number has been reduced by 90% and only 67 genes

are still part of an absolute ignorome with no neuroscience

literature and almost no literature in an area of research. While the

average rate of decrease was rapid between 1991 and 2000 (225

genes/year), the rate has been lethargic over the past five years

(26.4 genes/yr, Figure 5). This trend is surprising given the sharp

increase in the rate of addition to the neuroscience literature. As a

result, the number of neuroscience articles associated with the

elimination of a single ignorome gene has gone up by a factor of

three between 1991 and 2012 (Figure 5). The rate at which the

ignorome is shrinking is approaching an asymptote, and without

focused effort to functionally annotate the ignorome, it will likely

make up 40–50 functionally important genes for more than a

decade.

Genetic analysis of the ignorome
We used a reverse complex trait approach combined with a

massive phenome data set in GeneNetwork [20] to evaluate the

range of CNS and behavioral phenotypes that map downstream of

ignorome genes. More specifically we exploited sequence variants

in ignorome genes that are known to segregate in the BXD family

of inbred strains [6,21,22]. We provide three concrete examples

below, and we provide more specific instructions that can be used

to apply this technique in the Methods section.

N Expression of ELMOD1 is associated with a strong cis-eQTL in

a massive RNA-seq brain data set that we generated (UTHSC

Mouse BXD Whole Brain RNA Sequence Exon Level RPKM, see

Methods). The LRS peaks at a value of 23 and the D allele is

associated with high expression. ELMOD1 is also a cis eQTL in

several regional data sets, including the hippocampus

(LRS = 43), hypothalamus (LRS = 21), prefrontal cortex

(LRS = 37), striatum (LRS = 25), and cerebellum (LRS = 24).

One likely causal variant is a ,6200 bp long interspersed

nuclear element that is present in all family members that

Figure 3. Expression of ignorome transcripts in the C57BL/6J
brain. Pairs of low (scale on the lower left represents 1500 microns)
and high (scale on the lower right represents 750 microns) resolution
images of C57BL/6J brain sagittal sections (labeled using in situ probes)
for six ignorome gene members taken from the Allen Brain Atlas (http://
www.brain-map.org/). A) and B) are low and high resolution images
showing in situ expression of ZCCHC18 in sagittal sections. C) and D)
show expression of FRRS1L. E) and F) show expression of C8orf46 and G)
and H) show expression of FAM123C, I) and J) show expression of
KIAA2139, and K) and L) show expression of CMTM5.
doi:10.1371/journal.pone.0088889.g003
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inherit the B haplotype relative to the D wildtype haplotype.

This analysis provides a reason to suspect that variants in

ELMOD1 may have downstream effects on higher order

phenotypes. In support of this idea, four independent studies

have shown that variation in locomotor activity maps to the

ELMOD1 locus on chromosome 9 (GeneNetwork traits:

GN10566 [23], GN11518 [24], GN10132 [25], and

GN10010 [26]). Hearing sensitivity also maps to this region

(GN10654), and ELMOD1 is a strong candidate gene for this

trait given independent evidence that mutations in this gene

cause hearing and balance deficits [27].

N Expression of TMEM88B is consistently associated with cis-

eQTLs in whole brain (LRS = 12), hippocampus (LRS = 25),

hypothalamus (LRS = 13), and striatum (LRS = 13). The B

allele is associated with higher expression. A high impact

missense SNP (rs32361880) in exon 1 substitutes a polar

arginine (D haplotype) for a nonpolar glycine (B haplotype)

within the transmembrane helix as predicted by TMHMM

[28]. Several feeding and gustatory traits have been mapped to

this part of chromosome 4, including GN10578 [29] and

GN10475 [30]).These gustatory traits are already known to be

caused by a mutant D allele of the TAS1R3 sweet receptor

[31]. However, handling-induced convulsion, GN10578 [29],

is still a viable candidate trait that may be functionally linked to

the missense mutation in TMEM88B.

N DZANK1 is also consistently associated with cis-eQTLs in

mouse brain (LRS = 17), hypothalamus (LRS = 16), amygdala

(LRS = 32), and striatum (LRS = 23). DZANK1 has a missense

mutation that substitutes a valine (D haplotype) for an

isoleucine (B haplotype). Traits that map to the DZANK1

interval on chromosome 2 (139–150 Mb) include an assay for

depression (GN11432, the tail suspension test [24]) and

ambulatory activity (GN12890 [21]). Expression of DZANK1

in amygdala covaries strongly with both of these traits (r = 0.70

and r = 20.77) and both are therefore downstream phenotypes

that may well be associated with the DZANK1 missense

mutation and cis-eQTL.

