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Methodology used in  

 

“Tracking all cause of death and estimating excess mortality during the COVID-19 pandemic: 

statistical and computational tools” 

 
 
These notes provide technical details on the statistical methods used to estimate excess deaths 
in WPR Member States during the COVID-19 pandemic using all-cause of mortality data.  
 

We consider the case where we have multiple time-series of all-cause mortality counts from 

each member state for each week from January 1, 2015 to a recent date. For some states we 

will have only monthly data, for which much of the description below maintains with natural 
changes. We consider the case where we have separate reported counts for each sex and age 
group (typically, five-year age groups).  
 
The primary objective is to estimate the expected all-cause mortality counts for each week 
starting at January 1, 2020 onward in the counter-factual situation where there had not been a 
pandemic. The excess mortality is defined to be the difference between the reported counts 

and expected counts for that week.  
 

Current Model 
 

To fix ideas, consider the case of females, aged 65-74 years in Australia. Let 𝑦𝑡 be the count 

for week 𝑡 = 1, … , 𝑇 with 𝑡 = 1, … , 260 being the period January 1, 2015 to December 31st, 

2020. We model 𝑦𝑡 as a random variable following a negative-binomial distribution with mean 

parameter 𝜆𝑡. We make this choice rather than a Poisson distribution to account for 

overdispersion in the counts. The overdispersion parameter is itself estimated from the data 

and the mean parameters 𝜆𝑡 are modelled as 

 

log  𝜆𝑡  = 𝑐(𝑡) + 𝑡𝑟𝑒𝑛𝑑(𝑡) + 𝑋𝑡𝛽 
 

where 𝑐(𝑡) represents the annual cycle in all-cause mortality and 𝑡𝑟𝑒𝑛𝑑(𝑡) is the curvilinear 

trend of all-cause mortality over time. The annual cycle 𝑐(𝑡) is modeled as a cyclic cubic spline 

function (Wegman and Wright 1983) of time with a period of 52 weeks (that is, 𝑐(𝑡) =
 𝑐(𝑡 + 52)). A spline is a piecewise polynomial. Conceptually, one can imagine a high-degree 

polynomial capable of crossing through every data point. Such a polynomial would likely overfit 

the observed data, meaning it may not predict well using new data. Splines allow many low-

degree (degree three, in this case) polynomials to fit the data in pieces. This achieves a good 
fit to the data without the risk of overfitting.  
 
Specifically, 𝑐𝑡 is modeled as a piecewise cubic polynomial that has a continuous second 

derivative, is continuous, has continuous 1𝑠𝑡 and 2𝑛𝑑 derivatives at 52 week cycles and best fits 
the recorded all-cause mortality while being smooth. The specific criterion for the last feature is 
to choose 𝑐𝑡 to minimize the penalized square error (PSE): 

𝑃𝑆𝐸𝜏(𝑐) = log-restricted-likelihood (𝑦, 𝑋, 𝑡 = 1, … , 𝑇) − 𝜏 ∫ 𝑐′′[𝑠]2
52

0

𝑑𝑠           𝜏 >  0 



where 𝑐′′[𝑠] is the 2𝑛𝑑 derivative of 𝑐[𝑠] and 𝜏 is a smoothing parameter, chosen to balance the 

closeness of fit to the recorded counts (the first term) with the smoothness of 𝑐[𝑠] (the second 
term). Hence, choosing the function 𝑐[𝑠] that minimizes 𝑃𝑆𝐸𝜏(𝑐) provides a balanced 

representation of the annual cycle. It prioritizes smoothness of 𝑐[𝑠] over the closeness of fit of 

𝑐[𝑠] to the recorded all-cause mortality. Note that the traditional estimator, 𝑐[𝑠], is the 

minimizer with 𝜏 = 0, that is, with no penalty for lack of smoothness. The choice of 𝜏 is 

subjective. In this work we choose to maximize the ability to predict unrecorded all-cause 
mortality counts. Specifically, we use Generalized Cross Validation (GCV) (Craven and Wahba 
1979) to choose, and the R package mgcv by Simon Wood for analysis (Wood 2004, Wood 
2017). The annual cycle so obtained is the optimal smoothest annual cycle chosen to maximize 
the likelihood of the observed all-causes mortality.  
 

