
Learning Conversational Web Interfaces

Izzeddin Gur∗
Google

izzeddin@google.com

Xifeng Yan
University of California, Santa Barbara

xyan@cs.ucsb.edu

Abstract

Automating user tasks with natural language instructions, such as booking a movie
ticket, while keeping them engaged is a nontrivial and open problem. Previous
work has focused on a particular scenario where users need to give entire in-
structions before a task can be handled. Aside from the difficulty of uttering a
long instruction, this setup is also less realistic as the instructions could depend
on future observations and needs to be delayed. In this work, we introduce the
dialogue-based web navigation problem where the objective is to fulfill a hidden
user goal by having multi-turn conversations with users and navigating a given web
page simultaneously. We study joint learning of dialogue and navigation policies
using reinforcement learning with actor-critic method. An architecture where user
dialogue and web page observations are attentively encoded into policy actions
is developed. We build a novel dialogue-based web environment by wrapping
a user simulator and the Fandango movie ticket booking website into a single
environment. We evaluate the performance of our models and discuss their biases
and shortcomings.

1 Introduction

With the growing popularity of dialogue systems, their capabilities are challenged and improved
in a broader set of new tasks. A recent example is Google’s Duplex system which is able to have
voice-enabled conversations with users to automate a range of tasks such as managing appointments.
2 In this work, we are interested in adding yet another capability to task-oriented dialogue systems by
enabling them to navigate web pages while interacting with real users.

Recent work on navigating web pages [1, 2, 3, 4] focuses on a narrow scenario: A user needs to
decide and utter an entire instruction to the system which then runs in a closed loop without any
user interaction. Consider the task of booking a movie ticket on Fandango website. To abide by
the previous assumption, we need to know which movie plays in which theatre and at what time
that becomes infeasible to satisfy without first navigating the website. We argue that it is crucial to
incorporate users into the loop to make the task scale to more realistic use-cases.

To address the aforementioned challenges, this paper introduces a new task: Navigating a designated
web page to accomplish a hidden user goal by having multi-turn dialogues with users. We first develop
a novel dialogue-based web navigation environment by carefully wrapping the Fandango movie ticket
booking website and a rule-based user simulator into a single Gym environment [5]. We keep the
core structure and look-and-feel of the Fandango website to enable more realistic experimentation
and transferability of the trained models to real websites. A system can seamlessly interact with the
user simulator and web environment to collect and learn from a rich set of experiences.

In addition to the introduced task and environment, we also train a new policy network that can learn
actions from dialogue and web page observations. We first decompose the policy into two entangled

∗Work done while the author was in University of California, Santa Barbara
2https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure 1: A dialogue with an example web page flow. Detected slot names and values from natural
language responses are shown underlined. At time step-2 and time step-3, the system decides to skip
interacting with user and continues with acting on the web page (A2 and A3).

sub-policies — dialogue policy, which outputs dialogue responses, and navigation policy, which
navigates the web environment as suggested by the dialogue. A dialogue response is represented as a
single (act, slot, value) tuple while a web page is navigated by interacting with HTML elements using
keyboard or mouse. Both policies share the same low-level layers which encodes dialogue and web
page observations into hidden representations by jointly attending different parts of the inputs; output
layers are adapted to generating corresponding actions. Each policy runs continuously with up-to-date
observations until a special skip action is generated which skips executing the corresponding policy
for the current time step.

We train our policy network via actor-critic method with Proximal Policy Optimization (PPO) [6].
We first pre-train the network with behavioral cloning (BC) by collecting a small set of labeled
dialogues (125 dialogues). We then fine-tune the pre-trained model using a combined objective
which is the sum of the PPO objectives for each sub-policy. Each sub-policy is trained with a shared
reward signal which is collected from web environment after performing an action. We test both
BC and PPO policies with simulated and real users using task success metric, whether a ticket is
successfully booked or not. While our policy network trained with PPO can successfully learn from
a single reward and increase the performance of BC from 54% to 72%, there is still a large room
for improvement. We believe there is a large set of research areas that our task might benefit from:
Semi-supervised learning from available unlabeled task-oriented dialogue corpora, joint training of
user simulator with dialogue and navigation policies, transferring learned policies into different web
navigation tasks, etc. While our problem domain is web navigation, the policy architecture in this
work might also be relevant to other reinforcement learning problems where a dialogue policy is
learned from structured observations.