Discussion

After two decades of systematic genomic studies of the nervous

system [35–37] nearly one-sixth (n,106) of all genes with highly

specific expression in the brain are still part of the core ignorome.

The skewed distribution of literature may be due to the inherent

differences in the importance of these genes, but we suspect that

initial bias in discovery and social and scientific research

momentum is a much more likely factor. Hoffman and Valencia

[1] showed no correlation between a gene’s impact in the scientific

literature and it’s centrality in protein-protein interactions, a

finding that certainly is concordant with our main results.

However, some skew in the literature could also be due to

intrinsic differences among ISE genes, particularly the number of

known protein domains. It is possible that the well-studied genes

have still undiscovered characteristics that justify the extra

affection that they continue to receive. Interestingly, we did not

find any prominent differences between well studied and ignorome

sets at any level of analysis, including expression selectivity, co-

expression connectivity, and species conservation (paralog and

ortholog abundance). We argue that that ignored genes will

ultimately prove to be as important as the well-studied genes such

as MBP, GABRA1, and GRIN1.

Figure 4. Year of discovery of genes. The x-axis represents the timeline. The line represents the perecentage of ISE genes whose mRNA or
protein have been referenced into GenBank.
doi:10.1371/journal.pone.0088889.g004
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Defining an ignorome
Ignoromes can be defined for whole systems or for single cell

fractions. Ignoromes can also be calculated for different states such

as a disease or response to a drug treatment. The only restriction

in computing different types of ignoromes is that the literature

pertaining to the relevant area of research must be sufficiently

large. Large literature size will ensure a relatively smooth

distribution of scores and adequate resolution and ranking of

genes. For example, pancreatic beta cells (,20,000 papers) and

astrocytes (,36,000 papers) have enormous literatures and

ignoromes could be easily computed given the literature and

numerous ‘omics’ data sets, even at the cellular level. In every case,

careful manual curation will be essential to avoid errors introduced

by ambiguous nomenclature or incorrect gene models. The

methods and code that we provide in the Methods section should

provide a start to systematically define what the blind spots in

genome functional annotation.

Assuming that the literature distribution of ISE genes for any

tissue follows a power law, the size of the ignorome will depend on

number of genes that show intense and selective expression. For

the expression data set that we used in our study [32], four other

common tissues—testis, placenta, embryonic stem cells, and

heart—also have comparatively large numbers of ISE genes. In

contrast, tissues with modest cellular diversity or widely shared

functions will often have smaller numbers of ISE genes and may

also have smaller ignoromes. However, since the ignorome is also

a function of literature coverage, there will be important

exceptions and tissues with small numbers of ISE genes may have

large ignoromes.

Depending on the goal of a study or system of interest, different

quantitative metrics can be used to evaluate the ‘genetic’ or

biological importance of genes. Expression selectivity, sequence

conservation or centrality in protein networks are some charac-

teristics that can be used to rank potential biological importance.

Whole transcriptome data sets have advantages. The first of these

is comprehensiveness—the availability of expression data for

nearly all protein-coding genes. In contrast, mammalian protein

interactomes are still incomplete and many proteins lack

interaction data. The second, almost paradoxical advantage of

expression data is the lack of association between a gene’s

expression selectivity score and its literature coverage. Expression

selectivity scores are computed without reference to the literature.

In contrast, specific protein–protein interactions are frequently

reported in the literature. As a result, proteins with high numbers

of interacting partners will obviously have high literature counts.

For expression data, the literature is only minimally ‘‘contami-

nated’’ by large ‘omics’ studies and literature contaminants are

easily removed.

Using tissue-selectivity scores as a metric overlooks genes that

have widespread expression but that have highly specific function.

For example, BDNF is expressed in many tissues [33,34], including

the brain, prostate, kidney and eyes, but is known to play an

important role in development and adult brain function.

