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Abstract

New smartphone users have difficulty engag-
ing with it and often use only a limited set
of features like calling and messaging. These
users are hesitant to explore using the smart-
phone and rely on experienced users to teach
them how to use the phone. However, expe-
rienced users are not always around to guide
them. To help new users learn how to use
the phone on their own, we propose a natu-
ral language based instruction following agent
that operates over the UI and shows the user
how to perform various tasks. Common how-
to questions, such as “How to block calls from
unknown numbers?”, are documented on sup-
port sites with a sequence of steps in natural
language describing what the user should do.
We parse these steps using Large Language
Models (LLMs) and generate macros that can
be executed on-device when the user asks a
query. To evaluate this agent, we introduce
UGIF-DataSet', a multi-lingual, multi-modal
UI grounded dataset for step-by-step task com-
pletion on the smartphone. It contains 523
natural language instructions with paired se-
quences of multilingual UI screens and actions
that show how to execute the task in eight lan-
guages. We compare the performance of dif-
ferent large language models including PalLM,
GPT3, etc. and find that the end-to-end task
completion success rate is 48% for English
UI but the performance drops to 32% for non-
English languages. We analyze the common
failure modes of existing models on this task
and point out areas for improvement.

1 Introduction

First time users of smartphones have difficulty with
its user interface. This problem is particularly acute
in developing countries due to varying literacy lev-
els, high cost of phone ownership, etc. They are
hesitant to explore the phone interface and often
use only basic features like calling and messaging.
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Figure 1: Our model parses the how-to steps and gen-
erates macros such as tap (), toggle (), home (),
etc. that can be executed on-device by grounding them
in the UI (Section 1).

Thus they are unable to fully take advantage of
the value that the smartphone and Internet offer
(Ranjan, 2022). One of the tools to ease new users
into the digital world is voice interaction. Although
voice commands offer a way to easily get started in-
teracting with the phone, users do not always want
to use voice commands due to privacy and social
reasons. So, we suggest that voice interaction be
viewed not only as an alternative to GUIs but also
as an onboarding device to teach users about the
GUI by showing them how to navigate the Ul in
response to voice queries.

Many of the frequently asked questions (FAQs)
by new users have to do with the smartphone it-
self. These queries are about how to change de-
vice settings like Wi-Fi or bluetooth state, bat-
tery saver, to block phone numbers, or to change



privacy settings in the browser. Such FAQs are
documented on support websites such as https:
//support .google.com. The support docu-
ments for how-to queries contain step-by-step in-
structions in natural language that inform the user
of the sequence of actions that has to be taken to
complete the task. We explore making these how-
to documents executable on the Ul of the phone so
that the user can see how a virtual agent performs
the task and develop confidence in using the UI by
observing the demonstrations. Although our goal
is to help new users engage with the phone, this
assistive technology can also help other users dur-
ing situational impairment such as when the user is
cooking or driving and cannot touch the screen of
the phone (Sarsenbayeva, 2018).

Our approach splits the task into two compo-
nents: a parsing step and a grounding step. The
support site is crawled and the how-to instruction
steps found are parsed by finetuning a large lan-
guage model (Chowdhery et al., 2022) to gener-
ate macros such as tap (), toggle (), home (),
etc. When a matching query is uttered by the user,
the corresponding macro sequence is executed by
grounding each macro in the UI. For this, we use
a multi-lingual sentence embedding model (Feng
et al., 2020) to find the closest matching UI ele-
ment.

We collect a new multi-lingual, multi-modal Ul
grounded dataset called UGIF-DataSet to evalu-
ate how well we can execute how-to instructions on
the Android UL It consists of 523 how-to queries
and for each query, instruction steps in English
and a sequence of Ul screenshots and actions to
complete the how-to. Each how-to query and UI
sequence is available in 8 languages. An outline of
the structure of this dataset is shown in Fig. 2.

The contributions of this work are as follows:

* We release UGIF-DataSet, a new multi-
lingual, multi-modal dataset of how-to queries
and sequences of Ul screens and actions per-
formed by human annotators. This is the first
such multi-modal dataset of its kind.

* We evaluate parsing of step-by-step how-to in-
structions with large language models and Ul
grounding with multi-lingual BERT sentence
embedding (LaBSE).