2 Task Definition

Given a dialogue and a web page, our task is to jointly learn a dialogue policy and a web navigation
policy. At each time step, the system generates a response according to the dialogue policy and
updates dialogue with the latest user and system responses. With the updated dialogue, the system
navigates the web page according to the navigation policy and collects a new page and a reward.

For the example in Figure 1, the user initiates a dialogue with an intent and the system takes the lead.
Based on the current observation of the web page, the dialogue policy generates a new request R1,
user responds with U1, and the system collects a reward r1 by executing a navigation action A1 on
the page. In this example, the system asks movie name and also clicks on the search field to open
a new page.

When we come to time step-2, the dialogue policy decides to reflect previous user response on the
web page before continuing with user dialogue; hence skips interacting with user. Navigation policy
refers back to the dialogue and suggests the system to type the movie name into the <search-2>
field. This generates a list of candidate movies to select from. By comparing each candidate movie
with previous user responses, the system clicks on the corresponding element in time step-3. Note

2



that slot names and values do not necessarily match the attributes of elements in the web page and
our policies need to learn their relationship (ex. movie and search). It is important to incorporate
dialogue history when navigating a page as actions on the page might depend on previous turns.

We represent a dialogue as a list of last T user and system responses. A dialogue action (or system
response) can be in dialogue act level which is represented as an (act, slot, value) tuple or in natural
language level which is transformed into the former using a slot filling model. In our example, we
represent R1 as request(movie) and dialogue corresponds to [U0, R1, U1]. Following previous work
[2, 4, 3], we represent each observation of the web page as a Document Object Model (DOM) — a
list of HTML elements linked in a tree structure. Each element in the DOM tree is denoted by a list
of attributes: tag, value, label, id, and text. There are two different navigation actions: (i) Clicking an
element or (ii) Typing the value of the requested slot from the last turn into an element. When the
system executes a navigation action, attributes of elements as well as the structure of the DOM tree
might alter as seen in Figure 1. At each time step, we constrain the system to generate at most one
dialogue and one navigation actions. We also define skip actions for both dialogue and navigation
sub-tasks that skips executing the corresponding policy for the current time step. We name a time step
as a turn if there is a system-user conversation. As an example, in time step-1 the system generates
both a dialogue (R1, hence a turn) and a navigation (A1) action while in time step-2 it generates a
dialogue skip action and stops interacting with user.

3 Dialogue-Based Navigation Environment and Data Collection

We address the design of our web environments and dialogue setup that enables scalable training and
evaluation of dialogue and navigation policies.

In this work, we focus on a movie ticket booking domain and design a new web environment in
the Miniwob [1] framework by carefully cloning the Fandango website 3. We preserve the core
functionality of the Fandango while also unlinking some of the noisy hyperlinks that are unrelated
for our task such as the "Help" page. There are several different ways of booking a movie ticket in
Fandango, all of which are captured in our environment design such as typing into the search field or
navigating to the movies page to find the correct movie. We build a database with approximately 500
different movies and 300 different theatres which are randomly populated with a set of available
days, times, and number of tickets at the beginning of each episode. At each episode, a new web site
and a new user goal is created by randomly sampling from this database. This randomness prevents
policies from overfitting to the environment design and also enables evaluating the performance under
stochasticity.

To automate the training and evaluation of our policies, we follow the traditional task-oriented
dialogue literature and implement a simple yet extendable rule-based user simulator for the movie
ticket booking domain. A new user goal as a list of slot and value pairs is generated at the beginning
of each episode. After each system response, user simulator returns a response by selecting correct
values from user goal as in Figure 1. To understand the performance of policies under more realistic
scenarios, it is also important to generate natural language utterances for user and system responses.
We use a template based natural language generation (NLG) approach by extracting templates from
an existing dialogue dataset collected for a general purpose movie ticket booking task [7] and filling
a randomly picked template for a given act-level input. Each natural language response in this dataset
is annotated with the slot names, values, and corresponding substrings in the response. We use inform
and request as the set of acts and movie, theatre_name, day, time, and number_of_tickets as the set of
slots in this work.