In this study we have defined a core CNS ignorome using

stringent criteria, and the ignorme genes in Table S5 have at most

Figure 5. Shrinkage of the ignorome. The x-axis represents the timeline. The solid line represents the percentage of ignorome genes in the ISE
brain set. The dotted line represents the number of neuroscience specific literature (in thousands).
doi:10.1371/journal.pone.0088889.g005
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a single article link in PubMed. Broadening inclusion criteria to

include genes with as many as five articles could be easily justified

and would expand the brain ignorome to ,200 genes—almost

one-third of the ISE brain set. In this study we have also applied a

very high expression selectively criterion—8-fold higher expression

in brain than in other tissue. This criterion could easily be relaxed

to 4-fold, and the size of the brain ignorome would double. As

shown in Figure 1, half of all brain ISE genes absorb only 1% of

the neuroscience literature and from this vantage point could

easily be defined as below the poverty line. Appropriate thresholds

to define an ignorome will differ greatly depending on research

context. The threshold we have used is suitable for highlighting

only the most blatantly neglected starving genes that deserve much

more research attention.

Absolute versus relative ignoromes
It is practical to calculate global and local ignoromes for a given

system. The global ignorome consists of genes with no literature

coverage whatsoever. In contrast a local ignorome consists of

genes that may have some literature coverage but no or very little

literature coverage with respect to a particular system. In this

paper, we focused on the brain ignorome but calculated both

global and local (neuroscience-specific) ignoromes. We found that

only a few of the local brain ignorome genes, including COPG,

SMAP1, JPH4 and MAGEE1, have been studied to some extent

outside of neuroscience. Thus our stringent brain ignorome is

nearly equivalent to a global ignorome.

Annotating the ignorome
We have used diverse resources to add useful functional

annotation to several core ignorome genes. We exploited InterPro

and Pfam, in situ hybridization expression data from the Allen

Brain Institute, and GeneNetwork’s massive compendium of

phenotype and transcript expression data. This overlay of

bioinformatic and genetic annotation, summarized in Table S5,

is helpful as an initial pointer, but even when we combine these

resources we cannot provide mechanistically validated functional

annotation. For example, information on protein domains is

helpful as a clue to function, but domains such as the leucine-rich

repeats have been identified in a large number of functionally

unrelated proteins [33]. As made clear by our retrospective

analysis of the brain ignorome going back twenty years (Figure 5),

molecular and genetic studies are essential to confidently remove a

gene from the list.

Network properties of the ignorome versus well-studied
genes

Ignorome genes and well-studied genes showed no connectivity

difference in brain co-expression networks. This suggests that

ignorome genes may well prove to be as important as well-studied

genes. Literature coverage of ISE genes showed a very weak but

statistically significant correlation with both ortholog and protein

domain numbers. But none of these factors accounted for more

than 5% of the variance observed in literature coverage.

Potentially important brain ignorome members
We conclude by highlighting a few examples of potentially

important brain ignorome genes that by definition have minimal

literature, but that already have intriguing, if tentative, links to

neurological and psychiatric disorders.

N CSMD3 encodes a transmembrane protein selectively ex-

pressed in adult and fetal brains and is a strong candidate for

autism spectrum disorders [35] and benign adult familial

myoclonic epilepsy [36]. Expression is extremely intense in the

dorsomedial hypothalamic nucleus and hippocampus but weak

in cerebellum. No clear function has been assigned to this

gene, but it mRNA covaries well (r = 0.72) in mouse

hippocampus with a voltage-gated sodium channel (SCN3A)

that itself is linked to autism and epilepsy [37]. The expression

of CSMD3 in human forebrain [38] is strongly linked with

genes involved in GABAergic interneuron fate commitment

(adjusted p (adjP) = 0.0039) and neuron development

(adjP = 0.010).

N CSRNP3 is expressed almost exclusively in brain and pineal

gland. CSRNP3 has cell death-inducing activities and is

predicted to play role in brain development [39]. Csrnp3

mRNA covaries well in mouse hippocampus with ataxin

1(ATXN1, r = 0.65) and PTEN (r = 0.64). ATNX1 is linked with

spinocerebellar ataxia 1[40] and PTEN is linked with

glioblastoma, autism, and several other syndromes[41,42]. In

human forebrain, CSRNP3 covaries well with genes involved in

alcohol transmembrane transporter activity (adjP = 0.018).

N TCBA1 is well conserved among mammalian species. The

human ortholog is expressed exclusively in brain and thymus

[43]. SNPs in and around TCBA1 are linked to neurological

phenotypes [44] and are associated with developmental delay

[43]. TCBA1 covaries remarkably well with APP in forebrain of

mouse and human (r = 0.75 and r = 0.65).

