
Blackstomp Library

gaindoubler.ino -- simple effectModule Pedal controlling only volume

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

stereochorus.ino  -- effectModule Pedal chorus effect.  Uses classes fractionalDelay and oscillator.    

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

effectmodule.h .cpp -- defines the Base effectModule Class. Instead of constructor and destructor methods use "virtual"
init() and deInit() methods defined in each descendant effectModule object. Introduces a virtual process() method and
various virtual Controller and Button methods. "virtual" means that the method will be defined in detail (and perhaps
differently) in each descendant object, not here in the Base Class where it is just declared.

Also uses typedef enum's inside struct's to define various mode, controller, button, encoder, and ble variables. See
example of use below:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

typedef enum   // NORTH=0, SOUTH=1, EAST=2, WEST=3    An enum assigns numbers to Labels.
//  The computer uses the numbers while you can use the more descriptive Labels.
// Typedef allows you to define your own type instead of using the usual int, bool, float, etc.

{ NORTH,
  SOUTH,
  EAST,
  WEST,
} DIRECTIONS;



DIRECTIONS directions;    // declare "directions" as type "DIRECTIONS" defined above (a special enum type)
directions = EAST;              //set directions = 2
directions = 3;                     //set directions = WEST

struct WIND                        // a struct is essentially a Class definition with various type attributes
{  DIRECTIONS wind_direction;
   int speed;
   int min;
   int max;
   bool rain;
   int temperature;
};

WIND monday_wind; //declare a Monday wind weather object
monday_wind.wind_direction = NORTH;
monday_wind.speed = 35;
monday_wind.rain = true;

WIND wind_week[7];                                //declare a Monday through Sunday weather array
wind_week[0].wind_direction = NORTH;  //set Monday's wind direction
wind_week[1].speed = 35;                        //set Tuesday's wind speed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

control.h .cpp / ledindicator.h .cpp -- Defines the classes controlInterface and ledIndicator. These functions
manage all possible LEDs and controllers such as potentiometers. An LED can not only be turned on and off but can also
be set up to blink in any number of ways. The pot controllers can be set up as a control voltage with certain ranges, as a
selector switch, as a toggle switch, as a momentary switch or as a tap-tempo switch. (The button_task() is found in
blackstomp.cpp.)

Within each of these two classes a rather involved function is declared to continuously manage the LEDs and Controllers
in any of their various modes of operation:

friend void blinktask(void* arg);
friend void controltask(void* arg);

The "friend" declaration means that controltask is not actually a controlInterface Class method, and blinktask is not an
ledIndicator Class method. They are defined outside the scope of the Class but are given access to all the public and
protected members of the Class in which they are declared.

Note that in ledindicator.cpp, blinktask is defined with "void blinktask(void* arg) { }" and not "void
ledIndicator::blinktask(void* arg) { }" The same is done with controltask. They are not Class methods but can access
the Class as set up by the "friend" declaration.

Each of these functions show up again inside their class Init() in a special "xTask" function:

xTaskCreatePinnedToCore(blinktask, "blinktask",4096,(void*)this,priority,NULL,0);
xTaskCreatePinnedToCore(controltask, "controltask",4096,(void*)this,priority,NULL,0);

The ESP32 microprocessor is special in that it has 2 cores that allows two program threads to run simultaneously. The
xTaskCreatePinnedToCore() is an ESP32 Library function used to set up specific tasks (functions) to run in one of the
two ESP32 cores. The last argument "0" in the xTask functions above indicate that blinktask and controltask are both
assigned to the ESP32 Core 0. Several other tasks defined in blackstomp.cpp are also assigned to Core 0. The only task
assigned to ESP32 Core 1 will be the i2s_task which manages the audio data streams to and from the codec; in this way
the user control functions will not interrupt the audio into and out of the codec ADC and DACs.

blinktask and controltask are set up to run continuously, always watching for user control input to alter the audio
streams through an effectModule() in some way or to change the LED indicators. blinktask() sets up a somewhat
infinite loop with "while(! l -> terminaterequest) { }" controltask() sets up an infinite loop with "while(true) { }"

All the tasks running in Core0 must be programmed for real-time response. The user must feel that any button press or
knob turn has an immediate effect even with all the tasks competing for processor time. The main programming tool for
creating this real-time response is FreeRTOS (Free Real Time Operating System). The ESP32 development board
comes with FreeRTOS firmware already installed on it which is supported by the Arduino IDE as well. The FreeRTOS is a
Real-time Operating System used to run multiple tasks individually. This firmware allows the ESP32 board to multitask via

API functions. Both tasks described above use FreeRTOS commands to improve responses to user input.

