
Beginners PHP Programming

About the course

Welcome to the course! This course aims to teach attendees basic programming concepts, using the
widely available PHP language and MySQL database server. Programming can be used for a lot of
things, but we'll focus just on one: building applications for the web. The skills you will learn will
teach you to think like a programmer, and so will be very useful if you decide to learn another
language.

The course will be hands-on, so bring a laptop (netbooks are okay but might be impractical for the
amount of typing we'll be doing). The software we will install will run on pretty much any operating
system (if you wish to install before your first lesson, WAMP for Windows or MAMP for Macs is
suitable – Linux users probably have everything they need already). You may need to ensure you
have administrator rights on the laptop (if it is a work computer, it may be locked down so software
cannot be installed).

About the format

We'll have a number of objectives to try each week, which we'll work on together. The material will
roughly run in order, so we can later look at complex topics that draw earlier, simple ones together.
However, occasionally we might need to make use of something we've not yet learnt; this is okay,
as we'll cover everything eventually.

If you miss a week, you may find it helpful to refer to the notes and do some internet research to
cover the objectives for that week. We can always use some time after class for catch-up sessions if
necessary. Get in touch by email throughout the week if you would like to see how far we got in a
particular week.

Attendees are welcome to ask questions at any time, and helping each other is encouraged. If some
feature of the course could be changed to make it easier for you to learn, let me know. While these
notes will form a rough plan for each week, if attendees wish to cover other material, we'll try to
cover that also.

The main aim of this course is that it will be interesting, fun and encourage you to experiment with
technology. As with many things, there is no end point where one can stop learning – if you can find
the time for additional hacking, there's plenty of tutorials on the web.

Code examples

There are a lot of exercises in this course, as the process of typing can really aid the memorisation
of the material. In each case, a suitable file name is suggested, so that items are easy to look up.
This will be helpful on the occasions when one exercise builds upon another one.

1

Introduction
Objectives:

• Appreciation of the limitless, exciting creativity of building for the web

• Be introduced to the permanent learning experience of being a programmer

• Understanding the client-server model used by the web

• Know a little about PHP, in particular that: it is easy to learn, and so is suitable for
beginners; it is somewhat “designed by committee” and so has a number of inconsistencies
and flaws; it is arguably one of the easiest languages to deploy; there is a large amount of
learning material available for it

• Be aware that many languages are used on web servers, and that they all have their strengths
and weaknesses

Resources:

• The official manual is at: php.net/manual

• Good history and introduction at Wikipedia: https://en.wikipedia.org/wiki/PHP

Installation
Objectives:

• Install a web server (Apache) and a database server (MySQL), perhaps using an all-in-one
installer (e.g. WAMP for Windows)

• Know how to start and stop servers

• Ensure PHP is available on the console, by obtaining the version (-v) and examining the
loaded modules (-m)

• Check PHP is working in the browser, by running a phpinfo() script

Resources:

• Download this and install if you're on Windows: wampserver.com/en/

• Download the free product here if you're on a Mac: mamp.info/en/

Introduction to code
Objectives:

• Understand that PHP programs can be written in a simple text-editor, but that word-
processors and desktop publishing packages are generally unsuitable

• Know that programs are executed line by line, in order, except where statements are used to
change the order

• Understand the purpose of the open tag <?php, the close tag ?>, and the semi-colon line
separator

• Look at a sample of PHP code from the internet, and see that braces {} are used a lot

2

http://php.net/manual/
http://mamp.info/en/
http://wampserver.com/en/
https://en.wikipedia.org/wiki/PHP

• Be aware that indentation and commenting are valuable aids to readability, and that getting
this right from the start of a project will save time later on

Resources:

• Here's some publicly available PHP code written by Facebook engineers:
https://github.com/facebook/facebook-php-sdk/blob/master/src/facebook.php

The console
Objectives:

• Write a simple program that runs on the command line. The program can be as simple as:

<?php

echo “Hello world!\n”;

?>

• Be aware that console programs can be run on a timer

• Learn that a server console is usually only available to server administrators

• Modify the above program so that it also outputs the number 42, followed by a newline

• Appreciate the difference between echoing strings and numbers

The web server
Objectives:

• Understand the purpose of the web server, in basic terms

• Know there are several different “brands” of server, that Apache httpd is by far the most
popular, powering around 52% of the web, followed by Microsoft IIS at 20%

• Understanding that HTML documents are rendered by the browser

• Create a simple HTML document (simple.html) and load it into the browser via the file
system