* Our results indicate that there is considerable
room to improve performance, especially in
non-English languages. Furthermore, we find

that UI mismatches due to version changes
as the app design evolves over time is a sig-
nificant source of errors and presents both re-
search and engineering challenges.

2 Related Work

Natural Language Instruction Following for UI
navigation: There have been several previous
efforts at natural language conditioned UI navi-
gation for desktop operating systems (Branavan
et al.,, 2009, 2010; Xu et al., 2021) and image
editing applications such as Adobe Photoshop
(Manuvinakurike et al., 2018). More recently, there
has been work on grounding natural language in-
structions to mobile user interfaces for automat-
ically generating videos of help articles (Zhong
et al., 2021). Our work is an enhanced and updated
successor to the PixelHelp dataset released in
Li et al. (2020a) with voice and text queries in
eight languages, instruction steps in English, and
Ul screens in eight system languages.

Imitation learning and Reinforcement learning
for Ul navigation: One can think of broadly two
approaches to building a Ul navigation agent: (a)
scaling horizontally by building an agent that can
handle a few simple tasks like searching for some-
thing, deleting an item, etc. that are useful across
many different apps, and (b) scaling vertically by
exposing a greater depth of functionality but only
for a few applications. Li (2021) takes the for-
mer approach and uses behavior cloning and rein-
forcement learning to train agents for two specific
skills: to install the specified app from the Play
Store and another agent to search for what the user
wants in any application by first finding the search
box. To enable reinforcement learning research
on Android Uls, Toyama et al. (2021) introduces
AndroidEnv, an open source platform for train-
ing RL agents. Similar to that, Wor1dOfBits is
an open platform for training web navigation agents
(Shi et al., 2017; Liu et al., 2018). In our work, we
take the latter approach of exposing deeper func-
tionality of a few popular apps by relying on help
articles in the Android support site. We chose this
because new users often ask goal oriented ques-
tions that require greater knowledge about how to
navigate a particular app. Moreover, app devel-
opers often provide FAQs with common tasks in
mind, so we can exploit the support pages to create
UI grounded tutorials for new users.
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Pre-training for Ul tasks: In the past few years,
there has been a paradigm shift in deep learning
towards pre-training and fine tuning. Foundation
models are pre-trained with a self-supervised learn-
ing objective on broad unlabelled datasets. Fine
tuning such pre-trained models has yielded dra-
matic benefits compared to only supervised learn-
ing on small datasets. Bai et al. (2021); He et al.
(2021) take this approach to Uls and pre-train a
transformer model on a large number of screen-
shots obtained by crawling apps in smartphones
in a manner similar to web crawling. These pre-
trained UlBert and ActionBERT models are rele-
vant to our work for the UI grounding task. Since
our focus is on multilingual Ul screens, we chose
to use the pre-trained LaBSE (Feng et al., 2020)
for UI grounding, but utilizing broad UI data will
be critical for future improvements.

Large language models: Large language mod-
els (LLMs) pre-trained on large corpora of text
scraped from the web have shown remarkable few-
shot generalization capability (Chowdhery et al.,
2022; Brown et al., 2020). We employ LLMs for
parsing help articles. However, we do not employ
LLM:s for UI grounding since we prefer to perform
UI grounding on-device for privacy reasons and to
be robust to poor network conditions.

Language grounding in human-robot interac-
tion: Language guided robot actions for human-
robot interaction (Lynch and Sermanet, 2020;
Venkatesh et al., 2021) is broadly related to the
problem of natural language driven UI navigation.
However, Uls are structurally discrete both in what
is observed on screen and the actions that can be
taken, whereas both robot observations and actions
are continuous. With a robot, the scene graph has
to inferred from the camera feed using vision mod-
els, but with the user interface, the view hierarchy
of the screen is often directly available, so it is not
necessary to process raw pixels. Likewise, taking
actions on real robots is much more complex with
uncertain outcomes, whereas precise actions can
be performed on the Ul with near certainty. As a
result, the difficulty with UI grounded interactions
is less about sensing and actuation and more about
understanding user intent and navigating the app by
understanding its structure using external resources
such as support pages.

Icon and widget captioning: Although the An-
droid UI system allows developers to provide con-
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Figure 2: An outline of the UGIF-DataSet dataset,
which consists of 523 pairs of how-to instructions and
sequences of Ul screens and actions (Section 3).

tent description for images, not all app developers
do so. To support a wide range of apps, it becomes
necessary to recognize icons and widgets (Li et al.,
2020b; Baechler and Sunkara, 2021). In our work,
all the apps provide the necessary description, so
icon captioning is not necessary.