For one example, since the human reaction time is around 150 ms, the tasks can be slowed down to allow other tasks to
do their thing without affecting the perceived user response time. This is easily done with an RTOS Delay command at
the start of the task's infinite loop. controltask() uses "vTaskDelay(1)" and blinktask() uses "vTaskDelay(10)", delays of
about 1ms and 10ms, depending upon the processor "Tick" rate. Unlike the Arduino delay(), vTaskDelay() is a non-
blocking delay; it lets other tasks continue working while the one task is idle.

blinktask() uses another FreeRTOS construct, the Semaphore. A Semaphore is a permit to access the processor which
is passed between functions. It is created in ledIndicator::init() with the line "xSemaphore =
xSemaphoreCreateBinary();" Each ledIndicator class method then must check on the xSemaphore's availability before
it can "Take" it, perform its function, and then "Give" the Semaphore back. The "Take" and "Give" lines framing the
method's main lines are shown here:

if(xSemaphoreTake(l->xSemaphore,(TickType_t)1) == pdTRUE);
...

xSemaphoreGive(xSemaphore);

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

bsdsp.h  .cpp  defines the following 3 classes used for digital signal processing:

biquadFilter --  implements a direct-form-2 biquad iir filter 

oscillator --  implements an oscillator from a 256 element table of one waveform cycle.
It can use the sine_table[ ]  from the file dsptable.h  
It uses the function lookupLinear( ) which can interpolate a fractional index into a wave table.
Value = table[integer part of index] + (fraction part of index) * (table[index + 1] - table[index])

fractionalDelay -- implements a delayed output by building a circular sample buffer sized for a given
maxDelayInMs.  You can then request a sample read at any delay value up to the maxDelay.
It uses the same fractional index interpolation implemented in the lookupLinear( ) shown above.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

blackstomp.h  .cpp --  Main file in Library

button_task( ) -- Along with blinktask( ) and controltask( ), button_task( ) completes the trio of user controller tasks.  
This one manages pushbuttons and switches.  It is specifically programmed for the 3 push buttons on the 
ESP32_A1S_ES8388 board or the 4 push buttons on the ESP32_A1S_AC101 board.  If not using either of these boards, 
you can still wire up 3 or 4 ESP32 pins as switches and use this task function to manage them.  You will need to define 
each switch's mode of operation within an effectModule class instance - BM_TOGGLE, BM_MOMENTARY, 
BM_TAPTEMPO or EM_BUTTONS (rotary encoder mode).

The button_task( ) is set up similar to blinktask( ) and controltask( ).  After configuring the ESP32 pins used for the 
switches as inputs with pull-ups, the task starts up an infinite loop with "while(true){ }" along with "vTaskDelay(1);"  It then 
continuously services each switch according to its selected mode of operation.  As with the other two user control tasks, 
this one is assigned to the ESP32 Core0 with the following statement found in blackstompSetup(effectModule* module) :

xTaskCreatePinnedToCore(button_task, "button_task", 4096, NULL, AUDIO_PROCESS_PRIORITY, NULL,0);

ESP32  #defines --  The blackstomp.cpp file starts off with the following ESP32 pin defines:

6 ADC Pot or Slider Controller pins:  P1_PIN through P6_PIN
4 Digital Button pins:  RE-BUTTON_PIN, RE_PHASE0_PIN, RE_PHASE1_PIN, FS_PIN
2 Digital LED pins:  MAINLED_PIN, AUXLED_PIN
2 OLED I2C Display pins:  SCK_PIN, SDA_PIN

7 pin Button assignments for the AC101 or ES8388 boards 

7 pin Codec assignments for the AC101 or ES8388 boards: I2S { MCLK, BCK, WS, DO, DI }, I2C { SDA, SCK }, 
plus ADDR and NUM