A similar approach is taken to the curvilinear trend 𝑡𝑟𝑒𝑛𝑑(𝑡). It is modeled as a (non-cyclic) 

cubic spline function, specifically, as a piecewise cubic polynomial that has a continuous second 
derivative, is continuous, and best fits the recorded all-cause mortality while being smooth. The 
specific criterion for the last feature is to choose 𝑡𝑟𝑒𝑛𝑑(𝑡)  to minimize the penalized square 
error (PSE): 

𝑃𝑆𝐸𝛾(𝑡𝑟𝑒𝑛𝑑) = log-restricted-likelihood (𝑦, 𝑋, 𝑡 = 1, … , 𝑇) + 𝛾 ∫ 𝑡𝑟𝑒𝑛𝑑′′[𝑡]2
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𝑑𝑡           𝛾 >  0 

where 𝑡𝑟𝑒𝑛𝑑′′[𝑡] is the 2𝑛𝑑 derivative of 𝑡𝑟𝑒𝑛𝑑(𝑡) and 𝛾 is a smoothing parameter, chosen to 

balance the closeness of fit to the recorded counts (the first term) with the smoothness of 

𝑡𝑟𝑒𝑛𝑑(𝑡) (the second term). Hence, choosing the function 𝑡𝑟𝑒𝑛𝑑(𝑡) that minimizes 𝑃𝑆𝐸𝛾(𝑡𝑟𝑒𝑛𝑑) 

provides a balanced representation of the trend. It prioritizes smoothness of 𝑡𝑟𝑒𝑛𝑑(𝑡) over the 
closeness of fit of 𝑡𝑟𝑒𝑛𝑑(𝑡) to the recorded all-cause mortality. Note that the traditional 

estimator, 𝑡𝑟𝑒𝑛𝑑(𝑡), is the minimizer with 𝛾 = 0, that is, with no penalty for lack of smoothness. 

Like 𝜏, the choice of 𝛾 is subjective. As for the annual cycle, we choose to maximize the ability 

to predict unrecorded all-cause mortality counts by using the Generalized Cross Validation 

criterion. The model allows for arbitrary time-varying covariates, 𝑋𝑡 . Including both the date 

and period allows for the model to detect trends across years and within years. 
 
Poisson Negative-binomial regression is a natural choice in that we are seeking to estimate the 

death count during any time frame. Negative-binomial is preferred to Poisson regression 

because it allows for overdispersion, and it can also account for instances of low or zero counts 
without issue. 
 
This particular negative-binomial regression model is a generalized additive model (GAM) in 
that it uses smoothing functions for the predictor variables. Since the date and period are input 
as discrete values, they are smoothed using cubic splines, a common smoothing technique. The 

parameters 𝛽 and the splines themselves are found through restricted maximum likelihood 

estimation (REML). GAMs are a type of generalized linear model, which are generalizations of 
ordinary linear regression that allow for the response variable to have error distributions other 

than the normal distribution (in this case, the negative-binomial distribution). 
 
At the moment, this model is very simple in that it uses no other information outside of sex, 

age-group, and time/date. Once more data becomes readily available, such as flu counts, the 

model can easily be extended to incorporate it. There are also other ways to enhance the 
model, such as considering negative-binomial regression for the case of overdispersion or using 
hierarchical models for sharing information across groupings. As such, this preliminary 

approach should serve as a strong starting point. 
 
The expected is then forecast stochastically to represent the uncertainty in the estimate of the 
expected. Thus, the statistical significance of the observed can be determined (i.e., if it is a 

substantial increase or decrease from the baseline). One detail of the forecast is that it is an 

average over the sampling distribution of the parameter estimates. This is a simple way to 
account for uncertainty in our model for the expected deaths in addition to the sampling 



variation of the counts for given model parameters. We prefer this to a formal Bayesian model 
due to its simplicity. 
 
For the moment, models are fit separately to each sex and each age-group and each state. It is 
possible to improve the estimation by using information from both sexes and multiple age 
groups simultaneously. However, this is a bias-variance trade-off that can be explored. 
 

For countries with missing (pandemic) weeks we can stochastically interpolate using simple 
time-series models. If there are significant missing weeks we will use a negative-binomial 
model like the above to stochastically interpolate. 
 
An issue that may be important is to adjust for reporting delay (mainly an issue for recent 

weeks). To do this information is needed on the reporting delay. In the US, the NCHS reports 

deaths as they are received from the states and processed; counts of deaths from recent 
weeks are highly incomplete, reflecting delays in reporting. These “provisional” counts are 
updated regularly for past weeks, and the counts are not finalized until more than a year after 
the deaths occur. The estimate of completeness is based on the number of weeks that passed 
between the week in which the data set was obtained and the week in which the death 
occurred. We can model this relationship and use it to adjust the estimates, if necessary. 
 