3 UGIF-DataSet: A New Multilingual
Multimodal UI-grounded Instruction
Following Dataset

Our goal is to build a Ul navigation agent that
can teach novice users how to perform tasks on
the Android Ul To build such an agent and eval-
uate its performance, we collect a new multi-
lingual, multi-modal UI grounded dataset called
UGIF-DataSet?. Itis a corpus of how-to queries

https://github.com/google-research/
google-research/tree/master/ugif
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Macro Function

tap (e) Taps on the Ul element speci-
fied in the argument (e)
toggle (e, | Finds the UI element in the ar-

gument (e) and then searches
for the nearest Switch element
and taps on that

val=True)

home () Presses the home button in An-
droid

back () Presses the back button

prompt (a) | Requests the user to take some

action (a) and waits until an ac-
tion is performed

Table 1: List of all macros that can be generated from
instruction steps (Section 3).

in text and speech in multiple languages, instruc-
tion steps for each how-to paired with sequences
of UI screens and actions as the how-to is com-
pleted by human annotators on Android devices
with different Ul language settings (Fig. 2).

The Pixel Help support pages provide step-by-
step instructions for performing common tasks on
Android. This is an example task: “How to block
unknown numbers?” for which the instruction text
is “1. Open your Phone app 2. Tap More. 3. Tap
Settings and then Blocked numbers. 4. Turn on
Unknown”. We crawl the Android support site and
extract the how-to steps using simple rules that look
for ordered lists under a header. The how-to steps
are parsed by annotators to a sequence of macros
in Table 1.

For each how-to task, annotators are asked to op-
erate a virtual Android device to carry out the steps
in the how-to while the screen of the device and the
annotator’s actions are recorded. Just before each
action taken by the annotator is forwarded to the
virtual device and executed using UTAutomator
(Android, 2022), we record a screenshot of the de-
vice, the view hierarchy in XML, and the action
taken by the annotator at that step. We restrict the
possible actions that the annotator can take at each
step to: (a) tapping on a Ul element, (b) pressing
the home button, (c) pressing the back button, (c)
prompting the end-user for an input, (d) toggling
a switch / checkbox, (e) scrolling up / down, (f)
noting the completion of the task, (g) noting an
error in the how-to instruction text and ending the
recording before completion.

The manual annotation process for collecting Ul

screens from the Android emulator scales linearly
with the number of UI languages. To mitigate this,
we collect Ul screens from annotators only in En-
glish and search for each Ul string in the resources
directory of the app’s APK and replace it with the
translation provided by the developer in the APK
wherever it is available. If a translation is unavail-
able, we default to English. A typical Ul screen has
a mixture of strings in English and other languages,
but this is distinct from code mixing where two
languages are used in a single sentence.

The UGIF-DataSet dataset has 152 (train) /
106 (dev) / 265 (test) samples. It includes tasks in
the following apps: Settings, Google One, Gmail,
Play Store, Contacts, Messages, Chrome, Maps,
Camera, Google Photos, Google Earth, and Files.
UGIF-DataSet differs from the PixelHelp
dataset (Li et al., 2020a) in the following ways:

* It contains Ul elements in seven non-English
languages: Hindi, Kannada, Marathi, Gujarati,
Bengali, Swahili, Spanish.

¢ [t includes how-to instructions that need user
input such as “Select the email you want to
move to trash”.

* It is a multi-modal dataset that includes not
only the view hierarchy of the screens but also
a screenshot at each step of the execution.

* It does not assume that the Ul element is visi-
ble on the screen. The annotator is allowed to
scroll and find the UI element referred in the
instruction text.

* It includes samples where the instruction text
is outdated and does not correspond to the
current version of the UI. In such cases, an-
notators can either adapt the instructions to
the current Ul or declare an error if they are
unable to complete the task.

4 Model

UGIF has three components: Retrieval, Parsing,
and Grounding. Based on text or speech input,
the most relevant how-to instruction in English
is retrieved and then parsed to generate macros.
These macros are executed on the Android device
by grounding them in the UI (Alg. 1).