The pin assignments shown above may need to be changed for other ESP32/Codec board configurations.  To allow for 
easier library updating these assignments can be left as is while another .h file is created with #define overrides in the 
following format: 

#ifdef __RESETPIN__
#undef __RESETPIN__

#define __RESETPIN__ 1
#endif

 Audio Processing constants:
FRAMELENGTH 64  - 32 samples for Right, 32 samples for Left (4 bytes per sample give a total of 256 Bytes)
SAMPLECOUNT  FRAMELENGTH/2  - 32 samples per channel
CHANNELCOUNT 2  - Left and Right
FRAMESIZE FRAMELENGTH*4    (4 bytes per sample give a total of 256 Bytes)
AUDIO_PROCESS_PRIORITY 10  -  highest priority given in xTaskCreatePinnedToCore( )
DMABUFFERLENGTH 32  - 32 bytes (4 samples Left, 4 samples Right) fed to codec DMA
DMABUFFERCOUNT 20 - 640 bytes, 160 samples (80 for Left, 80 for Right) fed to codec DMA
DEVICE_TYPE_deviceType = DT_ESP32_A1S_ES8388;

The following are declared "static" variables which means that they are effectively "global".  Note the "_"

//  instances of classes created
static codec*              _acodec;
static effectModule* _module     = NULL;
static bt_terminal*    btt;            // bluetooth BLE terminal
static controlInterface _control ;
static ledIndicator _mainLed ;
static ledIndicator _auxLed  ;

static bool _es8388Mode = true; //codec
static uint8_t _codecAddress = 0; //codec
static bool _outCorrectionGain = 1; //controlInterface
static int _optimized Range = 2; //controlInterface



//Buffers  used in i2s_task( )
static float wleft[ ] = {0,0};
static float wright[ ] = {0,0};
static int32_t inbuffer   [FRAMELENGTH];
static int32_t outbuffer [FRAMELENGTH];
static float inleft        [FRAMESIZE];
static float inright      [FRAMESIZE];
static float outleft      [FRAMESIZE];
static float outright   [FRAMESIZE];
 

struct EEPROMBUFFER //See EEPROM functions below
{

int controlvalue[6];
int buttonvalue[4];

};
static EEPROMBUFFER  eeprombuffer ;    //eeprombuffer.controlvalue[i], eeprombuffer.buttonvalue[i]
static unsigned long eepromupdatetime = 0;
static bool eepromrequestupdate = false;

static char* debugStringPtr = "None";
static float debugVars[ ] = {0, 0, 0, 0};

static volatile unsigned int processedframe ;
static unsigned int audiofps;    //frames per second

// calculated in i2s_task( ) using xthal_get_ccount( )
static unsigned int usedticks;
static unsigned int availableticks;
static unsigned int availableticks_start;
static unsigned int availableticks_end;
static unsigned int usedticks_start;



static unsigned int usedticks_end;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Functions in blackstomp.cpp

Void setDeviceType(DEVICE_TYPE dt) //_deviceType = dt:
void button_task(void* arg) //task assigned to Core0 in blackstompSetup(). Described above.
void blackstompSetup(effectModule* module) //placed in Setup() of all user Effects Pedal sketches
void enableBleTerminal(void) //enable Bluetooth

As an aid to debugging your own effects sketches the following Debug utilities can be used. The SystemMonitor can print
out Debug variables, several System readings, and controller readings, all using the Serial.print() command of the
Arduino Serial Monitor Tool. In addition, a Scope utility allows you to print out the codec's audio output waveform using
the Arduino's Serial Plotter Tool.

void setDebugStr(const char* str) //debugStringPtr = (char* str)
void setDebugVars(...) //fill debugVars[0 through 3]
void sysmon_task(void *arg) //task assigned to Core0 in runSystemMonitor().
void runSystemMonitor(...) //Serial.print Monitor of System values for debugging
void scope_task(void *arg) //task assigned to Core0 in runScope().
void runScope(...)
void scopeProbe(float sample, int channel)

The I2S serial interface is used to move audio data between the ESP32 Microprocessor and the Codec, out of the Analog
to Digital Converters and into the Digital to Analog Converters. This Codec Audio Input/Output is the most time intensive
and time sensitive task of the whole program. As such, it is the only task that is assigned to Core 1 of the ESP32 dual
core processor.

void i2s_task(void* arg) //task assigned to Core1 in blackstompSetup().
void i2s_setup() //run in blackstompSetup().