Validation of the statistical method for estimating the all-cause mortality without a pandemic 
One may ask why it is not better to simply compare the observed all-cause mortality counts to 
historical averages of recent years. As we will show, doing so offers less robust prediction 
intervals than using the model described above. The following validation metrics detailed here 
also justify using this model to gauge the significance of current all-cause mortality counts 
relative to pre-pandemic times.   
The model attempts to forecast all-cause mortality counts for each week of 2020 and beyond, 
assuming no pandemic had occurred. Since the discrepancy between actual counts and 
expected counts is the sought after estimate of excess mortality in 2020, it is vital the model 
makes accurate predictions. One way to validate the accuracy of the model is to use it to 
predict the number of all-cause deaths during 2019, a year in which there would be no ‘excess’ 
mortality. The model is trained on data from January 1, 2015 through December 31, 2018, and 
then predictions are made on a weekly/monthly basis for 2019. The closer the predicted counts 
are to the observed counts, the better the model is performing. 
The model has been validated across all age groups, genders, and countries, but to keep with 
the example used earlier of females aged 65-74 years in Australia, we present those results. 
Figure 1 below shows the 95% prediction intervals for the model (“spline”) as well as for the 
weekly average. The actual weekly counts are denoted by the black dots, showing that the 
spline model fails to capture the true count just three times out of 52 periods (95% accurate). 
The weekly average fairs far worse. As is evident from Figure 1, the lengths of the spline 
intervals are typically smaller than the lengths of the weekly average intervals, meaning the 
higher accuracy of the spline model is because it is better rather than just larger. More 
importantly, the weekly average intervals are misleadingly and their actual coverage is much 
below their nominal coverage. 
The accuracy of the spline model is not solely for the females aged 65-74. Table 1 shows 
percent accuracy (i.e., how often the prediction interval contains the actual value) for each 
demographic breakdown. The spline model significantly outperforms the weekly average across 
all genders and age categories.  



 
Figure 1: Prediction intervals for 2019 based on the deaths from 2015-2018. The black dots are the 

reported deaths for each week in 2019. The green error bars are those based on the weekly averages. The 

blue intervals are those based on the spline model. Those based on the weekly averages are incorrect and 

their actual coverage is well below their nominal coverage. The intervals based on the spline model are 

valid. 

 

Age group Average (PI %) spline (PI %) 

Female 0-44 85 94 

Female 45-64 83 93 

Female 65-74 81 91 

Female 75-84 92 93 

Female 85 and 
over 

87 96 

Female Total 88 95 

Male 0-44 83 89 

Male 45-64 81 97 



Male 65-74 92 92 

Male 75-84 87 91 

Male 85 and over 81 87 

Male Total 75 86 

Total 0-44 87 89 

Total 45-64 85 95 

Total 65-74 88 90 

Total 75-84 81 92 

Total 85 and over 81 95 

Total Total 83 91 

median % 84 92 

mean % 84 92 

 
Table 1: Prediction interval accuracy for all age/gender groups. The intervals produced by the 
spline model have the correct coverage while those produced by the weekly average model are 
well below their nominal coverage. 
 
Another way to check the validity of the model is to look at the length of the prediction 
intervals. The intervals should be long enough to capture the true values most of the time, but 
intervals too long leave too much uncertainty to be worthwhile. Table 2 shows the lengths of 

the prediction intervals for the spline, ETS, and weekly average. The spline intervals tend to be 
nearly the same length as those of the ETS for ages 0 - 74 (the weekly average has a short 
length but is woefully inaccurate). It is in ages 75+ (and when aggregating across all age 

groups) that the spline intervals are longer than its counterparts. The significant increase in the 
uncertainty surrounding the older age categories is something that will be looked into. 

 

 
 
 
 

Country / Age group Average (PI length) ETS (PI length) spline (PI length) 

AUS: Female 0-44 8.9 20 20 

AUS: Female 45-64 18.6 43 43 



AUS: Female 65-74 24.9 52 53 

AUS: Female 75-84 37.8 70 78 

AUS: Female 85 and over 70.3 103 148 

AUS: Female Total 106.5 143 225 

AUS: Male 0-44 10.0 21 21 

AUS: Male 45-64 23.6 50 53 

AUS: Male 65-74 36.0 63 72 

AUS: Male 75-84 45.1 78 93 

AUS: Male 85 and over 60.2 87 118 

AUS: Male Total 107.2 143 210 

AUS: Total 0-44 13.8 29 29 

AUS: Total 45-64 28.3 66 66 

AUS: Total 65-74 50.8 81 98 

AUS: Total 75-84 64.7 105 130 

AUS: Total 85 and over 111.9 135 228 

AUS: Total Total 191.0 202 386 

median length 41.5 74 85 

mean length 56.1 83 115 

Table 2: Prediction interval length for all Australian age/gender groups. 
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