Retrieval We use Google Cloud Speech? as an
off-the-shelf speech recognizer to convert speech

3https://cloud.google.com/speech-to-text



Algorithm 1 UGIF end-to-end description

steps « retrieve_howto(user_query)
macros ¢ parse(steps)
i+0
while i < len(macros) do
macro < macros[i]
action < ground(macro, screen)
if action # SCROLL then
i+—1i+1
end if
end while

Instruction text
Open the Phone
app. Tap Recents.
Open the Settings
app. Tap Network
& Internet. Turn off
wi-fi.

Macro sequence

tap ("Phone") ;
tap ("Recents") ;
tap("Settings");
tap ("Network

& Internet");
toggle ("wi-fi",
False);

Table 2: Sample instructions and corresponding macro
sequences (Section 4).

to text. A multilingual sentence embedding model
(Feng et al., 2020) is used to obtain a vector corre-
sponding to the query, which is then used to retrieve
the most similar how-to by cosine similarity in the
UGIF-DataSet corpus.

Parsing The parsing model takes how-to instruc-
tions and generates a sequence of macros (Table 2).
We tried various language models such as PaLM
(Chowdhery et al., 2022), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020), and UL2 (Tay et al.,
2022)) to generate the macro given the instruction
text.

Grounding The grounding model takes a macro,
potentially with arguments, as input along with the
current Ul screen and performs a series of actions
on the Ul to complete the task specified by the
macro. The macros in our setup are described in
Table 1.

For both tap () and toggle (), it is neces-
sary to locate the UI element being referred to in
the argument of these macros. i.e., we are given a
macro with its argument referring to a Ul element
and a list of UI elements currently visible on the
screen, and we must decide which element to pick
(or to not pick at all and scroll for a better match).
For finding the closest matching UI element, we

experiment with jaccard similarity, UIBERT (Bai
et al., 2021), and multi-lingual BERT sentence em-
bedding (LaBSE) (Feng et al., 2020). The jaccard
similarity between a Ul element and the referring
expression is measured by splitting the words in the
UI string and the referring expression and finding
the jaccard similarity between these two sets. The
LaBSE model generates embeddings for entire sen-
tences, which we utilize to compute embeddings
for each Ul element and also for the input referring
expression in the macro. The dot product of the
embedding for the referring expression and the Ul
element is used as a scalar measure of the simi-
larity between the arugment to the macro and the
Ul element. We use a scrolling threshold 7 to de-
cide whether to scroll or to accept a Ul element
currently on the screen. If the similarity metric is
less than 7", we choose to scroll down looking for
a better match, whereas if the similarity metric is
above T, the best matching Ul element is chosen
for interaction (either tapping or toggling). The
appropriate value for 7" is determined through ex-
perimentation on the development set. Likewise,
we also use UiBERT to generate embeddings for
all the UI elements on the screen along with the
input referring expression, but with UIBERT we in-
troduce an additional "Not found" Ul element that
the model is trained to choose if the scroll action is
taken.

For the tapping macro, it is sufficient to look
for the UI element most similar to the argument in
the macro. However, for the toggle macro, when
using LaBSE embeddings we first find the Ul ele-
ment referred to by the argument to the t oggle ()
macro, and then look for an Android Switch ele-
ment nearby in the view hierarchy (Fig. 3). This
works as long as the app is using the standard An-
droid Switch element and a straightforward XML
layout of the mobile UI where the text field is close
to the Switch element. Never the less, such heuris-
tics are brittle and could be resolved by multimodal
models which we leave for future work.

5 Experiments

The UGIF-DataSet dataset contains manually
annotated oracle parses (macro sequences) for each
how-to instruction text. We measure parsing ac-
curacy by looking for an exact match between the
generated parses and the oracle parses.

The dataset also contains manually annotated
screen-action sequences for the entire how-to, but
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toggle ("Allow notification snoozing",

A sample sequence of UI screens and actions resulting from the execution of the macro:
True). The UI grounding model recognizes that none

of the UI elements is a sufficiently close match to the string in the argument of the macro, scrolls down, finds a
match, and taps on the nearest switch to turn it on (Section 4).
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Figure 4: Parsing accuracy on the development set of
UGIF-DataSet (Section 5.2).

it does not have such sequences for each macro.
So, to evaluate the grounding model, we consider
the end-to-end task completion success rate. Al-
though it is possible to complete each task in more
than one way, we want to follow the how-to in-
struction text exactly, so we consider a task to be
completed successfully only if the entire sequence
of actions predicted by the model exactly matches
the sequence of actions taken by the annotator.