While it is possible to train policies purely from environment rewards via trial-and-error, current
reinforcement learning methods such as actor-critic algorithms exhibit high variance and low sample
efficiency. Collecting a large dataset for every task is infeasible yet a small set of labeled data was
important to have a reasonable performance and make more informative conclusions. We collected a
dataset of 125 different dialogues with 884 time steps using Wizard-of-Oz paradigm [8]. The users
are given a random goal, hidden from the wizards, as in Figure 1 and asked to type responses to
wizard requests. The wizards are given the main page and asked to request values from users and also
navigate the page based on user responses until the correct ticket is booked. Note that the collected
data has all the labels to train both dialogue and navigation policies.

3https://mobile.fandango.com/

3



4 Learning Dialogue and Navigation Policies

4.1 Notations

Let’s assume that we are at time step-t. We denote a dialogue by Dt which is a list of previous
user and system responses. i-th response in dialogue is denoted by Dt[i] and acts, slots, and values
are represented as a, s, and v, respectively. Following recent work [3], we linearize tree structured
representation of web page observations into a sequence of elements and denote by St. j-th element
in this sequence is denoted by St[j] and an attribute is represented as attr.

4.2 Neural Policy Architecture

We use an actor-critic algorithm which requires the training of two networks — a policy network,
mapping observations into actions, and a value network, predicting sum of rewards from a given
observation. We use two policy networks with similar architectures for mapping dialogue and web
page observations to dialogue and navigation actions. Both policy networks use the same type of
observations as inputs but with two different outputs; dialogue or navigation action. Value network
takes the same input as policy networks and outputs a value for the current observation. All policy
and value networks share the same low-level layers but output layers are trained separately.

4.2.1 Policy Network

There are three different components in our policy network architecture (Figure 2): (i) Low-level
shared sub-network to jointly encode dialogue and web page observations, (ii) Output layers for
dialogue and navigation policies, and (iii) Output layer for value prediction.

Encoding Dialogue and Web Page Observations
Each act, slot, and value is first embedded into fixed-length vectors by taking mean of the
corresponding token embeddings in each sequence. Following [9], if any token in an act, slot, or
value is found in any element in current web page, the exact match flag (fa, fs, or fv , respectively) is
activated and concatenated to corresponding embeddings. We encode a single turn i by concatenating
the embeddings of the corresponding act-level representations and using a 2-layer neural network:

hi = NN([ea, es, ev]) (1)

MD
i = NN([hi,max(fa, fs, fv)]) (2)

whereNN is a linear transformation followed by a ReLU activation function, e denotes an embedding
vector with flags, [.] denotes vector concatenation, and max(.) denotes an activation if any of the
input flags is activated. A dialogue is represented using a memory where each cell in the memory
represents the embedding of individual turns, i.e., MD

i corresponds to i-th cell in the memory.

Similar to turn-level embeddings, we first embed each attribute by taking mean token embeddings
and concatenating with a flag which is activated if any token in the attribute is found in any dialogue
turn. Encoding of an HTML element j is computed by concatenating attribute level embeddings and
using a 1-layer neural network:

Ej = NN([e1:5, f1:5]) (3)

where e1:5 and f1:5 denote the sequence of embeddings and flags of 5 different attributes used in this
work, respectively. Using the sequence of element vectors as input, we encode the linearized view of
the web page into a memory representation using a bidirectional LSTM (biLSTM) network:

MS
1:L = biLSTM(E1:L) (4)

where E1:L is the sequence of element embeddings and MS
j is the memory cell corresponding to the

j-th element in the web page.

While we can increase the representational power of this architecture by stacking more layers, dialogue
and page encoders are still independent of each other which loses any alignment information in
encoding layers. Inspired by recent sentence matching approaches [10], we practise a soft-alignment
layer with attention mechanism. Given a memory index j, we generate a context vector by computing

4



Figure 2: A general overview of our policy network. Top part denotes dialogue representation and
bottom part denotes web page representation. Skip action is generated from both dialogue and page
representations (top-right). Dial, Nav, and Val are indepedent neural networks that output dialogue
policy, navigation policy, or value prediction, respectively (bottom-right).

attention [11] of MS
j against each vector in MD:

Cj =
∑
i

αj,i.M
D
i (5)

αj,i ∝ exp(NN(MS
j ).Q.NN(MD

i )) (6)

where Q is a trainable matrix. We compute soft-aligned encoding of MS
j as:

M̂S
j = [NN(MS

j ), Cj ] (7)

We also compute soft-aligned encodings of MD using the same procedure with separate param-
eters. Alignment layers can also be stacked to yield a deeper representation of the current observation.