N Nine genes from TAFA family, including FAM123A,

FAM123C, FAM131B, FAM155A, FAM171B, FAM189A1,

FAM19A1, FAM19A2, and FAM81A. All nine are highly

expressed in specific regions of the brain and they have been

postulated to function as neurokines [13].

N FRRS1L is the human ortholog of the murine 6430704M03Rik

gene. It is a novel brain-specific transcript that has been linked

to familial dysautonomia [45]. It covaries well in mouse

hippocampus with GRIA1 (r = 0.4) and SNCA (r = 20.43).

GRIA1 is linked with spatial learning and memory [46]

whereas SNCA is linked with Parkinson disease [47]. In human

forebrain, the expression of this gene is strongly linked with

neurotransmitter secretion (adjP = .03).

N DIRAS1 and DIRAS2 belong to DIRAS gene family. DIRAS1 is

likely to be a neural tumor suppressor [48], and DIRAS2 is

associated with an adult form of attention deficit hyperactivity

disorder [49]. DIRAS1 in human forebrain is strongly linked

with genes involved in nervous system development (adjP

= 0.008) and neurofilament cytoskeleton organization (adjP

= 0.004). DIRAS2 is strongly linked with genes involved in

hydrogen ion transmembrane transporter activity (adjP

= 0.043).

Materials and Methods

Generating expression data sets for different tissues
In order to estimate the relative selectivity of expression of genes

in the brain versus other tissues, we dissected 26 organs and tissue

types from young animals belonging to two fully inbred strains of

mice —C57BL/6J and DBA/2J. (All data are available at the

following link: http://genenetwork.org/dbdoc/

ILM_B_D_CNS_GI_avg_0508.html.) Approximately 100 mg of

each tissue was homogenized in 1 ml of RNA STAT-60 reagent.

The purity of RNA was determined and in all cases the 260/280

ratio was between 1.9 and 2.1. Samples were amplified with the

Illumina TotalPrep RNA kit and run on MouseWG-6 v2.0 arrays.

Data were normalized using the rank invariant method. The
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variance across arrays was stabilized by converting values to z

scores. These z scores have some disadvantages: half of all values

are negative, and the range of values does not correspond to the

original log2 values. To avoid these two problems we doubled z

scores and added an offset of 8 units. The mean of these modified z

scores is therefore 8 and the standard deviation is 2. Values are

reasonably close to the original log2 scale and a two-fold difference

in mRNA concentration corresponds roughly to a 1 unit [50].

Expression levels below 6 are close to background noise levels. We

also exploited two other multiple organ expression data sets. The

first is an Affymetrix data downloaded from NCBI Gene

Expression Omnibus (www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE9954) [32] consists of transcriptome estimates

generated across 19 organs and tissues from young adult

C57BL/6 (3 to 5 males and females), whole bodies of E16 mice,

placenta, and embryonic stem cells derived from C57BL/6JOla.

We preprocessed the data using robust multichip analysis (RMA).

We standardized expression values as described above for Illumina

data. The second data set is part of the BioGPS suite (www.biogps.

org) [51,52]. BioGPS was used to independently confirm the

selectivity of ISE gene expression in brain. All animal work was

conducted according to an approved animal use protocol and in

accordance with procedures approved by the Institutional Animal

Care and Use Committee at UTHSC.

Intensely and selectively expressed genes in brain
We computed a brain selectivity score for every probe by

dividing its expression in brain by its average expression across all

other tissues. Probes (genes) were operationally defined as

preferentially expressed in brain if this ratio was greater than 8.

Many probes(genes) with high expression in brain also have high

expression in testis and retina [53]. As a result, we relaxed our

criteria for inclusion to allow for a limited level of expression in no

more than 5 of 22 comparisons. The final list used for computing a

generic brain ignorome is therefore selective rather than exclusive.

When two or more probe identifiers mapped to the same gene

identifiers, we retained one with the highest brain selectivity. We

excluded probe sets that (1) mapped to multiple locations (2)

belong to a non-protein-coding gene. We also removed probe sets

containing SNPs and small indels between B6 and D2 to avoid

false expression estimates caused by hybridization artifacts [54].

We converted brain selectivity scores into relative brain

selectivity scores by dividing them with the highest brain selectivity

score for that array. The resulting relative scores for both arrays

ranged between 0 and 1 and were merged together to form a

single data set. In case where the gene was common to both arrays,

the highest relative selectivity score was retained.