Controller and button values are periodically stored in the ESP32 EEPROM memory so that the Pedal Effect can be
powered up in the same state it was in when powered down.

void eepromupdate_task(void* arg) //store current button values in ESP32 eeprom
void eepromsetup_task(void* arg) //task assigned to Core0 in blackstompSetup().

Base class codec public virtual functions (to be overriden by more specific functions defined in codec::AC101Codec and
codec::ES8388Codec).

void codecsetup_task(void* arg) //task assigned to Core0 in blackstompSetup().
bool analogBypass(...) / /return _acodec->analogBypass(bypass, bm);
bool analogSoftBypass(...) //return _acodec->analogSoftBypass(bypass, bm);
void setMicGain(int gain) //_acodec->setMicGain(gain)
int getMicGain() //return _acodec->getMicGain()
void setInGain(int gain) //_acodec->setInGain(gain)
void optimizeConversion(int range) //_acodec->optimizeConversion(range) else _optimizedRange = range
void setMicNoiseGate(int gate) //_acodec->setMicNoiseGate(gate)
int getMicNoiseGate() //return _acodec->getMicNoiseGate()
int getInGain() //return _acodec->getInGain()
void setOutVol(int vol) //_acodec->setOutVol(vol)
int getOutVol() //return _acodec->getOutVol()

int getTotalCpuTicks() //return availableticks;
int getUsedCpuTicks() //return usedticks;
float getCpuUsage() //return usedticks/availableticks
int getAudioFps() //return audiofps
void framecounter_task(void* arg) //task assigned to Core0 in blackstompSetup().

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

codec.h .cpp Audio Codec Drivers.

Codecs use two interface protocols. A 2-wire I2C interface is used to configure the chip, and the I2S is used to move the
audio data. In the ES8388 codec the I2C interface is used to load and read 53 user programmable 8-bit registers that set
up I/O connections, sampling rate, sample format, sample size, volume, filters, effects, etc. Only a few of these registers
are of interest to the user and these are provided get and set virtual functions in the base codec class (listed above).
Others can be set and left in their default settings. The codec.h and .cpp files deal with setting up the codec by loading
its registers using the I2C interface.

Three possible codecs are indicated in the typedef enum DEVICE_TYPE below. Used in the creation of the _deviceType
variable: DEVICE_TYPE _deviceType = DT_ESP32_A1S_ES8388; (in blackstomp.cpp). Also used in
setDeviceType(DT_ESP32_A1S_ES8388) to set the variable _deviceType (in any user effect pedal sketch). The
_deviceType variable is then implemented in i2s_setup() and codecsetup_task().

typedef enum
{ DT_ESP32_A1S_AC101,

DT_ESP32_A1S_ES8388,
DT_WROVER_WM8776

} DEVICE_TYPE;

typedef enum
{

BM_LR,
BM_L,
BM_R

} BYPASS_MODE;

The codec.cpp file starts out with #define constants that name the many codec registers found on the AC101 and the
ES3833. These are the registers used to set up the codec ADCs and DACs (Analog to Digital and Digital to Analog
Converters) and other parameters. Several of the data values loaded into these registers, such as SampleRate, Word
Size, Data Format, Clock Division, etc, are named and defined using c++ enum.

bool codecBusInit(int sdaPin, int sclPin, int frequency) //_codecWire = new TwoWire(0); using I2C Wire.h Library.

Next, the base codec class is created with some basic virtual functions defined above in blackstomp.cpp. Then two more

specific codec classes are derived from the base class. These are specific to the AC101 Codec and the ES3833 Codec.
Several functions defined in these derived classes override the virtual functions defined in the base class since they are
specific to a particular codec. A number of other functions are defined to access specific codec setup registers. The 3
main codec functions are init(), readReg(), and WriteReg() (Initialize the codec, read a register, write to a register).

class codec { } // the base class, with all the virtual functions shown above in blackstomp.cpp
class AC101Codec: public codec
class ES8388Codec:public codec

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