5.1 How well does retrieval work across
languages?

The multilingual sentence embedding model (Feng
et al., 2020) is excellent at matching how-to queries
in non-EN languages to how-to queries in En-
glish (Table 5.1). Examination of the failures with
non-EN text queries revealed noise in the dataset
where a small percentage of queries are repetitions

Model Parsing
configuration accuracy
PalLM 540B 20-shot ICL 46%
GPT-3 175B 20-shot ICL 50.9%
PalLM 8B soft prompt tune 49.1%
PalLM 62B soft prompt tune ~ 64.9%
PalLM 540B soft prompt tune  66.8%
UL2 20B full finetune 66.8%
T5 11B full finetune 66.8%
PalLM 8B full finetune 64.5%
PalLM 62B full finetune 67.5%
PalLM 540B full finetune 70.1%
Table 3: Parsing accuracy of pre-trained models

(without the span prediction intermediate step) on the
UGIF-DataSet test set. In-context learning (ICL) is
with 20 randomly selected training samples. Finetun-
ing is performed with all 158 training samples. Soft
prompt tuning is with a 50-token soft prompt prefix and
is also performed with all the training samples (Sec-
tion 5.2).

with minor variations such as punctuation. When
Google Cloud Speech API is used as an off-the-
shelf automated speech recognizer (ASR) to con-
vert speech input to text, there is a measurable drop
in performance across all languages, but the reduc-
tion is large for Swahili. We also noticed that ASR
failures were due to poor voice clarity, background
noise, and more common with technical terms such
as "cache".



Model configuration Ul Language

en kn mr gu hi bn es SW
Oracle parse, Jaccard ground 554 — — — — — — —
Oracle parse, UIBERT ground 317 — — — — — — —
Oracle parse, LaBSE ground 52.8 36.6 392 415 437 407 498 354
PalLM 540B parse, LaBSE ground 48.6 33.6 36.6 385 40 377 464 32.1

Table 4: End-to-end task completion success rate of different model configurations on the UGIF-DataSet test

set (Section 5.3.1).

Query Oracle text ASR text
Language P@1 P@1

en 100 94.4

kn 97.9 88.6

mr 98.1 91.7

gu 97.3 89.6

hi 94.6 91.3

bn 97.3 91.2

SW 93.0 76.4

es 96.5 94.8

Table 5: Comparison of performance for retrieving the
closest matching how-to in English from queries in dif-
ferent languages (Section 5.1).

5.2 How does parsing performance scale with
dataset and model size?

There is a steep increase in parsing performance
from 4-shot prompting to 10-shot prompting
(Fig. 4). At 30 examples, the number of tokens in
the input exceeds the maximum that the hardware
can handle and performance deteriorates. Mark-
ing salient spans in the instruction text as an inter-
mediate step for chain of thought prompting (Wei
et al., 2022) degrades parsing performance. When
all the available training samples are used with
full finetuning or soft prompt tuning (Lester et al.,
2021), the resulting performance is significantly
better than few-shot prompting (Table 3). The pars-
ing accuracy increases only modestly with model
size when full finetuning is used. However, with
soft prompt tuning, there is more benefit to using
larger models.

5.3 What are the common failure modes of
large language models for parsing?

We examined the test samples where the model’s
predictions were incorrect (Fig. 5) and found the
PalLM 540B finetuned model (a) generated incor-
rect macros, (b) made minor errors in predicting
the span of the argument such as including the full

ﬁl’ext: open the google play app google play. at the top right, tap the\
profile icon. tap settings and then authentication and then require
authentication for purchases.
Code: tap("google play");| tap("settings");
tap("authentication"); tap("require authentication
for purchases");

@

Text: on your android phone or tablet, open the gmail app. select
one or more emails. in the top right, tap more more and then report

®

spam.
Code: tap("gmail"); select("one or more emails");
tap("more"); tap("report spam");

/

Text: On your Android phone or tablet, open the Google Earth app.
On the left, tap Map Style. Turn Gridlines on.

Code: tap("Earth"); tap("Map Style");
tap("Gridlines"); toggle("Gridlines", True);

@

Figure 5: Incorrect sequences of macros generated by
the 20-shot prompted PaLM 540B model. In the first
example, the macro tap ("profile icon") isom-
mitted in the output. In the second example, the model
hallucinates the non-existent select () macro. In
the last example, it has generated an un-necessary tap:
tap ("Gridlines™) (Section 5.3).