• Load the HTML document via the web server (and see that it looks the same)

• Create a simple PHP script (simple.php) and load it via the file system (and understand
why raw PHP code is seen)

• Load the PHP script via the web server (and see that it has been processed into HTML)

• Understand that the most dynamic web pages are rendered using a process similar to this,
regardless of the programming language used

Simple HTML
Objectives:

• Understand that HTML is a document description language, rather than a programming
language, and that it is often referred to as “markup” rather than “code”

3

https://github.com/facebook/facebook-php-sdk/blob/master/src/facebook.php

• Be aware that HTML documents have a doctype, and that all new applications should
generally use the HTML5 type (i.e. <!DOCTYPE html>)

• Be conversant with some simple types: <html>, <head>, <title>, <body>, <h1>, <p>,
<a href> and
.

• Appreciate HTML as being comprised of blocks nested inside each other

• Write an HTML document that makes use of all of these tags, and display it in a web
browser

Resources:

• Here's a resource for learning HTML5: html5iseasy.com/

Variables and types
Objectives:

• Understand the purpose of a variable in a computer program

• Be aware what characters are considered valid for a variable name

• Be aware that there is a string type and two numeric types, integer and float, for whole and
fractional numbers respectively

• Know that most types in PHP are not explicitly stated, and that this is known as “weakly
typed” (in contrast to “strongly typed” languages)

• Understand how to join strings together using the dot operator (“concatenation”)

• Write a program (variables_hello.php) to store your name and render the following
string in an HTML document or a console program:

Hello <name>, how are you?

• Write a program (variables_calc.php) to store three numbers (either integers or
floats) in variables, store the result of a mathematical operation of your choice that involves
them all, output all the numbers, and the result. Example:

My calculation is 1.5 + 4 / 2 and the result is 3.5

• Modify variables_calc.php so that, rather than using the dot operator, you use some
inline variables

The array type
Objectives:

• Understand the purpose of an array as being a list of variables, and that it can be used for a
broad range of list types, such as menu entries, shopping cart contents, database results etc.

• Be able to explain the difference between an associative and an indexed array

• Write a program (array_set.php) to insert a set of items into specific array positions
(e.g. four kinds of fruit, five types of weather, or whatever set you choose)

• Modify the last program to use the [] operator, to add items to the end of an array

4

http://www.html5iseasy.com/

• Understand the use of debugging commands print_r() and var_dump() to see what is
inside an array

• Write a program (array_assoc.php) to insert a set of key-value pairs into an associative
array (e.g. the attributes of a bicycle, such as [colour => silver, frame =>
mountain bike, brakes => hydraulic, wheels => 2], or whatever topic you
like)

Further reading:

• Reference manual for the array type: php.net/array

Conditionals
Objectives:

• Understand how if constructs are used to help the computer make decisions

• Write a web program (if.php) to read a query string called “name” via the $_GET array
(we'll learn much more about these later on)

• Modify the program to test whether the “name” parameter is equal to a particular string
value (such as your own name), using the equality == operator

• Understand that string comparisons are case-sensitive

• Modify the program to accept a number value, such as “number_of_cats_owned”, and
perform a numeric equality comparison

• Add in an “else” clause to one or both of your if statements

For loops
Objectives:

• Understand how to loop through a section of code, and that each loop run is known as an
“iteration”

• Write a web-based program (for_magic.php) to echo a magic word of your choosing
three times, using a for loop, from one to three

• Modify your program so that the magic word indicates which iteration count it is on, for
example:

Hocus pocus number 1

• Be aware of the tradition of using loop variables starting from $i, but don't use them if a
clearer name would be better

More HTML
Objectives:

• Understand the difference between a tag and an attribute

• Learn the purpose of , , , and

• Take your for_magic.php program, and modify it so that it outputs your magic words in
a bullet-pointed list

5

http://php.net/array

• Understand that all static and dynamically generated HTML documents should pass W3C
validation, but that in practice programmers don't often check!