Policy Representations
Given final dialogue and page memory representations, M̂D and M̂S , we first generate a single
representation, mD and mS , by reducing each memory matrix into vectors using self attention
mechanism as in [12].

We decompose the policy into two sub-policies — dialogue policy and navigation policy. Dialogue
policy is composed of two different distributions over act and slot spaces. Both distributions are
computed independently from the same web page and dialogue representations:

πD = [πact, πslot] (8)

πact ∝ exp(l([mD,mS ])), πslot ∝ exp(l([mD,mS ])) (9)

where l is a linear layer that outputs logits over corresponding action spaces.

Similarly, navigation policy is composed of two different distributions over available elements and
{click, type} actions in the current observation:

πS = [πaction, πelement] (10)

πaction ∝ exp(l(MS)), πelement ∝ exp(l(MS)) (11)

First linear layer generates 2-D logits for each action and element pair while the second linear layer
generates 1-D logits for each element. A navigation action is sampled by first sampling an element
from πelement and then sampling from the corresponding row of πaction.

Skip actions are defined as distributions over {skip, continue} for both dialogue and navigation
sub-tasks and their distributions are computed as:

πSskip, π
D
skip ∝ exp(l([mD −mS ,mD +mS ,mD ∗mS ])) (12)

At each time step-t, the same network architecture is run twice. The system first samples from
dialogue skip distribution. If the action is skip, user interaction is skipped and dialogue is kept the

5



same; otherwise, a dialogue action is sampled from πD and dialogue is populated with the latest
user response. Using the updated dialogue, the system samples from navigation skip distribution. If
the action is skip, navigating the page is skipped and page observation is kept the same; otherwise,
a navigation action is sampled from πS and a new page is collected. Note that both dialogue and
navigation policies depend on the same web page observation while navigation policy uses the
updated dialogue.

Value Predictions
To compute value prediction, we use self attention to generate a new hidden vector, mD

V , from MD.
Value prediction is computed from this hidden vector as:

Vt = NN(mD
V ) (13)

4.2.2 Training policy networks

We use Proximal Policy Optimization (PPO) [6] with advantage actor-critic [13] to train policy and
value networks. We sample a new minibatch of transitions from replay buffer and define the following
loss function for dialogue policy (for both act and slot distributions):

LDPPO = E
[
min(

πD

πDold
.At, clip(

πD

πDold
, 1− ε, 1 + ε).At

]
(14)

where πD

πD
old

is the ratio of the probability of taking a dialogue action under policy πD to the probability

of taking an action under behavior policy πDold and ε is hyper parameter. A similar loss function for
navigation policy is also computed and our final objective function becomes:

LPPO = LDPPO + LSPPO + ‖Vt −Rt‖2 (15)
where Rt denotes the cumulative reward from current state. At is the advantage function which is
shared between both dialogue and navigation policies and computed as: At = Rt − Vt.

5 Experimental Results

We train and test our policies on a dialogue-based Fandango environment implemented in Miniwob
framework.

5.1 Training Setup

Behavioral Cloning (BC). We pre-train our policy networks using the labeled dataset that we
generated in Section 3. We have labels for each dialogue and navigation skip actions as well as actual
dialogue and navigation actions. We train each supervised model for 50 epochs with a batch size of
32 and learning rate of 3e-4. We use 300 dimensions for word embeddings and 100 dimensions for
hidden vectors. After every 5 epochs, we execute the last policy in the environment for 100 dialogues
and accumulate rewards (development performance).
Reinforcement Learning (PPO). We initialize the parameters of our policies with behavioral cloning
and further fine-tune for 250k samples. We use the same batch size, embedding and hidden dimensions
but reduce the learning rate considerably, 1e-5, to avoid large gradient updates as is a common problem
in reinforcement learning. We use ε of 1 in our PPO training. After every 5 batch of training, we
execute the last policy in the environment for 20 dialogues to populate replay buffer (with a size of
5000 time steps) and to accumulate rewards (development performance).

5.1.1 Metrics

We report mean accumulated reward (R) and mean task success rate (TS), which equals 1 if movie
ticket is successfully booked and 0 otherwise. We also report best reward (BR) and best task success
rate (BTS) to understand the performance gap between running policy and the best policy. We
analyze the distribution of collected dialogue and navigation trajectories to understand failure and
bias cases. To evaluate the performance of our models with real users, we train a bidirectional slot
filling network similar to [14] using labeled dataset generated in Section 3. User responses are
converted into act-level responses and fed into our policies.