DIFF_STR

INCORRECT_MACRO
DIFF_STR_MINOR 22.15
739

EXTRA_MACRO
6.3%

MISSING_MACRO
e MISC

Figure 6: The types of parsing errors made by the
PalLM 540B finetuned model (Section 5.3).

stop, (c) missed salient parts of the input instruction
resulting in skipped macros, and (d) hallucinated
non-existent macros (Fig 6).

5.3.1 How well do existing models work for
UI grounding?

We find that even simple string matching models
can offer good performance when the language in
the how-to matches the UI language (Table. 4). To
our surprise, UIBERT underperformed this base-
line. When the instruction text and the UI language
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tap (“Compose”) tap(“Battery Share”) tap(“Send Feedback”)

Figure 7: The UI grounding model chooses incorrect
actions given the Ul state and the macro. In the first ex-
ample, the model should have tapped on “Start chat” as
the matching element for “Compose” but instead tries
scrolling down and throws an error that a matching Ul
element is not found. In the second example, the model
should have scrolled down to find “Battery share” but
instead erroneously selects the partially matching “Bat-
tery percentage”. In the last example, the model should
have recognized that the “Send feedback” button is
missing in the Ul and thrown an error, but instead er-
roneously selects the partially matching “Send a mes-
sage” button (Section 5).

are different, we have to use LaBSE which is a
multilingual model, but we find that performance
with English is still better than other languages. An
examination of the incorrectly predicted samples
(Fig. 7) using LaBSE revealed these modes of fail-
ure (Fig. 8): (a) Inexact string matching fails and
the model keeps scrolling in the hope of a better
match which it never finds (84.5%), (b) the model
overtriggers and chooses an inexact match instead
of scrolling and looking for a better match (5.2%),
(c) the model lacks knowledge of common UI pat-
terns and app names, so it gets confused between
“Play Store” and “Google One” when trying find
the closest match for “Google Play” (5.2%).

The cases where the grounding model overtrig-
gers and chooses a partially matching Ul element
and fails to either scroll down or recognize that
the how-to is outdated results in incorrectly exe-
cuted steps on the UL These are of the most serious
concern since they lead to a poor user experience.
Moreover, help articles frequently become out-of-
date as evidenced by the fact that 29% of the sam-
plesin UGIF-DatasSet are marked by annotators
as having instruction text not matching the UI in
Android 12.

We also evaluated our best performing model on
the PixelHelp dataset (Li et al., 2020a). Table 6

BORDERLINE BAD DIFF_STR
MISC i

MISTAKEN_FOUND -

DID_NOT FIND

Figure 8: Categories of Ul grounding errors using
LaBSE (Section 5.3.1).

Model, Dataset Success
rate

Li et al. (2020a), PixelHelp (en) 70.5%

Ours, PixelHelp (en) 71.1%

Ours, UGIF-DataSet (en) 48.6%

Ours, UGIF-DataSet (sw) 32.1%

Table 6: Comparison of our best performing model
(PaLM 540B for parsing and LaBSE for grounding)
on different datasets. There is a wide gap between the
model performance onthe PixelHelp (en) dataset
and UGIF-DataSet (sw) which suggests consider-
able headroom for improvement (Section 5).

shows that UGIF-DataSet is a harder dataset
with significantly greater headroom for improve-
ment especially in non-EN languages.

6 Conclusion

New smartphone users face difficulties exploring
features on their phone. We suggest helping them
become more comfortable using the phone by
showing them how to perform tasks on the UI based
on voice queries. We have evaluated existing lan-
guage and sentence similarity models for the task
of retrieving and executing how-to instructions on
the UI where the Ul language potentially differs
from the language used in the instruction text. The
models we build for this task must be capable of
adapting to minor variations in the Ul as the newer
versions of the app are frequently released and in-
structions become outdated. Multilingual Uls pose
the challenge of having to simultaneously work
with multiple languages in a single Ul screen since
app developers may not have provided translations
for all UI elements. This bolsters the case for mul-
tilingual models rather than language specific mod-
els. Finally, our evaluation of current pre-trained
models suggests that there is significant room for
improvement and that a multimodal language-UI
foundation model could lead to substantial gains.
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