• Submit your web-based program and paste it into the official W3C validator, and fix any
problems that you find. You can copy and paste it, or use the upload feature

Resources:

• Here's the official online validator validator.w3.org

• Another HTML5 resource: html5doctor.com

Understanding errors
Objectives:

• Recall that the PHP may complain about a possible problem (a warning)

• Know that some problems are serious enough that execution cannot continue (a fatal error)

• Create a console program (console_error.php) that runs
error_reporting(E_ALL) so all errors can be seen

• Add to this program (1) the echo of an undefined variable; (2) the echo of an indexed array
element where the array is defined but the index is not; (3) the echo of an associative array
element where the key is not correctly supplied as a string

• Run your program to see that warnings are “non-fatal”

• Add to the start of your program a for loop that says “Hello” five times, but deliberately
omit the line terminator from your echo statement

• Run your program to see that syntax errors (and other fatal errors) will stop execution
immediately

Thinking about the web
Objectives:

• Develop an awareness of constantly thinking about what problems might be solved online.
Is there an untapped niche, or could something be done better?

• Suggest in class, or write down, some ideas for how you can harness the web. Ideas may
come from professional experiences, personal interests and hobbies, anything

• Ideas may turn into a business, solve a social problem, be for the common good or be just to
tinker with a technology

• Know that sketching and “wire-framing” can help stimulate ideas

• Simple hosting costs a cup of coffee every month, so hobbyists can afford a “play box”

Foreach loops
Objectives:

• Understand foreach loops, in their simplest form, as a loop that iterates over an array

6

http://html5doctor.com/html5-forms-input-types/
http://validator.w3.org/

• Copy your array_set.php program as foreach_set.php and add a foreach loop to
echo each value from the array

• Modify this program so that the index is displayed in each iteration

• Copy your array_assoc.php program as foreach_assoc.php, and add a foreach
loop to each key-value pair from the array

Resources:

• PHP manual: php.net/foreach

Introduction to forms
Objectives:

• Learn how to accept user input in a web application

• Understand the purpose of the <form> and <input> tags

• Know the purpose of the form action and the method

• Write a web program (form_name.php) containing a form, a text input called “name” and
a submit button. The action should go to the same page, and the method should be “get”

• Learn how to use isset to test whether items are present in the $_GET array

• Modify your program so that, before the form, a paragraph before the form says “What is
your name?” if they have not already answered, or “Hello there <name>” if they have
answered

Using an IDE
Objectives:

• Learn the difference between text editors, programmers' editors and Integrated Development
Environments (IDEs)

• Install the NetBeans IDE and create a project that points at the root folder of your web
server

• Be aware that there are many editors of different kinds, and what you use is mainly a matter
of personal taste

• Look at examples of syntax colouration, code folding and auto-completion

• Choose between using your new IDE (lots of features) or sticking with a text editor (nothing
new to learn)

Resources:

• Download and install the PHP Netbeans from here: https://netbeans.org/downloads

While loops
Objectives:

• Understand the purpose of a while loop

7

http://php.net/foreach
https://netbeans.org/downloads

• In addition to the == test from the if exercise, learn new comparison expressions >, <, >=,
<= and !

• Write a web program (while_loop.php) featuring a while loop to count backwards
from 10 to 1

• Modify your program so that one half of the bullet points are italicised (you choose which
half). Remember that is an inline tag, so needs to go inside . Hint: you'll need
two if statements for this

Resources:

• PHP manual: php.net/while

Introduction to algorithms
Objectives:

• Understand that an algorithm is a plan for a program, independent of programming language

• Using a text editor (or pencil and paper) note down how you would determine the largest
value from a randomly-ordered array of numbers. Don't write your answer in code to start
with – the idea here is to work out the plan, not what to type

• Write this program, calling the file algorithm_max.php. Include at the start an array
containing around eight numeric values in a random order

User-defined functions
Objectives:

• Understand that blocks of code can be grouped into functions, which may have input values
(parameters) and an output (a return value)

• See that using functions helps keep code organised (modularity) and means we can easily
call it again without writing it again (code reuse)

• Modify your algorithm_max.php program so that your maximum algorithm is written
as a function

• Modify this program so the function is called on an additional numeric array of your
choosing

Reusing HTML
Objectives:

• Learn how blocks of HTML can be included in another using require

• Create a static web page, and call it include_main_1.php. Put in a paragraph of text to
indicate that this is “File 1”, and do the same again for include_main_2.php, with a
paragraph labelling it as “File 2”

• Add a file containing a snippet of HTML, called include_menu.php. In here, add links
with suitable names to the two above files

8

http://php.net/while

• Add a suitable require PHP snippet prior to the paragraph in each “main” file, so that it all
links together. You should now have a menu inserted at the top of each of your two pages

Introduction to CSS
Notes:

• Front-end design is not the aim of this course, so this section is deliberately simple. If you
want to learn more about this, there's a great range of online and book resources