Best performing BC and PPO models are selected w.r.t. development performance and tested for 500
steps to collect test samples. Each setting is run at least 3 times and mean performance is reported.

6



Figure 3: Development performance of BC
over number of epochs.

Figure 4: Development performance of PPO
over sample size

Table 1: Testing Performance

Model Reward Task Success
BC - Sim 0.81 0.51
BC - Real 0.52 0.27
PPO - Sim 0.93 0.72
PPO - Real 0.73 0.43

Table 2: Error Analysis

Error Category PPO BC
Incorrect navigation action 0.3 0.52
Focus on wrong turn in dialogue 0.46 0.22
Missing request 0.68 0.62
Incorrect follow-up request 0.48 0.64
Request is not reflected by page 0.0 0.34

5.2 Performance of PPO and BC

In Figure 3 and 4, we evaluate the performance of BC and PPO policies over development set
across training steps. Behavioral pre-training model (BC) provides a reasonable starting performance
reaching 50% task success with only a handful of demonstrations.

After reaching the peak performance, BC starts to overfit even with a significant dropout regularization
which is largely attributed to the small size of our labeled dataset. The large gap between total
accumulated reward and task success shows that BC model learns partial sub-tasks such as searching
and selecting the correct movie but fails to learn the overall task of booking tickets in almost half of
the cases.

On the other hand, the performance of PPO steadily improves, surpassing the performance of BC
with the best performing model reaching up to 90% task success over development set. We argue that
the intrinsic exploration of PPO via sampling from policy distributions behave as a regularization
step which keeps the development performance high for much longer. Similar to BC policy, there is a
gap between total reward and task success performances albeit smaller in PPO policy.

Table 1 compares PPO and BC policies using testing performance over 500 and 50 dialogues with
user simulator and real users, respectively. PPO policy, pre-trained with BC, improves the best task
success performance with 18% and generalizes to unseen user goals and web page settings better.
When evaluated with real users, the performance of our policies drop significantly where the most
significant factor is noisy predictions of slot filling model. In majority of the error cases, slot filling
model produced no outputs.

5.3 Error Analysis

We randomly sampled 50 unsuccessful testing dialogues from both PPO and BC and analyzed the
types of errors in Table 2. While first two cases mostly reflects the ability of a model to understand
the dialogue, the last three cases are mostly related to understanding the current page.

In some errors, user responses are reflected into incorrect navigation actions such as clicking on the
incorrect date. This error is more apparent in BC policy showing the ability of PPO to match dialogue
responses to navigation actions better. The most prominent error in both PPO and BC models is
missing a required dialogue response such as theatre name. One plausible reason is that, when the
informed time of the movie is unique in the current page, only a single theatre has exactly the same
time slot, both models tend to ignore asking theatre name and overfit. Another error case is focusing
on the wrong dialogue turn where models occasionally use an earlier turn to act on the web page.
In majority of the cases, the problem is caused by having multiple flags activated at the same time

7



Figure 5: Ratio of average number of turns
per dialogue

Figure 6: Ratio of average number of naviga-
tion actions per time step

in dialogue memory. When the date of the movie is a single digit, policies sometimes misinterpret
this signal as the number of tickets. We also observe that in 34% of the cases, BC makes a request
which is unrelated to the current page. As an example, BC sometimes request the theatre name on the
final ticket selection page which populates the dialogue with a noisy entry and causes performance
degradation. Note that an error can belong to multiple categories.

5.4 Distributional Characteristics of PPO and BC

In Figures 5 and 6, we show the distribution of average number of dialogue turns and average number
of navigation actions per time step. In general, PPO tends to interact with users longer as longer
dialogues are not externally penalized; while BC conforms to the labeled dataset and has 5-turns on
average. Since there are multiple trajectories that a policy can follow, we observe that PPO tends to
focus more on a main trajectory; hence has a more peaked navigation action distribution (Figure 6).