Expression analysis using RNA-seq
Total RNA was isolated from the whole brains of adult mice

using RNA STAT-60 (Tel-Test Inc) as described in Li, Mulligan,

and colleague [6]. RNA samples with RNA integrity number

greater than 8 were used to generate transcriptome libraries,

which were sequenced on the SOLiD platform. Short sequence

reads were analyzed using Applied Biosystems whole transcrip-

tome software tools. Reads were mapped to the C57BL/6J

reference genome (NCBI build 37) with a minimum mapping

quality of 25. We were aware of the allelic bias problem in aligning

reads of DBA2/J (D2) origin to the B6 reference genome.

However, our purpose of using RNA-seq results was to determine

exact 39 UTR length rather than quantitative expression

difference between B6 and D2 transcriptome. Expression estimates

were calculated as the reads per kilobase of transcript per million

mapped reads (RPKM). This metric normalizes a transcript’s read

count by both its length and the total number of mapped reads in

the sample.

Validation of annotation of ISE brain genes
Annotations of microarray probes are still surprisingly poor.

Most of the probes we have exploited target the 39 UTRs of

mRNAs, and unfortunately, annotations of 39 UTRs of genes with

high expression in the brain are especially poor due to their

extreme length [55]. We generated deep RNA-seq data (.1 billion

50 nt oriented tags from rRNA-minus whole brain RNA) to

reliably determine the maximal length of 39 UTRs of mRNAs in

the brain and the full extent of the cognate genes. All of our

summed brain RNAseq tag count data are accessible at

ucscbrowser.genenetwork.org and whole brain gene expression

level expression data (RPKM) for 28 strains of mice are accessible

at www.genenetwork.org. Go to www.genenetwork.org. Select

‘‘Mouse’’ as species, ‘‘BXD’’ as group, ‘‘Brain mRNA’’ as type,

and ‘‘UTHSC Mouse BXD Whole Brain RNA Sequence Exon

Level (Nov12) RPKM’’ as dataset. This RNA-seq data enabled us

to accurately confirm and revise gene models and correct

annotation errors, particularly those related to long brain specific

39 UTRs.

Collecting gene and homolog information for ISE genes
We used annotation files from Affymetrix and Illumina to map

probes to genes. We also manually curated probes using RNA-seq

data. We used mouse-human and mouse-rat ortholog files from

Mouse Genome Informatics (www.informatics.jax.org) and the

HomoloGene file from NCBI (ftp.ncbi.nih.gov/pub/Homolo-

Gene/current) to get corresponding gene identifiers for mouse,

human and rat. HomoloGene was also used to compute the

number of orthologs for ISE genes.

Constructing gene nomenclature table and selecting
ambiguous gene names

We retrieved official gene names, symbols, aliases, and other

designation, including protein names for genes in mouse and their

orthologs from NCBI (ftp.ncbi.nlm.nih.gov/gene/DATA/GEN-

E_INFO/Mammalia). A total of 7,563 gene aliases and other

designations are available for 648 ISE genes. We selected the

subset of ambiguous gene names as follows. We downloaded a list

of English words (www.mieliestronk.com/wordlist.html) and used

this list to select gene names associated with common English

language words—for example CALM, Brain-1. We also selected

gene names that were too short, for example, ‘sp’, ‘F3’, ‘A-2’. We

used biomedical acronym resolver ARGH (http://etblast.vbi.vt.

edu/argh/index.shtml) and selected gene names that are also

acronyms for other non-relevant biomedical terms. We found 974

ambiguous gene names (symbols or aliases), and of these 118 gene

names match English words; 155 gene names have been used with

multiple senses in PubMed; 701 gene names that are too short for

non-ambiguous retrieval.