Objectives:

• Understand the purpose of CSS as “separating style from content” - content is easier to
maintain, global style changes are trivial, and content is less cluttered with style attributes

• Learn how to create an inline stylesheet (using style with type)

• Discover the purpose of ids, classes, and CSS keywords border, font-family, font-
weight, font-style, color, background-color, margin and padding

• Learn how to create an external stylesheet (using link with href) and understand why this
is a good idea

• Modify include_menu.php so that it contains an inline stylesheet, and give the menu a
red border, a pink background, and an emboldened font. Add some margin and padding too,
so it is nicely spaced out

• Modify include_menu.php so that the inline stylesheet is converted to an external asset

Resources:

• A guide to stylesheets: htmlhelp.com/reference/css/

Style
Notes:

• Beginners should not worry too greatly about adhering to a style guide, but know that code
consistency affects readability greatly in large projects

Objectives:

• Be aware that giving variables and functions a readable and meaningful name will make
things easier as your programs get more complicated

• Remember to always comment code that needs explanation, but try to write your code so
that it does not need explanation!

• Understand the different brace conventions (same line versus next)

• Understand the different indent conventions (2 versus 4 and tab versus space)

• There are several notable “style guides”, in particular PSR-1/2 and PEAR

Resources:

• The PSR guidelines: php-fig.org/psr/1/ and php-fig.org/psr/2/

• The PEAR guidelines: pear.php.net/manual/en/standards.php

9

http://htmlhelp.com/reference/css/
http://pear.php.net/manual/en/standards.php
http://www.php-fig.org/psr/2/
http://www.php-fig.org/psr/1/

Introduction to objects
Objectives:

• Know that classes contain functions (called “methods”) as well as variables (called
“properties”), and that they help avoid “spaghetti programming”

• Be able to describe the difference between a class and an object

• Write a class Animal (class_animal.php) with public properties for these values:

• what type of animal it is

• the number of legs it has

• its height in metres

• In a new file (class_animal_demo.php) instantiate the following, and give them
realistic values:

• $fred (a giraffe)

• $polly (a human)

• $william (a centipede)

• Be aware that properties may be set in an instance even if they are not declared, but that it is
good practice to declare them

• Understand that for an instance to access its own methods and properties, we use $this

• Add to your class a method sayHello that says something like the following, with the
placeholders replaced with instance values:

Hello! I am a <type>, I have <leg count> legs and I am
<height> metres tall

• Understand that there is no relationship between the variable name (e.g. $polly) and the
instance contents, but that using meaningful names makes the code more readable

10

Introduction to MySQL
Objectives:

• Learn that the database server is like the web server – it just sits around waiting for remote
commands

• Log onto your database console using your root credentials, thus (the command may vary
from system to system):

mysql5 -u root -p

• Create a new user, a new database, and new privileges (substituting your_name and
your_db with more suitable values):

CREATE USER your_name@localhost IDENTIFIED BY 'password';

CREATE DATABASE your_db;

GRANT ALL PRIVILEGES ON your_db.* TO your_name@localhost;

• Exit your console and log on again as your new user

• Run this code to see what databases you have access to:

SHOW DATABASES;

• Understand that data is stored in tables, which have columns and rows, like a spreadsheet

• Run this code to create a demonstration table and set up some data:

CREATE TABLE `test`.`animal` (
`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
`name` VARCHAR(100) NOT NULL,
`type` VARCHAR(50) NOT NULL

) ENGINE = InnoDB;

INSERT INTO animal (name, type) VALUES ('Fred', 'Giraffe');

INSERT INTO animal (name, type) VALUES ('Polly', 'Human');

INSERT INTO animal (name, type) VALUES ('William',
'Centipede');

• Finally, issue some commands to query the database:

SELECT * FROM animal;

SELECT name FROM animal WHERE type = 'Human';

SELECT name, type FROM animal WHERE type <> 'Human';

11

	Beginners PHP Programming
	About the course
	About the format
	Code examples

	Introduction
	Installation
	Introduction to code
	The console
	The web server
	Simple HTML
	Variables and types
	The array type
	Conditionals
	For loops
	More HTML
	Understanding errors
	Thinking about the web
	Foreach loops
	Introduction to forms
	Using an IDE
	While loops
	Introduction to algorithms
	User-defined functions
	Reusing HTML
	Introduction to CSS
	Style
	Introduction to objects
	Introduction to MySQL