We also examine the most frequent dialogue and navigation trajectories. We represent a dialogue
trajectory with the sequence of requested slots and a navigation trajectory with the sequence of tags
of visited HTML elements. Similar to previous observation, PPO has longer dialogue trajectories;
however the overall structure of the most prominent dialogue trajectory is common between PPO and
BC. Both models favor a unique navigation trajectory which begins with searching movie name and
clicking on the correct movie from a drop-down list of candidates. The most common dialogue and
navigation trajectories are movie → date → time → num_tickets and input_text(2) → h4 →
span(3) → label where (x) means the last item is repeated x times.

6 Related Work

Web Navigation. Liu, et al. (2018) and Shi, et al. (2018) both uses human demonstrations to improve
the performance of reinforcement learning models. Gur, et al. (2019) uses curriculum learning and
shallow encoding to guide the agent towards high potential states. All three models in [3, 2, 4] use
DOM tree observations as in this work while [1] uses input pixels with manual features. Jia, et
al. (2019) uses a graph neural network approach to encode DOM tree observations while in [3] a
linearized view of DOM tree structure is used similar to ours.

Task-Oriented Dialogues. Recently, modular architectures of dialogues systems are replaced with
end-to-end trainable neural network models [15, 16, 17]. Peng, et al. (2017) proposed a hierarchical
reinforcement learning model for training dialogues across multiple time scales. Lei, et al. (2018)
developed a holistic seq2seq approach by extracting belief spans for natural language responses.
Similar to our memory representation, Eric, et al. (2017) and Bordes, et al. (2016) use memory
networks to store information and repeatedly query and reason over.

7 Conclusion
We introduced a new problem of navigating web pages to fulfill unknown user goals while having
multi-turn conversations with users. We built a new dialogue-based environment by combining
Fandango movie ticket booking website with a rule-based user simulator. By jointly encoding
dialogue and web page observations, we developed a new policy architecture with shared sub-
structures between dialogue and navigation sub-policies. We trained our policy using PPO and BC
and evaluated with user simulator and real users. We showed that while PPO significantly improves
the performance over BC, there is still a large gap to fully solve the task. As a future work, we plan
to develop augment our task with diverse set of environments and user simulators. We also plan to
build end-to-end models that directly operates on natural language responses.

8



References
[1] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An

open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 3135–3144, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[2] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning on web
interfaces using workflow-guided exploration. In Proceedings of the International Conference on Learning
Representations, 2018.

[3] Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the web.
In International Conference on Learning Representations, 2019.

[4] Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. DOM-q-NET: Grounded RL on structured language. In
International Conference on Learning Representations, 2019.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

[7] Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi, Ankur Bapna, Neha Nayak, and Larry
Heck. Building a conversational agent overnight with dialogue self-play. arXiv, 2018.

[8] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve J. Young. A network-based end-to-end trainable task-oriented dialogue system.
CoRR, abs/1604.04562, 2016.

[9] Yichen Gong, Heng Luo, and Jian Zhang. Natural language inference over interaction space. CoRR,
abs/1709.04348, 2017.

[10] Seonhoon Kim, Jin-Hyuk Hong, Inho Kang, and Nojun Kwak. Semantic sentence matching with densely-
connected recurrent and co-attentive information. AAAI, abs/1805.11360, 2019.

[11] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412–1421, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

[12] Zhouhan Lin, Minwei Feng, Cícero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. A structured self-attentive sentence embedding. CoRR, abs/1703.03130, 2017.

[13] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783, 2016.

[14] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tür, Xiaodong
He, Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey Zweig. Using recurrent neural networks for slot
filling in spoken language understanding. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 23:530–539, 2015.

[15] Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck. End-to-end optimization of
task-oriented dialogue model with deep reinforcement learning. In NIPS Workshop on Conversational AI,
2017.

[16] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve J. Young. A network-based end-to-end trainable task-oriented dialogue system.
CoRR, abs/1604.04562, 2016.

[17] Bing Liu and Ian Lane. End-to-end learning of task-oriented dialogs. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Student Research
Workshop, pages 67–73, New Orleans, Louisiana, USA, June 2018. Association for Computational
Linguistics.

9


	Introduction
	Task Definition
	Dialogue-Based Navigation Environment and Data Collection
	Learning Dialogue and Navigation Policies
	Notations
	Neural Policy Architecture
	Policy Network
	Training policy networks


	Experimental Results
	Training Setup
	Metrics

	Performance of PPO and BC
	Error Analysis
	Distributional Characteristics of PPO and BC

	Related Work
	Conclusion