Generating gene-specific informative keywords
We collected official full gene and protein names for genes in

mouse, human, and rat as described above. We split compound

gene and protein names into constituents. Uninformative words

such as ‘‘protein’’, ‘‘factor’’, ‘‘family’’, and ‘‘binding’’ were

removed. We also removed words that occurred at high frequency

(.20 occurrences) from the collection. For every gene we

manually selected one of its constituent words that occur with

low frequency.
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Generating neuroscience specific keywords
We extracted MeSH terms from ,50,000 articles belonging to

40 different neuroscience journals. For this purpose we used the

title abbreviation tag (TA) to limit PubMed searches to neurosci-

ence journals and counted frequencies of MeSH terms. The same

was done for ,150,000 non-neuroscience articles. We selected

MeSH terms that occurred at a relatively higher frequency

(.20%) in neuroscience articles and relatively low frequency in

(,1%) non-neuroscience articles. The final list of 155 terms used

to define the neuroscience literature (Appendix S2) consists of 129

computationally extracted terms (e.g., postsynaptic, prefrontal,

hippocamp*, amygdala, psychomotor, somatosensory, neuropsy-

chological, gyrus, metabatropic, parkison*, bicuculline) and 26

relatively generic neuroscience terms (e.g., neuron, axon, brain,

autis* CNS, nerve, glial, seizure).

Generating a list of noisy articles
We extract the subset of genes that are associated with more

than 50 genes in PubMed using gene2pubmed (ftp.ncbi.nlm.nih.gov/

gene/DATA/gene2pubmed.gz). While some of these 800 papers

have useful functional annotation for ignorome genes, a manual

overview of ,50 of these articles shows that they add minimal if

any significant insight into brain function or disease.

Estimating literature coverage
In order to estimate literature coverage for each gene we

developed a concatenated PubMed query using NCBI EUtils. The

query had the following structure:

1) Subject of the query: All unambiguous aliases, gene symbols, and

gene names were joined using the OR operator to create a

comprehensive query. In those cases in which gene names

were ambiguous, they were joined with gene-specific key-

words.

2) Neuroscience membership: The set of 155 neuroscience-specific

keywords were combined with the query above.

3) Range of species: The search term ‘‘AND (Mus musculus OR

Homo sapiens OR Rattus norvegicus)’’ was added to further restrict

the search.

4) Range of text fields: The title and abstract tag (TIAB) was used to

avoid inclusion of irrelevant fields.

We provide one full example of this complex concatenated

query for the gene synapsin 1 (Syn1) in Appendix S1.

Calculating an ignorome score
For every ISE gene we calculated two fractional scores. First was

the fraction of ISE genes with higher relative brain selectivity than

the gene and second was the fraction of ISE genes with less

neuroscience literature size. Finally, we calculated an ignorome

score by taking the harmonic mean of the above two fractions.

Estimating paralog abundance
We downloaded M. musculus and H. sapiens paralog data from

Ensembl BioMart (www.ensembl.org/info/data/biomart.html)

[56,57]. We only used paralogs defined by Ensembl as—

within_species_paralogs to compute numbers of paralogs for each

gene.

Genetic correlation analysis of ignorome genes
We used a BXD whole-brain Affymetrix M430 2.0 data set

consisting of ,44,000 probe sets. To avoid spurious correlations

with poorly expressed transcripts, we removed all probe sets with

expression ,8 units. We also removed probe sets containing SNPs

and small indels between B6 and D2 to avoid false correlation

caused by hybridization artifacts [54]. We computed Pearson

product-moment correlations between the ignorome genes (probe

sets) and other probe sets in the brain (,37,000) using a data set

consisting of at least 30 different strains of mice (see http://

genenetwork.org/webqtl/main.

py?FormID = sharinginfo&GN_AccessionId = 123) [18]. To ex-

clude spurious high correlations caused by linkage, we eliminated

data for pairs of transcripts that are chromosomal neighbors

(within 5 Mb of each other).

Reverse complex trait analysis
We selected a subset of 15 ignorome genes that are cis-

modulated (cis-eQTL) in one or more of 35 brain expression data

sets generated for the BXD family [54]. The following criteria

were used: (1) an LRS score .12, (2) expression .7, and (3)

moderate or high impact coding variants. For reverse complex

trait analysis we exploited GeneNetwork.org, a database consisting

of ,3,800 phenotypes known to vary widely across the BXD

family. Phenotypes that mapped to within 5 Mb of each ignorome

gene with an LRS .10 were defined as candidate traits using the

following search string: ‘‘LRS = (10 999 ChrZ XX YY)’’ where Z

is replaced with the correct chromosome and XX and YY are

genome positions (in megabases) located 5 Mb proximal and distal

to the ignorome gene.

Supporting Information

Figure S1 Location of 1443205_at probe set. Snapshot of

the brain RNAseq data confirming the location of the probe

1443205_at in the distal 39 UTR of the Gabrb1 gene. BR+BXD All

track represents the expression on the plus strand.
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